JP4962580B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4962580B2
JP4962580B2 JP2010038144A JP2010038144A JP4962580B2 JP 4962580 B2 JP4962580 B2 JP 4962580B2 JP 2010038144 A JP2010038144 A JP 2010038144A JP 2010038144 A JP2010038144 A JP 2010038144A JP 4962580 B2 JP4962580 B2 JP 4962580B2
Authority
JP
Japan
Prior art keywords
intake valve
closing timing
valve closing
compression ratio
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010038144A
Other languages
Japanese (ja)
Other versions
JP2010151138A (en
Inventor
亮介 日吉
俊一 青山
信一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010038144A priority Critical patent/JP4962580B2/en
Publication of JP2010151138A publication Critical patent/JP2010151138A/en
Application granted granted Critical
Publication of JP4962580B2 publication Critical patent/JP4962580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

この発明は、可変圧縮比機構や可変動弁機構を用いて有効圧縮比を変化させるようにした内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine in which an effective compression ratio is changed using a variable compression ratio mechanism or a variable valve mechanism.

内燃機関の低中負荷域での熱効率向上を図ると同時に高負荷域でのノッキングを回避するために、機関の機械的な圧縮比つまり公称圧縮比を変化させることができる可変圧縮比機構が種々提案されている。内燃機関の有効圧縮比は、この機械的圧縮比のほか、吸気弁閉時期によっても左右されるので、吸気弁閉時期を可変制御し得る種々の可変動弁機構によって、有効圧縮比を適宜に制御することが可能である。本出願人が先に提案した特許文献1には、可変圧縮比機構による機械的圧縮比の可変制御と可変動弁機構による吸気弁閉時期の可変制御とを組み合わせて、有効圧縮比を適宜に制御するようにした技術が開示されている。   Various variable compression ratio mechanisms that can change the mechanical compression ratio of the engine, that is, the nominal compression ratio, in order to improve the thermal efficiency of the internal combustion engine in the low and medium load ranges and at the same time avoid knocking in the high load range Proposed. Since the effective compression ratio of the internal combustion engine depends on the intake valve closing timing in addition to the mechanical compression ratio, the effective compression ratio is appropriately set by various variable valve mechanisms that can variably control the intake valve closing timing. It is possible to control. In Patent Document 1 previously proposed by the present applicant, the effective compression ratio is appropriately set by combining the variable control of the mechanical compression ratio by the variable compression ratio mechanism and the variable control of the intake valve closing timing by the variable valve mechanism. A technique for controlling is disclosed.

また、特許文献2には、可変圧縮比機構を備えた内燃機関において、ノッキング発生時に、点火時期遅角および圧縮比低下に加えて、燃料供給量を増量補正することで、燃焼室内の温度を低下させ、ノッキングを抑制する技術が開示されている。   Further, in Patent Document 2, in an internal combustion engine having a variable compression ratio mechanism, when knocking occurs, in addition to the ignition timing retardation and the compression ratio decrease, the fuel supply amount is corrected to increase, thereby adjusting the temperature in the combustion chamber. Techniques for reducing and suppressing knocking are disclosed.

特開2002−285876号公報JP 2002-285876 A 特開昭63−16137号公報JP-A 63-16137

上記のように機械的圧縮比や吸気弁閉時期により有効圧縮比を可変制御する手段を備えた内燃機関においては、内燃機関の加速時には、ノッキング回避のために有効圧縮比を低下させるように制御されるが、一般に機械的な機構を伴う可変圧縮比機構や可変動弁機構は、電気的な点火時期制御に比べて応答性が低く、従って、加速時に有効圧縮比が低下していく過程において過渡的にノッキングが発生し、あるいは、ノッキング回避のために点火時期の大幅なリタードが生じてトルクが低下する、といった問題が生じる。   As described above, in an internal combustion engine equipped with means for variably controlling the effective compression ratio according to the mechanical compression ratio or the intake valve closing timing, control is performed so that the effective compression ratio is lowered to avoid knocking when the internal combustion engine is accelerated. However, in general, the variable compression ratio mechanism and variable valve mechanism with a mechanical mechanism are less responsive than electrical ignition timing control, and therefore, in the process where the effective compression ratio decreases during acceleration. There arises a problem that knocking occurs transiently or that the ignition timing is significantly retarded to avoid knocking and the torque is reduced.

また加速時に一律に燃料増量を行ったのでは、燃料増量が過剰となる場合があり、燃費の悪化の要因となる。   Further, if the fuel increase is uniformly performed during acceleration, the fuel increase may become excessive, which causes a deterioration in fuel consumption.

本発明は、内燃機関の吸気弁閉時期を変更する可変動弁機構を備え、低負荷条件における吸気弁閉時期が下死点よりも進み側に設定されるとともに、高負荷条件における吸気弁閉時期が下死点よりも遅れ側に設定され、上記低負荷条件からの加速時に、設定吸気弁閉時期が下死点よりも進み側から下死点よりも遅れ側へ変化する内燃機関の制御装置において、
上記加速時に実吸気弁閉時期を逐次求め、
上記加速時における上記実吸気弁閉時期の遅角過程の中で、上記実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間にのみ、ノッキングの発生を回避することができる燃料増量補正を行うことを特徴としている。
一つの態様では、実吸気弁閉時期と下死点との間の角度差の絶対値が、目標とする設定吸気弁閉時期と下死点との間の角度差の絶対値よりも小さい期間で、燃料増量補正を行う。
The present invention includes a variable valve mechanism that changes the intake valve closing timing of an internal combustion engine, and the intake valve closing timing in a low load condition is set to a more advanced side than the bottom dead center, and the intake valve closing timing in a high load condition is set. Control of an internal combustion engine in which the timing is set to be delayed from the bottom dead center and the set intake valve closing timing is changed from the leading side from the bottom dead center to the delayed side from the bottom dead center when accelerating from the low load condition. In the device
The actual intake valve closing timing is sequentially obtained during the acceleration,
Avoiding the occurrence of knocking only while the actual intake valve closing timing is within a predetermined range near the bottom dead center including the bottom dead center in the delaying process of the actual intake valve closing timing during the acceleration. It is characterized by correcting the amount of fuel increase that can be performed.
In one aspect, a period in which the absolute value of the angle difference between the actual intake valve closing timing and the bottom dead center is smaller than the absolute value of the angular difference between the target intake valve closing timing and the bottom dead center. Then, the fuel increase correction is performed.

すなわち、上記構成では、加速に伴って吸気弁閉時期が下死点よりも進み側から遅れ側へ変化するため、その変化の途中の過程において、実吸気弁閉時期が下死点となるときが必ず存在する。このように実吸気弁閉時期が下死点となると、有効圧縮比が過大となり、ノッキングが発生しやすい。本発明では、加速時における実吸気弁閉時期の変化の過程で、実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間、燃料増量補正を行うことで、過渡的なノッキングが回避される。 That is, in the above arrangement, since the intake valve closing timing in accordance with the acceleration is changed to the side delayed even leading side than the bottom dead center, in the middle of the course of the change, when the actual intake valve closing timing is bottom dead center There must be. Thus, when the actual intake valve closing timing becomes the bottom dead center, the effective compression ratio becomes excessive and knocking is likely to occur. In the present invention, during the process of changing the actual intake valve closing timing at the time of acceleration, while the actual intake valve closing timing is in a predetermined range near the bottom dead center including the bottom dead center , the fuel increase correction is performed, thereby making a transient Knocking is avoided.

ここで、実値と目標とする設定値との乖離量が大きいほど燃料増量補正量を大とすることが望ましい。   Here, it is desirable to increase the fuel increase correction amount as the deviation amount between the actual value and the target set value increases.

また、燃料増量補正量を、機関回転速度が高いときに小となるように機関回転速度に応じて補正するようにしてもよい。機関回転速度が高いほど燃焼時間が短縮されるため、ノッキングは発生しにくくなる。   Further, the fuel increase correction amount may be corrected in accordance with the engine rotational speed so as to be small when the engine rotational speed is high. Since the combustion time is shortened as the engine speed is higher, knocking is less likely to occur.

内燃機関の温度が低いほどノッキング発生までの余裕度が大となるので、上記燃料増量補正量を減少することが可能である。   The lower the temperature of the internal combustion engine, the greater the margin until the occurrence of knocking. Therefore, the fuel increase correction amount can be reduced.

同様に、内燃機関の温度が低いほど上記設定有効圧縮比ないしは設定圧縮比を高圧縮比側に補正するようにしてもよい。   Similarly, the set effective compression ratio or the set compression ratio may be corrected to the higher compression ratio side as the temperature of the internal combustion engine is lower.

また吸入空気温度が低いほどノッキング発生までの余裕度が大となるので、上記燃料増量補正量を減少することが可能である。   Further, the lower the intake air temperature, the greater the margin until knocking occurs, so that the fuel increase correction amount can be reduced.

同様に、吸入空気温度が低いほど上記設定有効圧縮比ないしは設定圧縮比を高圧縮比側に補正するようにしてもよい。   Similarly, the set effective compression ratio or the set compression ratio may be corrected to the higher compression ratio side as the intake air temperature is lower.

また、本発明の一つの態様では、内燃機関の回転速度と負荷と実圧縮比とに応じて点火時期が設定される点火時期制御手段を備えており、上記燃料増量補正が行われるときに、上記点火時期を進角側に補正するようになっている。つまり、燃料増量によりノッキング発生までの余裕度が大となるので、点火時期を進角補正することで、トルク低下を回避できる。   Further, according to one aspect of the present invention, there is provided ignition timing control means for setting the ignition timing according to the rotational speed, load and actual compression ratio of the internal combustion engine, and when the fuel increase correction is performed, The ignition timing is corrected to the advance side. That is, since the margin until the occurrence of knocking increases due to the increase in fuel, the torque reduction can be avoided by correcting the ignition timing to advance.

この発明によれば、内燃機関の加速時に、実吸気弁閉時期の変化の過程で、実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間、燃料増量が行われるので、過渡的に下死点に近付いて有効圧縮比が過大となることによるノッキングの発生を確実に回避することができるとともに、トルク低下を伴う点火時期リタードを不要もしくは最小限のものとすることができる。また燃料増量は、実吸気弁閉時期が下死点近傍にある間のみ行われるので、燃料増量に伴う燃費悪化を抑制することができる。 According to the present invention, during the acceleration of the internal combustion engine, in the process of changing the actual intake valve closing timing , the fuel increase is performed while the actual intake valve closing timing is within the predetermined bottom dead center range including the bottom dead center. Therefore, it is possible to surely avoid the occurrence of knocking due to transiently approaching bottom dead center and excessive effective compression ratio, and to make ignition timing retard accompanied by torque reduction unnecessary or minimized. Can do. Further, since the fuel increase is performed only while the actual intake valve closing timing is in the vicinity of the bottom dead center, it is possible to suppress the deterioration of the fuel consumption accompanying the fuel increase.

可変圧縮比機構の一例を示す構成説明図。Structure explanatory drawing which shows an example of a variable compression ratio mechanism. 可変動弁機構の一例を示す構成説明図。Structure explanatory drawing which shows an example of a variable valve mechanism. 燃料増量補正の第1実施例を示す説明図。Explanatory drawing which shows 1st Example of fuel increase correction. 燃料増量補正の第2実施例を示す説明図。Explanatory drawing which shows 2nd Example of fuel increase correction. 燃料増量補正の第3実施例を示す説明図。Explanatory drawing which shows 3rd Example of fuel increase correction. 乖離量と燃料増量補正量との関係を示す説明図。Explanatory drawing which shows the relationship between deviation | shift amount and fuel increase correction amount. 機関回転速度により燃料増量補正量を変える実施例の説明図。Explanatory drawing of the Example which changes a fuel increase correction amount with an engine speed. 点火時期の補正を示す説明図。Explanatory drawing which shows correction | amendment of ignition timing. 機関の油水温により燃料増量補正量を変える実施例の説明図。Explanatory drawing of the Example which changes the fuel increase correction amount with the oil-water temperature of an engine. 機関の吸入空気温度により燃料増量補正量を変える実施例の説明図。Explanatory drawing of the Example which changes the fuel increase correction amount with the intake air temperature of an engine.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明における有効圧縮比可変手段の一つとして、内燃機関の機械的圧縮比(公称圧縮比)を可変制御し得る可変圧縮比機構の一実施例を示している。なお、この可変圧縮比機構自体は、前述した特許文献1等によって公知となっているものである。   FIG. 1 shows an embodiment of a variable compression ratio mechanism capable of variably controlling a mechanical compression ratio (nominal compression ratio) of an internal combustion engine as one of effective compression ratio variable means in the present invention. The variable compression ratio mechanism itself is known from the above-described Patent Document 1 and the like.

この可変圧縮比機構は、複リンク式ピストン−クランク機構を利用したもので、シリンダブロック1のシリンダ2内を摺動するピストン3にピストンピン4を介して一端が連結されたアッパリンク5と、このアッパリンク5の他端に連結ピン6を介して連結されるとともに、クランクシャフト7のクランクピン8に回転可能に連結されたロアリンク9と、このロアリンク9の自由度を制限するために該ロアリンク9にさらに連結ピン10を介して一端が連結され、かつ他端が内燃機関本体に揺動可能に支持されたコントロールリンク11と、を備えており、上記コントロールリンク11の揺動支持位置が制御軸12の偏心カム部13によって可変制御される構成となっている。   This variable compression ratio mechanism uses a multi-link type piston-crank mechanism, and an upper link 5 having one end connected to a piston 3 sliding in a cylinder 2 of a cylinder block 1 via a piston pin 4; The lower link 9 is connected to the other end of the upper link 5 via a connecting pin 6 and is rotatably connected to the crankpin 8 of the crankshaft 7. In order to limit the degree of freedom of the lower link 9 A control link 11 having one end connected to the lower link 9 via a connecting pin 10 and the other end swingably supported by the internal combustion engine body. The position is variably controlled by the eccentric cam portion 13 of the control shaft 12.

上記制御軸12はクランクシャフト7と平行に配置され、かつシリンダブロック1に回転自在に支持されている。そして、この制御軸12は、歯車機構14を介して、電動モータからなるアクチュエータ15によって回転方向に駆動され、その回転位置が制御されるようになっている。   The control shaft 12 is disposed in parallel with the crankshaft 7 and is rotatably supported by the cylinder block 1. The control shaft 12 is driven in the rotational direction by an actuator 15 made of an electric motor via a gear mechanism 14 and its rotational position is controlled.

上記構成の可変圧縮比機構では、上記制御軸12の回転位置つまり偏心カム部13の位置によってコントロールリンク11下端の揺動支持位置が変化し、ロアリンク9の初期の姿勢が変わるため、これに伴ってピストン3の上死点位置、ひいては圧縮比が変化する。   In the variable compression ratio mechanism configured as described above, the swing support position of the lower end of the control link 11 changes depending on the rotational position of the control shaft 12, that is, the position of the eccentric cam portion 13, and the initial posture of the lower link 9 changes. Along with this, the top dead center position of the piston 3, and thus the compression ratio changes.

図2は、有効圧縮比可変手段の一つとして、吸気弁の開閉時期を作動角とともに可変制御し得る可変動弁機構の一実施例を示している。これは、吸気弁のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構51と、作動角の中心角を連続的に遅進させることが可能な第2可変動弁機構52と、を組み合わせて構成されている。これらの第1可変動弁機構51および第2可変動弁機構52は、その機械的な構成は公知であり、例えば、上述した特許文献1に記載の装置と同様の構成を有している。従って、その概要のみを説明する。   FIG. 2 shows an embodiment of a variable valve mechanism that can variably control the opening / closing timing of the intake valve together with the operating angle as one of the effective compression ratio variable means. This is because the first variable valve mechanism 51 capable of continuously expanding and reducing the lift / operating angle of the intake valve and the second variable valve capable of continuously delaying the central angle of the operating angle. The variable valve mechanism 52 is combined. The mechanical structure of the first variable valve mechanism 51 and the second variable valve mechanism 52 is known, and for example, has the same structure as the device described in Patent Document 1 described above. Therefore, only the outline will be described.

リフト・作動角を可変制御する第1可変動弁機構51は、内燃機関のクランクシャフトにより駆動される駆動軸22と、この駆動軸22に固定された偏心カム23と、回転自在に支持された制御軸32と、この制御軸32の偏心カム部38に揺動自在に支持されたロッカアーム26と、吸気弁53のタペット30に当接する揺動カム29と、を備えており、上記偏心カム23とロッカアーム26とはリンクアーム24によって連係され、ロッカアーム26と揺動カム29とは、リンク部材28によって連係されている。   The first variable valve mechanism 51 that variably controls the lift / operating angle is rotatably supported by a drive shaft 22 driven by a crankshaft of an internal combustion engine, an eccentric cam 23 fixed to the drive shaft 22. The eccentric cam 23 includes a control shaft 32, a rocker arm 26 that is swingably supported by the eccentric cam portion 38 of the control shaft 32, and a swing cam 29 that contacts the tappet 30 of the intake valve 53. The rocker arm 26 is linked by a link arm 24, and the rocker arm 26 and the swing cam 29 are linked by a link member 28.

上記ロッカアーム26は、略中央部が上記偏心カム部38によって揺動可能に支持されており、その一端部に、連結ピン25を介して上記リンクアーム24のアーム部が連係しているとともに、他端部に、連結ピン27を介して上記リンク部材28の上端部が連係している。上記偏心カム部38は、制御軸32の軸心から偏心しており、従って、制御軸32の角度位置に応じてロッカアーム26の揺動中心は変化する。   The rocker arm 26 is supported at its substantially central portion by the eccentric cam portion 38 so as to be swingable, and the arm portion of the link arm 24 is linked to one end portion thereof via a connecting pin 25. The upper end portion of the link member 28 is linked to the end portion via a connecting pin 27. The eccentric cam portion 38 is eccentric from the axis of the control shaft 32, and accordingly, the rocking center of the rocker arm 26 changes according to the angular position of the control shaft 32.

上記揺動カム29は、駆動軸22の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、連結ピン37を介して上記リンク部材28の下端部が連係している。この揺動カム29の下面には、駆動軸22と同心状の円弧をなす基円面と、該基円面から所定の曲線を描いて延びるカム面と、が連続して形成されており、これらの基円面ならびにカム面が、揺動カム29の揺動位置に応じてタペット30の上面に当接する。   The swing cam 29 is rotatably supported by being fitted to the outer periphery of the drive shaft 22, and a lower end portion of the link member 28 is linked to an end portion extending laterally via a connecting pin 37. ing. On the lower surface of the swing cam 29, a base circle surface concentric with the drive shaft 22 and a cam surface extending in a predetermined curve from the base circle surface are continuously formed. These base circle surface and cam surface come into contact with the upper surface of the tappet 30 according to the swing position of the swing cam 29.

上記制御軸32は、一端部に設けられたリフト・作動角制御用アクチュエータ33によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用アクチュエータ33は、例えばウォームギア35を介して制御軸32を駆動する電動モータからなり、コントロールユニット54からの制御信号によって制御される。上記制御軸32の回転角度は、制御軸センサ34によって検出される。   The control shaft 32 is configured to rotate within a predetermined angle range by a lift / operating angle control actuator 33 provided at one end. The lift / operating angle control actuator 33 is composed of, for example, an electric motor that drives the control shaft 32 via the worm gear 35, and is controlled by a control signal from the control unit 54. The rotation angle of the control shaft 32 is detected by a control shaft sensor 34.

上記第1可変動弁機構51によれば、上記制御軸32の回転角度位置に応じて吸気弁53のリフトならびに作動角が、両者同時に、連続的に拡大,縮小し、このリフト・作動角の大小変化に伴い、吸気弁53の開時期と閉時期とがほぼ対称に変化する。リフト・作動角の大きさは、制御軸32の回転角度によって一義的に定まるので、上記制御軸センサ34の検出値により、そのときの実際のリフト・作動角が示されることになる。   According to the first variable valve mechanism 51, the lift and the operating angle of the intake valve 53 are continuously expanded and reduced simultaneously according to the rotational angle position of the control shaft 32, With the change in size, the opening timing and closing timing of the intake valve 53 change substantially symmetrically. Since the magnitude of the lift / operating angle is uniquely determined by the rotation angle of the control shaft 32, the actual lift / operating angle at that time is indicated by the detected value of the control shaft sensor 34.

一方、中心角を可変制御する第2可変動弁機構52は、上記駆動軸22の前端部に設けられたスプロケット42と、このスプロケット42と上記駆動軸22とを、所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ43と、から構成されている。上記スプロケット42は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用アクチュエータ43は、本実施例では油圧式の回転型アクチュエータからなり、コントロールユニット54からの制御信号によって図示せぬ油圧制御弁を介して制御される。この位相制御用アクチュエータ43の作用によって、スプロケット42と駆動軸22とが相対的に回転し、バルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この第2可変動弁機構52の制御状態は、駆動軸22の回転位置に応答する駆動軸センサ36によって検出される。   On the other hand, the second variable valve mechanism 52 that variably controls the center angle is configured such that the sprocket 42 provided at the front end portion of the drive shaft 22 is relative to the sprocket 42 and the drive shaft 22 within a predetermined angle range. And a phase control actuator 43 that is rotated in an automatic manner. The sprocket 42 is linked to the crankshaft via a timing chain or timing belt (not shown). The phase control actuator 43 is a hydraulic rotary actuator in this embodiment, and is controlled by a control signal from the control unit 54 via a hydraulic control valve (not shown). The action of the phase control actuator 43 causes the sprocket 42 and the drive shaft 22 to rotate relative to each other, thereby delaying the lift center angle in the valve lift. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the second variable valve mechanism 52 is detected by a drive shaft sensor 36 that responds to the rotational position of the drive shaft 22.

上記のように可変圧縮比機構と可変動弁機構とを備えた内燃機関においては、機械的圧縮比と吸気弁閉時期との双方を変更し得るので、両者によって有効圧縮比が定まる。   In the internal combustion engine provided with the variable compression ratio mechanism and the variable valve mechanism as described above, since both the mechanical compression ratio and the intake valve closing timing can be changed, the effective compression ratio is determined by both.

図3は、燃料増量補正の第1実施例を示す説明図である。高負荷時におけるノッキング発生は、筒内未燃ガスが点火前に高温になり着火することが大きな要因であるため、加速時におけるノッキング発生回避のためには、有効圧縮比を低下することで筒内ガスの圧縮温度を低下することが有効である。従って、低速低負荷状態における有効圧縮比が高い状態から加速を開始したとき、つまり図3(a)のようにスロットル開度が急激に増加しかつ一定開度に達する場合においては、機関の負荷が急速に上昇するので、ノッキングを回避するために、目標となる設定有効圧縮比が、(b)のように低下し、これを実現するように、可変圧縮比機構や可変動弁機構が制御される。しかし有効圧縮比低下のためには、可変圧縮比機構により機械圧縮比を低下させるかまたは可変動弁機構により吸気弁閉時期を遅らせる必要があり、どちらの場合も、スロットル開度変化時間よりも長時間を要する。そのため、有効圧縮比が低下していく過程において、設定有効圧縮比に対して実有効圧縮比が大きい側に一時的に乖離する。(c)に示すように、このように設定有効圧縮比よりも実有効圧縮比が大きい間、つまり期間Tの間、設定有効圧縮比に対して設定される燃料増量が、増加側に補正される。なお、実有効圧縮比は、可変圧縮比機構による実圧縮比と、可変動弁機構による実作動角および実中心角と、によって求められる。   FIG. 3 is an explanatory view showing a first embodiment of fuel increase correction. The occurrence of knocking at high loads is caused by the fact that the unburned gas in the cylinder becomes high temperature and ignites before ignition. Therefore, in order to avoid knocking at acceleration, the cylinder is reduced by reducing the effective compression ratio. It is effective to reduce the compression temperature of the internal gas. Accordingly, when the acceleration is started from a state where the effective compression ratio is high in the low speed and low load state, that is, when the throttle opening increases rapidly and reaches a constant opening as shown in FIG. Therefore, in order to avoid knocking, the target effective compression ratio decreases as shown in (b), and the variable compression ratio mechanism and variable valve mechanism are controlled to achieve this. Is done. However, in order to reduce the effective compression ratio, it is necessary to reduce the mechanical compression ratio by a variable compression ratio mechanism or to delay the intake valve closing timing by a variable valve mechanism. It takes a long time. Therefore, in the process of decreasing the effective compression ratio, the actual effective compression ratio is temporarily deviated from the set effective compression ratio. As shown in (c), while the actual effective compression ratio is larger than the set effective compression ratio, that is, during the period T, the fuel increase set for the set effective compression ratio is corrected to the increasing side. The The actual effective compression ratio is obtained from the actual compression ratio by the variable compression ratio mechanism, the actual operating angle and the actual center angle by the variable valve mechanism.

図4は、燃料増量補正の第2実施例を示す説明図である。この実施例では、上述した可変圧縮比機構のみを具備しており、これによって内燃機関の機械的圧縮比つまり公称圧縮比が可変制御される。低速低負荷状態における機械圧縮比が高い状態から加速を開始したとき、つまり図4(a)のようにスロットル開度が急激に増加しかつ一定開度に達する場合においては、機関の負荷が急速に上昇するので、ノッキング回避のために、目標となる設定圧縮比が(b)のように低下し、これを実現するように可変圧縮比機構が制御される。しかし、スロットル開度変化時間が、最大加速時に0.1秒程度であるのに対して、機械圧縮比低下は、前述した可変圧縮比機構では、例えば0.4秒程度の長時間を要する。そのため、機械的圧縮比が低下していく過程において、設定圧縮比に対して実圧縮比が一時的に大きくなる。(c)に示すように、設定圧縮比よりも実圧縮比が大きい間、つまり期間Tの間、設定圧縮比に対して設定される燃料増量が、増加側に補正される。   FIG. 4 is an explanatory view showing a second embodiment of fuel increase correction. In this embodiment, only the above-described variable compression ratio mechanism is provided, and thereby the mechanical compression ratio of the internal combustion engine, that is, the nominal compression ratio is variably controlled. When acceleration is started from a state where the mechanical compression ratio is high in a low speed and low load state, that is, when the throttle opening increases rapidly and reaches a constant opening as shown in FIG. Therefore, in order to avoid knocking, the target set compression ratio decreases as shown in (b), and the variable compression ratio mechanism is controlled to realize this. However, while the throttle opening change time is about 0.1 seconds at the time of maximum acceleration, the mechanical compression ratio reduction requires a long time of about 0.4 seconds, for example, in the above-described variable compression ratio mechanism. Therefore, in the process in which the mechanical compression ratio decreases, the actual compression ratio temporarily increases with respect to the set compression ratio. As shown in (c), while the actual compression ratio is larger than the set compression ratio, that is, during the period T, the fuel increase set for the set compression ratio is corrected to the increase side.

図5は、燃料増量補正の第3実施例を示す説明図である。この実施例では、上述した可変動弁機構のみを具備しており、有効圧縮比を変化させるべく吸気弁閉時期が可変制御される。低速低負荷状態における有効圧縮比が高い状態から加速を開始したとき、つまり図5(a)のようにスロットル開度が急激に増加しかつ一定開度に達する場合においては、機関の負荷が急速に上昇するので、ノッキング回避のために、目標となる設定吸気弁閉時期が、(b)のように下死点(BDC)よりも大幅に遅角した位置に与えられ、これを実現するように可変動弁機構が制御される。しかし、スロットル開度変化時間が、最大加速時に0.1秒程度であるのに対して、吸気弁閉時期の遅角動作は、一般にこれよりも長時間を要する。そのため、吸気弁閉時期が遅角していく過程において、有効圧縮比が所望の有効圧縮比よりも一時的に大きくなる。特に、加速前の低速低負荷条件では吸気弁の作動角を小さくして吸気弁閉時期を下死点前に設定している場合には、吸気弁閉時期の遅角の過程において、吸気弁閉時期が下死点に近づき、下死点を経て、これよりも遅角することになる。従って、吸気弁閉時期が下死点に近付くことで、有効圧縮比が一時的に増大する。そのため、本実施例では、(c)のように、下死点と実吸気弁閉時期との角度差(絶対値)が、下死点と設定吸気弁閉時期との角度差(絶対値)よりも小さいとき、つまり期間Tの間において、燃料増量が増加側に補正される。   FIG. 5 is an explanatory view showing a third embodiment of fuel increase correction. In this embodiment, only the above-described variable valve mechanism is provided, and the intake valve closing timing is variably controlled so as to change the effective compression ratio. When acceleration is started from a state where the effective compression ratio is high in the low speed and low load state, that is, when the throttle opening increases rapidly and reaches a certain opening as shown in FIG. Therefore, in order to avoid knocking, the target intake valve closing timing is given to a position that is significantly retarded from the bottom dead center (BDC) as shown in FIG. The variable valve mechanism is controlled. However, while the throttle opening change time is about 0.1 seconds at the maximum acceleration, the retarding operation of the intake valve closing timing generally requires a longer time. Therefore, in the process in which the intake valve closing timing is retarded, the effective compression ratio temporarily becomes larger than the desired effective compression ratio. In particular, if the intake valve closing timing is set before the bottom dead center in the low-speed and low-load conditions before acceleration, the intake valve closing timing is set before the bottom dead center. The closing time approaches the bottom dead center, passes through the bottom dead center, and is delayed more than this. Therefore, when the intake valve closing timing approaches the bottom dead center, the effective compression ratio temporarily increases. Therefore, in this embodiment, as shown in (c), the angle difference (absolute value) between the bottom dead center and the actual intake valve closing timing is the angle difference (absolute value) between the bottom dead center and the set intake valve closing timing. Is smaller, that is, during the period T, the fuel increase is corrected to the increasing side.

上記の各実施例のように燃料増量補正を行うことで、急加速時に有効圧縮比や機械的圧縮比もしくは吸気弁閉時期が目標となる設定値から遅れて変化する場合でも、ノッキング発生を確実に回避することができる。また、この結果、可変圧縮比機構のアクチュエータ15や可変動弁機構のアクチュエータ33,43に、ノッキング回避のための高い応答性が要求されず、これらのアクチュエータを小型化することが可能となる。   By performing fuel increase correction as in each of the above embodiments, even if the effective compression ratio, mechanical compression ratio, or intake valve closing timing changes with a delay from the target set value during sudden acceleration, knocking can be reliably generated. Can be avoided. As a result, the actuator 15 of the variable compression ratio mechanism and the actuators 33 and 43 of the variable valve mechanism do not require high responsiveness for avoiding knocking, and these actuators can be miniaturized.

図6は、燃料増量補正量と乖離量(設定値と実値との差)との関係を示したもので、(b)のように例えば設定有効圧縮比と実有効圧縮比との乖離は、初期に大きく、徐々に小さくなっていくが、(c)のように、この乖離量が大きいほど燃料増量補正量が大きく与えられる。これにより、燃料増量に伴う燃費悪化を最小限にとどめつつ確実なノッキング回避を行うことができる。   FIG. 6 shows the relationship between the fuel increase correction amount and the divergence amount (difference between the set value and the actual value). As shown in (b), for example, the divergence between the set effective compression ratio and the actual effective compression ratio is However, as shown in (c), the larger the deviation, the larger the fuel increase correction amount is given. As a result, knocking can be reliably avoided while minimizing deterioration in fuel consumption due to fuel increase.

図7は、機関回転速度によって燃料増量補正量を変えるようにした実施例を示す説明図であって、(b)に示す乖離量(例えば設定有効圧縮比と実有効圧縮比との乖離量)に応じて(c)のように燃料増量補正量が与えられるが、このとき、機関回転速度が高い場合には、低い場合に比べて、燃料増量補正量がより少なく与えられる。すなわち、加速時に同一の負荷および圧縮比の条件であっても、機関回転速度が大きいほど燃焼時間が短縮されるためノッキングが発生しにくくなる。つまり、ノッキング回避に必要な燃料増量が少なくなる。従って、回転速度が高いほど燃料増量補正量を少なくすることで、ノッキングを回避しつつ燃費悪化を抑制することができる。   FIG. 7 is an explanatory view showing an embodiment in which the fuel increase correction amount is changed according to the engine speed, and the deviation shown in FIG. 7B (eg, the deviation between the set effective compression ratio and the actual effective compression ratio). Accordingly, the fuel increase correction amount is given as in (c). At this time, when the engine speed is high, the fuel increase correction amount is given less than when the engine speed is low. That is, even under the same load and compression ratio conditions during acceleration, knocking is less likely to occur because the combustion time is shortened as the engine speed increases. That is, the amount of fuel increase necessary for avoiding knocking is reduced. Therefore, by reducing the fuel increase correction amount as the rotational speed is higher, it is possible to suppress deterioration in fuel consumption while avoiding knocking.

図8は、燃料増量補正時の点火時期についての説明図であって、点火時期は、基本的に、機関回転速度、機関負荷、実圧縮比に応じて、ノッキング発生までに所定の余裕度を持って設定される。ここで、ノッキング回避のための点火時期リタードは、トルクを大幅に低下させるため好ましくない。しかしながら、有効圧縮比等の乖離に応じて燃料増量補正を行う場合には、燃料増量補正によりノッキング発生までの余裕度が大きくなるため、点火時期をより進角側とすることが可能である。従って、本実施例では、(c)のように燃料増量補正を行っている期間Tの間、(d)のように、燃料増量補正の大きさに応じて点火時期を進角側に補正する。これにより、点火時期リタードによるトルク低下を回避することができる。   FIG. 8 is an explanatory diagram of the ignition timing at the time of fuel increase correction. The ignition timing basically has a predetermined margin until the occurrence of knocking according to the engine speed, engine load, and actual compression ratio. Is set. Here, the ignition timing retard for avoiding knocking is not preferable because it significantly reduces the torque. However, when the fuel increase correction is performed in accordance with the deviation of the effective compression ratio or the like, the margin until the occurrence of knocking is increased by the fuel increase correction, so that the ignition timing can be further advanced. Therefore, in this embodiment, during the period T during which the fuel increase correction is performed as shown in (c), the ignition timing is corrected to the advance side according to the magnitude of the fuel increase correction as shown in (d). . Thereby, the torque fall by ignition timing retard can be avoided.

図9は、内燃機関の温度(潤滑油温度もしくは冷却水温度等)に基づく燃料増量補正量の増減補正についての説明図である。内燃機関の油水温が低いほど燃焼室壁面からの受熱が減少するため、筒内温度が低下する傾向となり、ノッキング発生までの余裕度が大きくなる。本実施例では、(b)に示す乖離量(例えば設定有効圧縮比と実有効圧縮比との乖離量)に応じて(c)のように燃料増量補正量が与えられるが、このとき、油水温が低い場合には、油水温が高い場合に比べて、燃料増量補正量がより少なく与えられる。   FIG. 9 is an explanatory diagram for the increase / decrease correction of the fuel increase correction amount based on the temperature of the internal combustion engine (lubricating oil temperature, cooling water temperature, etc.). The lower the oil / water temperature of the internal combustion engine, the lower the heat received from the wall surface of the combustion chamber, so that the in-cylinder temperature tends to decrease and the margin until knocking increases. In this embodiment, the fuel increase correction amount is given as shown in (c) according to the deviation shown in (b) (for example, the deviation between the set effective compression ratio and the actual effective compression ratio). When the water temperature is low, the fuel increase correction amount is given less than when the oil water temperature is high.

なお、油水温が低いときに、例えば設定有効圧縮比をより高圧縮比側に補正するようにしてもよい。これにより、乖離量が小さくなり、燃料増量補正量が少なくなる。   When the oil water temperature is low, for example, the set effective compression ratio may be corrected to the higher compression ratio side. As a result, the deviation amount is reduced, and the fuel increase correction amount is reduced.

図10は、内燃機関の吸入空気温度に基づく燃料増量補正量の増減補正についての説明図である。吸入空気温度が低いほど筒内ガスの圧縮温度が低下してノッキング発生までの余裕度が大きくなる。本実施例では、(b)に示す乖離量(例えば設定有効圧縮比と実有効圧縮比との乖離量)に応じて(c)のように燃料増量補正量が与えられるが、このとき、吸入空気温度が低い場合には、吸入空気温度が高い場合に比べて、燃料増量補正量がより少なく与えられる。   FIG. 10 is an explanatory diagram for the increase / decrease correction of the fuel increase correction amount based on the intake air temperature of the internal combustion engine. The lower the intake air temperature, the lower the compression temperature of the in-cylinder gas and the greater the margin until knocking occurs. In this embodiment, the fuel increase correction amount is given as shown in (c) according to the deviation amount shown in (b) (for example, the deviation amount between the set effective compression ratio and the actual effective compression ratio). When the air temperature is low, the fuel increase correction amount is smaller than when the intake air temperature is high.

なお、吸入空気温度が低いときに、例えば設定有効圧縮比をより高圧縮比側に補正するようにしてもよい。これにより、乖離量が小さくなり、燃料増量補正量が少なくなる。   When the intake air temperature is low, for example, the set effective compression ratio may be corrected to the higher compression ratio side. As a result, the deviation amount is reduced, and the fuel increase correction amount is reduced.

12…制御軸
15…アクチュエータ
33…リフト・作動角制御用アクチュエータ
43…位相制御用アクチュエータ
51…第1可変動弁機構
52…第2可変動弁機構
DESCRIPTION OF SYMBOLS 12 ... Control shaft 15 ... Actuator 33 ... Lift / actuation angle control actuator 43 ... Phase control actuator 51 ... First variable valve mechanism 52 ... Second variable valve mechanism

Claims (3)

内燃機関の吸気弁閉時期を変更する可変動弁機構を備え、低負荷条件における吸気弁閉時期が下死点よりも進み側に設定されるとともに、高負荷条件における吸気弁閉時期が下死点よりも遅れ側に設定され、上記低負荷条件からの加速時に、設定吸気弁閉時期が下死点よりも進み側から下死点よりも遅れ側へ変化する内燃機関の制御装置において、
上記加速時に実吸気弁閉時期を逐次求め、
上記加速時における上記実吸気弁閉時期の遅角過程の中で、上記実吸気弁閉時期が下死点を含む所定の下死点近傍範囲にある間にのみ、ノッキングの発生を回避することができる燃料増量補正を行うことを特徴とする内燃機関の制御装置。
Equipped with a variable valve mechanism that changes the intake valve closing timing of the internal combustion engine, the intake valve closing timing in the low load condition is set to a more advanced side than the bottom dead center, and the intake valve closing timing in the high load condition is In the control apparatus for an internal combustion engine that is set on the delay side from the point, and the set intake valve closing timing changes from the advance side to the delay side from the bottom dead center when accelerating from the low load condition,
The actual intake valve closing timing is sequentially obtained during the acceleration,
Avoiding the occurrence of knocking only while the actual intake valve closing timing is within a predetermined range near the bottom dead center including the bottom dead center in the delaying process of the actual intake valve closing timing during the acceleration. A control device for an internal combustion engine, which performs a fuel increase correction that can be performed.
実吸気弁閉時期と下死点との間の角度差の絶対値が、目標とする設定吸気弁閉時期と下死点との間の角度差の絶対値よりも小さい期間で、燃料増量補正を行うことを特徴とする請求項1に記載の内燃機関の制御装置。 The absolute value of the angular difference between the actual intake valve closing timing and the bottom dead center, a smaller period than the absolute value of the angular difference between the bottom dead center and set the intake valve closing timing to a target fuel increase correction The control device for an internal combustion engine according to claim 1, wherein: 実吸気弁閉時期が上記の所定の下死点近傍範囲に入ったときに所定量の燃料増量補正を開始し、その後、実吸気弁閉時期が設定吸気弁閉時期に到達するまで、燃料増量を徐々に少なくしていくことを特徴とする請求項1または2に記載の内燃機関の制御装置。When the actual intake valve closing timing enters the above-mentioned range near the bottom dead center, a predetermined amount of fuel increase correction is started, and then the fuel increase is performed until the actual intake valve closing timing reaches the set intake valve closing timing. 3. The control device for an internal combustion engine according to claim 1 or 2, characterized in that the amount of the engine is gradually reduced.
JP2010038144A 2010-02-24 2010-02-24 Control device for internal combustion engine Expired - Fee Related JP4962580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038144A JP4962580B2 (en) 2010-02-24 2010-02-24 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038144A JP4962580B2 (en) 2010-02-24 2010-02-24 Control device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004228762A Division JP2006046193A (en) 2004-08-05 2004-08-05 Controller for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011238142A Division JP5206856B2 (en) 2011-10-31 2011-10-31 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010151138A JP2010151138A (en) 2010-07-08
JP4962580B2 true JP4962580B2 (en) 2012-06-27

Family

ID=42570469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038144A Expired - Fee Related JP4962580B2 (en) 2010-02-24 2010-02-24 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4962580B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692746B2 (en) * 1984-04-27 1994-11-16 マツダ株式会社 Variable compression ratio engine
JPH0692748B2 (en) * 1984-04-27 1994-11-16 マツダ株式会社 Variable compression ratio engine
JP2002089341A (en) * 2000-09-11 2002-03-27 Nissan Motor Co Ltd Control device for internal combustion engine in vehicle
JP4175110B2 (en) * 2002-12-27 2008-11-05 日産自動車株式会社 Internal combustion engine with variable compression ratio mechanism

Also Published As

Publication number Publication date
JP2010151138A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP3979081B2 (en) Combustion control system for internal combustion engine
US7334547B2 (en) Variable expansion-ratio engine
EP1293659B1 (en) Control system and method for an internal combustion engine
JP4749988B2 (en) Start control device for internal combustion engine
JP2007239555A (en) Internal combustion engine
JP2008151059A (en) Controller for internal combustion engine having variable valve train
JP5668458B2 (en) Control device for internal combustion engine
WO2019035312A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP4682697B2 (en) Engine intake control device
JP4168756B2 (en) Control device for internal combustion engine
JP5146354B2 (en) Control device for internal combustion engine
JP4899878B2 (en) Combustion control device for internal combustion engine
JP5104474B2 (en) Internal combustion engine control method and apparatus
JP4345197B2 (en) Knocking control device for internal combustion engine
JP2006046193A (en) Controller for internal combustion engine
WO2018092586A1 (en) Variation system for internal combustion engine, and control method therefor
JP5206856B2 (en) Control device for internal combustion engine
JP4962580B2 (en) Control device for internal combustion engine
JP4400201B2 (en) Control device for internal combustion engine for vehicle
JP4622431B2 (en) Variable valve gear for engine
JP2008101520A (en) Mirror cycle engine
JP4218505B2 (en) Control device for internal combustion engine
JP6753530B2 (en) Internal combustion engine control method and control device
JP2009215889A (en) Variable valve gear for internal combustion engine
JP4973448B2 (en) Variable valve mechanism control apparatus for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4962580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees