JP2003193872A - Control device for self-igniting engine - Google Patents

Control device for self-igniting engine

Info

Publication number
JP2003193872A
JP2003193872A JP2001394568A JP2001394568A JP2003193872A JP 2003193872 A JP2003193872 A JP 2003193872A JP 2001394568 A JP2001394568 A JP 2001394568A JP 2001394568 A JP2001394568 A JP 2001394568A JP 2003193872 A JP2003193872 A JP 2003193872A
Authority
JP
Japan
Prior art keywords
compression ratio
self
ignition combustion
combustion
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001394568A
Other languages
Japanese (ja)
Other versions
JP4311604B2 (en
Inventor
Akihiko Sumikata
章彦 角方
Koji Hiratani
康治 平谷
Atsushi Terachi
淳 寺地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001394568A priority Critical patent/JP4311604B2/en
Publication of JP2003193872A publication Critical patent/JP2003193872A/en
Application granted granted Critical
Publication of JP4311604B2 publication Critical patent/JP4311604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device with a variable compression ratio mechanism 10 allowing stable spark ignition combustion by preventing the occurrence of self ignition combustion during changing a combustion system from the self ignition combustion to the spark ignition combustion (during a compression ratio change) for establishing a high compression ratio in operation in a self ignition compression mode and a low compression ratio mode in operation in a spark ignition combustion mode. <P>SOLUTION: A variable valve mechanism 11 for changing the valve lift characteristic of an inlet valve 5 is used to correct the closing timing of the inlet valve to a delay side during changing the compression ratio to decrease an effective compression ratio. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、運転状態に応じて
自己着火燃焼と火花点火燃焼とを切換えて運転を行う自
己着火エンジンの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for a self-ignition engine that operates by switching between self-ignition combustion and spark ignition combustion depending on the operating condition.

【0002】[0002]

【従来の技術】従来の自己着火エンジンとしては、特開
2000−220458号公報に記載されているような
ものがある。これは、運転状態に応じて、自己着火燃焼
と火花点火燃焼とを切換えて運転を行うようにし、これ
ら2つの燃焼方式を切換える際に、点火時期および吸気
量を制御することにより、スムーズに燃焼方式の切換え
を行い、低負荷領域における運転性を確保しつつ、燃費
の向上を図ろうとしている。
2. Description of the Related Art As a conventional self-ignition engine, there is one described in Japanese Patent Application Laid-Open No. 2000-220458. According to the operating state, the self-ignition combustion and the spark ignition combustion are switched to perform the operation, and when the two combustion methods are switched, the ignition timing and the intake air amount are controlled to smoothly burn the combustion. The system is being switched to improve fuel efficiency while ensuring drivability in the low load range.

【0003】しかしながら、ガソリンのような低セタン
価燃料を使用した場合、自己着火燃焼を行うためには、
圧縮比を大幅に高める必要があり、前記公報に開示され
ているような点火時期と吸気量の制御のみを行う場合、
火花点火燃焼を行った場合の高負荷出力が制限され、特
に全負荷時のノッキングによって最高出力が大幅に低下
することが考えられる。一方、出力を確保しようとし
て、圧縮比を下げると、自己着火燃焼可能な領域が極低
回転域に限定され、十分な燃費向上効果が得られないと
いう問題が生じる。
However, when a low cetane number fuel such as gasoline is used, in order to carry out self-ignition combustion,
When it is necessary to significantly increase the compression ratio and only control the ignition timing and the intake air amount as disclosed in the above publication,
It is conceivable that the high load output in the case of performing spark ignition combustion is limited, and especially the maximum output is significantly reduced due to knocking at full load. On the other hand, if the compression ratio is lowered in order to secure the output, the region where self-ignition combustion is possible is limited to an extremely low rotation speed region, and there is a problem that a sufficient fuel efficiency improving effect cannot be obtained.

【0004】上記問題を解決する手段の1つとして、自
己着火燃焼時と火花点火燃焼時の圧縮比を変更する圧縮
比可変手段を設け、安定した自己着火燃焼を行うために
低負荷領域における自己着火燃焼時には圧縮比を高く設
定し、高負荷領域における火花点火燃焼時にはノッキン
グを抑制するために圧縮比を低く設定することが考えら
れる。
As one of means for solving the above-mentioned problem, a compression ratio variable means for changing the compression ratio at the time of self-ignition combustion and spark ignition combustion is provided, and self-ignition in a low load region is carried out for stable self-ignition combustion. It is conceivable to set the compression ratio high during ignition combustion and set it low to suppress knocking during spark ignition combustion in the high load region.

【0005】圧縮比変更手段としては、例えば特開平1
0−9005号公報に開示されているものなどがある。
特開平10−9005号公報では、バルブタイミング、
圧縮比、吸気管圧力を制御することにより、加速および
減速等の過渡時の応答性を向上することを目的としてい
る。しかしながら、特開平10−9005号公報におい
ては、バルブタイミング、圧縮比、吸気管圧力の調整に
よる吸入空気量および吸気抵抗の制御が目的であり、加
減速時に必ずしも圧縮比の調整を必要としないため、自
己着火燃焼と火花点火燃焼の2つの燃焼方式を切換える
際の制御としては不十分であり、また、明らかに本発明
とは趣意が異なる。
As a compression ratio changing means, for example, Japanese Patent Laid-Open No.
There is one disclosed in Japanese Unexamined Patent Publication No. 0-9005.
In Japanese Patent Laid-Open No. 10-9005, valve timing,
By controlling the compression ratio and intake pipe pressure, it is intended to improve the responsiveness during transition such as acceleration and deceleration. However, in Japanese Patent Laid-Open No. 10-9005, the purpose is to control the intake air amount and the intake resistance by adjusting the valve timing, the compression ratio, and the intake pipe pressure, and it is not always necessary to adjust the compression ratio during acceleration / deceleration. However, the control is insufficient when switching between the two combustion modes of self-ignition combustion and spark ignition combustion, and the gist of the present invention is obviously different.

【0006】一般的に圧縮比を変更する手段を手段を講
じる場合、その変更速度、つまり変更に要する時間がエ
ンジンサイクルに比べて長く、圧縮比変更過程において
変更前後の中間の圧縮比で燃焼が行われるサイクルが発
生する。例えば、高圧縮比の自己着火燃焼から低圧縮比
の火花点火燃焼への切換えを考えると、圧縮比切換え開
始直後のサイクルにおいてはわずかに下がった圧縮比で
の燃焼サイクルとなり、自己着火燃焼が不安定となる一
方、火花点火燃焼では激しいノッキングが生じることが
懸念される。特に、圧縮比が低い場合の自己着火燃焼で
は失火が生じ易く、失火と燃焼がランダムに生じる。点
火時期を遅らせてノッキングを防いでの火花点火燃焼が
可能となっても、このような場合、点火による火花点火
燃焼が生じるより自己着火燃焼開始が早く、自己着火燃
焼が行われるか、自己着火燃焼が失火により行われない
で火花点火燃焼が行われるか制御しきれない状況が生じ
ることが考えられる。このような場合、たとえ燃料噴射
量が同じであっても熱発生時期が大幅に異なることによ
り発生するトルクに差異が生じるため、運転性が悪化す
る。
Generally, when a means for changing the compression ratio is adopted, the changing speed, that is, the time required for the change is longer than that of the engine cycle, and the combustion occurs at a compression ratio intermediate between before and after the change in the compression ratio changing process. The cycle that takes place occurs. For example, considering switching from high compression ratio self-ignition combustion to low compression ratio spark ignition combustion, in the cycle immediately after the start of the compression ratio switching, the combustion cycle is at a slightly lower compression ratio, and self-ignition combustion is not possible. While stable, spark ignition combustion may cause severe knocking. Particularly, in the case of self-ignition combustion when the compression ratio is low, misfire easily occurs, and misfire and combustion occur randomly. Even if spark ignition combustion is possible by delaying the ignition timing and preventing knocking, in such a case, self-ignition combustion starts earlier than spark ignition combustion due to ignition, and self-ignition combustion occurs or self-ignition occurs. It is conceivable that there is a situation in which it is not possible to control whether or not spark ignition combustion is performed without the combustion being caused by misfire. In such a case, even if the fuel injection amount is the same, a difference occurs in the generated torque due to a large difference in the heat generation timing, so that the drivability is deteriorated.

【0007】したがって、圧縮比可変機構を有する自己
着火エンジンにおいては、自己着火燃焼から火花点火燃
焼への燃焼方式切換え時に、早急に、自己着火燃焼が生
じないようにし、安定的に火花点火燃焼を行えるような
手段を講じる必要がある。また、自己着火燃焼が生じな
い圧縮比に低下した後においても、ノッキングを回避し
つつ、熱効率をできる限り低下させることなく、安定し
た火花点火燃焼を行うよう制御する必要がある。
Therefore, in the self-ignition engine having the variable compression ratio mechanism, when the combustion system is switched from the self-ignition combustion to the spark ignition combustion, the self-ignition combustion is promptly prevented from occurring and the spark ignition combustion is stably performed. It is necessary to take measures to do so. In addition, even after the compression ratio is reduced to a level where self-ignition combustion does not occur, it is necessary to perform control so as to perform stable spark ignition combustion while avoiding knocking and reducing thermal efficiency as much as possible.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の実状
に鑑み、低燃費と低排気である自己着火燃焼可能な運転
領域を広くするために、圧縮比を可変とし、高圧縮比に
て自己着火燃焼を幅広い範囲で実現し、圧縮比を自己着
火燃焼時よりも低下させて火花点火燃焼を行うことで高
出力を得るような自己着火エンジンにおいて、自己着火
燃焼と火花点火燃焼を運転条件に応じて切換える際の過
渡時にスムーズに燃焼方式の切換えを行うようにするこ
と、特に、自己着火燃焼から火花点火燃焼への燃焼方式
切換え時に、早急に、自己着火燃焼が生じないように
し、安定的に火花点火燃焼を行えるようにすることを目
的としている。
SUMMARY OF THE INVENTION In view of the above situation, the present invention has a variable compression ratio and a high compression ratio in order to widen the operating range in which self-ignition combustion is possible, which has low fuel consumption and low exhaust gas. Operating conditions for self-ignition combustion and spark-ignition combustion in a self-ignition engine that achieves high output by realizing self-ignition combustion in a wide range and performing compression ignition combustion with a compression ratio lower than that during self-ignition combustion. The switching of the combustion method should be performed smoothly during the transition when switching according to the above, especially when the combustion method is switched from self-ignition combustion to spark ignition combustion, self-ignition combustion does not occur immediately and is stable. The purpose is to enable spark ignition combustion.

【0009】[0009]

【課題を解決するための手段】このため、請求項1の発
明では、吸気弁のバルブリフト特性を変更する可変動弁
機構と、圧縮比を変更する可変圧縮比機構とを備え、自
己着火燃焼形態による運転を行うときに高圧縮比とし、
火花点火燃焼形態による運転を行うときに低圧縮比とす
る自己着火エンジンの制御装置において、前記可変圧縮
比機構の状態が自己着火燃焼形態用の高圧縮比状態から
火花点火燃焼形態用の低圧縮比状態へ向けて変化してい
る圧縮比切換え過程のときに、前記可変動弁機構を制御
して吸気弁閉時期を遅角側へ補正することを特徴とす
る。
Therefore, in the invention of claim 1, the self-ignition combustion is provided with the variable valve mechanism for changing the valve lift characteristic of the intake valve and the variable compression ratio mechanism for changing the compression ratio. High compression ratio when operating according to the form,
In a control device for a self-ignition engine that provides a low compression ratio when operating in the spark ignition combustion mode, the variable compression ratio mechanism changes from a high compression ratio state for the self-ignition combustion mode to a low compression ratio for the spark ignition combustion mode. In the compression ratio switching process changing toward the ratio state, the variable valve mechanism is controlled to correct the intake valve closing timing to the retard side.

【0010】請求項2の発明では、前記可変圧縮比機構
の状態変化が始まるのと同時に吸気弁閉時期の補正を開
始することを特徴とする。請求項3の発明では、圧縮比
状態が火花点火燃焼形態用の低圧縮比状態へ近づくほど
吸気弁閉時期の遅角量を小さくすることを特徴とする。
請求項4の発明では、前記圧縮比切換え過程において、
吸気弁閉時期を遅角側へ補正すると共に、点火時期を遅
角側へ補正することを特徴とする。
According to a second aspect of the present invention, the correction of the intake valve closing timing is started at the same time when the state change of the variable compression ratio mechanism starts. The invention of claim 3 is characterized in that the retard amount of the intake valve closing timing is reduced as the compression ratio state approaches the low compression ratio state for the spark ignition combustion mode.
In the invention of claim 4, in the compression ratio switching process,
It is characterized in that the intake valve closing timing is corrected to the retard side and the ignition timing is corrected to the retard side.

【0011】請求項5の発明では、前記圧縮比切換え過
程において、圧縮比が高いほど、点火時期の遅角量を大
きくすることを特徴とする。請求項6の発明では、前記
圧縮比切換え過程において、吸気弁閉時期を遅角側へ補
正すると共に、燃料噴射量を増量補正することを特徴と
する。請求項7の発明では、前記圧縮比切換え過程にお
いて、吸気弁閉時期を遅角側へ補正すると共に、スロッ
トル弁を所定量閉じることを特徴とする。
According to a fifth aspect of the present invention, in the compression ratio switching process, the higher the compression ratio, the larger the retard amount of the ignition timing. In the invention of claim 6, in the compression ratio switching process, the intake valve closing timing is corrected to the retard side and the fuel injection amount is increased and corrected. In the invention of claim 7, in the compression ratio switching process, the intake valve closing timing is corrected to the retard side, and the throttle valve is closed by a predetermined amount.

【0012】[0012]

【発明の効果】請求項1の発明によれば、自己着火燃焼
から火花点火燃焼への切換えに際し、高圧縮比状態から
低圧縮比状態へ圧縮比切換え過程において、可変動弁機
構を制御して吸気弁閉時期を遅角側へ補正することによ
り、切換え過程の中間の圧縮比において、有効圧縮比を
低下させることで、速やかに自己着火燃焼を終了させる
ことが可能となり、火花点火燃焼ヘスムーズに移行する
ことが可能となる。
According to the first aspect of the present invention, when switching from self-ignition combustion to spark ignition combustion, the variable valve mechanism is controlled in the compression ratio switching process from the high compression ratio state to the low compression ratio state. By correcting the intake valve closing timing to the retard side, the effective compression ratio is lowered at the intermediate compression ratio in the switching process, so that the self-ignition combustion can be promptly ended, and the spark ignition combustion is smoothly performed. It becomes possible to make a transition.

【0013】請求項2の発明によれば、可変圧縮比機構
の状態変化が始まるのと同時に吸気弁閉時期の補正を開
始することで、切換え過程の中間の圧縮比において、速
やかに自己着火燃焼からノッキングを回避した火花点火
燃焼へ移行することで、燃焼方式切換え時の運転性の悪
化を防ぐことが可能となる。請求項3の発明によれば、
火花点火燃焼形態用の低圧縮比状態へ近づくほど吸気弁
閉時期の遅角量を小さくよう、圧縮比に応じて吸気弁閉
時期を最適に設定することで、大幅な吸気弁閉時期の遅
角による燃焼悪化を防ぎ、かつ熱効率を大幅に悪化させ
ることなく運転することができる。
According to the second aspect of the present invention, the correction of the intake valve closing timing is started at the same time when the state change of the variable compression ratio mechanism starts, so that the self-ignition combustion is promptly performed at the compression ratio in the middle of the switching process. It is possible to prevent deterioration of drivability at the time of switching the combustion method by shifting from spark ignition combustion to avoid knocking. According to the invention of claim 3,
By setting the intake valve closing timing optimally according to the compression ratio so that the retard amount of the intake valve closing timing becomes smaller as it approaches the low compression ratio state for spark ignition combustion mode, the intake valve closing timing is significantly delayed. Combustion deterioration due to corners can be prevented, and operation can be performed without significantly deteriorating thermal efficiency.

【0014】請求項4の発明によれば、圧縮比切換え過
程において、吸気弁閉時期を遅らせると共に、点火時期
を遅角するようにしたため、切換え過程の中間の圧縮比
において、ノッキングを確実に回避することが可能とな
る。請求項5の発明によれば、圧縮比切換え過程におい
て、吸気弁閉時期を遅らせると共に、点火時期を遅角
し、その点火時期の遅角量を圧縮比が高いほど大きくす
るようにしたため、切換え過程の中間の圧縮比におい
て、ノッキングを確実に回避することが可能となり、か
つ、必要以上の点火遅角による燃焼不安定、熱効率低下
を防ぐことが可能となる。
According to the fourth aspect of the present invention, in the compression ratio switching process, the intake valve closing timing is retarded and the ignition timing is retarded, so that knocking is reliably avoided at the compression ratio in the middle of the switching process. It becomes possible to do. According to the invention of claim 5, in the process of switching the compression ratio, the intake valve closing timing is retarded, the ignition timing is retarded, and the retard amount of the ignition timing is increased as the compression ratio is higher. At a compression ratio in the middle of the process, knocking can be reliably avoided, and combustion instability and thermal efficiency deterioration due to an ignition retard more than necessary can be prevented.

【0015】請求項6の発明によれば、圧縮比切換え過
程において、吸気弁閉時期を遅らせると共に、燃料噴射
量を増量するようにしたため、実圧縮比低下による出力
低下を防ぐことが可能となり、運転性を悪化させること
なく燃焼方式の切換えが可能となる。請求項7の発明に
よれば、圧縮比切換え過程において、吸気弁閉時期を遅
らせると共に、スロットル弁を所定量閉じるようにした
ため、より速やかに自己着火燃焼を終了させることが可
能となり、かつ、自己着火燃焼時の希薄な空燃比に対し
て可燃空燃比の混合気を速やかに供給することで火花点
火燃焼によるより安定した燃焼を行えるようになる。
According to the sixth aspect of the present invention, in the compression ratio switching process, the intake valve closing timing is delayed and the fuel injection amount is increased. Therefore, it is possible to prevent the output reduction due to the actual compression ratio reduction. The combustion method can be switched without deteriorating the drivability. According to the invention of claim 7, in the process of switching the compression ratio, the intake valve closing timing is delayed and the throttle valve is closed by a predetermined amount, so that the self-ignition combustion can be completed more quickly, and the self-ignition combustion can be completed. By more quickly supplying the air-fuel mixture having a combustible air-fuel ratio to the lean air-fuel ratio at the time of ignition combustion, it becomes possible to perform more stable combustion by spark ignition combustion.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1は本発明の第1実施形態を示
す自己着火エンジンのシステム図である。吸気系には、
スロットル弁1、コレクタ2、更に吸気ポート3に燃料
噴射弁4を備え、吸入空気と噴射燃料との混合気が吸気
弁5を介して燃焼室6内に吸入される。ここでは吸気ポ
ート噴射式エンジンについて示したが、筒内直接噴射式
エンジンであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a self-ignition engine showing a first embodiment of the present invention. In the intake system,
A throttle valve 1, a collector 2, and a fuel injection valve 4 are further provided in an intake port 3, and a mixture of intake air and injected fuel is sucked into a combustion chamber 6 via an intake valve 5. Although the intake port injection type engine is shown here, a cylinder direct injection type engine may be used.

【0017】燃焼室6内の混合気は、ピストン7により
圧縮され、圧縮自己着火、若しくは点火プラグ8による
火花点火により燃焼し、燃焼後の排気は排気弁9より排
出される。ここにおいて、自己着火燃焼による低燃費・
低排気と、火花点火燃焼による高出力とを両立するため
に、圧縮比を変更可能な可変圧縮比機構10と、吸気弁
5及び排気弁9に対する可変動弁機構11、12とが備
えられる。
The air-fuel mixture in the combustion chamber 6 is compressed by the piston 7 and combusted by compression self-ignition or spark ignition by the spark plug 8, and the exhaust gas after combustion is discharged from the exhaust valve 9. Here, low fuel consumption due to self-ignition combustion
In order to achieve both low exhaust and high output by spark ignition combustion, a variable compression ratio mechanism 10 that can change the compression ratio and variable valve operating mechanisms 11 and 12 for the intake valve 5 and the exhaust valve 9 are provided.

【0018】可変圧縮比機構10としては、複リンク式
ピストン−クランク機構を用いてピストンストロークを
変更するもの(特願2000−71381号等で提案済
み)、ピストンピンとピストンとの相対位置を変更する
もの、シリンダヘッドとシリンダブロックとの相対位置
を変更するもの等を使用することができる。可変動弁機
構11、12としては、少なくとも吸気弁閉時期を変更
可能であればよく、クランクシャフトとカムシャフトと
の位相を変更する機構を用いて、図2(a)のようにバ
ルブタイミング(リフト中心位相)を変更するものや、
クランクシャフトと同期して回転するバルブ駆動軸の回
転運動を複数のリンクによってバルブに伝える機構を用
いて、図2(b)のように作動角とリフト量を変更する
もの等を用いることができる。
As the variable compression ratio mechanism 10, a multi-link type piston-crank mechanism is used to change the piston stroke (proposed in Japanese Patent Application No. 2000-71381), and the relative position between the piston pin and the piston is changed. It is possible to use the one that changes the relative position between the cylinder head and the cylinder block, or the like. It suffices for the variable valve operating mechanisms 11 and 12 to be able to change at least the intake valve closing timing, and a mechanism for changing the phases of the crankshaft and the camshaft is used to set the valve timing (as shown in FIG. 2A). That changes the lift center phase),
A mechanism for transmitting the rotational movement of the valve drive shaft, which rotates in synchronization with the crankshaft, to the valve by a plurality of links, and changing the operating angle and lift amount as shown in FIG. 2B can be used. .

【0019】エンジンコントロールユニット(ECU)
13は、クランク角センサ(エンジン回転速度センサ)
14、アクセル開度センサ15などからの情報に基づい
て、燃焼方式、圧縮比、バルブタイミング(特に吸気弁
閉時期)、燃料噴射量、スロットル開度、点火時期等を
設定・制御する。燃焼方式および圧縮比のエンジン回転
−負荷マップを図3に示す。
Engine control unit (ECU)
13 is a crank angle sensor (engine speed sensor)
14, based on information from the accelerator opening sensor 15, etc., the combustion system, compression ratio, valve timing (in particular, intake valve closing timing), fuel injection amount, throttle opening, ignition timing, etc. are set and controlled. FIG. 3 shows an engine rotation-load map of the combustion method and the compression ratio.

【0020】低回転・低負荷領域においては、例えば圧
縮比18程度の高圧縮比に設定して自己着火燃焼を行
い、高回転・高負荷領域においては、例えば圧縮比11
程度の低圧縮比に設定して火花点火燃焼を行う。高回転
領域においては、実時間に対するクランク角度変化が大
きくなり、基本的に実時間に支配される化学反応によっ
て引き起こされる圧縮自己着火では燃焼に要するクラン
ク角度が大きくなるために圧縮上死点前後での燃焼開始
から筒内全体での燃焼に至る前にピストンが下降するこ
とで消炎し、燃焼が完全に行われなくなり、また、高負
荷領域においては、燃料噴射量が増大するために圧縮自
己着火の燃焼開始が相対的に早まり、燃焼圧力がピスト
ンの圧縮との相乗作用により大幅に大きくなり燃焼騒音
増大を引き起こすため、自己着火燃焼領域は低回転・低
負荷領域に限定されるため、最大出力、燃焼騒音等を考
慮すると、全運転領域を自己着火燃焼で運転することは
事実上難しいのである。
In the low rotation / low load region, for example, a high compression ratio of about 18 is set for self-ignition combustion, and in the high rotation / high load region, for example, a compression ratio of 11
Spark ignition combustion is performed at a low compression ratio. In the high rotation speed range, the crank angle change with respect to real time becomes large, and basically in compression self-ignition caused by a chemical reaction governed by real time, the crank angle required for combustion becomes large, and therefore, before and after compression top dead center. The piston goes down before the combustion starts in the entire cylinder, and the flame is extinguished, and combustion is not completely performed.In addition, in the high load region, the amount of fuel injection increases, so compression self-ignition occurs. The combustion starts relatively faster, the combustion pressure increases significantly due to the synergistic effect with the compression of the piston, and the combustion noise increases.Therefore, the self-ignition combustion area is limited to the low rotation and low load area. In consideration of combustion noise and the like, it is practically difficult to operate the entire operation region by self-ignition combustion.

【0021】このように運転状態に応じて、高圧縮比で
の自己着火燃焼と、低圧縮比での火花点火燃焼とを切換
えるのであるが、このような燃焼方式の切換え時、特に
高圧縮比での自己着火燃焼から低圧縮比での火花点火燃
焼に切換える際、圧縮比の変更には時間を要することか
ら、この切換え過程での勝手に自己着火燃焼が起こるの
を防止し、安定的な火花点火燃焼を行わせる必要があ
る。このため、本発明では、切換え過程において吸気弁
閉時期を制御する。
As described above, the self-ignition combustion at a high compression ratio and the spark ignition combustion at a low compression ratio are switched according to the operating state. At such a switching of the combustion system, a particularly high compression ratio is selected. Since it takes time to change the compression ratio when switching from the self-ignition combustion in the above to the spark ignition combustion with a low compression ratio, it is possible to prevent the self-ignition combustion from occurring in the switching process, and to stabilize the combustion. It is necessary to make spark ignition combustion. Therefore, in the present invention, the intake valve closing timing is controlled during the switching process.

【0022】以下、かかる制御について説明する。図4
は第1実施形態での制御のフローチャートであり、この
制御はECU内で所定時間(例えば10ms)毎に実行
される。S1では、エンジン回転速度センサの出力信号
からエンジン回転速度Neを、アクセル開度センサの出
力信号からアクセル開度APOを、それぞれ読込む。
The control will be described below. Figure 4
Is a flow chart of control in the first embodiment, and this control is executed in the ECU at predetermined time intervals (for example, 10 ms). In S1, the engine rotation speed Ne is read from the output signal of the engine rotation speed sensor, and the accelerator opening APO is read from the output signal of the accelerator opening sensor.

【0023】S2では、可変圧縮比機構が備える圧縮比
センサの出力信号から実圧縮比rεを、可変動弁機構が
備える動弁センサの出力信号から実吸気弁閉時期rIV
Cを、それぞれ読込む。圧縮比センサは、可変圧縮比機
構が傭えるアクチュエータの作動位置を検出するポテン
ショメータであり、アクチュエータの作動位置から現在
の圧縮比(=吸気下死点における筒内容積/圧縮上死点
における筒内容積)を検出するものである。また、動弁
センサは、可変動弁機構が備えるアクチュエータの作動
位置を検出するポテンショメータであり、アクチュエー
タの作動位置から現在の吸気弁閉時期を検出するもので
ある。尚、rIVCの値は吸気下死点から吸気弁閉時期
までのクランク角度を示す。本実施形態における吸気弁
閉時期は全て同様に定義されるものとする。
At S2, the actual compression ratio rε is obtained from the output signal of the compression ratio sensor included in the variable compression ratio mechanism, and the actual intake valve closing timing rIV is obtained from the output signal of the valve operating sensor included in the variable valve mechanism.
Read C respectively. The compression ratio sensor is a potentiometer that detects the operating position of the actuator that the variable compression ratio mechanism is accelerating. From the operating position of the actuator, the current compression ratio (= cylinder volume at intake bottom dead center / cylinder content at compression top dead center) Product). The valve operating sensor is a potentiometer that detects the operating position of an actuator included in the variable valve operating mechanism, and detects the current intake valve closing timing from the operating position of the actuator. The value of rIVC indicates the crank angle from the intake bottom dead center to the intake valve closing timing. The intake valve closing timings in this embodiment are all defined similarly.

【0024】S3では、S1で読込んだエンジン回転速
度Neとアクセル開度APOとに基づいて、図3のエン
ジン回転−負荷マップを参照し、現在の運転条件が自己
着火燃焼領域にあるか否かを判断する。現在の運転条件
が自己着火燃焼領域にある場合はS4へ進み、目標吸気
弁閉時期tIVCを自己着火燃焼用の吸気弁閉時期IV
Cseとする。IVCseは予め決定された単一の値で
あってもよいし、エンジン回転速度Neとアクセル開度
APOとに基づいて自己着火燃焼用に用意した制御マッ
プから最適な値を読出すようにしてもよい。
In S3, based on the engine rotation speed Ne and the accelerator opening APO read in S1, the engine rotation-load map of FIG. 3 is referred to, and whether the current operating condition is in the self-ignition combustion region or not. To judge. If the current operating condition is in the self-ignition combustion region, the routine proceeds to S4, where the target intake valve closing timing tIVC is the intake valve closing timing IV for self-ignition combustion.
Cse. IVCse may be a single predetermined value, or an optimum value may be read from a control map prepared for self-ignition combustion based on the engine speed Ne and the accelerator opening APO. Good.

【0025】S3の判断で自己着火燃焼領域にない場合
(運転条件が火花点火燃焼領域ある場合)はS5へ進
み、S2で読込んだ実圧縮比rεと火花点火燃焼用の圧
縮比εLとの偏差dε=rε−εLを算出する。εLは
低圧縮比(例えば11程度)を示す値である。S6で
は、偏差dεが所定植aより小さいか否かを判断する。
所定値aは0に近い値である。偏差dεが所定値aより
小さい場合、すなわち、実圧縮比rεが火花点火燃焼用
の圧縮比εLとなっている場合はS7へ進み、目標吸気
弁閉時期tIVCを火花点火燃焼用の吸気弁閉時期IV
Cspとする。IVCspは単一の値であってもよい
し、エンジン回転速度Neとアクセル開度APOとに基
づいて火花点火燃焼用に用意した制御マップから読出す
ようにしてもよい。
When it is determined in S3 that the ignition timing is not in the self-ignition combustion region (when the operating condition is in the spark ignition combustion region), the process proceeds to S5, where the actual compression ratio rε read in S2 and the compression ratio εL for spark ignition combustion are set. The deviation dε = rε−εL is calculated. εL is a value indicating a low compression ratio (for example, about 11). In S6, it is determined whether the deviation dε is smaller than the predetermined plant a.
The predetermined value a is a value close to 0. If the deviation dε is smaller than the predetermined value a, that is, if the actual compression ratio rε is the compression ratio εL for spark ignition combustion, the routine proceeds to S7, where the target intake valve closing timing tIVC is set to the intake valve closing for spark ignition combustion. Period IV
Csp. IVCsp may be a single value or may be read from a control map prepared for spark ignition combustion based on the engine speed Ne and the accelerator opening APO.

【0026】S6の判断で偏差dεが所定値aより小さ
くない場合はS8へ進み、吸気弁閉時期の遅角補正量c
IVCを算出する。具体的には、圧縮比の偏差dεに係
数kを乗じたものを遅角補正量cIVC=k×dεとす
る。S9では、火花点火燃焼用の吸気弁閉時期1VCs
pを遅角補正量cIVCで補正し、目標吸気弁閉時期t
IVCを算出する。ここでは、IVCspにcIVCを
加算して、tIVC=IVCsp+cIVCを算出して
いるが、これは吸気弁閉時期を吸気下死点から吸気弁閉
時期までのクランク角度で表すようにしているためであ
る。
When the deviation dε is not smaller than the predetermined value a in the determination of S6, the process proceeds to S8, and the intake valve closing timing retard correction amount c
Calculate IVC. Specifically, the retardation correction amount cIVC = k × dε is obtained by multiplying the deviation dε of the compression ratio by the coefficient k. In S9, the intake valve closing timing 1VCs for spark ignition combustion
p is corrected by the retard correction amount cIVC, and the target intake valve closing timing t
Calculate IVC. Here, cIVC is added to IVCsp to calculate tIVC = IVCsp + cIVC because the intake valve closing timing is represented by the crank angle from the intake bottom dead center to the intake valve closing timing. .

【0027】S10では、S4、S7、S9のいずれか
で算出した目標吸気弁閉時期tIVCと、S2で読込ん
だ実吸気弁閉時期rIVCとに基づいて、可変動弁機構
のアクチュエータに対する制御指令値を算出する。例え
ば、目標吸気弁閉時期tIVCと実吸気弁閉時期rIV
Cとの偏差に所定の制御ゲインを乗じて制御指令値を算
出する。
In S10, a control command for the actuator of the variable valve mechanism is based on the target intake valve closing timing tIVC calculated in any of S4, S7 and S9 and the actual intake valve closing timing rIVC read in in S2. Calculate the value. For example, the target intake valve closing timing tIVC and the actual intake valve closing timing rIV
The control command value is calculated by multiplying the deviation from C by a predetermined control gain.

【0028】図5は第1実施形態による制御の様子を示
すタイムチャートであり、時刻t0において運転条件が
自己着火燃焼領域から火花点火燃焼領域へ移行した場合
を示している。図5の下側に破線で示される目標圧縮比
tεは、時刻t0において自己着火燃焼形態用のεH
(高圧縮比)から火花点火燃焼用のεL(低圧縮比)へ
とステップ的に変更され、これと同時に実圧縮比rεも
εLへ向けて変化し始めるが、可変圧縮比機構の制御応
答速度は余り大きくないので、実圧縮比rεがεLへ到
達するまでにはある程度の時間(t1−t0)が必要と
なる。尚、可変圧縮比機構は大きな燃焼圧を受けつつ運
動する主運動系の諸元を変更したりエンジン自体の全高
を変更したりする機構となり、この機構に高い制御応答
速度を持たせるのは困難である。
FIG. 5 is a time chart showing the state of control according to the first embodiment, and shows a case where the operating condition shifts from the self-ignition combustion region to the spark ignition combustion region at time t0. The target compression ratio tε indicated by the broken line on the lower side of FIG. 5 is εH for the self-ignition combustion mode at time t0.
(High compression ratio) is changed stepwise from εL (low compression ratio) for spark ignition combustion, and at the same time the actual compression ratio rε also begins to change toward εL, but the control response speed of the variable compression ratio mechanism Is not so large, it takes some time (t1−t0) until the actual compression ratio rε reaches εL. Note that the variable compression ratio mechanism is a mechanism that changes the specifications of the main motion system that moves while receiving a large combustion pressure and changes the overall height of the engine itself, and it is difficult to give this mechanism a high control response speed. Is.

【0029】時刻t0以降は、制御上は火花点火燃焼で
あるが、t0直後の数燃焼は高い実圧縮比rεによって
意図しない自己着火燃焼が生じる可能性があり、運転性
が悪化する。特に、本来火花点火燃焼を行うべき運転領
域で自己着火燃焼が発生すると、筒内の圧力上昇率が過
剰に高くなることで、大きな燃焼騒音が発生する問題が
ある。
From time t0 onward, spark ignition combustion is performed for control purposes, but in the case of several combustions immediately after t0, unintended self-ignition combustion may occur due to a high actual compression ratio rε, which deteriorates drivability. In particular, when self-ignition combustion occurs in the operating region where the spark ignition combustion should be originally performed, the pressure rise rate in the cylinder becomes excessively high, which causes a problem of generating large combustion noise.

【0030】そこで、実圧縮比rεがεLへ到達するま
での間、吸気弁閉時期IVCを遅角補正することによっ
て、有効圧縮比(=吸気弁閉時期における筒内容積/圧
縮上死点における筒内容積)を速やかに低下させ、意図
しない自己着火燃焼が生じるのを防止する。この遅角補
正は、t0直後の数燃焼に対して効果を発揮するもので
ないと意味がないので、自己着火燃焼領域から火花点火
燃焼領域への領域移行と同時に、すなわち実圧縮比rε
がεLへ向けて変化し始めるのと同時に開始することが
望ましい。
Therefore, the effective compression ratio (= cylinder volume at the intake valve closing timing / compression top dead center at the intake valve closing timing is corrected by retarding the intake valve closing timing IVC until the actual compression ratio rε reaches εL. The in-cylinder volume) is rapidly reduced to prevent unintended self-ignition combustion. Since this retard correction has no meaning unless it exerts an effect on several combustions immediately after t0, at the same time as the transition from the self-ignition combustion region to the spark ignition combustion region, that is, the actual compression ratio rε
It is desirable to start at the same time as starts to change toward εL.

【0031】本実施形態では、遅角補正量cIVCを実
圧縮比rεと火花点火燃焼用の圧縮比εLとの偏差dε
に応じて算出している。このため、遅角補正量cIVC
は時刻t0において最大となり、実圧縮比rεがεLに
近づくに従って小さくなる。これにより、有効圧縮比は
ほぼ一定となり、火花点火燃焼においてノッキングが発
生したり燃焼が不安定になったりすることがない。
In the present embodiment, the retard correction amount cIVC is defined as the deviation dε between the actual compression ratio rε and the compression ratio εL for spark ignition combustion.
It is calculated according to. Therefore, the retard correction amount cIVC
Becomes maximum at time t0 and becomes smaller as the actual compression ratio rε approaches εL. As a result, the effective compression ratio becomes substantially constant, and knocking or unstable combustion does not occur in spark ignition combustion.

【0032】尚、可変動弁機構の制御応答速度を高める
ことは可変圧縮比機構の制御応答速度を高めるよりも比
較的容易であり、単にフィードバック制御(目標吸気弁
閉時期tIVCと実吸気弁閉時期rIVCとの偏差に応
じて指令値を算出)を行うだけでも有効圧縮比を速やか
に低下させることが可能であるが、領域移行直後の自己
着火燃焼をより確実に防止したい場合は、指令値に可変
動弁機構の制御応答遅れを見込んだ進み処理を施した
り、実吸気弁閉時期rIVCが目標吸気弁閉時期tIV
Cに到達するまでは機構上の最大速度で遅角補正が行わ
れるようアクチュエータに特別な指令を送ったりするこ
とも考えられる。
It should be noted that increasing the control response speed of the variable valve actuation mechanism is relatively easier than increasing the control response speed of the variable compression ratio mechanism, and is simply feedback controlled (target intake valve closing timing tIVC and actual intake valve closing timing). It is possible to reduce the effective compression ratio quickly just by calculating the command value according to the deviation from the timing rIVC. However, if you want to more surely prevent self-ignition combustion immediately after the transition to the region, To the target intake valve closing timing tIV, and the actual intake valve closing timing rIVC is set to the target intake valve closing timing tIV.
It is also possible to send a special command to the actuator so that the retard angle correction is performed at the maximum speed on the mechanism until C is reached.

【0033】次に本発明の第2実施形態について説明す
る。システム構成は第1実施形態と同じであり、制御の
みが異なる。図6は第2実施形態での制御のフローチャ
ートである。まず、アクセル開度センサからの信号に基
づいて、過渡運転か否かを判断する(S101)。具体
的には、アクセル開度の変化量の絶対値|ΔAPO|が
所定値未満の場合は定常運転であるとみなし、所定値以
上の場合に過渡運転とみなす。定常運転とみなした場合
は、燃焼方式切換え制御は終了し、定常運転時の要求負
荷に応じたパラメータ設定を行う。
Next, a second embodiment of the present invention will be described. The system configuration is the same as that of the first embodiment, and only the control is different. FIG. 6 is a flow chart of control in the second embodiment. First, based on a signal from the accelerator opening sensor, it is determined whether or not the transient operation is performed (S101). Specifically, if the absolute value of the amount of change in the accelerator opening | ΔAPO | is less than a predetermined value, it is considered to be steady operation, and if it is more than a predetermined value, it is considered to be transient operation. If it is regarded as the steady operation, the combustion method switching control ends, and the parameters are set according to the required load during the steady operation.

【0034】過渡運転とみなした場合は、そのときのア
クセル開度APOに基づいて要求負荷を計算する(S1
02)。その結果、現状のエンジン回転速度および負荷
から燃焼方式の切換えが必要か否かを判断する(S10
3)。燃焼方式切換えが不要な場合は、燃焼方式切換え
制御は終了し、定常運転時の要求負荷に応じたパラメー
タ設定を行う。
If it is regarded as a transient operation, the required load is calculated based on the accelerator opening APO at that time (S1).
02). As a result, it is determined whether the combustion mode needs to be switched based on the current engine speed and load (S10).
3). If the combustion method switching is not required, the combustion method switching control ends, and the parameters are set according to the required load during steady operation.

【0035】燃焼方式切換えが必要な場合は、まず、Δ
APOの符号から、又は、制御開始時の燃焼方式フラグ
から、加速か減速かを判断する(S104)。加速の場
合、すなわち、自己着火燃焼(CI)から火花点火燃焼
(SI)へ切換える場合は、圧縮比εを低下させるよう
制御する(S105)。それと同時に、圧縮比εが火花
点火燃焼用の低圧縮比εLに達するまで(S106)、
吸気弁閉時期、スロットル開度、点火時期、燃料噴射量
を所定の値に設定・変更する(S108〜S111)。
When it is necessary to switch the combustion method, first, Δ
It is determined from the sign of APO or from the combustion method flag at the start of control whether acceleration or deceleration (S104). In the case of acceleration, that is, in the case of switching from self-ignition combustion (CI) to spark ignition combustion (SI), control is performed to reduce the compression ratio ε (S105). At the same time, until the compression ratio ε reaches the low compression ratio εL for spark ignition combustion (S106),
The intake valve closing timing, throttle opening, ignition timing, and fuel injection amount are set / changed to predetermined values (S108-S111).

【0036】図7に各パラメータの制御方法の模式図を
示す。圧縮比は燃焼方式切換えによって、圧縮自己着火
燃焼の高圧縮比から火花点火燃焼用の低圧縮比へと変化
させる。その際、その変化が瞬時に行えないため、変化
の過程においては中間の圧縮比での燃焼が行われること
になる。圧縮比が低下を開始するのと同時に可変動弁機
構によりバルブタイミングをすぐさま変化させ、吸気弁
閉時期を遅らせる。吸気弁閉時期の変化のためのバルブ
タイミング変更は図2に示す2つの方法どちらでも構わ
ない。吸気弁閉時期だけではノッキングを回避し、かつ
十分なトルクを得ることが難しいことが考えられ、点火
時期を所定量遅角する。図7に示した点火時期の遅角量
は圧縮比が火花点火燃焼用の低圧縮比である場合の最適
点火時期に対する遅角量である。
FIG. 7 shows a schematic diagram of a method of controlling each parameter. The compression ratio is changed from a high compression ratio for compression self-ignition combustion to a low compression ratio for spark ignition combustion by switching combustion modes. At that time, since the change cannot be performed instantaneously, combustion is performed at an intermediate compression ratio in the process of change. At the same time that the compression ratio starts to decrease, the variable valve mechanism immediately changes the valve timing, delaying the intake valve closing timing. The valve timing change for changing the intake valve closing timing may be either of the two methods shown in FIG. It may be difficult to avoid knocking and obtain sufficient torque only with the intake valve closing timing, and the ignition timing is retarded by a predetermined amount. The retard amount of the ignition timing shown in FIG. 7 is the retard amount with respect to the optimum ignition timing when the compression ratio is a low compression ratio for spark ignition combustion.

【0037】さらにスロットル開度を自己着火燃焼時に
対して閉じるよう制御する。自己着火燃焼は希薄な混合
気濃度においても可能であり、低燃費、低排気を達成す
るためには希薄混合気にて燃焼が行われる。そこで、燃
焼方式切換え時に速やかに火花点火燃焼を安定的に行う
ためには、要求負荷に応じた燃料噴射量において可燃空
燃比の混合気を供給するためのスロットル開度に調整す
る必要がある。スロットル開度を閉じることで、速やか
に筒内圧力を低下させ、自己着火燃焼から圧縮比を低下
させた直後に速やかに自己着火燃焼を終了させる作用も
得ることができる。
Further, the throttle opening is controlled so as to be closed after the self-ignition combustion. Self-ignition combustion is possible even in a lean air-fuel mixture concentration, and combustion is performed with a lean air-fuel mixture in order to achieve low fuel consumption and low exhaust gas. Therefore, in order to quickly and stably perform spark ignition combustion at the time of switching the combustion system, it is necessary to adjust the throttle opening degree for supplying the air-fuel mixture with the combustible air-fuel ratio at the fuel injection amount according to the required load. By closing the throttle opening, it is possible to obtain the effect of promptly reducing the in-cylinder pressure and immediately ending the self-ignition combustion immediately after reducing the compression ratio from the self-ignition combustion.

【0038】一方、吸気弁閉時期を遅らせ、かつ点火時
期を遅角するために、燃焼方式切換え時のトルク低下が
起こるため、吸気弁閉時期の遅角および点火時期の遅角
と同時に燃料増量を行いトルク低下を防ぐよう燃料噴射
量を設定する。その後、圧縮比の低下と共に、吸気弁閉
時期を徐々に早め、点火時期の遅角量を小さくし、スロ
ットル開度を閉じていく。それと同時に燃料の増量程度
を緩和し、圧縮比が所定値に達すると、燃焼方式切換え
制御を終了し、要求負荷に応じたパラメータの設定を行
う通常の火花点火燃焼用の制御を行う。
On the other hand, since the intake valve closing timing is retarded and the ignition timing is retarded, a torque decrease occurs when the combustion system is switched. Therefore, the intake valve closing timing is retarded and the ignition timing is retarded. The fuel injection amount is set so as to prevent the torque from decreasing. Then, as the compression ratio decreases, the intake valve closing timing is gradually advanced, the ignition timing retard amount is decreased, and the throttle opening is closed. At the same time, when the amount of increase in fuel is moderated and the compression ratio reaches a predetermined value, the combustion mode switching control is terminated and normal spark ignition combustion control is performed to set parameters according to the required load.

【0039】過渡判定および加減速の判定の結果、減速
と判定された場合、すなわち、火花点火燃焼(SI)か
ら自己着火燃焼(CI)へ切換える場合は、圧縮比εを
高めるよう制御すると共に(S112)、圧縮比εが自
己着火燃焼用の高圧縮比εHに達するまで(S11
3)、吸気弁閉時期、スロットル開度、点火時期、燃料
噴射量を、図7に示した加速の場合と同様の手顧で逆方
向に制御する(S115〜S118)。
When it is determined that the vehicle is decelerating as a result of the transient determination and the acceleration / deceleration determination, that is, when the spark ignition combustion (SI) is switched to the self-ignition combustion (CI), the compression ratio ε is controlled to be increased and ( S112) until the compression ratio ε reaches the high compression ratio εH for self-ignition combustion (S11).
3) The intake valve closing timing, the throttle opening, the ignition timing, and the fuel injection amount are controlled in the opposite directions with the same guidance as in the case of acceleration shown in FIG. 7 (S115 to S118).

【0040】尚、上記第2実施形態の各パラメータの制
御は圧縮比可変機構が瞬時に行われない場合で、かつ可
変動弁機構は例えば電磁動弁を使用した場合のように瞬
時に切換わる場合である。機械的にバルブタイミングを
変更するような場合でも、一般的に圧縮比変更機構に比
べ可変動弁機構の方が高速で切換え可能であるが、バル
ブタイミングも瞬時には切換わらないことが考えられ
る。このような場合の制御方法として、図8のフローチ
ャートおよび図9のタイムチャートに示す第3実施形態
のようなものが考えられる。
The control of each parameter in the second embodiment is instantaneously switched when the compression ratio variable mechanism is not performed, and the variable valve mechanism is instantaneously switched, for example, when an electromagnetic valve is used. This is the case. Even when the valve timing is mechanically changed, the variable valve mechanism can generally switch faster than the compression ratio changing mechanism, but the valve timing may not be switched instantaneously. . As a control method in such a case, a method like the third embodiment shown in the flowchart of FIG. 8 and the time chart of FIG. 9 can be considered.

【0041】第3実施形態における制御パラメータおよ
びその制御の方向は第2実施形態と同様であるが、圧縮
比切換え過程中のバルブタイミング変更過程における制
御が第2実施形態に対して追加される。具体的には、加
速の場合、すなわち、自己着火燃焼(CI)から火花点
火燃焼(SI)へ切換えに際し、圧縮比εを低下させる
と共に(S105)、圧縮比εが火花点火燃焼用の低圧
縮比εLに達するまで(S106)、吸気弁閉時期、ス
ロットル開度、点火時期、燃料噴射量を所定の値に設定
・変更するが(S108〜S111)、その前にS10
7のステップが追加され、圧縮比εが自己着火燃焼が起
こらない圧縮比εcまで低下したか否かで、設定・変更
の程度を変更する。減速の場合も同様のステップS11
4が追加されている。
The control parameter and its control direction in the third embodiment are the same as those in the second embodiment, but the control in the valve timing changing process during the compression ratio switching process is added to the second embodiment. Specifically, in the case of acceleration, that is, when switching from self-ignition combustion (CI) to spark ignition combustion (SI), the compression ratio ε is reduced (S105), and the compression ratio ε is low compression for spark ignition combustion. Until the ratio εL is reached (S106), the intake valve closing timing, the throttle opening, the ignition timing, and the fuel injection amount are set and changed to predetermined values (S108 to S111), but before that, S10.
The step 7 is added, and the degree of setting / change is changed depending on whether the compression ratio ε has decreased to the compression ratio εc at which self-ignition combustion does not occur. In the case of deceleration, the same step S11
4 has been added.

【0042】つまり、可変動弁機構は燃焼方式切換え、
つまり圧縮比変更と同時にできるだけ早く吸気弁閉時期
を遅らせ、自己着火燃焼が起こらない圧縮比εcまで低
下するまでの間(Tc)、吸気弁閉時期を遅らせる。ま
た、バルブタイミング変更中(Tc)はスロットル開度
を第2実施形態に比べても大きく閉じるように設定し、
点火時期の遅角は火花点火燃焼のノッキングが生じない
よう大きく遅角させる。さらにトルクの低下が引き起こ
されるため、燃料噴射量の増量を行う。燃料噴射量の増
量は期間TcにおいてTc以外の圧縮比変更中よりも多
くする。
That is, the variable valve mechanism switches the combustion system,
That is, the intake valve closing timing is delayed as soon as the compression ratio is changed, and the intake valve closing timing is delayed until the compression ratio εc at which self-ignition combustion does not occur (Tc). Further, while the valve timing is being changed (Tc), the throttle opening is set so as to be closed more than in the second embodiment.
The ignition timing is retarded greatly so that knocking of spark ignition combustion does not occur. Since the torque is further reduced, the fuel injection amount is increased. The fuel injection amount is increased in the period Tc more than during the change of the compression ratio other than Tc.

【0043】上記のような制御を行うことで、たとえバ
ルブタイミング変更が瞬時に行えない場合でも自己着火
燃焼とその失火がランダムに行われることによる運転性
の悪化、火花点火燃焼によるノッキングを回避しつつ、
燃焼方式の切換えを行うことが可能となり、最適な燃焼
方式の選択・切換えにより低燃費・低排気と高出力とを
両立することが可能となる。
By performing the control as described above, even if the valve timing cannot be changed instantaneously, it is possible to avoid deterioration of drivability due to random self-ignition combustion and its misfire, and knocking due to spark ignition combustion. While
It becomes possible to switch the combustion method, and it is possible to achieve both low fuel consumption, low exhaust and high output by selecting and switching the optimum combustion method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施形態を示す自己着火エンジ
ンのシステム図
FIG. 1 is a system diagram of a self-ignition engine showing a first embodiment of the present invention.

【図2】 バルブタイミング(吸気弁閉時期)の制御方
法を示す図
FIG. 2 is a diagram showing a method for controlling valve timing (intake valve closing timing).

【図3】 燃焼方式および圧縮比のエンジン回転−負荷
マップを示す図
FIG. 3 is a diagram showing an engine rotation-load map of a combustion system and a compression ratio.

【図4】 第1実施形態での制御のフローチャートFIG. 4 is a flowchart of control according to the first embodiment.

【図5】 第1実施形態でのタイムチャートFIG. 5 is a time chart according to the first embodiment.

【図6】 第2実施形態での制御のフローチャートFIG. 6 is a flowchart of control according to the second embodiment.

【図7】 第2実施形態でのタイムチャートFIG. 7 is a time chart according to the second embodiment.

【図8】 第3実施形態での制御のフローチャートFIG. 8 is a flowchart of control according to the third embodiment.

【図9】 第3実施形態でのタイムチャートFIG. 9 is a time chart according to the third embodiment.

【符号の説明】[Explanation of symbols]

1 スロットル弁 4 燃料噴射弁 5 吸気弁 6 燃焼室 7 ピストン 8 点火プラグ 9 排気弁 10 圧縮比可変機構 11,12 可変動弁機構 13 ECU 14 エンジン回転速度センサ 15 アクセル開度センサ 1 Throttle valve 4 Fuel injection valve 5 intake valve 6 Combustion chamber 7 pistons 8 spark plugs 9 Exhaust valve 10 Compression ratio variable mechanism 11,12 Variable valve mechanism 13 ECU 14 Engine speed sensor 15 Accelerator position sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 15/02 F02D 15/02 C 41/02 351 41/02 351 41/04 360 41/04 360A 370 370 43/00 301 43/00 301A 301B 301K 301S 301Z F02P 5/15 F02P 5/15 B (72)発明者 寺地 淳 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G022 DA02 DA04 EA02 EA07 GA01 GA08 3G023 AA06 AB06 AC02 AF01 3G084 AA00 BA05 BA13 BA16 BA17 BA23 DA11 DA38 EB08 FA10 FA38 3G092 AA01 AA05 AA11 AA12 AB02 BA09 BA10 DA01 DA03 DA04 DA05 DC01 DD04 DD05 DD06 DD07 DE01S EA01 EA04 EA11 EC09 FA07 FA16 HA06X HA13X HA14X HB01X HB01Z HC09X HE01Z HE03Z 3G301 HA01 HA19 JA03 JA04 JA11 JA21 JA22 KA12 KA15 KA16 KA19 KB10 LA01 LA07 LC08 MA11 NE01 NE12 PA11A PA11Z PB03A PC08A PE01Z PE09A PE09Z PE10A PE10Z─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 15/02 F02D 15/02 C 41/02 351 41/02 351 41/04 360 360/04/04 360A 370 370 43/00 301 43/00 301A 301B 301K 301S 301Z F02P 5/15 F02P 5/15 B (72) Inventor Atsushi Terachi 2 Takaracho, Kanagawa-ku, Kanagawa Prefecture Nissan Motor Co., Ltd. F-term (reference) 3G022 DA02 DA04 EA02 EA07 GA01 GA08 3G023 AA06 AB06 AC02 AF01 3G084 AA00 BA05 BA13 BA16 BA17 BA23 DA11 DA38 EB08 FA10 FA38 3G092 AA01 AA05 AA11 AA12 AB02 BA09 BA10 DA01 DA03 DA04 DA05 DC01 DD04 DD05 DD06 DD07 DE01S EA01 EA04 EA11 EC09 FA07 FA16 HA06X HA13X HA14X HB01X HB01Z HC09X HE01Z HE03Z 3G301 HA01 HA19 JA03 JA04 JA11 JA21 JA22 KA12 KA15 KA16 KA19 KB10 L A01 LA07 LC08 MA11 NE01 NE12 PA11A PA11Z PB03A PC08A PE01Z PE09A PE09Z PE10A PE10Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】吸気弁のバルブリフト特性を変更する可変
動弁機構と、圧縮比を変更する可変圧縮比機構とを備
え、自己着火燃焼形態による運転を行うときに高圧縮比
とし、火花点火燃焼形態による運転を行うときに低圧縮
比とする自己着火エンジンの制御装置において、 前記可変圧縮比機構の状態が自己着火燃焼形態用の高圧
縮比状態から火花点火燃焼形態用の低圧縮比状態へ向け
て変化している圧縮比切換え過程のときに、前記可変動
弁機構を制御して吸気弁閉時期を遅角側へ補正すること
を特徴とする自己着火エンジンの制御装置。
1. A variable valve mechanism for changing a valve lift characteristic of an intake valve, and a variable compression ratio mechanism for changing a compression ratio, wherein a high compression ratio is provided when operating in a self-ignition combustion mode, and spark ignition is performed. In a control device for a self-ignition engine having a low compression ratio when operating in a combustion mode, the variable compression ratio mechanism changes from a high compression ratio state for self-ignition combustion mode to a low compression ratio state for spark ignition combustion mode. A control device for a self-ignition engine, wherein the variable valve mechanism is controlled to correct the intake valve closing timing to a retard side during a compression ratio switching process that is changing toward.
【請求項2】前記可変圧縮比機構の状態変化が始まるの
と同時に吸気弁閉時期の補正を開始することを特徴とす
る請求項1記載の自己着火エンジンの制御装置。
2. The control apparatus for the self-ignition engine according to claim 1, wherein the correction of the intake valve closing timing is started at the same time when the state change of the variable compression ratio mechanism starts.
【請求項3】圧縮比状態が火花点火燃焼形態用の低圧縮
比状態へ近づくほど吸気弁閉時期の遅角量を小さくする
ことを特徴とする請求項1又は請求項2記載の自己着火
エンジン。
3. The self-ignition engine according to claim 1, wherein the retard amount of the intake valve closing timing is reduced as the compression ratio state approaches the low compression ratio state for spark ignition combustion mode. .
【請求項4】前記圧縮比切換え過程において、吸気弁閉
時期を遅角側へ補正すると共に、点火時期を遅角側へ補
正することを特徴とする請求項1〜請求項3のいずれか
1つに記載の自己着火エンジンの制御装置。
4. The method according to claim 1, wherein in the compression ratio switching process, the intake valve closing timing is corrected to the retard side and the ignition timing is corrected to the retard side. Of the self-ignition engine according to item 1.
【請求項5】前記圧縮比切換え過程において、圧縮比が
高いほど、点火時期の遅角量を大きくすることを特徴と
する請求項4記載の自己着火エンジンの制御装置。
5. The control apparatus for a self-ignition engine according to claim 4, wherein in the compression ratio switching process, the ignition timing retard amount is increased as the compression ratio is higher.
【請求項6】前記圧縮比切換え過程において、吸気弁閉
時期を遅角側へ補正すると共に、燃料噴射量を増量補正
することを特徴とする請求項1〜請求項5のいずれか1
つに記載の自己着火エンジンの制御装置。
6. The method according to claim 1, wherein in the compression ratio switching process, the intake valve closing timing is corrected to the retard side and the fuel injection amount is increased and corrected.
Of the self-ignition engine according to item 1.
【請求項7】前記圧縮比切換え過程において、吸気弁閉
時期を遅角側へ補正すると共に、スロットル弁を所定量
閉じることを特徴とする請求項1〜請求項6のいずれか
1つに記載の自己着火エンジンの制御装置。
7. The method according to claim 1, wherein in the compression ratio switching process, the intake valve closing timing is corrected to the retard side and the throttle valve is closed by a predetermined amount. Self-ignition engine controller.
JP2001394568A 2001-12-26 2001-12-26 Control device for self-ignition engine Expired - Fee Related JP4311604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394568A JP4311604B2 (en) 2001-12-26 2001-12-26 Control device for self-ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394568A JP4311604B2 (en) 2001-12-26 2001-12-26 Control device for self-ignition engine

Publications (2)

Publication Number Publication Date
JP2003193872A true JP2003193872A (en) 2003-07-09
JP4311604B2 JP4311604B2 (en) 2009-08-12

Family

ID=27601271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394568A Expired - Fee Related JP4311604B2 (en) 2001-12-26 2001-12-26 Control device for self-ignition engine

Country Status (1)

Country Link
JP (1) JP4311604B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046193A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Controller for internal combustion engine
JP2006097653A (en) * 2004-09-30 2006-04-13 Mazda Motor Corp Four cycle engine
WO2008012971A1 (en) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
JP2008057407A (en) * 2006-08-31 2008-03-13 Yanmar Co Ltd Method for operating premixed compression ignition type engine
WO2008066202A1 (en) * 2006-11-30 2008-06-05 Kabushiki Kaisha Toyota Jidoshokki Homogeneous charge compression ignition engine
FR2910054A1 (en) * 2006-12-15 2008-06-20 Renault Sas Spark ignition internal combustion engine, has spark plugs projecting into combustion chamber, where shape of chamber, position of plug and compression ratio are determined such that combustion is raced after triggering of engine
US7422004B2 (en) 2004-01-21 2008-09-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
JP2009299600A (en) * 2008-06-13 2009-12-24 Hitachi Ltd Control device and control method of engine
US7720590B2 (en) 2007-10-15 2010-05-18 Kabushiki Kaisha Toyota Jidoshokki Homogenous charge compression ignition engine and controlling method of the engine
JP2010190193A (en) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd Control device for internal combustion engine
WO2011052092A1 (en) * 2009-11-02 2011-05-05 トヨタ自動車株式会社 Control device for variable compression ratio internal combustion engine
JP2012021533A (en) * 2011-10-31 2012-02-02 Nissan Motor Co Ltd Control device of internal combustion engine
JP2013167258A (en) * 2013-06-05 2013-08-29 Nissan Motor Co Ltd Combustion control device of internal combustion engine
WO2014199690A1 (en) * 2013-06-11 2014-12-18 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
JP2020176565A (en) * 2019-04-19 2020-10-29 マツダ株式会社 Control method and control system for engine
CN113202628A (en) * 2021-06-02 2021-08-03 北京理工大学 Two-stage low-compression-cycle implementation method, device and detection method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840335B2 (en) 2004-01-21 2010-11-23 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
US7422004B2 (en) 2004-01-21 2008-09-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with variable compression ratio
JP2006046193A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Controller for internal combustion engine
JP2006097653A (en) * 2004-09-30 2006-04-13 Mazda Motor Corp Four cycle engine
JP4678164B2 (en) * 2004-09-30 2011-04-27 マツダ株式会社 4-cycle engine
WO2008012971A1 (en) * 2006-07-25 2008-01-31 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine
US7917279B2 (en) 2006-07-25 2011-03-29 Toyota Jidosha Kabushiki Kaisha Method of controlling a mechanical compression ratio, a closing timing of an intake valve and air stream
JP2008057407A (en) * 2006-08-31 2008-03-13 Yanmar Co Ltd Method for operating premixed compression ignition type engine
CN101506486B (en) * 2006-08-31 2011-11-02 洋马株式会社 Operation method of premixed compression self-ignition engine
US7802556B2 (en) 2006-08-31 2010-09-28 Yanmar Co., Ltd Homogeneous charge compressed ignition engine operating method
WO2008066202A1 (en) * 2006-11-30 2008-06-05 Kabushiki Kaisha Toyota Jidoshokki Homogeneous charge compression ignition engine
JP2008138548A (en) * 2006-11-30 2008-06-19 Toyota Industries Corp Premixed compression ignition engine
FR2910054A1 (en) * 2006-12-15 2008-06-20 Renault Sas Spark ignition internal combustion engine, has spark plugs projecting into combustion chamber, where shape of chamber, position of plug and compression ratio are determined such that combustion is raced after triggering of engine
US7720590B2 (en) 2007-10-15 2010-05-18 Kabushiki Kaisha Toyota Jidoshokki Homogenous charge compression ignition engine and controlling method of the engine
JP2009299600A (en) * 2008-06-13 2009-12-24 Hitachi Ltd Control device and control method of engine
JP4642095B2 (en) * 2008-06-13 2011-03-02 日立オートモティブシステムズ株式会社 Engine control apparatus and control method
JP2010190193A (en) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd Control device for internal combustion engine
JP5077440B2 (en) * 2009-11-02 2012-11-21 トヨタ自動車株式会社 Control device for variable compression ratio internal combustion engine
WO2011052092A1 (en) * 2009-11-02 2011-05-05 トヨタ自動車株式会社 Control device for variable compression ratio internal combustion engine
JP2012021533A (en) * 2011-10-31 2012-02-02 Nissan Motor Co Ltd Control device of internal combustion engine
JP2013167258A (en) * 2013-06-05 2013-08-29 Nissan Motor Co Ltd Combustion control device of internal combustion engine
WO2014199690A1 (en) * 2013-06-11 2014-12-18 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
JP2014240623A (en) * 2013-06-11 2014-12-25 日立オートモティブシステムズ株式会社 Internal combustion engine controller
JP2020176565A (en) * 2019-04-19 2020-10-29 マツダ株式会社 Control method and control system for engine
JP7250250B2 (en) 2019-04-19 2023-04-03 マツダ株式会社 Engine control method and control system
CN113202628A (en) * 2021-06-02 2021-08-03 北京理工大学 Two-stage low-compression-cycle implementation method, device and detection method

Also Published As

Publication number Publication date
JP4311604B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP3931549B2 (en) Valve timing control device for internal combustion engine
JP5423720B2 (en) Control method and control device for spark ignition engine
EP1167734B1 (en) Enhanced multiple injection for auto-ignition in internal combustion engines
US7059296B2 (en) Method for auto-ignition operation and computer readable storage device
US7370616B2 (en) Method for transition between controlled auto-ignition and spark ignition modes in direct fuel injection engines
US8150597B2 (en) Method and system for controlling an internal combustion engine
US8050846B2 (en) Apparatus and method for controlling engine
EP1083324A2 (en) Control system for self-ignition type gasoline engine
US20100077990A1 (en) Control of spark ignited internal combustion engine
JPH0941999A (en) Continuously variable valve timing controller of internal combustion engine
US20130018565A1 (en) Method and apparatus for engine operation in homogeneous charge compression ignition and spark ignition
JP4311604B2 (en) Control device for self-ignition engine
JP2007046500A (en) Internal combustion engine
JP2007016685A (en) Internal combustion engine control device
WO2009081644A1 (en) Ignition timing control device for internal-combustion engine
US10968856B2 (en) Engine control method and engine system
JP3085181B2 (en) Ignition timing control device for internal combustion engine
JP4952732B2 (en) Internal combustion engine control method and internal combustion engine control system
JP4677844B2 (en) Engine valve timing control device
WO2019146463A1 (en) Engine control method and engine system
JP2000073803A (en) Cylinder injection gasoline engine
US7204215B2 (en) Valve characteristic controller and control method for internal combustion engine
US9291141B2 (en) Control device and control method for internal combustion engine
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP3800881B2 (en) Control device for direct-injection spark-ignition internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees