JP2010190193A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2010190193A
JP2010190193A JP2009038235A JP2009038235A JP2010190193A JP 2010190193 A JP2010190193 A JP 2010190193A JP 2009038235 A JP2009038235 A JP 2009038235A JP 2009038235 A JP2009038235 A JP 2009038235A JP 2010190193 A JP2010190193 A JP 2010190193A
Authority
JP
Japan
Prior art keywords
closing timing
intake valve
compression ratio
valve closing
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009038235A
Other languages
Japanese (ja)
Other versions
JP5146354B2 (en
Inventor
Hiroshi Oba
大羽  拓
Shinobu Kamata
忍 釜田
Yutaro Minami
南  雄太郎
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009038235A priority Critical patent/JP5146354B2/en
Publication of JP2010190193A publication Critical patent/JP2010190193A/en
Application granted granted Critical
Publication of JP5146354B2 publication Critical patent/JP5146354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To avoid transitional knocking caused by delay in response of a variable compression ratio mechanism in acceleration, in an internal combustion engine having the variable compression ratio mechanism and a variable valve train. <P>SOLUTION: Although intake valve closing timing (IVC) is controlled to be advanced from a bottom dead center in a low-load area, a target IVC is retarded to a knocking limit on a retard side in acceleration where a request load of an engine is suddenly increased. At this time, the IVC crosses an intake amount maximum intake valve closing timing IVCmax in which an intake amount in a cylinder becomes maximum, reduction correction of throttle valve opening is performed at the same time to avoid the transitional knocking. The IVC is controlled along the knocking limit corresponding to an actual mechanical compression ratio until the actual mechanical compression ratio is decreased to a target mechanical compression ratio. When it reaches the target mechanical compression ratio, it is set as a target IVC responding to the request load advanced from the bottom dead center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、可変圧縮比機構と吸気弁側の可変動弁機構とを備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine including a variable compression ratio mechanism and a variable valve mechanism on the intake valve side.

内燃機関の低中負荷領域での熱効率向上を図ると同時に高負荷域でのノッキングを回避するために、機関の機械的圧縮比つまり公称圧縮比を変化させることができる可変圧縮比機構が種々提案されている。また、筒内に実際に入る吸気量ひいては実圧縮比を変化させるべく少なくとも吸気弁閉時期を変化させることができる可変動弁機構も種々提案されている。   Various variable compression ratio mechanisms that can change the mechanical compression ratio of the engine, that is, the nominal compression ratio, are proposed in order to improve the thermal efficiency of the internal combustion engine in the low and medium load areas and to avoid knocking in the high load area. Has been. Various variable valve mechanisms that can change at least the intake valve closing timing in order to change the intake air amount actually entering the cylinder and the actual compression ratio have been proposed.

そして、特許文献1〜3のように、このような可変圧縮比機構と可変動弁機構の双方を具備することも可能であり、特許文献3では、機関加速時に可変動弁機構を用いて吸気弁閉時期を下死点よりも大きく遅角し、吸入空気量を抑制することで、可変動弁機構の遅れによる加速初期のノッキングを回避することが開示されている。   And it is also possible to equip both such a variable compression ratio mechanism and a variable valve mechanism like patent documents 1-3, and in patent document 3, it is intake using a variable valve mechanism at the time of engine acceleration. It is disclosed that knocking at the initial stage of acceleration due to a delay of the variable valve mechanism is avoided by retarding the valve closing timing largely from the bottom dead center and suppressing the intake air amount.

特開2006−46193号公報JP 2006-46193 A 特開2004−218551号公報JP 2004-218551 A 特開2004−239174号公報JP 2004-239174 A

上記特許文献3では、加速直前の低負荷域において吸気弁閉時期をいわゆる早閉じとして下死点前に設定している場合には、機関加速時に吸気弁閉時期を遅角させていく過程において吸気弁閉時期が下死点を横切り、過渡的に実圧縮比が逆に高くなるため、加速初期のノッキングがむしろ悪化してしまう。   In Patent Document 3, when the intake valve closing timing is set as the so-called early closing before the bottom dead center in a low load range immediately before acceleration, in the process of retarding the intake valve closing timing during engine acceleration. Since the intake valve closing timing crosses the bottom dead center and the actual compression ratio becomes transiently high, knocking at the initial stage of acceleration is rather deteriorated.

また、機関加速時に吸気弁閉時期をさらに進角させて実圧縮比を小さくする代替例も特許文献3は開示しているが、このように吸気弁閉時期をいわゆる早閉じとすると、いわゆる遅閉じの場合に比較して、ピストンの下降に伴って気筒内に流入する吸気の慣性により、同じ吸気量であっても相対的にノッキングが生じやすくなる。つまり、吸気量のノッキング限界としては、いわゆる早閉じとすると吸気量が小となり、加速応答性の上で不利となる。   Further, Patent Document 3 discloses an alternative example in which the intake valve closing timing is further advanced during engine acceleration to reduce the actual compression ratio. However, when the intake valve closing timing is so-called early closing in this way, so-called delay is achieved. As compared with the case of closing, the inertia of the intake air flowing into the cylinder as the piston descends makes it relatively easy to cause knocking even with the same intake amount. That is, as a knock limit of the intake air amount, so-called early closing makes the intake air amount small, which is disadvantageous in terms of acceleration response.

この発明が適用される内燃機関は、その機械的圧縮比を変更する可変圧縮比機構と、吸気弁の少なくとも閉時期を下死点の前後に亘って変更可能な可変動弁機構と、スロットル弁と、を備えている。   An internal combustion engine to which the present invention is applied includes a variable compression ratio mechanism that changes its mechanical compression ratio, a variable valve mechanism that can change at least the closing timing of an intake valve before and after bottom dead center, and a throttle valve And.

そして、この内燃機関の制御装置として、機関運転条件に応じて目標機械的圧縮比を設定する目標機械的圧縮比設定手段と、過渡時に遅れを伴って変化する実機械的圧縮比を検出する実機械的圧縮比検出手段と、機関運転状態に応じて基本目標吸気弁閉時期を設定する基本目標吸気弁閉時期設定手段と、内燃機関の要求負荷の急な増加を検出する加速検出手段と、上記要求負荷増加時に、下死点後の筒内吸気量が最大となる所定の吸気量最大吸気弁閉時期よりも遅角側のノッキング限界吸気弁閉時期ないしこれよりも遅角側に目標吸気弁閉時期を設定し、かつ、実機械的圧縮比の低下に伴って、該目標吸気弁閉時期を上記基本目標吸気弁閉時期に収束させる目標吸気弁閉時期補正手段と、上記要求負荷増加時に、上記目標吸気弁閉時期が上記吸気量最大吸気弁閉時期の進角側から遅角側へと変化する時期に対応する期間で、上記スロットル弁開度を一次的に減少補正するスロットル弁開度補正手段と、を備えている。   As a control device for the internal combustion engine, target mechanical compression ratio setting means for setting a target mechanical compression ratio according to engine operating conditions, and an actual mechanical compression ratio that changes with a delay at the time of transition are detected. Mechanical compression ratio detection means, basic target intake valve closing timing setting means for setting the basic target intake valve closing timing according to the engine operating state, acceleration detection means for detecting a sudden increase in the required load of the internal combustion engine, When the required load increases, the in-cylinder intake amount after bottom dead center is maximized. The predetermined intake amount at which the maximum intake valve closes. The knocking limit intake valve close timing that is retarded from the maximum intake valve close timing. A target intake valve closing timing correcting means for setting the valve closing timing and converging the target intake valve closing timing to the basic target intake valve closing timing as the actual mechanical compression ratio decreases, and the required load increase Sometimes the target intake valve closing timing is Throttle valve opening correction means for temporarily decreasing and correcting the throttle valve opening during a period corresponding to a timing when the maximum air intake valve closing timing changes from the advance side to the retard side. .

例えば機関が比較的低負荷域にあって機械的圧縮比が高く制御されるとともに吸気量閉時期がいわゆる早閉じとして下死点前にあるような状態から、機関の加速つまり要求負荷の急な増加がなされると、目標機械的圧縮比は低い圧縮比となり、これに追従するように可変圧縮比機構が動作して実機械的圧縮比が徐々に低下する。一方、目標吸気弁閉時期は、加速前における下死点前の位置から下死点後のノッキング限界吸気弁閉時期(あるいはこれよりもさらに遅角側)まで一旦遅角され、その後、加速後の運転状態に対応する基本目標吸気弁閉時期へと実機械的圧縮比の低下に伴って収束していく。上記のように下死点前の位置からノッキング限界吸気弁閉時期へと遅角していく過程では、吸気量が最大となる吸気量最大吸気弁閉時期(これは下死点よりも僅かに遅れた位置にある)を経ることになるが、この期間に、スロットル弁開度が一時的に減少補正され、過渡的なノッキング発生が回避される。   For example, from a state where the engine is in a relatively low load range and the mechanical compression ratio is controlled to be high and the intake air intake closing timing is before the bottom dead center as a so-called early closing, the engine accelerates, that is, the required load suddenly increases. When the increase is made, the target mechanical compression ratio becomes a low compression ratio. The variable compression ratio mechanism operates so as to follow this, and the actual mechanical compression ratio gradually decreases. On the other hand, the target intake valve closing timing is once delayed from the position before the bottom dead center before acceleration to the knocking limit intake valve closing timing after the bottom dead center (or further retarded), and then after acceleration It converges to the basic target intake valve closing timing corresponding to the operating state as the actual mechanical compression ratio decreases. In the process of delaying from the position before the bottom dead center to the knocking limit intake valve closing timing as described above, the intake amount maximum intake valve closing timing at which the intake amount becomes maximum (this is slightly lower than the bottom dead center). However, during this period, the throttle valve opening is temporarily reduced and corrected, and transient knocking is avoided.

なお、一般に、運転状態例えば負荷が変化したときに、可変圧縮比機構の応答性に比較して、可変動弁機構やスロットル弁は、相対的に応答性が高い。   In general, when the operating state, for example, the load changes, the variable valve mechanism and the throttle valve are relatively responsive compared to the responsiveness of the variable compression ratio mechanism.

この発明によれば、内燃機関の比較的急な加速時に、ノッキングを確実に抑制しつつ筒内の吸気量を可及的に大きく確保でき、良好な加速応答性が得られる。   According to the present invention, when the internal combustion engine is relatively suddenly accelerated, the intake air amount in the cylinder can be as large as possible while reliably suppressing knocking, and a good acceleration response can be obtained.

可変圧縮比機構の一例を示す構成説明図。Structure explanatory drawing which shows an example of a variable compression ratio mechanism. 可変動弁機構の一例を示す構成説明図。Structure explanatory drawing which shows an example of a variable valve mechanism. 可変動弁機構の中心角と作動角とに対する吸気量の特性を示す特性図。The characteristic view which shows the characteristic of the intake air quantity with respect to the center angle and operating angle of a variable valve mechanism. 吸気弁閉時期の一例を示すバルブタイミングチャート。The valve timing chart which shows an example of intake valve closing timing. 運転状態に対する目標機械的圧縮比の特性例を示す特性図。The characteristic view which shows the example of a characteristic of the target mechanical compression ratio with respect to a driving | running state. 運転状態に対する吸入負圧の特性例を示す特性図。The characteristic view which shows the example of a characteristic of the suction negative pressure with respect to a driving | running state. 運転状態に対する基本目標吸気弁閉時期の特性例を示す特性図。The characteristic view which shows the example of a characteristic of the basic target intake valve closing timing with respect to a driving | running state. 加速検出のための処理の流れを示すフローチャート。The flowchart which shows the flow of the process for acceleration detection. 加速時の補正制御の流れを示すフローチャート。The flowchart which shows the flow of the correction control at the time of acceleration. 加速時の各パラメータの変化の一例を示すタイムチャート。The time chart which shows an example of the change of each parameter at the time of acceleration.

以下、この発明の一実施例を図面に基づいて詳細に説明する。     Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明に係る内燃機関が備える機械的圧縮比(公称圧縮比)を可変制御し得る可変圧縮比機構の一例を示している。なお、この可変圧縮比機構自体は、前述した特許文献1等によって公知となっているものである。   FIG. 1 shows an example of a variable compression ratio mechanism that can variably control a mechanical compression ratio (nominal compression ratio) included in an internal combustion engine according to the present invention. The variable compression ratio mechanism itself is known from the above-described Patent Document 1 and the like.

この可変圧縮比機構は、複リンク式ピストン−クランク機構を利用したもので、シリンダブロック1のシリンダ2内を摺動するピストン3にピストンピン4を介して一端が連結されたアッパリンク5と、このアッパリンク5の他端に連結ピン6を介して連結されるとともに、クランクシャフト7のクランクピン8に回転可能に連結されたロアリンク9と、このロアリンク9の自由度を制限するために該ロアリンク9にさらに連結ピン10を介して一端が連結され、かつ他端が内燃機関本体に揺動可能に支持されたコントロールリンク11と、を備えており、上記コントロールリンク11の揺動支持位置が制御軸12の偏心カム部13によって可変制御される構成となっている。   This variable compression ratio mechanism uses a multi-link type piston-crank mechanism, and an upper link 5 having one end connected to a piston 3 sliding in a cylinder 2 of a cylinder block 1 via a piston pin 4; The lower link 9 is connected to the other end of the upper link 5 via a connecting pin 6 and is rotatably connected to the crankpin 8 of the crankshaft 7. In order to limit the degree of freedom of the lower link 9 A control link 11 having one end connected to the lower link 9 via a connecting pin 10 and the other end swingably supported by the internal combustion engine body. The position is variably controlled by the eccentric cam portion 13 of the control shaft 12.

上記制御軸12はクランクシャフト7と平行に配置され、かつシリンダブロック1に回転自在に支持されている。そして、この制御軸12は、歯車機構14を介して、電動モータからなるアクチュエータ15によって回転方向に駆動され、その回転位置が制御されるようになっている。   The control shaft 12 is disposed in parallel with the crankshaft 7 and is rotatably supported by the cylinder block 1. The control shaft 12 is driven in the rotational direction by an actuator 15 made of an electric motor via a gear mechanism 14 and its rotational position is controlled.

上記構成の可変圧縮比機構では、上記制御軸12の回転位置つまり偏心カム部13の位置によってコントロールリンク11下端の揺動支持位置が変化し、ロアリンク9の初期の姿勢が変わるため、これに伴ってピストン3の上死点位置、ひいては圧縮比が変化する。   In the variable compression ratio mechanism configured as described above, the swing support position of the lower end of the control link 11 changes depending on the rotational position of the control shaft 12, that is, the position of the eccentric cam portion 13, and the initial posture of the lower link 9 changes. Along with this, the top dead center position of the piston 3, and thus the compression ratio changes.

目標機械的圧縮比は、機関運転状態つまり主に機関回転速度と要求負荷とによって制御され、例えば、図5に示すように、基本的に、低負荷側ほど高い圧縮比に、高負荷側ほど低い圧縮比に、制御される。   The target mechanical compression ratio is controlled by the engine operating state, that is, mainly the engine speed and the required load. For example, as shown in FIG. 5, basically, the lower the load side, the higher the compression ratio, and the higher the load side. Controlled to a low compression ratio.

図2は、同じく内燃機関が備える吸気弁側の可変動弁機構の一例を示している。これは、吸気弁のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構51と、作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構52と、を組み合わせて構成されている。この可変動弁機構も、上述した特許文献1等により公知であるので、その概要のみを説明する。   FIG. 2 shows an example of a variable valve mechanism on the intake valve side similarly provided in the internal combustion engine. This is because the first variable valve mechanism 51 capable of continuously expanding and reducing the lift / operating angle of the intake valve and the second variable valve capable of continuously delaying the central angle of the operating angle. The variable valve mechanism 52 is combined. Since this variable valve mechanism is also known from the above-mentioned Patent Document 1, only its outline will be described.

リフト・作動角を可変制御する第1可変動弁機構51は、内燃機関のクランクシャフトにより駆動される駆動軸22と、この駆動軸22に固定された偏心カム23と、回転自在に支持された制御軸32と、この制御軸32の偏心カム部38に揺動自在に支持されたロッカアーム26と、吸気弁53のタペット30に当接する揺動カム29と、を備えており、上記偏心カム23とロッカアーム26とはリンクアーム24によって連係され、ロッカアーム26と揺動カム29とは、リンク部材28によって連係されている。   The first variable valve mechanism 51 that variably controls the lift / operating angle is rotatably supported by a drive shaft 22 driven by a crankshaft of an internal combustion engine, an eccentric cam 23 fixed to the drive shaft 22. The eccentric cam 23 includes a control shaft 32, a rocker arm 26 that is swingably supported by the eccentric cam portion 38 of the control shaft 32, and a swing cam 29 that contacts the tappet 30 of the intake valve 53. The rocker arm 26 is linked by a link arm 24, and the rocker arm 26 and the swing cam 29 are linked by a link member 28.

上記ロッカアーム26は、略中央部が上記偏心カム部38によって揺動可能に支持されており、その一端部に、連結ピン25を介して上記リンクアーム24のアーム部が連係しているとともに、他端部に、連結ピン27を介して上記リンク部材28の上端部が連係している。上記偏心カム部38は、制御軸32の軸心から偏心しており、従って、制御軸32の角度位置に応じてロッカアーム26の揺動中心は変化する。   The rocker arm 26 is supported at its substantially central portion by the eccentric cam portion 38 so as to be swingable, and the arm portion of the link arm 24 is linked to one end portion thereof via a connecting pin 25. The upper end portion of the link member 28 is linked to the end portion via a connecting pin 27. The eccentric cam portion 38 is eccentric from the axis of the control shaft 32, and accordingly, the rocking center of the rocker arm 26 changes according to the angular position of the control shaft 32.

上記揺動カム29は、駆動軸22の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、連結ピン37を介して上記リンク部材28の下端部が連係している。この揺動カム29の下面には、駆動軸22と同心状の円弧をなす基円面と、該基円面から所定の曲線を描いて延びるカム面と、が連続して形成されており、これらの基円面ならびにカム面が、揺動カム29の揺動位置に応じてタペット30の上面に当接する。   The swing cam 29 is rotatably supported by being fitted to the outer periphery of the drive shaft 22, and a lower end portion of the link member 28 is linked to an end portion extending laterally via a connecting pin 37. ing. On the lower surface of the swing cam 29, a base circle surface concentric with the drive shaft 22 and a cam surface extending in a predetermined curve from the base circle surface are continuously formed. These base circle surface and cam surface come into contact with the upper surface of the tappet 30 according to the swing position of the swing cam 29.

上記制御軸32は、一端部に設けられたリフト・作動角制御用アクチュエータ33によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用アクチュエータ33は、例えばウォームギア35を介して制御軸32を駆動する電動モータからなり、コントロールユニット54からの制御信号によって制御される。上記制御軸32の回転角度は、制御軸センサ34によって検出される。   The control shaft 32 is configured to rotate within a predetermined angle range by a lift / operating angle control actuator 33 provided at one end. The lift / operating angle control actuator 33 is composed of, for example, an electric motor that drives the control shaft 32 via the worm gear 35, and is controlled by a control signal from the control unit 54. The rotation angle of the control shaft 32 is detected by a control shaft sensor 34.

上記第1可変動弁機構51によれば、上記制御軸32の回転角度位置に応じて吸気弁53のリフトならびに作動角が、両者同時に、連続的に拡大,縮小する。   According to the first variable valve mechanism 51, the lift and the operating angle of the intake valve 53 are continuously expanded and reduced simultaneously according to the rotational angle position of the control shaft 32.

一方、中心角を可変制御する第2可変動弁機構52は、上記駆動軸22の前端部に設けられたスプロケット42と、このスプロケット42と上記駆動軸22とを、所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ43と、から構成されている。上記スプロケット42は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用アクチュエータ43は、例えば油圧式の回転型アクチュエータからなり、コントロールユニット54からの制御信号によって図示せぬ油圧制御弁を介して制御される。この位相制御用アクチュエータ43の作用によって、スプロケット42と駆動軸22とが相対的に回転し、バルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この第2可変動弁機構52の制御状態は、駆動軸22の回転位置に応答する駆動軸センサ36によって検出される。   On the other hand, the second variable valve mechanism 52 that variably controls the center angle is configured such that the sprocket 42 provided at the front end portion of the drive shaft 22 is relative to the sprocket 42 and the drive shaft 22 within a predetermined angle range. And a phase control actuator 43 that is rotated in an automatic manner. The sprocket 42 is linked to the crankshaft via a timing chain or timing belt (not shown). The phase control actuator 43 is composed of, for example, a hydraulic rotary actuator, and is controlled by a control signal from the control unit 54 via a hydraulic control valve (not shown). The action of the phase control actuator 43 causes the sprocket 42 and the drive shaft 22 to rotate relative to each other, thereby delaying the lift center angle in the valve lift. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the second variable valve mechanism 52 is detected by a drive shaft sensor 36 that responds to the rotational position of the drive shaft 22.

上記のように、上記可変動弁機構においては、リフト・作動角と中心角とを個々に可変制御することにより、吸気弁閉時期が連続的に遅進変化し、例えば、図3に示すように、筒内の吸気量を可変制御することができる。   As described above, in the variable valve mechanism, the intake valve closing timing is continuously delayed and changed by variably controlling the lift / operating angle and the central angle, for example, as shown in FIG. In addition, the intake air amount in the cylinder can be variably controlled.

図7は、機関回転速度と要求負荷とに対する目標の吸気弁閉時期(IVC)の基本的な特性を示しており、低速低負荷側ほど吸気弁閉時期は下死点から離れるように進角側にあり、負荷上昇に伴って下死点に近づくように遅角する。つまり、低中負荷域では、吸気弁閉時期は、有効圧縮比低減のために、図4に「IVC1」として示すように、下死点よりも進角側のいわゆる早閉じとなっている。筒内吸気量が最大となる吸気量最大吸気弁閉時期IVCmaxは、図示するように、下死点よりも僅かに遅角側にあり、最大負荷では、吸気弁閉時期は、このIVCmax付近となる。なお、「IVC2」と示す吸気弁閉時期は、有効圧縮比低減のために、いわゆる遅閉じとした場合の参考例である。   FIG. 7 shows the basic characteristics of the target intake valve closing timing (IVC) with respect to the engine speed and the required load. The lower the low-speed and low-load side, the more advanced the intake valve closing timing is from the bottom dead center. It is on the side and is retarded to approach the bottom dead center as the load increases. That is, in the low-medium load region, the intake valve closing timing is so-called early closing closer to the advance side than the bottom dead center, as indicated by “IVC1” in FIG. 4 in order to reduce the effective compression ratio. As shown in the figure, the intake amount maximum intake valve closing timing IVCmax at which the in-cylinder intake amount is maximum is slightly retarded from the bottom dead center, and at the maximum load, the intake valve closing timing is near this IVCmax. Become. The intake valve closing timing indicated as “IVC2” is a reference example in the case of so-called late closing in order to reduce the effective compression ratio.

また上記の内燃機関は、さらに、吸気通路に電子制御型のスロットル弁(図示せず)を備えている。図6は、このスロットル弁により調節される吸入負圧の特性例を示しており、機関回転速度と要求負荷とに対して目標の吸入負圧となるようにスロットル弁開度が制御される。   The internal combustion engine further includes an electronically controlled throttle valve (not shown) in the intake passage. FIG. 6 shows an example of the characteristics of the suction negative pressure adjusted by the throttle valve, and the throttle valve opening is controlled so as to achieve the target suction negative pressure with respect to the engine speed and the required load.

なお、本発明は、図1,図2に示したような特定の形式の複リンク式可変圧縮比機構や特定の形式の可変動弁機構に限定されるものではなく、種々の形式の可変圧縮比機構や可変動弁機構と組み合わせて適用することが可能である。   The present invention is not limited to a specific type of multi-link type variable compression ratio mechanism or a specific type of variable valve mechanism as shown in FIGS. 1 and 2, but various types of variable compression mechanisms. It can be applied in combination with a ratio mechanism or a variable valve mechanism.

次に、図8および図9のフローチャートならびに図10のタイムチャートを参照して、本発明の要部である加速時の補正制御について説明する。なお、実機械的圧縮比は、例えば、前述した可変圧縮比機構の制御軸12の回転角変位ないしアクチュエータ15の操作量などから検出される。また、実吸気弁閉時期(実IVC)は、例えば、前述した制御軸センサ34および駆動軸センサ36の信号から求められる。   Next, correction control during acceleration, which is the main part of the present invention, will be described with reference to the flowcharts of FIGS. 8 and 9 and the time chart of FIG. The actual mechanical compression ratio is detected from, for example, the rotational angular displacement of the control shaft 12 of the variable compression ratio mechanism or the operation amount of the actuator 15. Further, the actual intake valve closing timing (actual IVC) is obtained from the signals of the control shaft sensor 34 and the drive shaft sensor 36 described above, for example.

図8は、ノッキングの懸念があるような急な加速であるか否かを判定するための負荷変化幅算出のフローチャートであって、まずステップ1では、初回か否か、つまり前回負荷の記憶があるか否かを判定し、初回であれば、ステップ2で後述する起点負荷をクリアした後に、そのときの要求負荷を新たな前回負荷として記憶する。   FIG. 8 is a flow chart for calculating a load change width for determining whether or not the acceleration is sudden such that there is a possibility of knocking. First, in step 1, whether or not the load is the first time, that is, the previous load is stored. If it is the first time, after clearing a starting load described later in step 2, the requested load at that time is stored as a new previous load.

初回でなければ、ステップ1からステップ3へ進み、そのときの要求負荷と前回負荷との差として、要求負荷増分を求める。ステップ4で、この要求負荷増分を所定値ΔTと大小比較し、所定値ΔTよりも大きければ、ステップ5へ進み、起点負荷の記憶の有無を判定する。起点負荷の記憶がなければ、ステップ6で前回負荷を起点負荷とし、ステップ7で、そのときの要求負荷と起点負荷との差として、負荷変化幅を求める。ステップ4で、要求負荷増分が所定値ΔT以下であれば、定常、緩加速ないし減速であるとして、ステップ2へ進み、前述したように起点負荷をクリアする。   If it is not the first time, the process proceeds from step 1 to step 3, and the required load increment is obtained as the difference between the required load at that time and the previous load. In step 4, the required load increment is compared with a predetermined value ΔT, and if it is larger than the predetermined value ΔT, the process proceeds to step 5 to determine whether or not the starting load is stored. If the starting load is not stored, the previous load is set as the starting load in step 6, and the load change width is obtained as the difference between the requested load and the starting load at step 7. In step 4, if the required load increment is equal to or less than the predetermined value ΔT, it is determined that the acceleration is steady or slow acceleration or deceleration, and the process proceeds to step 2 to clear the starting load as described above.

つまり、この図8の処理では、そのときの要求負荷と前回負荷とを逐次比較して急な加速か否か判定し、急な加速であれば、その加速開始直前の負荷を起点負荷として一時的に記憶し、この起点負荷から現時点までの負荷変化幅を求めているのである。なお、要求負荷は、例えば運転者によって操作されるアクセル開度等から求められる。   That is, in the process of FIG. 8, the requested load at that time and the previous load are sequentially compared to determine whether or not the acceleration is abrupt, and if it is abrupt acceleration, the load immediately before the start of acceleration is temporarily set as the starting load. And the load change width from this starting load to the present time is obtained. Note that the required load is obtained from, for example, an accelerator opening operated by the driver.

図9は、加速時の吸気弁閉時期およびスロットル弁開度の補正制御に関するフローチャートであり、ステップ11では、図10(a)に示すIVC遅角制御フラグの状態を判定する。このIVC遅角制御フラグは、加速時の補正制御中であることを示し、初回は0であるので、ステップ12へ進んで、前述した負荷変化幅とそのときの圧縮比(加速直前の目標機械的圧縮比あるいは現時点の実機械的圧縮比)に基づき、推定される可変圧縮比機構の応答遅れからノッキングの恐れがあるか否かを判定する。ノッキングの恐れがあれば、ステップ14でIVC遅角制御フラグを「1」にセットした上でステップ18以降へ進む。   FIG. 9 is a flowchart regarding correction control of the intake valve closing timing and the throttle valve opening during acceleration. In step 11, the state of the IVC retardation control flag shown in FIG. 10A is determined. This IVC retardation control flag indicates that the correction control during acceleration is being performed. Since the first time is 0, the process proceeds to step 12 and proceeds to step 12 to determine the load change width and the compression ratio at that time (the target machine just before acceleration). Whether or not there is a possibility of knocking from the estimated response delay of the variable compression ratio mechanism. If there is a possibility of knocking, the IVC retardation control flag is set to “1” in step 14 and then the process proceeds to step 18 and thereafter.

ある程度の急な加速であっても、負荷変化幅が小さいなどによりノッキングの恐れがない場合には、ステップ15〜17へ進み、通常と同様に、運転条件に応じて、機械的圧縮比、吸気弁閉時期およびスロットル弁開度をそれぞれ制御する。   If there is no risk of knocking due to a small load change range even if the acceleration is sudden to some extent, the process proceeds to Steps 15 to 17 and, as usual, according to the operating conditions, the mechanical compression ratio, the intake air The valve closing timing and the throttle valve opening are respectively controlled.

一方、ノッキングの恐れがある場合のステップ18では、そのときの運転条件に基づき、目標機械的圧縮比と目標吸気量とを求める。ここで、目標機械的圧縮比は、加速に伴い、図10の(b)に示すように低圧縮比側へステップ的に変化する。また目標吸気量は、図10の(c)および(h)の破線のように、ステップ的に増加する。   On the other hand, in step 18 when there is a risk of knocking, a target mechanical compression ratio and a target intake air amount are obtained based on the operating conditions at that time. Here, the target mechanical compression ratio changes stepwise toward the low compression ratio side as shown in FIG. Further, the target intake air amount increases in a stepwise manner as indicated by broken lines in (c) and (h) of FIG.

ステップ19では、実機械的圧縮比を読み込み、ステップ20で、この実機械的圧縮比が目標機械的圧縮比になったか判定する。ここでNOであれば、ステップ21で、そのときの実機械的圧縮比に基づいて、遅角側目標IVCを求める。この遅角側目標IVCは、そのときの実機械的圧縮比の下でのノッキング限界(必要に応じて適宜なマージンを付加してもよい)となる吸気弁閉時期であり、特に、図4で説明した吸気量最大吸気弁閉時期IVCmaxよりも遅角側(つまり図4のIVC2の側)にあるノッキング限界の吸気弁閉時期である。目標機械的圧縮比のステップ的な変化に対し実機械的圧縮比は、図10の(d)のように、遅れを伴って徐々に変化するので、ノッキング限界となる遅角側目標IVCも、図10の(e)のように、機械的圧縮比の目標値からの偏差が最も大きい時刻t1のときに最遅角側となり、時間経過に伴って徐々に進角していく。   In step 19, the actual mechanical compression ratio is read, and in step 20, it is determined whether or not the actual mechanical compression ratio has reached the target mechanical compression ratio. If “NO” here, in step 21, the retard side target IVC is obtained based on the actual mechanical compression ratio at that time. The retard side target IVC is an intake valve closing timing that becomes a knocking limit (an appropriate margin may be added as necessary) under the actual mechanical compression ratio at that time. This is the intake valve closing timing at the knocking limit on the retard side (that is, on the IVC2 side in FIG. 4) with respect to the maximum intake amount closing timing IVCmax described in the above. Since the actual mechanical compression ratio gradually changes with a delay as shown in FIG. 10 (d) with respect to the step change in the target mechanical compression ratio, the retard side target IVC that is the knocking limit is also As shown in FIG. 10 (e), when the deviation from the target value of the mechanical compression ratio is the largest, it becomes the most retarded angle side and gradually advances with time.

ステップ22では、制御軸センサ34および駆動軸センサ36に基づいて求められる実IVCを読み込み、ステップ23で、この実IVCが遅角側目標IVCになったか判定する。ここでNOであれば、ステップ24へ進む。可変動弁機構は、与えられた作動角および中心角の目標値に沿って公知のフィードバック制御がなされるので、実IVCは、図10の(f)のように、遅角側目標IVCに追従しようとする。なお、時刻t1〜t5の間は、実IVCの遅れを若干誇張して表している。   In step 22, the actual IVC obtained based on the control axis sensor 34 and the drive axis sensor 36 is read, and in step 23, it is determined whether or not this actual IVC has become the retard side target IVC. If “NO” here, the process proceeds to the step 24. Since the variable valve mechanism performs known feedback control along the given target values of the operating angle and the central angle, the actual IVC follows the retard side target IVC as shown in FIG. try to. Note that the delay of the actual IVC is slightly exaggerated between times t1 and t5.

図10の(f)に明らかなように、加速直前の実IVCは下死点前にあり、加速直後の目標吸気弁閉時期である遅角側目標IVCは吸気量最大吸気弁閉時期IVCmaxよりも遅角側にあるから、実IVCは、必ず吸気量最大吸気弁閉時期IVCmaxを横切る。つまり、実IVCが、時刻t1から僅かに遅れた時期、例えば時刻t3付近で、吸気量最大吸気弁閉時期IVCmaxの進角側から遅角側へと変化する。   As is apparent from FIG. 10 (f), the actual IVC immediately before acceleration is before bottom dead center, and the retarded target IVC, which is the target intake valve closing timing immediately after acceleration, is greater than the intake amount maximum intake valve closing timing IVCmax. Therefore, the actual IVC always crosses the intake amount maximum intake valve closing timing IVCmax. That is, the actual IVC changes from the advance side to the retard side of the maximum intake air intake valve closing timing IVCmax at a time slightly delayed from the time t1, for example, around the time t3.

ステップ24は、この実IVCが吸気量最大吸気弁閉時期IVCmaxよりも遅角側となったか否かを判定しており、NOであれば、ステップ25へ進み、目標スロットル弁開度をそのまま保持する。一方、YESであれば、ステップ26へ進み、そのときの運転条件に基づき目標スロットル弁開度を求める。つまり、加速後の要求負荷に対応したスロットル弁開度が目標値として与えられるのであり、例えば、図10の(g)におけるTh0がこの要求負荷に対応した目標スロットル開度を示す。   In step 24, it is determined whether or not the actual IVC is retarded from the maximum intake valve closing timing IVCmax. If NO, the process proceeds to step 25 and the target throttle valve opening is maintained as it is. To do. On the other hand, if YES, the routine proceeds to step 26, where the target throttle valve opening is obtained based on the operating conditions at that time. That is, the throttle valve opening corresponding to the required load after acceleration is given as a target value. For example, Th0 in FIG. 10G indicates the target throttle opening corresponding to the required load.

さらにステップ27は、そのときの筒内の実吸気量が所定の上限を超えているか判定し、もし上限を超えている場合は、ステップ28へ進んで、目標スロットル弁開度を減少補正する。実吸気量の変化は、図10の(h)に示しているが、ステップ27の実吸気量は、例えば、実IVCから換算することによって求められる。上記の上限は、図10の(h)の線Amax1によって示されているが、これは、吸気弁閉時期が上記吸気量最大吸気弁閉時期IVCmaxよりも遅角側にあるときのノッキング限界を筒内の吸気量として表したものである。従って、実IVCが吸気量最大吸気弁閉時期IVCmax付近にある期間では、図中に符号aとして示すように、筒内の吸気量がこのノッキング限界Amax1を超えようとするが、これに応答してスロットル弁開度が減少補正されるので、実吸気量は、ノッキング限界Amax1に沿って制御され、過渡的なノッキングの発生が確実に回避される。   Further, in step 27, it is determined whether the actual intake air amount in the cylinder at that time exceeds a predetermined upper limit, and if it exceeds the upper limit, the process proceeds to step 28 and the target throttle valve opening is corrected to decrease. The change in the actual intake air amount is shown in FIG. 10 (h), but the actual intake air amount in step 27 is obtained by converting from the actual IVC, for example. The upper limit is indicated by a line Amax1 in FIG. 10 (h), which indicates a knocking limit when the intake valve closing timing is on the retard side with respect to the intake amount maximum intake valve closing timing IVCmax. This is expressed as the amount of intake air in the cylinder. Accordingly, during the period when the actual IVC is in the vicinity of the maximum intake valve closing timing IVCmax, the intake air amount in the cylinder tends to exceed the knocking limit Amax1 as shown by the symbol a in FIG. Since the throttle valve opening is corrected to decrease, the actual intake air amount is controlled along the knocking limit Amax1, and the occurrence of transient knocking is reliably avoided.

つまり、実際の挙動としては、急加速がなされたときに、スロットル弁開度が直ちに増加するのではなく、極短時間だけ逆に縮小した後に増加することとなり、このスロットル弁開度を小さくした間に、吸気弁閉時期が吸気量最大吸気弁閉時期IVCmaxを超えてノッキング限界まで遅角するのである。   In other words, the actual behavior is that, when sudden acceleration is performed, the throttle valve opening does not increase immediately, but instead increases after shrinking for a very short time, and this throttle valve opening is reduced. In the meantime, the intake valve closing timing exceeds the intake amount maximum intake valve closing timing IVCmax and is delayed to the knocking limit.

図10の例では、時刻t5において実IVCが遅角側目標IVCに達するので、ステップ23からステップ29へ進み、実吸気量が目標吸気量になったか判定する。遅角側目標IVCは遅角側のノッキング限界に沿っているので、図10の(h)に示すように、時刻t5以降は、実吸気量は吸気量としてのノッキング限界Amax1に沿って増加していく。   In the example of FIG. 10, since the actual IVC reaches the retarded target IVC at time t5, the process proceeds from step 23 to step 29 to determine whether the actual intake air amount has reached the target intake air amount. Since the retard side target IVC is along the retarding limit knocking limit, as shown in FIG. 10 (h), the actual intake amount increases along the knocking limit Amax1 as the intake amount after time t5. To go.

ステップ29で目標吸気量に達したと判定したら、ステップ30に進み、遅角側目標IVCを固定保持する。つまり、図10の(e),(f)の時刻t6〜t7間のように、実吸気量が目標吸気量となったら、目標IVCひいては実IVCが、それ以上進角しない。そして、ステップ31で運転条件に対応した通常のスロットル弁開度を求め、ステップ17へ進む。   If it is determined in step 29 that the target intake air amount has been reached, the routine proceeds to step 30, where the retard side target IVC is fixedly held. That is, if the actual intake air amount becomes the target intake air amount as between the times t6 to t7 of (e) and (f) in FIG. 10, the target IVC and thus the actual IVC does not advance any further. In step 31, the normal throttle valve opening corresponding to the operating condition is obtained, and the process proceeds to step 17.

図10の例では、時刻t7において実機械的圧縮比が目標機械的圧縮比に達するので、ステップ20の判定はYESとなり、ステップ32以降へ進む。ステップ32では、そのときの運転条件に対応した進角側の目標IVC(つまり機関運転条件に対応した基本目標吸気弁閉時期)を求める。これは、特に、図4で説明した早閉じのIVC1と同様に、吸気量最大吸気弁閉時期IVCmaxよりも進角側の値として与えられる。ステップ33では、実IVCを読み込み、ステップ34では、運転条件に対応した通常のスロットル弁開度を求める。   In the example of FIG. 10, since the actual mechanical compression ratio reaches the target mechanical compression ratio at time t7, the determination in step 20 is YES, and the process proceeds to step 32 and thereafter. In step 32, the target IVC on the advance side corresponding to the operating condition at that time (that is, the basic target intake valve closing timing corresponding to the engine operating condition) is obtained. This is given as a value on the advance side with respect to the intake amount maximum intake valve closing timing IVCmax, in particular, as with the early closing IVC1 described in FIG. In step 33, the actual IVC is read, and in step 34, the normal throttle valve opening corresponding to the operating condition is obtained.

実IVCは、上記のように目標IVCが進角側目標IVCへとステップ的に変化することから、図10の(f)の時刻t7〜t9のように進角していくが、ステップ35では、実IVCが進角側目標IVCとなったか判定し、進角側目標IVCになるまではステップ36へ進む。このステップ36では、前述したステップ27,28と同様の処理により、実吸気量が上限(ここでは目標吸気量が上限となる)を超えないように、目標スロットル弁開度を減少補正する。図10の(f)に明らかなように、時刻t7〜t9の間に、実IVCは再び吸気量最大吸気弁閉時期IVCmaxを横切るので、仮にスロットル弁開度の補正がなければ、図中に符号bとして示すように、筒内の吸気量が目標吸気量よりも過大となる。ステップ36によりスロットル弁開度を減少補正することで、実吸気量を目標吸気量に維持できる。なお、この時刻t7〜t9の間のスロットル弁開度の補正は、必ずしも必須ではなく、省略することも可能である。   Since the target IVC changes stepwise to the advance side target IVC as described above, the actual IVC advances at the times t7 to t9 in FIG. 10 (f). Then, it is determined whether or not the actual IVC has reached the advance target IVC, and the process proceeds to step 36 until the advance IV target IVC is reached. In step 36, the target throttle valve opening is corrected to decrease so that the actual intake air amount does not exceed the upper limit (here, the target intake air amount becomes the upper limit) by the same processing as in steps 27 and 28 described above. As is apparent from FIG. 10 (f), the actual IVC again crosses the intake amount maximum intake valve closing timing IVCmax between times t7 and t9, so that if there is no correction of the throttle valve opening, As indicated by reference sign b, the intake air amount in the cylinder is larger than the target intake air amount. By correcting the throttle valve opening to decrease in step 36, the actual intake air amount can be maintained at the target intake air amount. It should be noted that the correction of the throttle valve opening between times t7 and t9 is not always essential and can be omitted.

実IVCが進角側目標IVCとなり、ステップ35の判定がYESとなったら、ステップ37へ進み、IVC遅角制御フラグをクリアする。これにより、一連の加速時の補正制御が終了する。   When the actual IVC becomes the advance side target IVC and the determination in step 35 is YES, the process proceeds to step 37 and the IVC retard control flag is cleared. Thereby, the correction control during a series of accelerations ends.

このように、上記実施例では、図10のタイムチャートに例示するように、加速時に、吸気弁閉時期が一旦遅角側に補正され、ノッキング限界に沿って徐々に進角する。そして、吸気量最大吸気弁閉時期IVCmaxを横切る際には、スロットル弁開度が減少補正されるので、実機械的圧縮比の応答遅れに対し、ノッキングを確実に回避しつつ最大限の加速応答性を確保できる。特に、吸気弁閉時期を吸気量最大吸気弁閉時期IVCmaxよりも遅角側とすることで、図10の(h)にAmax1として示す相対的に高いノッキング限界まで吸気量を与えることができる。図中に符号Amax2で示す線は、図4のIVC1のように吸気量最大吸気弁閉時期IVCmaxよりも進角側に吸気弁閉時期があるときのノッキング限界であり、これは、ピストンが下死点に向かう途中で吸気弁が閉じることから、遅角側のノッキング限界Amax1よりも相対的に吸気量が少ない。本発明では、相対的に吸気量が大となる遅角側のノッキング限界Amax1に沿って吸気量を制御することで、要求負荷の増大に対するトルク応答が高く得られる。なお、図10のタイムチャートは、回転速度が一定であるとみなして各々の変化を表している。   As described above, in the above-described embodiment, as illustrated in the time chart of FIG. 10, during acceleration, the intake valve closing timing is once corrected to the retard side, and gradually advances along the knocking limit. When the maximum intake valve closing timing IVCmax is crossed, the throttle valve opening is corrected to decrease, so that the maximum acceleration response can be avoided while reliably avoiding knocking against the response delay of the actual mechanical compression ratio. Can be secured. In particular, by setting the intake valve closing timing to the retard side of the intake amount maximum intake valve closing timing IVCmax, the intake amount can be given to a relatively high knocking limit indicated as Amax1 in FIG. The line indicated by the symbol Amax2 in the figure is the knocking limit when the intake valve closing timing is closer to the advance side than the maximum intake valve closing timing IVCmax as indicated by IVC1 in FIG. Since the intake valve closes on the way to the dead center, the intake amount is relatively smaller than the retarding side knocking limit Amax1. In the present invention, by controlling the intake air amount along the retarding side knock limit Amax1 where the intake air amount becomes relatively large, a high torque response to an increase in the required load can be obtained. In addition, the time chart of FIG. 10 represents each change on the assumption that the rotation speed is constant.

以上、この発明の一実施例を説明したが、この発明は、上記実施例に限定されず、種々の変更が可能である。例えば上記実施例では、実IVCが吸気量最大吸気弁閉時期IVCmaxを横切るときにスロットル弁開度の減少補正を行うが、可変動弁機構の応答性が可変圧縮比機構に比較して十分に高く、その応答遅れを無視するものとすれば、実IVCを特に求めることなく、目標IVCが吸気量最大吸気弁閉時期IVCmaxを横切るときにスロットル弁開度の減少補正を行うように簡略化することもできる。   As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, A various change is possible. For example, in the above embodiment, when the actual IVC crosses the intake amount maximum intake valve closing timing IVCmax, the throttle valve opening is corrected to decrease. However, the responsiveness of the variable valve mechanism is sufficiently higher than that of the variable compression ratio mechanism. If the response delay is high and neglects the response delay, the actual IVC is not particularly calculated, and the target IVC is simplified to correct the decrease in the throttle valve opening when the target intake valve crosses the maximum intake valve closing timing IVCmax. You can also.

またステップ27,36のように実吸気量を求めることなく、運転条件や実機械的圧縮比などから求めた減少補正量を単純にスロットル弁開度に加えるようにしてもよい。   Further, instead of obtaining the actual intake air amount as in steps 27 and 36, the reduction correction amount obtained from the operating conditions, the actual mechanical compression ratio, etc. may be simply added to the throttle valve opening.

12…制御軸
15…アクチュエータ
33…リフト・作動角制御用アクチュエータ
43…位相制御用アクチュエータ
51…第1可変動弁機構
52…第2可変動弁機構
DESCRIPTION OF SYMBOLS 12 ... Control shaft 15 ... Actuator 33 ... Actuator for lift / operation angle control 43 ... Actuator for phase control 51 ... First variable valve mechanism 52 ... Second variable valve mechanism

Claims (5)

内燃機関の機械的圧縮比を変更する可変圧縮比機構と、
吸気弁の少なくとも閉時期を下死点の前後に亘って変更可能な可変動弁機構と、
スロットル弁と、
を備えた内燃機関において、
機関運転条件に応じて目標機械的圧縮比を設定する目標機械的圧縮比設定手段と、
過渡時に遅れを伴って変化する実機械的圧縮比を検出する実機械的圧縮比検出手段と、
機関運転状態に応じて基本目標吸気弁閉時期を設定する基本目標吸気弁閉時期設定手段と、
内燃機関の要求負荷の急な増加を検出する加速検出手段と、
上記要求負荷増加時に、下死点後の筒内吸気量が最大となる所定の吸気量最大吸気弁閉時期よりも遅角側のノッキング限界吸気弁閉時期ないしこれよりも遅角側に目標吸気弁閉時期を設定し、かつ、実機械的圧縮比の低下に伴って、該目標吸気弁閉時期を上記基本目標吸気弁閉時期に収束させる目標吸気弁閉時期補正手段と、
上記要求負荷増加時に、上記目標吸気弁閉時期ないし実吸気弁閉時期が上記吸気量最大吸気弁閉時期の進角側から遅角側へと変化する時期に対応する期間で、上記スロットル弁開度を一次的に減少補正するスロットル弁開度補正手段と、
を備えてなる内燃機関の制御装置。
A variable compression ratio mechanism for changing the mechanical compression ratio of the internal combustion engine;
A variable valve mechanism that can change at least the closing timing of the intake valve before and after bottom dead center;
A throttle valve,
In an internal combustion engine with
A target mechanical compression ratio setting means for setting a target mechanical compression ratio according to engine operating conditions;
An actual mechanical compression ratio detection means for detecting an actual mechanical compression ratio that changes with a delay during a transition;
Basic target intake valve closing timing setting means for setting the basic target intake valve closing timing according to the engine operating state;
Acceleration detecting means for detecting a sudden increase in the required load of the internal combustion engine;
When the required load increases, the in-cylinder intake amount after bottom dead center is maximized. The predetermined intake amount at which the maximum intake valve closes. A target intake valve closing timing correcting means for setting the valve closing timing and converging the target intake valve closing timing to the basic target intake valve closing timing as the actual mechanical compression ratio decreases;
When the required load increases, the throttle valve opening is in a period corresponding to the timing when the target intake valve closing timing or actual intake valve closing timing changes from the advance side to the retard side of the intake amount maximum intake valve closing timing. Throttle valve opening correction means for correcting the degree of decrease temporarily,
A control device for an internal combustion engine comprising:
上記目標吸気弁閉時期補正手段は、実機械的圧縮比に応じたノッキング限界吸気弁閉時期を目標吸気弁閉時期として逐次設定することを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control apparatus for an internal combustion engine according to claim 1, wherein the target intake valve closing timing correcting means sequentially sets a knocking limit intake valve closing timing according to an actual mechanical compression ratio as a target intake valve closing timing. . 上記目標吸気弁閉時期補正手段は、実機械的圧縮比が目標機械的圧縮比に達したときに、上記基本目標吸気弁閉時期を目標吸気弁閉時期とすることを特徴とする請求項1または2に記載の内燃機関の制御装置。   2. The target intake valve closing timing correcting means sets the basic target intake valve closing timing as a target intake valve closing timing when an actual mechanical compression ratio reaches a target mechanical compression ratio. Or the control apparatus for an internal combustion engine according to 2; 上記スロットル弁開度補正手段は、要求負荷に対応する基本目標吸気弁閉時期が上記吸気量最大吸気弁閉時期よりも進角側であるときに、上記目標吸気弁閉時期ないし実吸気弁閉時期が上記吸気量最大吸気弁閉時期の遅角側から進角側へと変化する時期に対応する期間で、上記スロットル弁開度を一次的に減少補正することを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   When the basic target intake valve closing timing corresponding to the required load is on the more advanced side than the intake amount maximum intake valve closing timing, the throttle valve opening correction means is configured to perform the target intake valve closing timing or the actual intake valve closing timing. The throttle valve opening is temporarily reduced and corrected in a period corresponding to a timing when the timing changes from the retard side to the advance side of the maximum intake valve closing timing. 4. The control apparatus for an internal combustion engine according to any one of 3 above. 推定ないし検出した筒内吸気量が、そのときの実機械的圧縮比から定まるノッキング限界吸気量を超えるときに、上記スロットル弁開度の減少補正を行うことを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   5. The throttle valve opening reduction correction is performed when the estimated or detected in-cylinder intake amount exceeds a knocking limit intake amount determined from an actual mechanical compression ratio at that time. The control apparatus of the internal combustion engine in any one.
JP2009038235A 2009-02-20 2009-02-20 Control device for internal combustion engine Expired - Fee Related JP5146354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038235A JP5146354B2 (en) 2009-02-20 2009-02-20 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038235A JP5146354B2 (en) 2009-02-20 2009-02-20 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010190193A true JP2010190193A (en) 2010-09-02
JP5146354B2 JP5146354B2 (en) 2013-02-20

Family

ID=42816472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038235A Expired - Fee Related JP5146354B2 (en) 2009-02-20 2009-02-20 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5146354B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223097A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Variable valve gear of internal combustion engine for vehicle
JP2012052472A (en) * 2010-09-01 2012-03-15 Mazda Motor Corp Engine control device
CN102444443A (en) * 2011-01-13 2012-05-09 大连理工大学 Internal combustion engine intake gate and exhaust gate control method
JP2012225250A (en) * 2011-04-19 2012-11-15 Mazda Motor Corp Spark-ignition engine
GB2519600A (en) * 2013-10-28 2015-04-29 Jaguar Land Rover Ltd Gasoline Engine Knock Control
WO2019003326A1 (en) * 2017-06-28 2019-01-03 日産自動車株式会社 Internal-combustion engine control method and control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193872A (en) * 2001-12-26 2003-07-09 Nissan Motor Co Ltd Control device for self-igniting engine
JP2004218551A (en) * 2003-01-16 2004-08-05 Nissan Motor Co Ltd Control device for internal combustion engine
JP2004239174A (en) * 2003-02-06 2004-08-26 Toyota Motor Corp Control of internal combustion engine in time period of compression-ratio change
JP2006046193A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Controller for internal combustion engine
JP2006183604A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Internal combustion engine with variable compression ratio mechanism
JP2008151059A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Controller for internal combustion engine having variable valve train
JP2009203895A (en) * 2008-02-28 2009-09-10 Mazda Motor Corp Control method of internal combustion engine, and internal combustion engine system
JP2010059791A (en) * 2008-09-01 2010-03-18 Hitachi Automotive Systems Ltd Control device of variable valve mechanism and variable valve control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193872A (en) * 2001-12-26 2003-07-09 Nissan Motor Co Ltd Control device for self-igniting engine
JP2004218551A (en) * 2003-01-16 2004-08-05 Nissan Motor Co Ltd Control device for internal combustion engine
JP2004239174A (en) * 2003-02-06 2004-08-26 Toyota Motor Corp Control of internal combustion engine in time period of compression-ratio change
JP2006046193A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Controller for internal combustion engine
JP2006183604A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Internal combustion engine with variable compression ratio mechanism
JP2008151059A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Controller for internal combustion engine having variable valve train
JP2009203895A (en) * 2008-02-28 2009-09-10 Mazda Motor Corp Control method of internal combustion engine, and internal combustion engine system
JP2010059791A (en) * 2008-09-01 2010-03-18 Hitachi Automotive Systems Ltd Control device of variable valve mechanism and variable valve control system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223097A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Variable valve gear of internal combustion engine for vehicle
JP2012052472A (en) * 2010-09-01 2012-03-15 Mazda Motor Corp Engine control device
CN102444443A (en) * 2011-01-13 2012-05-09 大连理工大学 Internal combustion engine intake gate and exhaust gate control method
JP2012225250A (en) * 2011-04-19 2012-11-15 Mazda Motor Corp Spark-ignition engine
GB2519600A (en) * 2013-10-28 2015-04-29 Jaguar Land Rover Ltd Gasoline Engine Knock Control
GB2519600B (en) * 2013-10-28 2018-09-12 Jaguar Land Rover Ltd Gasoline Engine Knock Control
US10947912B2 (en) 2013-10-28 2021-03-16 Jaguar Land Rover Limited Gasoline engine knock control
WO2019003326A1 (en) * 2017-06-28 2019-01-03 日産自動車株式会社 Internal-combustion engine control method and control device
CN110730861A (en) * 2017-06-28 2020-01-24 日产自动车株式会社 Method and device for controlling internal combustion engine
JPWO2019003326A1 (en) * 2017-06-28 2020-04-02 日産自動車株式会社 Control method and control device for internal combustion engine
US11821374B2 (en) 2017-06-28 2023-11-21 Nissan Motor Co., Ltd. Internal-combustion engine control method and control device

Also Published As

Publication number Publication date
JP5146354B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP3783589B2 (en) Variable valve operating device for internal combustion engine
JP3979081B2 (en) Combustion control system for internal combustion engine
US8768601B2 (en) Control device for internal combustion engine having variable valve mechanism
JP3912147B2 (en) Variable valve operating device for internal combustion engine
JP4058927B2 (en) Control device for internal combustion engine
JP5765494B2 (en) Control device and control method for internal combustion engine
JP5146354B2 (en) Control device for internal combustion engine
JP2008151059A (en) Controller for internal combustion engine having variable valve train
JP5668458B2 (en) Control device for internal combustion engine
JP4682697B2 (en) Engine intake control device
JP4168756B2 (en) Control device for internal combustion engine
JP5316086B2 (en) Control device and control method for internal combustion engine
JP4899878B2 (en) Combustion control device for internal combustion engine
JP2010174757A (en) Control device for variable compression ratio internal combustion engine
JP5434243B2 (en) Variable compression ratio internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP2006046193A (en) Controller for internal combustion engine
JP4706647B2 (en) Control device for internal combustion engine and internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JP5206856B2 (en) Control device for internal combustion engine
JP4973448B2 (en) Variable valve mechanism control apparatus for internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP2009215889A (en) Variable valve gear for internal combustion engine
JP4877209B2 (en) Control device for internal combustion engine
JP4305344B2 (en) Variable valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5146354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees