JP5206856B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5206856B2
JP5206856B2 JP2011238142A JP2011238142A JP5206856B2 JP 5206856 B2 JP5206856 B2 JP 5206856B2 JP 2011238142 A JP2011238142 A JP 2011238142A JP 2011238142 A JP2011238142 A JP 2011238142A JP 5206856 B2 JP5206856 B2 JP 5206856B2
Authority
JP
Japan
Prior art keywords
compression ratio
intake valve
closing timing
valve closing
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011238142A
Other languages
Japanese (ja)
Other versions
JP2012021533A (en
Inventor
亮介 日吉
俊一 青山
信一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011238142A priority Critical patent/JP5206856B2/en
Publication of JP2012021533A publication Critical patent/JP2012021533A/en
Application granted granted Critical
Publication of JP5206856B2 publication Critical patent/JP5206856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

この発明は、可変圧縮比機構や可変動弁機構を用いて有効圧縮比を変化させるようにした内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine in which an effective compression ratio is changed using a variable compression ratio mechanism or a variable valve mechanism.

内燃機関の低中負荷域での熱効率向上を図ると同時に高負荷域でのノッキングを回避するために、機関の機械的な圧縮比つまり公称圧縮比を変化させることができる可変圧縮比機構が種々提案されている。内燃機関の有効圧縮比は、この機械的圧縮比のほか、吸気弁閉時期によっても左右されるので、吸気弁閉時期を可変制御し得る種々の可変動弁機構によって、有効圧縮比を適宜に制御することが可能である。本出願人が先に提案した特許文献1には、可変圧縮比機構による機械的圧縮比の可変制御と可変動弁機構による吸気弁閉時期の可変制御とを組み合わせて、有効圧縮比を適宜に制御するようにした技術が開示されている。   Various variable compression ratio mechanisms that can change the mechanical compression ratio of the engine, that is, the nominal compression ratio, in order to improve the thermal efficiency of the internal combustion engine in the low and medium load ranges and at the same time avoid knocking in the high load range Proposed. Since the effective compression ratio of the internal combustion engine depends on the intake valve closing timing in addition to the mechanical compression ratio, the effective compression ratio is appropriately set by various variable valve mechanisms that can variably control the intake valve closing timing. It is possible to control. In Patent Document 1 previously proposed by the present applicant, the effective compression ratio is appropriately set by combining the variable control of the mechanical compression ratio by the variable compression ratio mechanism and the variable control of the intake valve closing timing by the variable valve mechanism. A technique for controlling is disclosed.

また、特許文献2には、可変圧縮比機構を備えた内燃機関において、ノッキング発生時に、点火時期遅角および圧縮比低下に加えて、燃料供給量を増量補正することで、燃焼室内の温度を低下させ、ノッキングを抑制する技術が開示されている。   Further, in Patent Document 2, in an internal combustion engine having a variable compression ratio mechanism, when knocking occurs, in addition to the ignition timing retardation and the compression ratio decrease, the fuel supply amount is corrected to increase, thereby adjusting the temperature in the combustion chamber. Techniques for reducing and suppressing knocking are disclosed.

特開2002−285876号公報JP 2002-285876 A 特開昭63−16137号公報JP-A 63-16137

上記のように機械的圧縮比や吸気弁閉時期により有効圧縮比を可変制御する手段を備えた内燃機関においては、内燃機関の加速時には、ノッキング回避のために有効圧縮比を低下させるように制御されるが、一般に機械的な機構を伴う可変圧縮比機構や可変動弁機構は、電気的な点火時期制御に比べて応答性が低く、従って、加速時に有効圧縮比が低下していく過程において過渡的にノッキングが発生し、あるいは、ノッキング回避のために点火時期の大幅なリタードが生じてトルクが低下する、といった問題が生じる。   As described above, in an internal combustion engine equipped with means for variably controlling the effective compression ratio according to the mechanical compression ratio or the intake valve closing timing, control is performed so that the effective compression ratio is lowered to avoid knocking when the internal combustion engine is accelerated. However, in general, the variable compression ratio mechanism and variable valve mechanism with a mechanical mechanism are less responsive than electrical ignition timing control, and therefore, in the process where the effective compression ratio decreases during acceleration. There arises a problem that knocking occurs transiently or that the ignition timing is significantly retarded to avoid knocking and the torque is reduced.

また加速時に一律に燃料増量を行ったのでは、燃料増量が過剰となる場合があり、燃費の悪化の要因となる。   Further, if the fuel increase is uniformly performed during acceleration, the fuel increase may become excessive, which causes a deterioration in fuel consumption.

発明は、内燃機関の吸気弁閉時期を変更する可変動弁機構と、内燃機関の機械的圧縮比を変更する可変圧縮比機構と、を備え、上記可変動弁機構は、低負荷条件における吸気弁閉時期が下死点よりも進み側に設定されるとともに、高負荷条件における吸気弁閉時期が下死点よりも遅れ側に設定され、上記可変圧縮比機構は、低負荷条件における機械的圧縮比が高負荷条件における機械的圧縮比よりも相対的に高く設定され、上記低負荷条件からの加速時に、上記吸気弁閉時期が下死点よりも進み側から下死点よりも遅れ側へ変化するとともに、上記機械的圧縮比が相対的に低い圧縮比へ変化する内燃機関の制御装置において、
上記加速時に実吸気弁閉時期を逐次求め、
上記加速時におけるノッキング回避のための燃料増量補正を、上記実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間、行うことを特徴としている。
The present invention includes a variable valve mechanism that changes the intake valve closing timing of the internal combustion engine, and a variable compression ratio mechanism that changes the mechanical compression ratio of the internal combustion engine, the variable valve mechanism being in a low load condition. The intake valve closing timing is set to an advance side from the bottom dead center, and the intake valve closing timing at a high load condition is set to a delay side from the bottom dead center. The compression ratio is set to be relatively higher than the mechanical compression ratio under the high load condition , and when accelerating from the low load condition , the intake valve closing timing is advanced from the bottom dead center and delayed from the bottom dead center. In the control device for an internal combustion engine in which the mechanical compression ratio changes to a relatively low compression ratio ,
The actual intake valve closing timing is sequentially obtained during the acceleration,
The fuel increase correction avoid knock during the acceleration, while the actual intake valve closing timing is in a predetermined bottom dead center neighborhood range including the bottom dead center, is characterized by performing.

すなわち、上記構成では、加速に伴って吸気弁閉時期が下死点よりも進み側から遅れ側へ変化するため、その変化の途中の過程において、実吸気弁閉時期が下死点となるときが必ず存在する。また同時に可変圧縮比機構により機械的圧縮比が高圧縮比から低圧縮比へと変化していくが、一般に、最終的な目標の低い圧縮比に達する前に、実吸気弁閉時期が下死点に近付く。従って、機械的圧縮比が比較的に高いまま実吸気弁閉時期が下死点付近となって、有効圧縮比が過大となり、ノッキングが発生しやすい。本発明では、加速時に実吸気弁閉時期を逐次求め、この実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間、燃料増量補正を行うことで、必要最小限の燃料増量でもって過渡的なノッキングが確実に回避される。 That is, in the above arrangement, since the intake valve closing timing in accordance with the acceleration is changed to the side delayed even leading side than the bottom dead center, in the middle of the course of the change, when the actual intake valve closing timing is bottom dead center There must be. At the same time, the mechanical compression ratio is changed from a high compression ratio to a low compression ratio by the variable compression ratio mechanism. However, before the final target low compression ratio is reached, the actual intake valve closing timing generally dies. Approach the point. Therefore, the actual intake valve closing timing is near the bottom dead center while the mechanical compression ratio is relatively high, the effective compression ratio becomes excessive, and knocking is likely to occur. In the present invention, the actual intake valve closing timing is sequentially obtained during acceleration, and while the actual intake valve closing timing is within a predetermined bottom dead center range including the bottom dead center , the fuel increase correction is performed, thereby minimizing the necessary amount. Transient knocking is reliably avoided with increased fuel .

具体的な一つの態様では、実吸気弁閉時期と下死点との間の角度差の絶対値が、目標とする設定吸気弁閉時期と下死点との間の角度差の絶対値よりも小さい期間で、燃料増量補正を行う。In one specific aspect, the absolute value of the angle difference between the actual intake valve closing timing and bottom dead center is greater than the absolute value of the angle difference between the target set intake valve closing timing and bottom dead center. The fuel increase correction is performed in a small period.

また、一つの態様では、実吸気弁閉時期が上記の所定の下死点近傍範囲に入ったときに所定量の燃料増量補正を開始し、その後、実吸気弁閉時期が設定吸気弁閉時期に到達するまで、燃料増量を徐々に少なくしていく。Further, in one aspect, when the actual intake valve closing timing enters the predetermined bottom dead center range, a predetermined amount of fuel increase correction is started, and then the actual intake valve closing timing is set to the set intake valve closing timing. The fuel increase is gradually reduced until reaching

この発明によれば、内燃機関の加速時に、実吸気弁閉時期を逐次求め、この実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間、燃料増量が行われるので、可変圧縮比機構による機械的圧縮比が比較的高い間に過渡的に下死点に近付いて有効圧縮比が過大となることによるノッキングの発生を確実に回避することができるとともに、トルク低下を伴う点火時期リタードを不要もしくは最小限のものとすることができる。また燃料増量は、実吸気弁閉時期が下死点近傍にある間のみ行われるので、燃料増量に伴う燃費悪化を抑制することができる。 According to the present invention, during the acceleration of the internal combustion engine , the actual intake valve closing timing is sequentially obtained, and the fuel increase is performed while the actual intake valve closing timing is within a predetermined bottom dead center range including the bottom dead center . While the mechanical compression ratio by the variable compression ratio mechanism is relatively high, it is possible to reliably avoid the occurrence of knocking due to transiently approaching bottom dead center and excessive effective compression ratio, and to reduce torque. The accompanying ignition timing retard can be made unnecessary or minimal. Further, since the fuel increase is performed only while the actual intake valve closing timing is in the vicinity of the bottom dead center, it is possible to suppress the deterioration of the fuel consumption accompanying the fuel increase.

可変圧縮比機構の一例を示す構成説明図。Structure explanatory drawing which shows an example of a variable compression ratio mechanism. 可変動弁機構の一例を示す構成説明図。Structure explanatory drawing which shows an example of a variable valve mechanism. 加速時の可変圧縮比機構の動作を示す説明図。Explanatory drawing which shows operation | movement of the variable compression ratio mechanism at the time of acceleration . 燃料増量補正の実施例を示す説明図。Explanatory drawing which shows one Example of fuel increase correction.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明における有効圧縮比可変手段の一つとして、内燃機関の機械的圧縮比(公称圧縮比)を可変制御し得る可変圧縮比機構の一実施例を示している。なお、この可変圧縮比機構自体は、前述した特許文献1等によって公知となっているものである。   FIG. 1 shows an embodiment of a variable compression ratio mechanism capable of variably controlling a mechanical compression ratio (nominal compression ratio) of an internal combustion engine as one of effective compression ratio variable means in the present invention. The variable compression ratio mechanism itself is known from the above-described Patent Document 1 and the like.

この可変圧縮比機構は、複リンク式ピストン−クランク機構を利用したもので、シリンダブロック1のシリンダ2内を摺動するピストン3にピストンピン4を介して一端が連結されたアッパリンク5と、このアッパリンク5の他端に連結ピン6を介して連結されるとともに、クランクシャフト7のクランクピン8に回転可能に連結されたロアリンク9と、このロアリンク9の自由度を制限するために該ロアリンク9にさらに連結ピン10を介して一端が連結され、かつ他端が内燃機関本体に揺動可能に支持されたコントロールリンク11と、を備えており、上記コントロールリンク11の揺動支持位置が制御軸12の偏心カム部13によって可変制御される構成となっている。   This variable compression ratio mechanism uses a multi-link type piston-crank mechanism, and an upper link 5 having one end connected to a piston 3 sliding in a cylinder 2 of a cylinder block 1 via a piston pin 4; The lower link 9 is connected to the other end of the upper link 5 via a connecting pin 6 and is rotatably connected to the crankpin 8 of the crankshaft 7. In order to limit the degree of freedom of the lower link 9 A control link 11 having one end connected to the lower link 9 via a connecting pin 10 and the other end swingably supported by the internal combustion engine body. The position is variably controlled by the eccentric cam portion 13 of the control shaft 12.

上記制御軸12はクランクシャフト7と平行に配置され、かつシリンダブロック1に回転自在に支持されている。そして、この制御軸12は、歯車機構14を介して、電動モータからなるアクチュエータ15によって回転方向に駆動され、その回転位置が制御されるようになっている。   The control shaft 12 is disposed in parallel with the crankshaft 7 and is rotatably supported by the cylinder block 1. The control shaft 12 is driven in the rotational direction by an actuator 15 made of an electric motor via a gear mechanism 14 and its rotational position is controlled.

上記構成の可変圧縮比機構では、上記制御軸12の回転位置つまり偏心カム部13の位置によってコントロールリンク11下端の揺動支持位置が変化し、ロアリンク9の初期の姿勢が変わるため、これに伴ってピストン3の上死点位置、ひいては圧縮比が変化する。   In the variable compression ratio mechanism configured as described above, the swing support position of the lower end of the control link 11 changes depending on the rotational position of the control shaft 12, that is, the position of the eccentric cam portion 13, and the initial posture of the lower link 9 changes. Along with this, the top dead center position of the piston 3, and thus the compression ratio changes.

図2は、有効圧縮比可変手段の一つとして、吸気弁の開閉時期を作動角とともに可変制御し得る可変動弁機構の一実施例を示している。これは、吸気弁のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構51と、作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構52と、を組み合わせて構成されている。これらの第1可変動弁機構51および第2可変動弁機構52は、その機械的な構成は公知であり、例えば、上述した特許文献1に記載の装置と同様の構成を有している。従って、その概要のみを説明する。   FIG. 2 shows an embodiment of a variable valve mechanism that can variably control the opening / closing timing of the intake valve together with the operating angle as one of the effective compression ratio variable means. This is because the first variable valve mechanism 51 capable of continuously expanding and reducing the lift / operating angle of the intake valve and the second variable valve capable of continuously delaying the central angle of the operating angle. The variable valve mechanism 52 is combined. The mechanical structure of the first variable valve mechanism 51 and the second variable valve mechanism 52 is known, and for example, has the same structure as the device described in Patent Document 1 described above. Therefore, only the outline will be described.

リフト・作動角を可変制御する第1可変動弁機構51は、内燃機関のクランクシャフトにより駆動される駆動軸22と、この駆動軸22に固定された偏心カム23と、回転自在に支持された制御軸32と、この制御軸32の偏心カム部38に揺動自在に支持されたロッカアーム26と、吸気弁53のタペット30に当接する揺動カム29と、を備えており、上記偏心カム23とロッカアーム26とはリンクアーム24によって連係され、ロッカアーム26と揺動カム29とは、リンク部材28によって連係されている。   The first variable valve mechanism 51 that variably controls the lift / operating angle is rotatably supported by a drive shaft 22 driven by a crankshaft of an internal combustion engine, an eccentric cam 23 fixed to the drive shaft 22. The eccentric cam 23 includes a control shaft 32, a rocker arm 26 that is swingably supported by the eccentric cam portion 38 of the control shaft 32, and a swing cam 29 that contacts the tappet 30 of the intake valve 53. The rocker arm 26 is linked by a link arm 24, and the rocker arm 26 and the swing cam 29 are linked by a link member 28.

上記ロッカアーム26は、略中央部が上記偏心カム部38によって揺動可能に支持されており、その一端部に、連結ピン25を介して上記リンクアーム24のアーム部が連係しているとともに、他端部に、連結ピン27を介して上記リンク部材28の上端部が連係している。上記偏心カム部38は、制御軸32の軸心から偏心しており、従って、制御軸32の角度位置に応じてロッカアーム26の揺動中心は変化する。   The rocker arm 26 is supported at its substantially central portion by the eccentric cam portion 38 so as to be swingable, and the arm portion of the link arm 24 is linked to one end portion thereof via a connecting pin 25. The upper end portion of the link member 28 is linked to the end portion via a connecting pin 27. The eccentric cam portion 38 is eccentric from the axis of the control shaft 32, and accordingly, the rocking center of the rocker arm 26 changes according to the angular position of the control shaft 32.

上記揺動カム29は、駆動軸22の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、連結ピン37を介して上記リンク部材28の下端部が連係している。この揺動カム29の下面には、駆動軸22と同心状の円弧をなす基円面と、該基円面から所定の曲線を描いて延びるカム面と、が連続して形成されており、これらの基円面ならびにカム面が、揺動カム29の揺動位置に応じてタペット30の上面に当接する。   The swing cam 29 is rotatably supported by being fitted to the outer periphery of the drive shaft 22, and a lower end portion of the link member 28 is linked to an end portion extending laterally via a connecting pin 37. ing. On the lower surface of the swing cam 29, a base circle surface concentric with the drive shaft 22 and a cam surface extending in a predetermined curve from the base circle surface are continuously formed. These base circle surface and cam surface come into contact with the upper surface of the tappet 30 according to the swing position of the swing cam 29.

上記制御軸32は、一端部に設けられたリフト・作動角制御用アクチュエータ33によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用アクチュエータ33は、例えばウォームギア35を介して制御軸32を駆動する電動モータからなり、コントロールユニット54からの制御信号によって制御される。上記制御軸32の回転角度は、制御軸センサ34によって検出される。   The control shaft 32 is configured to rotate within a predetermined angle range by a lift / operating angle control actuator 33 provided at one end. The lift / operating angle control actuator 33 is composed of, for example, an electric motor that drives the control shaft 32 via the worm gear 35, and is controlled by a control signal from the control unit 54. The rotation angle of the control shaft 32 is detected by a control shaft sensor 34.

上記第1可変動弁機構51によれば、上記制御軸32の回転角度位置に応じて吸気弁53のリフトならびに作動角が、両者同時に、連続的に拡大,縮小し、このリフト・作動角の大小変化に伴い、吸気弁53の開時期と閉時期とがほぼ対称に変化する。リフト・作動角の大きさは、制御軸32の回転角度によって一義的に定まるので、上記制御軸センサ34の検出値により、そのときの実際のリフト・作動角が示されることになる。   According to the first variable valve mechanism 51, the lift and the operating angle of the intake valve 53 are continuously expanded and reduced simultaneously according to the rotational angle position of the control shaft 32, With the change in size, the opening timing and closing timing of the intake valve 53 change substantially symmetrically. Since the magnitude of the lift / operating angle is uniquely determined by the rotation angle of the control shaft 32, the actual lift / operating angle at that time is indicated by the detected value of the control shaft sensor 34.

一方、中心角を可変制御する第2可変動弁機構52は、上記駆動軸22の前端部に設けられたスプロケット42と、このスプロケット42と上記駆動軸22とを、所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ43と、から構成されている。上記スプロケット42は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用アクチュエータ43は、本実施例では油圧式の回転型アクチュエータからなり、コントロールユニット54からの制御信号によって図示せぬ油圧制御弁を介して制御される。この位相制御用アクチュエータ43の作用によって、スプロケット42と駆動軸22とが相対的に回転し、バルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この第2可変動弁機構52の制御状態は、駆動軸22の回転位置に応答する駆動軸センサ36によって検出される。   On the other hand, the second variable valve mechanism 52 that variably controls the center angle is configured such that the sprocket 42 provided at the front end portion of the drive shaft 22 is relative to the sprocket 42 and the drive shaft 22 within a predetermined angle range. And a phase control actuator 43 that is rotated in an automatic manner. The sprocket 42 is linked to the crankshaft via a timing chain or timing belt (not shown). The phase control actuator 43 is a hydraulic rotary actuator in this embodiment, and is controlled by a control signal from the control unit 54 via a hydraulic control valve (not shown). The action of the phase control actuator 43 causes the sprocket 42 and the drive shaft 22 to rotate relative to each other, thereby delaying the lift center angle in the valve lift. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the second variable valve mechanism 52 is detected by a drive shaft sensor 36 that responds to the rotational position of the drive shaft 22.

上記のように可変圧縮比機構と可変動弁機構とを備えた内燃機関においては、機械的圧縮比と吸気弁閉時期との双方を変更し得るので、両者によって有効圧縮比が定まる。   In the internal combustion engine provided with the variable compression ratio mechanism and the variable valve mechanism as described above, since both the mechanical compression ratio and the intake valve closing timing can be changed, the effective compression ratio is determined by both.

、上述した可変圧縮比機構の加速時の動作を示し、この可変圧縮比機構によって内燃機関の機械的圧縮比つまり公称圧縮比が可変制御される。低速低負荷状態における機械圧縮比が高い状態から加速を開始したとき、つまり図(a)のようにスロットル開度が急激に増加しかつ一定開度に達する場合においては、機関の負荷が急速に上昇するので、ノッキング回避のために、目標となる設定圧縮比が(b)のように低下し、これを実現するように可変圧縮比機構が制御される。しかし、スロットル開度変化時間が、最大加速時に0.1秒程度であるのに対して、機械圧縮比低下は、前述した可変圧縮比機構では、例えば0.4秒程度の長時間を要する。そのため、機械的圧縮比が低下していく過程において、設定圧縮比に対して実圧縮比が一時的に大きくなる Figure 3 shows the operation at the time of acceleration of the variable compression ratio mechanism that is above mentioned, the mechanical compression ratio, i.e. the nominal compression ratio of the internal combustion engine is variably controlled by the variable compression ratio mechanism. When the mechanical compression ratio in the low speed low load conditions starts to accelerate from a high state, i.e. when the throttle opening as shown in FIG. 3 (a) reaches the increased and constant opening abruptly rapidly load of the engine Therefore, in order to avoid knocking, the target set compression ratio decreases as shown in (b), and the variable compression ratio mechanism is controlled to realize this. However, while the throttle opening change time is about 0.1 seconds at the time of maximum acceleration, the mechanical compression ratio reduction requires a long time of about 0.4 seconds, for example, in the above-described variable compression ratio mechanism. Therefore, in the process in which the mechanical compression ratio decreases, the actual compression ratio temporarily increases with respect to the set compression ratio .

は、燃料増量補正の例を示す説明図である。上述した可変動弁機構によって有効圧縮比を変化させるべく吸気弁閉時期が可変制御される。低速低負荷状態における有効圧縮比が高い状態から加速を開始したとき、つまり図(a)のようにスロットル開度が急激に増加しかつ一定開度に達する場合においては、機関の負荷が急速に上昇するので、ノッキング回避のために、目標となる設定吸気弁閉時期が、(b)のように下死点(BDC)よりも大幅に遅角した位置に与えられ、これを実現するように可変動弁機構が制御される。しかし、スロットル開度変化時間が、最大加速時に0.1秒程度であるのに対して、吸気弁閉時期の遅角動作は、一般にこれよりも長時間を要する。そのため、吸気弁閉時期が遅角していく過程において、有効圧縮比が所望の有効圧縮比よりも一時的に大きくなる。特に、加速前の低速低負荷条件では吸気弁の作動角を小さくして吸気弁閉時期を下死点前に設定している場合には、吸気弁閉時期の遅角の過程において、吸気弁閉時期が下死点に近づき、下死点を経て、これよりも遅角することになる。従って、吸気弁閉時期が下死点に近付くことで、有効圧縮比が一時的に増大する。そのため、本実施例では、(c)のように、下死点と実吸気弁閉時期との角度差(絶対値)が、下死点と設定吸気弁閉時期との角度差(絶対値)よりも小さいとき、つまり期間Tの間において、燃料増量が増加側に補正される。 FIG. 4 is an explanatory diagram showing an example of fuel increase correction . To vary the effective compression ratio by the variable valve mechanism described above mentioned the intake valve closing timing is variably controlled. When the effective compression ratio in the low speed low load conditions starts to accelerate from a high state, i.e. when the throttle opening as shown in FIGS. 4 (a) reaches the increased and constant opening abruptly rapidly load of the engine Therefore, in order to avoid knocking, the target intake valve closing timing is given to a position that is significantly retarded from the bottom dead center (BDC) as shown in FIG. The variable valve mechanism is controlled. However, while the throttle opening change time is about 0.1 seconds at the maximum acceleration, the retarding operation of the intake valve closing timing generally requires a longer time. Therefore, in the process in which the intake valve closing timing is retarded, the effective compression ratio temporarily becomes larger than the desired effective compression ratio. In particular, if the intake valve closing timing is set before the bottom dead center in the low-speed and low-load conditions before acceleration, the intake valve closing timing is set before the bottom dead center. The closing time approaches the bottom dead center, passes through the bottom dead center, and is delayed more than this. Therefore, when the intake valve closing timing approaches the bottom dead center, the effective compression ratio temporarily increases. Therefore, in this embodiment, as shown in (c), the angle difference (absolute value) between the bottom dead center and the actual intake valve closing timing is the angle difference (absolute value) between the bottom dead center and the set intake valve closing timing. Is smaller, that is, during the period T, the fuel increase is corrected to the increasing side.

上記のように燃料増量補正を行うことで、急加速時に機械的圧縮比もしくは吸気弁閉時期が目標となる設定値から遅れて変化する場合でも、ノッキング発生を確実に回避することができる。また、この結果、可変圧縮比機構のアクチュエータ15や可変動弁機構のアクチュエータ33,43に、ノッキング回避のための高い応答性が要求されず、これらのアクチュエータを小型化することが可能となる。 By performing good urchin fuel increase correction of the above, even if the rapid acceleration machine械的compression ratio or intake valve closing timing at the time changes with a delay from the set value as a target, it is possible to reliably avoid occurrence of knocking . As a result, the actuator 15 of the variable compression ratio mechanism and the actuators 33 and 43 of the variable valve mechanism do not require high responsiveness for avoiding knocking, and these actuators can be miniaturized.

12…制御軸
15…アクチュエータ
33…リフト・作動角制御用アクチュエータ
43…位相制御用アクチュエータ
51…第1可変動弁機構
52…第2可変動弁機構
DESCRIPTION OF SYMBOLS 12 ... Control shaft 15 ... Actuator 33 ... Actuator for lift / operation angle control 43 ... Actuator for phase control 51 ... First variable valve mechanism 52 ... Second variable valve mechanism

Claims (2)

内燃機関の吸気弁閉時期を変更する可変動弁機構と、内燃機関の機械的圧縮比を変更する可変圧縮比機構と、を備え、上記可変動弁機構は、低負荷条件における吸気弁閉時期が下死点よりも進み側に設定されるとともに、高負荷条件における吸気弁閉時期が下死点よりも遅れ側に設定され、上記可変圧縮比機構は、低負荷条件における機械的圧縮比が高負荷条件における機械的圧縮比よりも相対的に高く設定され、上記低負荷条件からの加速時に、上記吸気弁閉時期が下死点よりも進み側から下死点よりも遅れ側へ変化するとともに、上記機械的圧縮比が相対的に低い圧縮比へ変化する内燃機関の制御装置において、
上記加速時に実吸気弁閉時期を逐次求め、
上記加速時における上記実吸気弁閉時期の遅角過程の中で、上記実吸気弁閉時期が下死点を含む所定の下死点近傍範囲に入ったときに、ノッキングの発生を回避することができる所定量の燃料増量補正を開始し、その後、実吸気弁閉時期が下死点よりも遅れ側にある設定吸気弁閉時期に到達するまで、燃料増量を徐々に少なくしていくことを特徴とする内燃機関の制御装置。
A variable valve mechanism for changing the intake valve closing timing of the internal combustion engine, and a variable compression ratio mechanism for changing the mechanical compression ratio of the internal combustion engine, wherein the variable valve mechanism has an intake valve closing timing under a low load condition. Is set to an advance side from the bottom dead center, and the intake valve closing timing in a high load condition is set to a delay side from the bottom dead center, and the variable compression ratio mechanism has a mechanical compression ratio in a low load condition. It is set relatively higher than the mechanical compression ratio in the high load condition, and when accelerating from the low load condition, the intake valve closing timing changes from the leading side from the bottom dead center to the delay side from the bottom dead center. In addition, in the control device for an internal combustion engine in which the mechanical compression ratio changes to a relatively low compression ratio,
The actual intake valve closing timing is sequentially obtained during the acceleration,
Avoiding the occurrence of knocking when the actual intake valve closing timing enters a predetermined range near the bottom dead center including the bottom dead center in the delaying process of the actual intake valve closing timing during the acceleration. The fuel increase correction of a predetermined amount that can be started is started, and then the fuel increase is gradually decreased until the actual intake valve closing timing reaches the set intake valve closing timing that is behind the bottom dead center. A control device for an internal combustion engine characterized by the above.
実吸気弁閉時期と下死点との間の角度差の絶対値が、目標とする設定吸気弁閉時期と下死点との間の角度差の絶対値よりも小さい期間で、燃料増量補正を行うことを特徴とする請求項1に記載の内燃機関の制御装置。   Fuel increase correction in a period where the absolute value of the angle difference between the actual intake valve closing timing and bottom dead center is smaller than the absolute value of the angle difference between the target intake valve closing timing and bottom dead center The control device for an internal combustion engine according to claim 1, wherein:
JP2011238142A 2011-10-31 2011-10-31 Control device for internal combustion engine Expired - Fee Related JP5206856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011238142A JP5206856B2 (en) 2011-10-31 2011-10-31 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011238142A JP5206856B2 (en) 2011-10-31 2011-10-31 Control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010038144A Division JP4962580B2 (en) 2010-02-24 2010-02-24 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012021533A JP2012021533A (en) 2012-02-02
JP5206856B2 true JP5206856B2 (en) 2013-06-12

Family

ID=45775967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011238142A Expired - Fee Related JP5206856B2 (en) 2011-10-31 2011-10-31 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5206856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035173A1 (en) * 2014-09-03 2016-03-10 日産自動車株式会社 Fuel-responsive control device and fuel-responsive control method for variable compression ratio-type internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692748B2 (en) * 1984-04-27 1994-11-16 マツダ株式会社 Variable compression ratio engine
JP2002089341A (en) * 2000-09-11 2002-03-27 Nissan Motor Co Ltd Control device for internal combustion engine in vehicle
JP2003232233A (en) * 2001-12-06 2003-08-22 Nissan Motor Co Ltd Control device of internal combustion engine
JP4311604B2 (en) * 2001-12-26 2009-08-12 日産自動車株式会社 Control device for self-ignition engine
JP4175110B2 (en) * 2002-12-27 2008-11-05 日産自動車株式会社 Internal combustion engine with variable compression ratio mechanism

Also Published As

Publication number Publication date
JP2012021533A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP3979081B2 (en) Combustion control system for internal combustion engine
JP4416377B2 (en) Control device for internal combustion engine
JP4058927B2 (en) Control device for internal combustion engine
JP4749988B2 (en) Start control device for internal combustion engine
JP5104948B2 (en) Control device for internal combustion engine with variable valve mechanism
JP5668458B2 (en) Control device for internal combustion engine
JP2008151059A (en) Controller for internal combustion engine having variable valve train
WO2019035312A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP4682697B2 (en) Engine intake control device
JP2007239555A (en) Internal combustion engine
JP4168756B2 (en) Control device for internal combustion engine
JP5146354B2 (en) Control device for internal combustion engine
JP4135394B2 (en) Control device for internal combustion engine
JP4899878B2 (en) Combustion control device for internal combustion engine
JP2009243372A (en) Method and device for controlling internal combustion engine
JP2006046193A (en) Controller for internal combustion engine
JP2001336446A (en) Knocking controller of internal combustion engine
JP5206856B2 (en) Control device for internal combustion engine
JP5434243B2 (en) Variable compression ratio internal combustion engine
JP2018080605A (en) Variable system for internal combustion engine and its control method
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP4962580B2 (en) Control device for internal combustion engine
JP4622431B2 (en) Variable valve gear for engine
JP4706647B2 (en) Control device for internal combustion engine and internal combustion engine
JP4525557B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees