JP4590746B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP4590746B2
JP4590746B2 JP2001025105A JP2001025105A JP4590746B2 JP 4590746 B2 JP4590746 B2 JP 4590746B2 JP 2001025105 A JP2001025105 A JP 2001025105A JP 2001025105 A JP2001025105 A JP 2001025105A JP 4590746 B2 JP4590746 B2 JP 4590746B2
Authority
JP
Japan
Prior art keywords
variable
lift
angle
ratio
operating angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001025105A
Other languages
Japanese (ja)
Other versions
JP2002227669A (en
Inventor
信一 竹村
俊一 青山
常靖 野原
孝伸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001025105A priority Critical patent/JP4590746B2/en
Publication of JP2002227669A publication Critical patent/JP2002227669A/en
Application granted granted Critical
Publication of JP4590746B2 publication Critical patent/JP4590746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0073Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "Delphi" type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
例えば、特開2000−220420号公報には、内燃機関のバルブのリフト・作動角を前記内燃機関の低速運転と高速運転とで切り換えるリフト・作動角切り替え機構と、前記バルブのリフト中心角の位相を可変制御する位相可変機構と、を備えたいわゆる可変動弁装置が開示されている。
【0003】
前記可変動弁装置においては、前記リフト・作動角切り換え機構及び位相可変機構が油圧により制御されている。
【0004】
【発明が解決しようとする課題】
このような可変動弁装置においては、前記リフト・作動角切り替え機構が低速運転用カムと高速運転用カムの二種類のカムを有し、これらのカムを運転条件に応じて単に使い分ける構成となっているため、幅広い運転条件に対して対応しきれない虞がある。
【0005】
例えば、一方のカムを定常走行時(R/L)の燃費を向上させるような小リフト・小作動角のR/L用カムとする。そして、このR/L用カムでは、低速全開走行時に十分な駆動トルクを得ることができないため、他方のカムをR/L用カムよりもリフト・作動角が大きい低速全開走行用カムにしたとすると、低速全開走行時よりもさらに大リフト・大作動角が要求される高速全開走行時に対応しきれなくなる。
【0006】
また、前記位相可変機構に、内燃機関のバルブのリフト・作動角を連続的に拡大,縮小制御するリフト・作動角可変機構とを組み合わせて、全ての運転条件に対応するようバルブのリフト・作動角を可変制御することも検討できるが、全ての運転条件で、バルブのリフト・作動角の可変量を全て活用するためには、前記リフト・作動角可変機構を油圧制御による駆動ではなく、電気制御により駆動する必要があり、性能効果は大きいがコストが上昇してしまうという問題がある。
【0007】
【課題を解決するための手段】
そこで、請求項1に記載の発明は、内燃機関のバルブのリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、前記バルブのリフト中心角の位相を遅進させる位相可変機構と、を有する内燃機関の可変動弁装置において、前記リフト・作動角可変機構では、可変可能な最大可変量に対し、最小リフト・最小作動角から許容される変化量の比率を可変割合と定義し、前記位相可変機構では、可変可能な最大可変量に対し、最遅角位置から許容される変化量の比率を可変割合と定義した際に、前記リフト・作動角可変機構の可変割合及び前記位相可変機構の可変割合を機関温度により変更し、前記リフト・作動角可変機構を油圧駆動し、前記位相可変機構は電気駆動することを特徴としている。これによって、リフト・作動角可変機構及び位相可変機構は、常時最大可変量で可変制御する必要がない。尚、リフト・作動角可変機構及び位相可変機構を双方とも電気駆動式とすると製造コストが増大する。またリフト・作動角可変機構及び位相可変機構を双方とも油圧駆動式とすると油圧応答遅れにより燃費性能が悪化する。しかしながら、リフト・作動角可変機構の可変要求は、ほぼエンジン回転数に比例し、位相可変機構の可変要求は、バルブオーバーラップ設定やエンジン負荷に比例する。つまり、リフト・作動角可変機構は、比較的応答性の遅い油圧駆動で対応できる。
【0008】
請求項2に記載の発明は、吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、有する内燃機関の可変動弁装置において、前記リフト・作動角可変機構では、可変可能な最大可変量に対し、最小リフト・最小作動角から許容される変化量の比率を可変割合と定義し、前記位相可変機構では、可変可能な最大可変量に対し、最遅角位置から許容される変化量の比率を可変割合と定義した際に、前記リフト・作動角可変機構の可変割合及び前記位相可変機構の可変割合を機関温度により変更し、前記リフト・作動角可変機構を油圧駆動し、前記位相可変機構は電気駆動することを特徴としている。
【0009】
請求項3に記載の発明は、請求項2に記載の発明において、冷機時においては、吸気弁のリフト中心角を遅角させた状態に略固定すると共に、吸気弁のリフト・作動角を小リフト・小作動角から中リフト・中作動角の範囲で可変可能とし、前記リフト・作動角可変機構の可変割合を前記位相可変機構の可変割合よりも大きくすることを特徴としている。内燃機関の冷機時には、筒内温度が低く燃料の霧化が促進されないため、吸排気弁のバルブオーバーラップを大きくすると、燃焼が不安定となり運転性が悪化する。つまり、位相可変機構を最大可変量で駆動する必要はない。一方、リフト・作動角可変機構は、低回転低負荷の運転条件となる冷機時においては、空気流量の少ない状態でガス流動を大きくすることによって、燃焼を安定させると共に、点火時期遅角限界を拡大して触媒暖機を促進させる必要があるため、吸気弁を小リフト・小作動角にするのが望ましい。しかし、小リフト・小作動角では低回転といえども全開トルクが低下するため運転性が悪化する。そして、リフト・作動角可変機構を油圧アクチュエータで駆動する場合には、冷機時において応答性が悪化する。また、前記リフト・作動角可変機構を電気アクチュエータで駆動した場合には、冷機時において、低温減磁が発生する。そのため、冷機時においては、アクチュエータによるリフト・作動角可変機構の駆動範囲は最小範囲としたい。そこで、全開性能を考慮して、リフト・作動角可変機構を小リフト・小作動角から中リフト・中作動角までの範囲で可変可能とすることで、最低限必要な吸気弁開口時間を確保する。
【0010】
請求項4に記載の発明は、請求項2に記載の発明において、冷機始動時においては、吸気弁のリフト中心角を遅角させると共に、吸気弁のリフト・作動角を小リフト・小作動角とし、前記リフト・作動角可変機構の可変割合を、前記位相可変機構の可変割合よりも大きくすることを特徴としている。冷機始動時は、小リフト・小作動角で、空気流量の少ない状態でガス流動を大きくし、燃焼を安定させると共に、点火時期遅角限界を拡大して触媒暖機を促進させることになる。そのため、リフト・作動角可変機構の可変割合は小さくなる。一方、吸気弁開時期はできるだけ遅角させて筒内負圧を増加させ、吸気弁開時期のガス流動をさらに増加させたい。すなわち、冷機始動時には、位相可変機構の可変割合は、リフト・作動角可変機構の可変割合よりも小さくなる。
【0011】
請求項5に記載の発明は。請求項3に記載の発明において、冷機時においては、内燃機関に対する要求負荷に関わらず、機関始動後一定時間経過後に、前記リフト・作動角可変機構により吸気弁のリフト・作動角を中リフト・中作動角まで拡大し、保持することを特徴としている。冷機時は、アクチュエータ駆動を最小にし、かつ全開性能を確保したい。一方、小リフト・小作動角は、ガス量が少ない始動時でも強いガス流動の発生が可能なため、燃焼が安定すると共に、点火時期遅角化が可能となり、排気温度を上昇させ触媒の暖機促進が可能となる。また、冷機時において、リフト・作動角可変機構を油圧アクチュエータで駆動制御する場合、油圧応答遅れにより作動が遅くなる。このため、内燃機関の始動から一定時間が経過することで触媒が暖機されたと判断し、吸気弁のリフト・作動角を中リフト・中作動角に保持することで、油圧による応答遅れを防止する。尚、請求項5における中リフト・中作動角は請求項3における中リフト・中作動角より相対的に小さいものとする。
【0014】
請求項に記載の発明は、請求項1〜5のいずれかに記載の発明において、前記リフト・作動角可変機構を前記位相可変機構よりも低温から可変制御することを特徴としている。これによって、冷機時に駆動トルクが低下することを防止できる。尚、リフト・作動角可変機構は、冷機時において油圧応答性が悪化するとはいえ、油圧での作動は可能である。
【0015】
請求項に記載の発明は、請求項1〜5のいずれかに記載の発明において、暖機途中においては、前記リフト・作動角可変機構の可変割合を、前記位相可変機構の可変割合よりも小さくすることを特徴としている。暖機途中では、筒内温度が上昇してきているので、燃料霧化は冷機時よりも促進されている。そこで、吸排気弁のバルブオーバーラップを大きくすることが可能となる。そのため、位相可変機構の可変割合を大として燃費性能の向上を図ることが可能となる。一方、油圧駆動によるリフト・作動角可変機構は、中間温度で冷機時より応答性が向上しても、暖機終了後のような応答性、オーバーシュート等の制御性はなく、小リフト・小作動角〜中リフト・中作動角の範囲内で制御する。このため、リフト・作動角可変機構及び位相可変機構により、過渡的なエンジン制御安定性、燃費性能及び排気性能の向上が図られる。
【0016】
請求項に記載の発明は、請求項1〜5のいずれかに記載の発明において、暖機終了後の高温時においては、前記リフト・作動角可変機構の可変割合を、前記位相可変機構の可変割合よりも小さくすることを特徴としている。高温時に出力大、高回転とすると、オーバーヒートの可能性もあるため、高温時はリフト・作動角可変機構の可変割合を低減し、オーバーヒートを防止する。また、高温時は油圧粘性が低く、またエンジン各部のクリアランスからの漏れも多くなる。そのため、高温時におけるリフト・作動角可変機構の可変割合を、暖機後の可変割合に比べて若干低減することによって、リフト・作動角可変機構の作動に用いられる油圧ポンプの小型化が可能となる。
【0017】
【発明の効果】
本発明によれば、リフト・作動角可変機構及び位相可変機構は、常時最大可変量で可変制御する必要がないので、性能面から必要となる可変量が得られればよく、リフト・作動角可変機構及び位相可変機構を駆動させる各アクチュエータを安価にすることができる。
【0018】
また、請求項3のように、冷機時において、運転性を悪化させることのない最低限必要な吸気弁の開口時間が確保するために、リフト・作動角可変機構の可変割合を、位相可変機構の可変割合よりも大きくすれば、エンジン性能の低下を最小限としつつ、リフト・作動角可変機構及び位相可変機構を駆動させる各アクチュエータの安価に、かつ小型化することが可能となる。
【0019】
請求項4によれば、吸気弁を小リフト・小作動角化することにより、ガス流動が大きくなると共に、吸気弁閉時期が早くなることによって、有効圧縮比が増加し、燃焼性能が改善される。
【0020】
請求項5によれば、リフト・作動角可変機構を油圧アクチュータで駆動制御しても油圧による応答遅れが発生することがない
【0021】
請求項によれば、リフト・作動角可変機構及び位相可変機構により、過渡的なエンジン制御安定性、燃費性能及び排気性能の向上を図ることができる。
【0022】
また、請求項のように、高温時におけるリフト・作動角可変機構の可変割合を低減すれば、リフト・作動角可変機構の油圧アクチュエータを駆動させる油圧ポンプの小型化が可能となる。
【0023】
【発明の実施の形態】
以下、本発明の一実施例を図面に基づいて詳細に説明する。
【0024】
図1は、内燃機関の吸気弁側可変動弁装置の構成を示す構成説明図であり、この可変動弁装置は、吸気弁3のリフト・作動角を変化させるリフト・作動角可変機構(VEL)1と、そのリフトの中心角の位相(図示せぬクランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構(VTC)2と、が組み合わされて構成されている。尚、このリフト・作動角可変機構1は、本出願人が先に提案したものであるが、例えば特開平11−107725号公報等によって公知となっているので、その概要のみを説明する。
【0025】
リフト・作動角可変機構1は、シリンダヘッド(図示せず)にバルブガイド(図示せず)を介して摺動自在に設けられた吸気弁3と、シリンダヘッド(図示せぬ)上部のカムブラケット(図示せず)に回転自在に支持された中空状の駆動軸4と、この駆動軸4に、圧入等により固定された偏心カム5と、上記駆動軸4の上方位置に同じカムブラケット(図示せず)に回転自在に支持されるとともに駆動軸4と平行に配置された制御軸6と、この制御軸6の偏心カム部7に揺動自在に支持されたロッカアーム8と、各吸気弁3の上端部に配置されたバルブリフタ9に当接する揺動カム10と、を備えている。上記偏心カム5とロッカアーム8とはリンクアーム11によって連係されており、ロッカアーム8と揺動カム10とは、リンク部材12によって連係されている。
【0026】
上記駆動軸4は、後述するように、タイミングチェーンないしはタイミングベルトを介して機関のクランクシャフトによって駆動されるものである。
【0027】
上記偏心カム5は、円形外周面を有し、該外周面の中心が駆動軸4の軸心から所定量だけオフセットしているとともに、この外周面に、リンクアーム11が回転可能に嵌合している。
【0028】
上記ロッカアーム8は、略中央部が上記偏心カム部7によって支持されており、その一端部に、上記リンクアーム11が連係しているとともに、他端部に、上記リンク部材12の上端部が連係している。上記偏心カム部7は、制御軸6の軸心から偏心しており、従って、制御軸6の角度位置に応じてロッカアーム8の揺動中心は変化する。
【0029】
上記揺動カム10は、駆動軸4の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、上記リンク部材12の下端部が連係している。
【0030】
そして、この揺動カム10の下面が、揺動カム10の揺動位置に応じてバルブリフタ9の上面に当接するようになっている。
【0031】
上記制御軸6は、一端部に設けられたリフト・作動角制御用油圧アクチュエータ13によって所定回転角度範囲内で回転するように構成されている。
【0032】
このリフト・作動角制御用油圧アクチュエータ13の内部は、図示していないがピストン構造になっており、ピストン前後の油圧を制御バルブ14で調整することにより、リフト・作動角可変機構1の制御軸角度、すなわちリフト・作動角量を決定している。
【0033】
制御バルブ14は、エンジンコントロールユニット15により制御されている。このエンジンコントロールユニット15には、エンジン回転数、エンジン負荷、水温等の検出値が入力されており、これら検出値によってエンジン運転状態を検知して、制御バルブ14を制御している。
【0034】
このリフト・作動角可変機構1の作用を説明すると、駆動軸4が回転すると、偏心カム5のカム作用によってリンクアーム11が上下動し、これに伴ってロッカアーム8が揺動する。このロッカアーム8の揺動は、リンク部材12を介して揺動カム10へ伝達され、該揺動カム10が揺動する。この揺動カム10のカム作用によって、バルブリフタ9が押圧され、吸気弁3がリフトする。
【0035】
ここで、リフト・作動角制御用油圧アクチュエータ13を介して制御軸6の角度が変化すると、ロッカアーム8の初期位置が変化し、ひいては揺動カム10の初期揺動位置が変化する。
【0036】
上記の偏心カム部7の位置は連続的に変化させ得るので、これに伴って、リフトならびに作動角を、両者同時に、連続的に拡大,縮小させることができる。特に、このものでは、リフト・作動角の大小変化に伴い、吸気弁3の開時期と閉時期とがほぼ対称に変化する。
【0037】
次に、位相可変機構2は、上記駆動軸4の前端部に設けられたスプロケット16と、このスプロケット16と上記駆動軸4とを、所定の角度範囲内において相対的に回転させる位相制御用電磁式アクチュエータ17と、から構成されている。上記スプロケット16は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用電磁式アクチュエータ17は、エンジンコントロールユニット15からの制御信号に基づき制御されている。この位相制御用電磁式アクチュエータ17によって、スプロケット16と駆動軸4とが相対的に回転し、リフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。
【0038】
ここで、リフト・作動角可変機構1ならびに位相可変機構2は、実際のリフト・作動角あるいは位相の作動量を検出するセンサ18、19によって、フィードバック制御されている。
【0039】
図2及び図3に、エンジン暖機後のリフト・作動角可変機構1の制御マップ及びエンジン暖機後の位相可変機構2の制御マップを示す。
【0040】
リフト・作動角可変機構1は、ほぼエンジン回転と比例してリフト・作動角を拡大制御する。低回転低負荷では、小リフト・小作動角として、動弁系の駆動フリクションを低減し、吸気弁開時期(IVO)を遅らせてポンプ損失及び筒内の残留ガスを低減し、吸気弁閉時期(IVC)を早めポンプ損失を低減する等して、燃費向上を図る。高回転時は、大リフト・大作動角とし、吸気量増と、出力向上を図る。
【0041】
一方、位相可変機構2は、通常走行のエンジン回転で負荷方向に作動させる。低負荷では燃焼安定ために、高負荷では充填効率向上のために、吸排気弁のバルブオーバーラップを小とする。燃焼が安定する中負荷では、内部EGRによるポンプ損失低減及び燃焼改善のために、吸排気弁のバルブオーバーラップを大として、燃費向上を図る。
【0042】
そのため、暖機後は、図4に示すように、リフト・作動角可変機構1及び位相可変機構2とも設定可変幅最大の範囲内で作動させる。換言すればリフト・作動角可変機構1及び位相可変機構2の可変割合(詳しくは後述)は伴に100%となる。
【0043】
この場合、位相可変機構2は、負荷変化、アクセルペダル変化に応じて可変制御する必要があり、高応答性が要求されるため、本実施例においては、電磁式アクチュエータを用いている。また、リフト・作動角可変機構1は、ほぼエンジン回転に比例するため、位相可変機構2のような応答性は必要ではなく、本実施例においては、安価な油圧アクチュエータを用いている。
【0044】
次に機関温度が暖機された通常状態以外のリフト・作動角可変機構1及び位相可変機構2の作動について説明する。
【0045】
冷機時には、筒内温度が低く、燃料霧化が悪化する。そのため、吸排気弁のバルブオーバーラップを大きくすると、燃焼不安定となり、運転性が悪化する。つまり、位相可変機構2は、設定可変幅最大まで駆動する必要はない。従って、吸気弁3のリフト中心角は吸排気弁のバルブオーバーラップが大きくならないよう遅角させた状態で略固定する。
【0046】
一方、リフト・作動角可変機構1は、低回転低負荷の小リフト・小作動角で、始動時等空気流量の少ない状態でガス流動大とし、燃焼を安定させると共に、点火時期遅角限界を拡大して触媒暖機を促進させる必要があるため小リフト・小作動角にするのが望ましい。しかし、小リフト・小作動角では低回転といえども全開トルクが低下するため運転性が悪化する。そのため、リフト・作動角可変機構1は、小リフト・小作動角から中リフト・中作動角までの範囲で可変させる必要がある。リフト・作動角制御用油圧アクチュエータ13は、油粘性の高い冷機時であっても油圧は高いため、負荷切り換えのような高応答でない限り切り換え可能である。
【0047】
ここで、リフト・作動角可変機構1及び位相可変機構2での可変可能な最大可変量に対し、そのときの各可変機構の制御可能範囲の比率を可変割合と定義する。例えば、位相可変機構が、クランク角で60°可変可能でありながら、低温では6°作動しか許容しない場合、そのときの可変割合は10%となり、暖機後60°作動を許容する場合、そのときの可変割合は100%となる。
【0048】
このような定義を用いて換言すれば、本実施例においては、冷機時には、リフト・作動角可変機構1の可変割合を位相可変機構2の可変割合よりも大きくなるよう制御している。
【0049】
本実施例では、リフト・作動角可変機構1は油圧アクチュエータで駆動されているが、仮にリフト・作動角可変機構1を電磁式アクチュエータで駆動させるとしても、冷機時にあっては、高応答を要求すると低温減磁が発生し、電磁式アクチュエータの出力が低下してしまう虞がある。そのため、リフト・作動角可変機構1の冷機時における可変割合を低減すれば、電磁式のアクチュエータをリフト・作動角可変機構1に適用したとしても、アクチュエータを小型化できる等のメリットがある。
【0050】
このように、冷機時でも、加速要求により、吸気弁3のリフト・作動角を中リフト・中作動角まで拡大する必要があるが、油圧応答性悪化、低温減磁の発生を考慮すると、冷機時は遅い応答性で対応したい。そこで、冷機状態の機関を始動してから一定時間が経過した時点で触媒が暖機されたと判断し、加速要求の有無に関わらず、吸気弁3のリフト・作動角を中リフト・中作動角まで拡大し、保持する制御とし、冷機時における応答性悪化の悪化を防止する。
【0051】
暖機途中では、筒内温度も上昇し、燃料霧化も改善されている。そのため、吸排気弁のバルブオーバーラップを大きくし、燃費向上を図ることができる。一方、リフト・作動角可変機構1は、中間温度で冷機時より切り換え応答性が向上しても、暖機後の様な応答性、オーバーシュート等の制御性はなく、小リフト・小作動角〜中リフト・中作動角の範囲内で制御する。すなわち、位相可変機構2の可変割合をリフト・作動角可変機構1の可変割合より大とする。尚、暖機途中における中リフト・中作動角は、冷機時における中リフト・中作動角よりも相対的に大きくなっている(図4を参照)が、同一であってもよい。
【0052】
高温時は、出力大、高回転とすると、オーバーヒートの可能性もあるため、リフト・作動角可変機構1の可変割合を暖機後の可変割合に比べて若干低減し、オーバーヒートを防止する。位相可変機構2は、暖機後と同様に、設定可変幅最大の範囲内で作動させる。
【0053】
すなわち、リフト・作動角可変機構1は、小リフト・小作動角から最大可変量より若干小さい大リフト・大作動角の範囲内で作動させ、位相可変機構2は、上述した暖機後と同様に、設定可変幅最大の範囲内でさせる。
【0054】
従って、高温時においては、リフト・作動角可変機構1の可変割合は、位相可変機構2の可変割合よりも小さくなる。
【0055】
また、高温時は油圧粘性が低くなり、エンジン各部クリアランスからの漏れも大きくなるため、リフト・作動角制御用油圧アクチュエータ13に油圧を供給するポンプの小型化が可能となる。
【0056】
以上のように、図4に示すように、機関温度により、リフト・作動角可変機構1及び位相可変機構2の可変割合を変更するため、安価なアクチュエータシステムで性能低下を最小限にすることが可能となる。また、温度により可変割合を設定すると、温度毎にバルブタイミングマップを複数準備する必要がなく、エンジンコントロールユニットのメモリの小型化が図れるメリットもある。
【0057】
尚、図4から明らかなように、冷機時のリフト・作動角可変機構1の可変割合と、暖機途中のリフト・作動角可変機構1の可変割合と、では、暖機途中の可変割合の方が大きく、暖機途中のリフト・作動角可変機構1の可変割合と、高温時のリフト・作動角可変機構1の可変割合とは、高温時の可変割合の方が大きくなっている。
【0058】
図5は、本実施例の制御のフローチャートを示している。
【0059】
ステップ1にて、機関温度Tを読み込み、ステップ2で冷機状態か否かを判定する。
【0060】
冷機状態と判定されるとステップ3に進み、機関始動後経過時間tsを読み込みステップ4へ進む。
【0061】
ステップ4にて、機関始動後経過時間ts≦一定時間tcならば、ステップ5に進み、吸気弁3のリフト・作動角を小リフト・小作動角とし、吸気弁3のリフト中心角を吸排気弁のバルブオーバーラップが小さくなるよう遅角させた状態に略固定する(図4の冷機時を参照)。
【0062】
ステップに4にて、機関始動後経過時間ts>一定時間tcならばステップ6に進み、吸気弁3のリフト・作動角を中リフト・中作動角まで拡大し、保持すると共に、吸気弁3のリフト中心角は引き続きバルブオーバーラップが小さくなるよう遅角させた状態に略固定する(図4の冷機時を参照)。
【0063】
ステップ2にて、冷機状態ではないと判定されるとステップ7に進む。
【0064】
ステップ7にて、暖機途中状態と判定されるとステップ8に進み、暖機状態と判定されるとステップ9に進み、高温状態と判定されるとステップ10に進む。
【0065】
ステップ8では、吸気弁3のリフト・作動角を小リフト・小作動角〜中リフト・中作動角の範囲内に制御し、吸気弁3のリフト中心角を設定可変幅最大で制御する(図4の暖機途中を参照)。
【0066】
ステップ9では、吸気弁3のリフト・作動角及びリフト中心角を設定可変幅最大で制御する(図4の暖機後を参照)。
【0067】
ステップ10では、吸気弁3のリフト・作動角を小リフト・小作動角から設定可変幅よりも若干低減した大リフト・大作動角までの範囲内で制御し、吸気弁3のリフト中心角は最大可変幅で制御する(図4の高温時を参照)。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の可変動弁装置を示す説明図。
【図2】リフト・作動角可変機構の制御マップ
【図3】位相可変機構の制御マップ
【図4】リフト・作動角可変機構及び位相可変機構の機関温度別の可変割合を示す説明図。
【図5】リフト・作動角可変機構及び位相可変機構の可変割合の制御のフローチャート。
【符号の説明】
1…リフト・作動角可変機構
2…位相可変機構
13…リフト・作動角制御用油圧アクチュエータ
14…制御バルブ
15…エンジンコントロールユニット
17…位相制御用電磁式アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable valve operating apparatus for an internal combustion engine.
[0002]
[Prior art]
For example, Japanese Patent Laid-Open No. 2000-220420 discloses a lift / working angle switching mechanism that switches a lift / working angle of a valve of an internal combustion engine between a low speed operation and a high speed operation of the internal combustion engine, and a phase of a lift center angle of the valve. A so-called variable valve operating apparatus is disclosed that includes a phase variable mechanism that variably controls the motor.
[0003]
In the variable valve operating apparatus, the lift / operating angle switching mechanism and the phase variable mechanism are controlled by hydraulic pressure.
[0004]
[Problems to be solved by the invention]
In such a variable valve system, the lift / operating angle switching mechanism has two types of cams, a low-speed operation cam and a high-speed operation cam, and these cams are simply used in accordance with operating conditions. Therefore, there is a possibility that it cannot cope with a wide range of operating conditions.
[0005]
For example, one of the cams is a R / L cam with a small lift and a small operating angle that improves fuel efficiency during steady running (R / L). Since this R / L cam cannot obtain a sufficient driving torque during low-speed full-open running, the other cam is a low-speed full-open running cam having a higher lift and operating angle than the R / L cam. As a result, it becomes impossible to cope with high-speed full-open travel that requires a larger lift and a larger operating angle than during low-speed full-open travel.
[0006]
In addition, the phase variable mechanism is combined with a variable lift / operating angle mechanism that continuously increases and decreases the valve lift / operating angle of the internal combustion engine, so that the valve lift / operate to meet all operating conditions. Although variable control of the angle can be considered, in order to make full use of the variable amount of valve lift and operating angle under all operating conditions, the lift / operating angle variable mechanism is not driven by hydraulic control, There is a problem that it is necessary to drive by control, and the performance effect is large, but the cost increases.
[0007]
[Means for Solving the Problems]
  In view of this, the invention according to claim 1 delays the phase of the lift / working angle variable mechanism that can simultaneously and continuously enlarge and reduce the lift / working angle of the valve of the internal combustion engine and the lift center angle of the valve. In the variable valve operating apparatus for an internal combustion engine having a variable phase mechanism, the ratio of the amount of change allowed from the minimum lift / minimum operating angle to the maximum variable amount variable in the lift / operating angle variable mechanism Is defined as a variable ratio, and in the phase variable mechanism, when the ratio of the amount of change allowed from the most retarded angle position is defined as the variable ratio with respect to the maximum variable amount that can be varied, the variable lift / operating angle mechanism Variable ratio and variable ratio of phase variable mechanism are changed by engine temperatureThe lift / operating angle variable mechanism is hydraulically driven, and the phase variable mechanism is electrically driven.It is characterized by doing. As a result, the lift / operating angle variable mechanism and the phase variable mechanism need not always be variably controlled by the maximum variable amount.In addition, if the lift / operating angle variable mechanism and the phase variable mechanism are both electrically driven, the manufacturing cost increases. In addition, if both the lift / operating angle variable mechanism and the phase variable mechanism are hydraulically driven, fuel consumption performance deteriorates due to a delay in hydraulic response. However, the variable requirement of the lift / operating angle variable mechanism is substantially proportional to the engine speed, and the variable requirement of the phase variable mechanism is proportional to the valve overlap setting and the engine load. That is, the variable lift / operating angle mechanism can be handled by a hydraulic drive with relatively low response.
[0008]
  According to the second aspect of the present invention, there is provided a lift / working angle variable mechanism capable of simultaneously and continuously expanding and reducing the lift / working angle of the intake valve, and a phase variable for delaying the phase of the lift center angle of the intake valve. In the variable valve operating apparatus for an internal combustion engine having the mechanism, in the variable lift / operating angle mechanism, the variable ratio is defined as the ratio of the amount of change allowed from the minimum lift / minimum operating angle to the maximum variable variable. In the phase variable mechanism, when the ratio of the amount of change allowed from the most retarded position is defined as the variable ratio with respect to the maximum variable amount that can be changed, Variable ratio of phase variable mechanism is changed by engine temperatureThe lift / operating angle variable mechanism is hydraulically driven, and the phase variable mechanism is electrically driven.It is characterized by doing.
[0009]
  According to a third aspect of the present invention, in the second aspect of the invention, when the engine is cold, the lift center angle of the intake valve is substantially fixed to a retarded state, and the lift / operation angle of the intake valve is reduced. The variable range of the lift / operation angle variable mechanism is variable from the lift / small operation angle to the intermediate lift / medium operation angle, and the variable ratio of the lift / operation angle variable mechanism is larger than the variable ratio of the phase variable mechanism. When the internal combustion engine is cold, the in-cylinder temperature is low and atomization of fuel is not promoted. Therefore, if the valve overlap of the intake and exhaust valves is increased, combustion becomes unstable and operability deteriorates. That is, it is not necessary to drive the phase variable mechanism with the maximum variable amount. On the other hand, the variable lift / operating angle mechanism stabilizes combustion and increases the ignition timing delay limit by increasing the gas flow in a state where the air flow rate is low during cold operation, which is an operating condition of low rotation and low load. Since it is necessary to expand and promote catalyst warm-up, it is desirable to make the intake valve a small lift and a small operating angle. However, with a small lift and small operating angle, even if the rotation is low, the full opening torque will decrease, so operationSexGetting worse. When the lift / operating angle variable mechanism is driven by a hydraulic actuator, the responsiveness deteriorates when the engine is cold. Further, when the lift / operating angle variable mechanism is driven by an electric actuator, low temperature demagnetization occurs during cold operation. For this reason, when the engine is cold, the drive range of the lift / operating angle variable mechanism by the actuator is desired to be the minimum range. Therefore, considering the fully open performance, the minimum required intake valve opening time is secured by making the variable lift / operating angle mechanism variable in the range from small lift / small operating angle to medium lift / medium operating angle. To do.
[0010]
  According to a fourth aspect of the present invention, in the invention of the second aspect, at the time of cold start, the lift central angle of the intake valve is retarded and the lift / operating angle of the intake valve is reduced by a small lift / small operating angle. And the variable ratio of the variable lift / operating angle mechanism is greater than the variable ratio of the phase variable mechanism.bigIt is characterized by doing. At the time of cold start, the gas flow is increased with a small lift and small operating angle and a small air flow rate to stabilize combustion, and at the same time, the ignition timing retardation limit is expanded to promote catalyst warm-up. Therefore, the variable ratio of the lift / operating angle variable mechanism becomes small. On the other hand, we want to retard the intake valve opening timing as much as possible to increase the in-cylinder negative pressure and further increase the gas flow at the intake valve opening timing.. TheIn other words, the variable ratio of the phase variable mechanism is less than the variable ratio of the lift / operating angle variable mechanism at the time of cold start.smallBecome.
[0011]
  The invention according to claim 5. In the third aspect of the present invention, when the engine is cold, the lift / operating angle of the intake valve is set to the medium lift / operating angle by the lift / operating angle variable mechanism after a predetermined time has elapsed after the engine is started, regardless of the required load on the internal combustion engine. It is characterized by expanding and holding to a medium operating angle. When cold, we want to minimize actuator drive and ensure full opening performance. On the other hand, the small lift and small operating angle can generate a strong gas flow even at the start of a small amount of gas, so that combustion is stabilized and the ignition timing can be retarded to raise the exhaust temperature and warm the catalyst. The machine can be promoted. Also, when the lift / operating angle variable mechanism is driven and controlled by a hydraulic actuator during cold operation, the operation slows down due to a delay in hydraulic response.Become. For this reason, it is determined that the catalyst has been warmed up after a certain period of time since the start of the internal combustion engine, and the response of the hydraulic valve is delayed by maintaining the lift / operating angle of the intake valve at the medium lift / medium operating angle.ThisTo prevent. The intermediate lift / medium operating angle in claim 5 is relatively smaller than the intermediate lift / medium operating angle in claim 3.
[0014]
  Claim6The invention described in claimAny one of 1-5The lift / operating angle variable mechanism is variably controlled at a lower temperature than the phase variable mechanism. As a result, it is possible to prevent the drive torque from being lowered when the machine is cold. It should be noted that the lift / operating angle variable mechanism can be hydraulically operated even though the hydraulic response is deteriorated during cold operation.
[0015]
  Claim7The invention described in claimAny one of 1-5In the invention described in (1), during the warm-up, the variable ratio of the lift / operating angle variable mechanism is made smaller than the variable ratio of the phase variable mechanism. In the middle of warming up, the in-cylinder temperature is rising, so fuel atomization is promoted more than when cold. Therefore, the valve overlap of the intake / exhaust valve can be increased. Therefore, it is possible to improve the fuel efficiency by increasing the variable ratio of the phase variable mechanism. On the other hand, even if the responsiveness of the lift / operating angle variable mechanism by hydraulic drive is improved at the intermediate temperature than when cold, there is no responsiveness and controllability such as overshoot after warming up. Control within the range of operating angle to medium lift / medium operating angle. For this reason, transient engine control stability, fuel efficiency and exhaust performance can be improved by the lift / operating angle variable mechanism and the phase variable mechanism.
[0016]
  Claim8The invention described in claimAny one of 1-5In the invention described in (1), the variable ratio of the lift / operating angle variable mechanism is smaller than the variable ratio of the phase variable mechanism at a high temperature after completion of warm-up. If the output is high and the rotation is high at high temperatures, there is a possibility of overheating. At high temperatures, the variable ratio of the lift / operating angle variable mechanism is reduced to prevent overheating. In addition, the hydraulic viscosity is low at high temperatures, and leakage from the clearance of each part of the engine increases. Therefore, it is possible to reduce the size of the hydraulic pump used to operate the lift / operation angle variable mechanism by slightly reducing the variable ratio of the lift / operation angle variable mechanism at a high temperature compared to the variable ratio after warm-up. Become.
[0017]
【The invention's effect】
According to the present invention, the lift / operating angle variable mechanism and the phase variable mechanism do not always need to be variably controlled with the maximum variable amount. Each actuator that drives the mechanism and the phase variable mechanism can be made inexpensive.
[0018]
According to another aspect of the present invention, the variable ratio of the lift / operating angle variable mechanism is set to the phase variable mechanism in order to secure the minimum opening time of the intake valve that does not deteriorate the operability during cold operation. If it is larger than the variable ratio, each actuator for driving the lift / operating angle variable mechanism and the phase variable mechanism can be made inexpensively and miniaturized while minimizing the decrease in engine performance.
[0019]
According to the fourth aspect, by making the intake valve a small lift and a small operating angle, the gas flow is increased and the intake valve closing timing is advanced, whereby the effective compression ratio is increased and the combustion performance is improved. The
[0020]
  According to claim 5, even if the lift / operating angle variable mechanism is driven and controlled by the hydraulic actuator, a response delay due to the hydraulic pressure may occur.Absent.
[0021]
  Claim7According to the present invention, transient engine control stability, fuel efficiency and exhaust performance can be improved by the lift / operating angle variable mechanism and the phase variable mechanism.
[0022]
  Claims8As described above, if the variable ratio of the variable lift / operating angle mechanism is reduced at a high temperature, the hydraulic pump that drives the hydraulic actuator of the variable lift / operating angle mechanism can be downsized.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0024]
FIG. 1 is a configuration explanatory view showing the configuration of an intake valve side variable valve operating device of an internal combustion engine. This variable valve operating device changes a lift / operating angle variable mechanism (VEL) that changes a lift / operating angle of an intake valve 3. ) 1 and a phase variable mechanism (VTC) 2 that advances or retards the phase of the center angle of the lift (phase with respect to a crankshaft (not shown)). The lift / operating angle variable mechanism 1 has been previously proposed by the applicant of the present invention. However, since it has been publicly known, for example, in Japanese Patent Application Laid-Open No. 11-107725, only the outline thereof will be described.
[0025]
The variable lift / operating angle mechanism 1 includes an intake valve 3 slidably provided on a cylinder head (not shown) via a valve guide (not shown), and a cam bracket on the cylinder head (not shown). A hollow drive shaft 4 rotatably supported by (not shown), an eccentric cam 5 fixed to the drive shaft 4 by press-fitting or the like, and the same cam bracket (see FIG. A control shaft 6 that is rotatably supported by the drive shaft 4, a rocker arm 8 that is swingably supported by an eccentric cam portion 7 of the control shaft 6, and each intake valve 3. And a swing cam 10 that contacts the valve lifter 9 disposed at the upper end of the. The eccentric cam 5 and the rocker arm 8 are linked by a link arm 11, and the rocker arm 8 and the swing cam 10 are linked by a link member 12.
[0026]
The drive shaft 4 is driven by a crankshaft of the engine via a timing chain or a timing belt, as will be described later.
[0027]
The eccentric cam 5 has a circular outer peripheral surface, the center of the outer peripheral surface is offset from the axis of the drive shaft 4 by a predetermined amount, and the link arm 11 is rotatably fitted to the outer peripheral surface. ing.
[0028]
The rocker arm 8 is supported substantially at the center by the eccentric cam portion 7, the link arm 11 is linked to one end thereof, and the upper end of the link member 12 is linked to the other end. is doing. The eccentric cam portion 7 is eccentric from the axis of the control shaft 6, and therefore the rocking center of the rocker arm 8 changes according to the angular position of the control shaft 6.
[0029]
The swing cam 10 is fitted to the outer periphery of the drive shaft 4 and is rotatably supported, and the lower end portion of the link member 12 is linked to the end portion extending sideways.
[0030]
The lower surface of the swing cam 10 is in contact with the upper surface of the valve lifter 9 according to the swing position of the swing cam 10.
[0031]
The control shaft 6 is configured to rotate within a predetermined rotation angle range by a lift / operating angle control hydraulic actuator 13 provided at one end.
[0032]
The lift / working angle control hydraulic actuator 13 has a piston structure (not shown), and the control shaft of the lift / working angle variable mechanism 1 is adjusted by adjusting the hydraulic pressure before and after the piston with the control valve 14. The angle, that is, the lift / operating angle is determined.
[0033]
The control valve 14 is controlled by the engine control unit 15. The engine control unit 15 receives detection values such as the engine speed, the engine load, and the water temperature. The engine control state is detected based on these detection values, and the control valve 14 is controlled.
[0034]
The operation of the variable lift / operating angle mechanism 1 will be described. When the drive shaft 4 rotates, the link arm 11 moves up and down by the cam action of the eccentric cam 5, and the rocker arm 8 swings accordingly. The swing of the rocker arm 8 is transmitted to the swing cam 10 via the link member 12, and the swing cam 10 swings. Due to the cam action of the swing cam 10, the valve lifter 9 is pressed and the intake valve 3 is lifted.
[0035]
Here, when the angle of the control shaft 6 changes via the lift / operating angle control hydraulic actuator 13, the initial position of the rocker arm 8 changes, and consequently, the initial swing position of the swing cam 10 changes.
[0036]
Since the position of the eccentric cam portion 7 can be continuously changed, the lift and the operating angle can be continuously enlarged and reduced simultaneously with this. In particular, in this case, the opening timing and closing timing of the intake valve 3 change substantially symmetrically as the lift and operating angle change.
[0037]
Next, the phase variable mechanism 2 includes a sprocket 16 provided at the front end of the drive shaft 4 and a phase control electromagnetic that relatively rotates the sprocket 16 and the drive shaft 4 within a predetermined angle range. Type actuator 17. The sprocket 16 is linked to the crankshaft via a timing chain or timing belt (not shown). The phase control electromagnetic actuator 17 is controlled based on a control signal from the engine control unit 15. The sprocket 16 and the drive shaft 4 are relatively rotated by the phase control electromagnetic actuator 17 and the lift center angle is retarded. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously.
[0038]
Here, the lift / operation angle variable mechanism 1 and the phase variable mechanism 2 are feedback-controlled by sensors 18 and 19 that detect the actual lift / operation angle or phase operation amount.
[0039]
2 and 3 show a control map of the lift / operating angle variable mechanism 1 after engine warm-up and a control map of the phase variable mechanism 2 after engine warm-up.
[0040]
The lift / operating angle variable mechanism 1 controls the enlargement of the lift / operating angle substantially in proportion to the engine rotation. At low rotation and low load, small lift and small operating angle reduces drive friction of the valve operating system, delays intake valve opening timing (IVO) to reduce pump loss and residual gas in cylinder, and intake valve closing timing Improving fuel efficiency by speeding up (IVC) and reducing pump loss. At high speeds, a large lift and a large operating angle are used to increase intake volume and improve output.
[0041]
On the other hand, the phase variable mechanism 2 is operated in the load direction by normal engine rotation. In order to stabilize combustion at low loads and to improve charging efficiency at high loads, the valve overlap of the intake and exhaust valves is made small. At medium loads where combustion is stable, in order to reduce pump loss and improve combustion due to internal EGR, the valve overlap of intake and exhaust valves is increased to improve fuel efficiency.
[0042]
Therefore, after warm-up, as shown in FIG. 4, both the lift / operating angle variable mechanism 1 and the phase variable mechanism 2 are operated within the maximum setting variable width range. In other words, the variable ratio (details will be described later) of the lift / operating angle variable mechanism 1 and the phase variable mechanism 2 is 100%.
[0043]
In this case, the phase variable mechanism 2 needs to be variably controlled in accordance with load change and accelerator pedal change, and high response is required. Therefore, in this embodiment, an electromagnetic actuator is used. Further, since the lift / operating angle variable mechanism 1 is substantially proportional to the engine rotation, the responsiveness like the phase variable mechanism 2 is not necessary, and in this embodiment, an inexpensive hydraulic actuator is used.
[0044]
Next, operations of the lift / operating angle variable mechanism 1 and the phase variable mechanism 2 other than the normal state in which the engine temperature is warmed up will be described.
[0045]
When cold, the in-cylinder temperature is low and fuel atomization worsens. Therefore, if the valve overlap of the intake / exhaust valve is increased, the combustion becomes unstable and the drivability deteriorates. That is, the phase variable mechanism 2 does not need to be driven to the maximum setting variable width. Therefore, the lift center angle of the intake valve 3 is substantially fixed in a state where it is retarded so that the valve overlap of the intake and exhaust valves does not become large.
[0046]
On the other hand, the variable lift / operating angle mechanism 1 is a small lift / small operating angle with low rotation and low load, and the gas flow is large when the air flow rate is low, such as at the time of starting, to stabilize combustion, and to limit the ignition timing retardation. Since it is necessary to expand the catalyst and promote catalyst warm-up, it is desirable to use a small lift and a small operating angle. However, with a small lift and a small operating angle, even if the rotation is low, the fully open torque is reduced, so the drivability is deteriorated. Therefore, the lift / working angle varying mechanism 1 needs to be varied in a range from a small lift / small working angle to a medium lift / medium working angle. Since the hydraulic pressure of the lift / operating angle control hydraulic actuator 13 is high even when the oil viscosity is cold, the hydraulic actuator 13 can be switched unless the response is high such as load switching.
[0047]
Here, the ratio of the controllable range of each variable mechanism at that time with respect to the maximum variable amount variable by the lift / operation angle variable mechanism 1 and the phase variable mechanism 2 is defined as a variable ratio. For example, if the phase variable mechanism can change the crank angle by 60 °, but only allows 6 ° operation at low temperatures, the variable ratio at that time is 10%. The variable ratio is 100%.
[0048]
In other words, in this embodiment, the variable ratio of the lift / operating angle variable mechanism 1 is controlled to be larger than the variable ratio of the phase variable mechanism 2 when the engine is cold.
[0049]
In this embodiment, the variable lift / operating angle mechanism 1 is driven by a hydraulic actuator. However, even if the lift / operating angle variable mechanism 1 is driven by an electromagnetic actuator, a high response is required when the engine is cold. Then, low temperature demagnetization occurs, and the output of the electromagnetic actuator may be reduced. Therefore, if the variable ratio of the lift / operating angle variable mechanism 1 during cooling is reduced, even if an electromagnetic actuator is applied to the lift / operating angle variable mechanism 1, there is an advantage that the actuator can be reduced in size.
[0050]
As described above, even when the engine is cold, it is necessary to expand the lift / operating angle of the intake valve 3 to a medium lift / medium operating angle due to an acceleration request. However, considering the deterioration of hydraulic response and the occurrence of low temperature demagnetization, I want to respond with slow response. Therefore, it is determined that the catalyst has been warmed up after a certain period of time has elapsed since the start of the cold engine, and the lift / operating angle of the intake valve 3 is set to the medium lift / medium operating angle regardless of whether or not acceleration is requested. The control is expanded and maintained until the deterioration of responsiveness during cold operation is prevented.
[0051]
In the middle of warming up, the in-cylinder temperature also rises and fuel atomization is improved. Therefore, the valve overlap of the intake / exhaust valve can be increased to improve fuel efficiency. On the other hand, the lift / operating angle variable mechanism 1 does not have controllability such as response after over-warming, overshoot, etc., even if the switching responsiveness is improved at the intermediate temperature from when cold. ~ Control within the range of medium lift and medium working angle. That is, the variable ratio of the phase variable mechanism 2 is made larger than the variable ratio of the lift / operation angle variable mechanism 1. The intermediate lift / medium operating angle during warm-up is relatively larger than the intermediate lift / medium operating angle during cold-up (see FIG. 4), but may be the same.
[0052]
At high temperatures, if the output is large and the rotation is high, there is a possibility of overheating. Therefore, the variable ratio of the lift / operating angle variable mechanism 1 is slightly reduced as compared with the variable ratio after warming up to prevent overheating. The phase variable mechanism 2 is operated within the maximum setting variable width range, similar to after warm-up.
[0053]
That is, the lift / operating angle variable mechanism 1 is operated within the range of the small lift / small operating angle to the large lift / large operating angle slightly smaller than the maximum variable amount, and the phase variable mechanism 2 is the same as that after the warm-up described above. And within the maximum setting variable width range.
[0054]
Therefore, at a high temperature, the variable ratio of the variable lift / operating angle mechanism 1 is smaller than the variable ratio of the phase variable mechanism 2.
[0055]
Further, since the hydraulic viscosity becomes low and the leakage from the clearance of each part of the engine increases at high temperatures, it is possible to reduce the size of the pump that supplies hydraulic pressure to the lift / operating angle control hydraulic actuator 13.
[0056]
As described above, as shown in FIG. 4, the variable ratio of the lift / operating angle variable mechanism 1 and the phase variable mechanism 2 is changed depending on the engine temperature. It becomes possible. In addition, when the variable ratio is set according to the temperature, it is not necessary to prepare a plurality of valve timing maps for each temperature, and there is an advantage that the memory of the engine control unit can be reduced in size.
[0057]
As can be seen from FIG. 4, the variable ratio of the lift / operating angle variable mechanism 1 during the cool-down and the variable ratio of the lift / operating angle variable mechanism 1 during the warm-up include the variable ratio during the warm-up. The variable ratio of the lift / operating angle variable mechanism 1 during warm-up and the variable ratio of the lift / operating angle variable mechanism 1 at high temperatures are larger in the variable ratio at high temperatures.
[0058]
FIG. 5 shows a flowchart of the control of this embodiment.
[0059]
In step 1, the engine temperature T is read, and in step 2, it is determined whether or not the engine is cold.
[0060]
If it is determined that the engine is in the cold state, the process proceeds to step 3 where the elapsed time ts after engine start is read and the process proceeds to step 4.
[0061]
If it is determined in step 4 that the elapsed time ts after engine start ≤ the constant time tc, the process proceeds to step 5 where the lift / operating angle of the intake valve 3 is set to a small lift / small operating angle, and the lift central angle of the intake valve 3 is intake / exhaust. The valve is substantially fixed in a state of being retarded so that the valve overlap of the valve becomes small (see the time of cooling in FIG. 4).
[0062]
In step 4, if the elapsed time ts after engine start is greater than the predetermined time tc, the process proceeds to step 6 where the lift / operating angle of the intake valve 3 is expanded and held to the middle lift / medium operating angle. The lift center angle is generally fixed in a state of being retarded so that the valve overlap becomes smaller (see the time of cooling in FIG. 4).
[0063]
If it is determined in step 2 that the engine is not in the cold state, the process proceeds to step 7.
[0064]
If it is determined in step 7 that the engine is warming up, the process proceeds to step 8. If it is determined that the engine is warmed up, the process proceeds to step 9;
[0065]
In step 8, the lift / operating angle of the intake valve 3 is controlled within the range of small lift / small operating angle to medium lift / medium operating angle, and the lift center angle of the intake valve 3 is controlled with the maximum setting variable width (FIG. (See 4 in the middle of warming up).
[0066]
In step 9, the lift / operating angle and the lift center angle of the intake valve 3 are controlled at the maximum setting variable width (see after warm-up in FIG. 4).
[0067]
In step 10, the lift / operating angle of the intake valve 3 is controlled within a range from a small lift / small operating angle to a large lift / large operating angle slightly reduced from the set variable width. Control is performed with the maximum variable width (see the high temperature in FIG. 4).
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a variable valve operating apparatus for an internal combustion engine according to the present invention.
[Fig. 2] Control map of lift / operating angle variable mechanism
Fig. 3 Control map of phase variable mechanism
FIG. 4 is an explanatory diagram showing variable ratios by engine temperature of a lift / operating angle variable mechanism and a phase variable mechanism.
FIG. 5 is a flowchart of variable ratio control of the lift / operating angle variable mechanism and the phase variable mechanism.
[Explanation of symbols]
1 ... Lift / operating angle variable mechanism
2 ... Phase variable mechanism
13 ... Hydraulic actuator for lift / operation angle control
14 ... Control valve
15 ... Engine control unit
17 ... Electromagnetic actuator for phase control

Claims (8)

内燃機関のバルブのリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、前記バルブのリフト中心角の位相を遅進させる位相可変機構と、を有する内燃機関の可変動弁装置において、
前記リフト・作動角可変機構では、可変可能な最大可変量に対し、最小リフト・最小作動角から許容される変化量の比率を可変割合と定義し、前記位相可変機構では、可変可能な最大可変量に対し、最遅角位置から許容される変化量の比率を可変割合と定義した際に、前記リフト・作動角可変機構の可変割合及び前記位相可変機構の可変割合を機関温度により変更し、
前記リフト・作動角可変機構を油圧駆動し、前記位相可変機構は電気駆動することを特徴とする内燃機関の可変動弁装置。
An internal combustion engine having a lift / working angle variable mechanism capable of simultaneously and continuously expanding and reducing the valve lift / working angle of the internal combustion engine and a phase variable mechanism for delaying the phase of the lift center angle of the valve. In the variable valve gear of
In the variable lift / operating angle mechanism, the ratio of the amount of change allowed from the minimum lift / minimum operating angle is defined as the variable ratio with respect to the maximum variable variable, and the variable variable maximum variable in the phase variable mechanism. When the ratio of the amount of change allowed from the most retarded angle position relative to the amount is defined as a variable ratio, the variable ratio of the lift / operating angle variable mechanism and the variable ratio of the phase variable mechanism are changed according to the engine temperature ,
A variable valve operating apparatus for an internal combustion engine, wherein the lift / operating angle variable mechanism is hydraulically driven and the phase variable mechanism is electrically driven .
吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構と、有する内燃機関の可変動弁装置において、
前記リフト・作動角可変機構では、可変可能な最大可変量に対し、最小リフト・最小作動角から許容される変化量の比率を可変割合と定義し、前記位相可変機構では、可変可能な最大可変量に対し、最遅角位置から許容される変化量の比率を可変割合と定義した際に、前記リフト・作動角可変機構の可変割合及び前記位相可変機構の可変割合を機関温度により変更し、
前記リフト・作動角可変機構を油圧駆動し、前記位相可変機構は電気駆動することを特徴とする内燃機関の可変動弁装置。
A variable lift / operating angle mechanism that can simultaneously and continuously expand and contract the lift / operating angle of the intake valve, a phase variable mechanism that retards the phase of the lift central angle of the intake valve, and a variable operation of the internal combustion engine. In the valve device,
In the variable lift / operating angle mechanism, the ratio of the amount of change allowed from the minimum lift / minimum operating angle is defined as the variable ratio with respect to the maximum variable variable, and the variable variable maximum variable in the phase variable mechanism. When the ratio of the amount of change allowed from the most retarded angle position relative to the amount is defined as a variable ratio, the variable ratio of the lift / operating angle variable mechanism and the variable ratio of the phase variable mechanism are changed according to the engine temperature ,
A variable valve operating apparatus for an internal combustion engine, wherein the lift / operating angle variable mechanism is hydraulically driven and the phase variable mechanism is electrically driven .
冷機時においては、吸気弁のリフト中心角を遅角させた状態に略固定すると共に、吸気弁のリフト・作動角を小リフト・小作動角から中リフト・中作動角の範囲で可変可能とし、前記リフト・作動角可変機構の可変割合を前記位相可変機構の可変割合よりも大きくすることを特徴とする請求項2に記載の内燃機関の可変動弁装置。  When the engine is cold, the intake valve lift center angle is generally fixed at a retarded angle, and the intake valve lift / operation angle can be varied from small lift / small operation angle to medium lift / medium operation angle. The variable valve operating apparatus for an internal combustion engine according to claim 2, wherein a variable ratio of the lift / operating angle variable mechanism is larger than a variable ratio of the phase variable mechanism. 冷機始動時においては、吸気弁のリフト中心角を遅角させると共に、吸気弁のリフト・作動角を小リフト・小作動角とし、前記リフト・作動角可変機構の可変割合を、前記位相可変機構の可変割合よりも大きくすることを特徴とする請求項2に記載の内燃機関の可変動弁装置。  At the time of cold start, the lift central angle of the intake valve is retarded and the lift / operation angle of the intake valve is set to a small lift / small operation angle, and the variable ratio of the lift / operation angle variable mechanism is set to the phase variable mechanism. The variable valve operating apparatus for an internal combustion engine according to claim 2, wherein the variable ratio is greater than the variable ratio. 冷機時においては、内燃機関に対する要求負荷に関わらず、機関始動後一定時間経過後に、前記リフト・作動角可変機構により吸気弁のリフト・作動角を中リフト・中作動角まで拡大し、保持することを特徴とする請求項3に記載の内燃機関の可変動弁装置。  When the engine is cold, regardless of the required load on the internal combustion engine, the lift / working angle of the intake valve is expanded to the middle lift / medium working angle by the lift / working angle variable mechanism after the engine has been started for a certain period of time. The variable valve operating apparatus for an internal combustion engine according to claim 3. 前記リフト・作動角可変機構を前記位相可変機構よりも低温から可変制御することを特徴とする請求項1〜5のいずれかに記載の内燃機関の可変動弁装置。6. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the lift / operating angle variable mechanism is variably controlled from a lower temperature than the phase variable mechanism. 暖機途中においては、前記リフト・作動角可変機構の可変割合を、前記位相可変機構の可変割合よりも小さくすることを特徴とする請求項1〜5のいずれかに記載の内燃機関の可変動弁装置。The variable operation of the internal combustion engine according to any one of claims 1 to 5 , wherein during the warm-up, the variable ratio of the lift / operating angle variable mechanism is made smaller than the variable ratio of the phase variable mechanism. Valve device. 暖機終了後の高温時においては、前記リフト・作動角可変機構の可変割合を、前記位相可変機構の可変割合よりも小さくすることを特徴とする請求項1〜5のいずれかに記載の内燃機関の可変動弁装置。During high temperature after the warm-up completion, an internal combustion according to the variable ratio of the lift operating angle variable mechanism, in any one of claims 1 to 5, characterized in that less than the variable ratio of the phase variable mechanism Variable valve gear for engine.
JP2001025105A 2001-02-01 2001-02-01 Variable valve operating device for internal combustion engine Expired - Fee Related JP4590746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025105A JP4590746B2 (en) 2001-02-01 2001-02-01 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025105A JP4590746B2 (en) 2001-02-01 2001-02-01 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002227669A JP2002227669A (en) 2002-08-14
JP4590746B2 true JP4590746B2 (en) 2010-12-01

Family

ID=18890154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025105A Expired - Fee Related JP4590746B2 (en) 2001-02-01 2001-02-01 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4590746B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701871B2 (en) * 2005-06-28 2011-06-15 日産自動車株式会社 Engine control device
JP4952732B2 (en) * 2008-02-26 2012-06-13 マツダ株式会社 Internal combustion engine control method and internal combustion engine control system
JP2015116967A (en) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 Hybrid vehicle
JP2015116959A (en) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 Hybrid vehicle
JP5949806B2 (en) * 2014-02-25 2016-07-13 トヨタ自動車株式会社 Hybrid vehicle
WO2016166859A1 (en) * 2015-04-16 2016-10-20 日産自動車株式会社 Engine control apparatus, and engine control method
KR101796255B1 (en) * 2016-06-30 2017-11-10 주식회사 현대케피코 Continuously variable valve duration system and operating method thereof
JP2019039312A (en) * 2017-08-22 2019-03-14 アイシン精機株式会社 Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270470A (en) * 1995-03-31 1996-10-15 Toyota Motor Corp Valve timing control device for internal combustion engine
JP2000008915A (en) * 1998-06-22 2000-01-11 Nissan Motor Co Ltd Cylinder direct injection type internal combustion engine
JP2000034913A (en) * 1998-07-17 2000-02-02 Toyota Motor Corp Variable valve system for internal combustion engine
JP2000234533A (en) * 1999-02-15 2000-08-29 Unisia Jecs Corp Variable valve system for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270470A (en) * 1995-03-31 1996-10-15 Toyota Motor Corp Valve timing control device for internal combustion engine
JP2000008915A (en) * 1998-06-22 2000-01-11 Nissan Motor Co Ltd Cylinder direct injection type internal combustion engine
JP2000034913A (en) * 1998-07-17 2000-02-02 Toyota Motor Corp Variable valve system for internal combustion engine
JP2000234533A (en) * 1999-02-15 2000-08-29 Unisia Jecs Corp Variable valve system for internal combustion engine

Also Published As

Publication number Publication date
JP2002227669A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3979081B2 (en) Combustion control system for internal combustion engine
JP3912147B2 (en) Variable valve operating device for internal combustion engine
US6615775B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic and phase
JP4416377B2 (en) Control device for internal combustion engine
JP4336444B2 (en) Variable valve operating device for internal combustion engine
JP4035963B2 (en) Control device for internal combustion engine
JP3227313B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP4858729B2 (en) Variable valve gear
JP4385509B2 (en) Control device for internal combustion engine for vehicle
JP2007239555A (en) Internal combustion engine
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP4168756B2 (en) Control device for internal combustion engine
JP3829629B2 (en) Combustion control device for internal combustion engine
JP4135394B2 (en) Control device for internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP4366850B2 (en) Valve control device for internal combustion engine
JP4506566B2 (en) Engine intake control device
JP4433591B2 (en) Variable valve operating device for internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP4604358B2 (en) Internal combustion engine and control system thereof
JP3909299B2 (en) Valve operating device for internal combustion engine
JP4432746B2 (en) Intake control device for internal combustion engine
JPH11247637A (en) Variable valve system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees