JP4433591B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP4433591B2
JP4433591B2 JP2000279418A JP2000279418A JP4433591B2 JP 4433591 B2 JP4433591 B2 JP 4433591B2 JP 2000279418 A JP2000279418 A JP 2000279418A JP 2000279418 A JP2000279418 A JP 2000279418A JP 4433591 B2 JP4433591 B2 JP 4433591B2
Authority
JP
Japan
Prior art keywords
operating angle
intake
phase
angle
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000279418A
Other languages
Japanese (ja)
Other versions
JP2002089304A (en
Inventor
信一 竹村
常靖 野原
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000279418A priority Critical patent/JP4433591B2/en
Publication of JP2002089304A publication Critical patent/JP2002089304A/en
Application granted granted Critical
Publication of JP4433591B2 publication Critical patent/JP4433591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸気弁の作動角(以下、必要に応じて吸気作動角と略す)を変化させる作動角変更機構と、吸気弁の作動角の中心位相(以下、必要に応じて吸気位相と略す)を変化させる位相変更機構と、を有する内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
特開2000−18056号公報には、吸気弁のバルブリフト量及び作動角を変化させるバルブリフト量変更機構と、吸気弁の開閉タイミング(作動角の中心位相)を変化させるバルブタイミング変更機構と、を備えた可変動弁装置が開示されている。この公報では、低回転域ではバルブリフト量を変化させずに、バルブタイミング変更機構により吸気位相のみを変化させている。
【0003】
【発明が解決しようとする課題】
このような2つの変更機構を備えた装置では、機関運転状態が変化する過渡期、特に機関回転数を増加させる加速時のように、吸気弁の作動角及び位相の双方を変化させる際に、一時的に吸気弁の開閉時期が望ましくない状態となって、運転性能の低下を招くおそれがある。例えば、両変更機構により最小作動角及び最遅角位相に設定されたアイドル状態からの加速時に、作動角のみを増加させると、吸気弁の閉時期が過度に遅くなって、トルクが一時的に低下するおそれがある。
【0004】
また、同一負荷域からの加速時においても、冷機時と暖気後とで同じ様に両変更機構を駆動制御すると、冷機時又は暖機時の一方で有効にトルクを増加させることができないことがある。
【0005】
本発明は、このような課題に鑑みてなされたものであり、機関加速時にトルクを迅速かつ効率的に増加させることを一つの目的としている。
【0006】
【課題を解決するための手段】
そこで、請求項1に係る発明は、吸気弁の作動角を変化させる作動角変更機構と、吸気弁の作動角の中心位相を変化させる電動式の位相変更機構と、を有する内燃機関の可変動弁装置において、機関冷機時における極低負荷域では、吸気弁の作動角が最少作動角、吸気弁の作動角の中心位相が最遅角位相に設定され、この機関冷機時における極低負荷域からの機関加速時には作動角変更機構よりも位相変更機構優先的に進角側に駆動させることを特徴としている。
【0007】
つまり、同一負荷域からの加速時であっても、機関回転数又は機関温度に基づいて、優先的に駆動させる変更機構を切換制御する。これにより、加速時におけるトルクの落ち込みを防止して、機関運転性能の向上を図ることが可能となる。
【0008】
また、請求項2に係る発明は、極低負荷域における吸気弁の作動角の中心位相が、機関冷機時では暖機後よりも遅角側に設定されることを特徴としている。
【0009】
請求項3に係る発明は、極低負荷・極低回転域からの加速時には、冷機時では位相変更機構を優先的に駆動し、暖機後では作動角変更機構を優先的に駆動することを特徴としている。
【0010】
請求項4に係る発明は、機関始動時の加速時には、冷機時では位相変更機構を優先的に駆動し、暖機後では作動角変更機構を優先的に駆動することを特徴としている。
【0011】
請求項5に係る発明は、冷機時における極低負荷域からの加速時には、極低回転域では位相変更機構を優先的に駆動し、低回転域では作動角変更機構を優先的に駆動することを特徴としている。
【0012】
請求項6に係る発明は、上記作動角変更機構が電動式であることを特徴としている。
【0013】
請求項7に係る発明は、極低負荷域における吸気弁の作動角が、冷機時では暖機後よりも小さくなるように設定されていることを特徴としている。
【0014】
請求項8に係る発明は、上記作動角変更機構が、気駆動軸に相対回転可能に外嵌されて、吸気弁を開閉させる揺動カムと、上記吸気駆動軸に偏心して設けられた駆動カムと、この駆動カムに相対回転可能に外嵌するリング状リンクと、御軸に偏心して設けられた制御カムと、この制御カムに相対回転可能に外嵌するとともに、一端が上記リング状リンクに連結されたロッカアームと、このロッカアームの他端と上記揺動カムとに連結されたロッド状リンクと、を有することを特徴としている。
【0015】
請求項9に係る発明は、上記吸気駆動軸の回転角度を検出する手段と、この吸気駆動軸の回転角度に基づいて吸気弁の作動角の実中心位相を検知する位相検知手段と、上記制御軸の回転角度を検出する手段と、この制御軸の回転角度に基づいて吸気弁の実作動角を検知する作動角検知手段と、を有し、上記位相検知手段により実中心位相が検知される際に、上記作動角検知手段により実作動角を検知して、吸気弁の作動角の目標値を設定することを特徴としている。
【0016】
【発明の効果】
請求項1に係る発明によれば、機関回転数又は機関温度に応じて、機関加速時におけるトルクを効率的に増加させて、機関運転性の向上を図ることができる。
【0017】
また、位相変更機構を電動式としたので、冷機アイドル時等においても位相を確実に変化させることができる。このため、請求項2に係る発明のように、アイドル等の極低負荷域で、冷機時の吸気位相を暖機後よりもさらに遅角化できる。
【0018】
このような請求項2に係る発明によれば、冷機始動時等には吸気弁の開時期を大幅に遅角化させて、ガス流動を強化し、燃焼改善及び排気清浄化を図ることができる。一方、暖機後は冷機時に比して吸気位相を相対的に進角させることにより、吸入抵抗を抑制し、燃費向上を図ることができる。つまり、冷機時における排気性能の向上と暖気後における燃費向上とを高いレベルで両立させることができる。
【0019】
請求項3又は4に係る発明によれば、極低負荷・極低回転域又は始動時からの加速時に、冷機時には位相変更機構により位相を優先的に進角させることにより、加速過渡時のトルクの落ち込みを確実に回避できる。また、冷機時よりも位相が進角している暖気時には、作動角変更機構により作動角を優先的に増加させることにより、トルクを迅速かつ効率的に増加させることができる。
【0020】
請求項5に係る発明によれば、冷機時における極軽負荷域から加速する場合、吸入時間が十分にある極低回転時には、位相変更機構を優先的に駆動して吸気位相の遅角を速やかに解消し、吸入時間が減少する低回転時には、作動角変更機構を優先的に駆動して作動角を拡大させて吸入空気量増加を図ることにより、過渡時におけるトルクを効率的に増加させることができる。
【0021】
請求項6に係る発明によれば、機関温度等にかかわらず、作動角変更機構により吸気弁の作動角を速やかに変化させることができる。このため、例えば冷機始動時等に作動角の増加に遅れを生じ易い油圧駆動式の場合に比して、冷機時における最小作動角を十分に小さく設定することができ、これにより、冷機始動時におけるガス流動が更に強化されて、燃焼が改善し、更なる排気清浄化を図ることができる。
【0022】
請求項7に係る発明によれば、冷機始動時の作動角が暖機始動時よりも更に小さくなるため、ガス流動が更に強化されて燃焼が改善され、更なる排気性能の向上を図ることができる。一方、暖気始動時には、冷機始動時に比して作動角が相対的に大きくなり、吸入抵抗が抑制されるため、燃費性能の向上を図ることができる。
【0023】
請求項8に係る発明によれば、比較的簡素な構造の両変更機構を互いに干渉することなく配置することが可能である。特に、この作動角変更機構では、駆動カムの軸受部分や制御カムの軸受部分等の各部材の連結部分が面接触となっているため、潤滑が行い易く、耐久性,信頼性に優れているとともに、作動角を変更させる際の抵抗も低く抑制される。また、吸気弁を駆動する揺動カムが吸気駆動軸と同軸上に配置されているため、例えば揺動カムを吸気駆動軸とは異なる別の支軸で支持するような構成に比して、制御精度に優れているとともに、装置自体がコンパクトなものとなり、車両搭載性が良い。
【0024】
請求項9に係る発明によれば、実吸気位相は、クランクシャフトと連動して回転する吸気駆動軸の回転毎に検知される一方、実作動角は、制御軸の角度に基づいて検知されるため、任意のタイミングで検知することができる。そこで、実吸気位相が検知されるタイミングで、実作動角を検知して、作動角の目標値を設定することにより、作動角及び位相を同時期に精度良く検知することが可能で、その制御精度が向上する。
【0025】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面を参照して説明する。
【0026】
図1は、本発明の一実施形態に係る可変動弁装置を示している。各気筒には一対の吸気弁2が設けられ、これら吸気弁2の上方には中空状の吸気駆動軸3が気筒列方向に延在している。吸気駆動軸3には、吸気弁2のバルブリフタ2aに当接して吸気弁2を開閉駆動する揺動カム4が相対回転可能に外嵌している。
【0027】
そして、吸気駆動軸3と揺動カム4との間に、吸気弁2の作動角の中心位相(吸気位相)を略一定としたままで吸気弁2の作動角及びバルブリフト量を変化させる電動式の作動角変更機構10が設けられている。また、吸気駆動軸3の一端部に、図外のクランクシャフトに対する吸気駆動軸3の位相を変化させることにより、吸気位相を変化させる電動式の位相変更機構20が配設されている。
【0028】
作動角変更機構10は、図1及び図2に示すように、吸気駆動軸3に偏心して設けられる駆動カム11と、この駆動カム11に相対回転可能に外嵌するリング状リンク12と、吸気駆動軸3と略平行に気筒列方向へ延びる制御軸13と、この制御軸13に偏心して設けられた制御カム14と、この制御カム14に相対回転可能に外嵌するとともに、一端がリング状リンク12の先端に連結されたロッカアーム15と、このロッカアーム15の他端と揺動カム4とに連結されたロッド状リンク16と、を有している。
【0029】
制御軸13は、電動アクチュエータ17によりギヤ列18を介して所定の制御範囲内で回転駆動される。エンジンコントロールユニットとしてのECU30は、角度検出センサ31,32から検出される吸気駆動軸3及び制御軸13の角度の他、各種センサ等から検出又は推定されるクランク角度,エンジン回転数,負荷,水温等の機関運転条件に基づいて、燃料噴射及び点火時期制御等の一般的なエンジン制御を行う他、上記電動アクチュエータ17を駆動制御するとともに、後述する位相変更機構20を駆動制御し、吸気弁2の開閉時期及び作動角を制御する。
【0030】
上記の構成により、クランクシャフトに連動して吸気駆動軸3が回転すると、駆動カム11を介してリング状リンク12がほぼ並進移動するとともに、ロッカアーム15が制御カム14の軸心周りに揺動し、ロッド状リンク16を介して揺動カム4が揺動して吸気弁2が開閉駆動される。
【0031】
また、制御軸13の回転角度を変化させることにより、ロッカアーム15の揺動中心となる制御カム14の軸心位置が変化して揺動カム4の姿勢が変化する。これにより、吸気弁2の作動角の中心位相が略一定のままで、吸気弁2の作動角(開閉期間)及びバルブリフト量が連続的に変化する。
【0032】
このような作動角変更機構10は、駆動カム11の軸受部分や制御カム14の軸受部分等の各部材の連結部分が面接触となっているため、潤滑が行い易く、耐久性,信頼性に優れているとともに、作動角を変更させる際の抵抗も低く抑制される。また、吸気弁2を駆動する揺動カム4が吸気駆動軸3と同軸上に配置されているため、例えば揺動カムを吸気駆動軸3とは異なる別の支軸で支持するような構成に比して、制御精度に優れているとともに、装置自体がコンパクトなものとなり、車両搭載性が良い。
【0033】
図3は、電動式の位相変更機構20を示している。この位相変更機構20の構成については、特開平10−153105号公報にも開示されているように公知であり、簡単に説明すると、クランクシャフトと同期して回転する第1回転体21と、吸気駆動軸3とともに回転する第2回転体22との間に、ヘリカルスプラインを介して両者21,22に噛合する環状のピストン23が介装されている。そして、このピストン23を電磁ソレノイド24により軸方向へ駆動することにより、回転体21,22の相対位相が変化して、クランクシャフトに対する吸気駆動軸3の位相が可変制御される。上記の電磁ソレノイド24は、上述したECU30からの制御信号により機関運転状態に応じて駆動制御される。
【0034】
次に、図4を参照して本実施形態に係る吸気作動角及び吸気位相の一設定例を説明する。なお、後述する吸気位相の値は、進角側を正とするとP1<P2<P3<P4<P5の関係にある。
【0035】
先ず、暖気後のバルブリフト特性について説明する。アイドル等の極低負荷域(a2)では、吸気位相を所定の遅角位相P2に設定するとともに、吸気作動角を最小作動角に設定して、吸気弁の開時期を上死点後、吸気弁の閉時期を下死点近傍とする。これにより、残留ガスが低減されるとともに、ピストン上面が上死点から吸気負圧に晒されず、ある程度ピストンが変位して筒内が負圧となってから吸気弁が開くこととなるために、ポンプ損失が低減される。また、吸気作動角が最小化されているため、フリクションが低減されるとともに、ガス流動が強化され、燃料の霧化が促進される。この結果、燃費及び排気性能の向上が図られる。
【0036】
中負荷域(c)では、主に残留ガスの増加によるポンプ損失低減化及び高温の残留ガスによる燃焼改善等を図るために、吸気弁開時期を上死点前とし、かつ、主に吸入空気量(充填効率)の低減化によりポンプ損失の低減を図るために、吸気弁閉時期を下死点前とする。そこで、上記の最小作動角よりも大きい所定の小作動角に設定するとともに、吸気位相を最進角位相P5に設定する。
【0037】
上記の中負荷域(c)より吸気量の少ない低負荷域(b)では、主に燃焼悪化の防止及び残留ガスの低減化を図るため、吸気作動角を上記の最小作動角から小作動角の間の値に設定し、かつ、吸気位相を所定の進角位相P4に設定する。これにより、有効圧縮比の増加に伴うポンプ損失の低減化により燃費向上が図られる。
【0038】
全開域(d)〜(f)では、主に充填効率を向上させるため、吸気位相を所定の中間位相P3又はその近傍に設定するとともに、機関回転数の増加に伴って吸気作動角を増加させる。例えば、全開・低速域(d)では、IVOを略上死点とし、IVCを下死点後に設定する。
【0039】
一方、冷機始動時のように、機関温度が所定値以下の冷機状態におけるアイドル等の極低負荷域(a1)では、触媒暖機が不十分のため、燃焼改善による排気清浄化及び排温上昇を図るため、吸気作動角を最小作動角、吸気位相を最遅角位相P1に設定し、IVOを上死点よりも大幅に遅角させる。このような設定により、ガス流動強化による燃料の霧化が促進されるとともに、IVOの遅角化により筒内負圧を十分発達させた後に吸気弁が開くこととなり、吸気弁の開時におけるガス流動が更に強化される。
【0040】
なお、図示していないが、冷機状態における低・中負荷域では、暖機状態のリフト特性(b),(c)と同一にすると燃焼が悪化する可能性があるため、例えば低速・全開域のリフト特性(d)と略同一の設定にする等の必要がある。
【0041】
上述したアイドル域の吸気作動角及び吸気位相の設定制御の流れについて、図8のフローチャートを参照して詳述する。S(ステップ)1において、アイドル状態であると判定されると、S2へ進み、機関温度等から冷機時か暖機後であるかが判定される。冷機時の場合にはS3へ進み、吸気作動角を最小作動角に、吸気位相を最遅角位相P1に設定する。一方、暖機時には、吸気作動角を上記の最小値よりも大きい所定の小作動角に、吸気位相を上記の遅角位相P2に設定する。
【0042】
なお、このフローチャートでは、図4(a2)の設定と異なり、機関始動時等の極低負荷域における吸気弁の作動角が、機関冷機時では暖機後よりも小さくなるように設定されている。この場合、冷機始動時には、作動角が暖機時に比して小さくなるため、ガス流動が強化されて燃焼が改善される。一方、暖気始動時には、冷機始動時に比して作動角が相対的に大きくなり、吸入抵抗が抑制されるため、燃費性能の向上を図ることができる。
【0043】
次に、図5〜7を参照して、各運転状態から加速を行う場合について検討する。なお、図中のL1は、加速前の運転状態における吸気作動角及び吸気位相の基準設定に対応した基準特性を表している。また、L2は、目標作動角及び目標位相に対応した目標特性を、L3は、上記の基準特性L1に対して吸気作動角のみを目標作動角へ向けて所定量変化させた状態の特性を、L4は、基準特性L1に対して吸気位相のみを目標位相へ向けて所定量変化させた状態の特性を、それぞれ表している。
【0044】
先ず、図5を参照して、冷機時における極低負荷域(冷機アイドル状態)からの加速について考察する。冷機アイドル状態では、上述したように吸気位相が最遅角位相P1に設定されている。従って、極低負荷域で、吸気作動角のみを増加させた場合、吸気弁閉時期が過度に遅くなる等の理由で、トルクが一時的に減少するおそれがある。例えば図5に示す第1の回転数N1よりも低い回転域では、基準特性L1よりも作動角増加後の特性L3のトルクが低くなっているため、作動角のみを変化させるとトルクが一時的に減少することとなる。
【0045】
一方、このような極低負荷からの加速時に吸気位相のみを進角させても、確実にトルクが増加方向へ向かう。従って、このような極低負荷・極低回転域からの加速時には、位相変更機構20による吸気位相の進角化を優先的に行う。つまり、位相変更機構20のみを駆動し、あるいは位相変更機構20による吸気位相の変更量が作動角変更機構10による作動角の変更量よりも十分に大きくなるように制御する。これにより、この加速過渡時におけるトルクが確実に増加方向へ向かうこととなり、過渡時のトルク低下を確実に回避できる。
【0046】
ところで、この冷機アイドル状態の基準設定(最小作動角及び最遅角位相)L1は、主に燃焼改善を図る目的で、極低回転域よりも回転数がある程度高い低回転域でも使用される。しかしながら、機関回転数が高くなってくると、同一作動角では吸入時間が減少するため、吸気位相のみを進角させても、全開トルクを効果的に増加させることができない。従って、極低回転域(例えば図5に示す作動角増加状態の特性L3と位相進角状態の特性L4とでトルクが逆転する第2の回転数N2以下の回転域)では、上述したように吸気位相を優先的に進角させ、低回転域(例えば第2の回転数N2を越える回転域)では、吸気作動角を優先的に増加させることにより、トルクを最も効率的に増加させることができる。
【0047】
次に、図6を参照して暖気後の状態で極低負荷域から加速を行う場合について考察する。暖気後の極低負荷域では、主に吸入抵抗を抑制して燃費向上を図るために、上述したように吸気位相を最遅角位相P1よりも進角した暖機後遅角位相P2に設定している。つまり、主に有効圧縮比を高めて燃焼の改善を図るために、吸気弁閉時期を冷機時よりも進角化させている。従って、仮に吸気位相のみを進角させると、有効圧縮比や充填効率が低下し、有効にトルクを増加させることができないことがある。そこで、このような暖機後の極低負荷域からの加速時には、吸気作動角を優先的に増加させることにより、トルクを効率的に増加させることができる。
【0048】
このように、同一負荷域から加速を行う場合であっても、機関回転数又は機関温度(冷機又は暖機)の少なくとも一方に基づいて、作動角変更機構10又は位相変更機構20の一方を優先的に駆動させることにより、トルクを効率的に増加させることができ、運転性の向上を図ることができる。
【0049】
次に、図7を参照して暖機後の状態で低負荷域から加速を行う場合について考察する。低負荷域からの加速時には、図7において特性L3及びL4の双方とも基準特性L1よりトルクが高いことから明らかなように、作動角を増加させても位相を遅角させてもトルクは増加する。しかしながら、図7において、作動角増加状態の特性L3が位相遅角状態の特性L4よりも常にトルクが高いことから明らかなように、機関回転数にかかわらず、作動角変更機構10による吸気作動角の増加を位相変更機構20による吸気位相の遅角化よりも優先させることにより、効率的にトルクを増加させることができる。
【0050】
なお、図示していないが、図4(c)のような中負荷域からの加速については、作動角の増加を優先させるとIVOが過度に早くなって吸気弁とピストンとが干渉する可能性があるので、好ましくは位相変更機構20による吸気位相の遅角化を優先的に行う。
【0051】
以上のように本実施形態では、位相変更機構20を電動式の構成としているため、機関温度(冷機時・高温時)にかかわらず、吸気位相を速やかに変化させることが可能となる。つまり、冷機時に位相変更遅れを生じやすい油圧駆動に対して、冷機時にも迅速に位相を変化させることができる。これより、冷機始動時に吸気弁開時期を大幅に遅角化させてガス流動を強化し、燃焼の改善,排気清浄化を図ることができる。また、暖機後には吸気位相を少し進角させることにより、吸入抵抗を低減して燃費の向上を図る。これより、冷機時における排気の清浄化と暖気後の燃費向上とを高いレベルで両立させることが可能となる。
【0052】
また、作動角変更機構10も電動式の構成としているため、冷機始動時や極低回転時においても確実かつ迅速に吸気作動角を変更することができる。つまり、このような電動式の作動角変更機構10を採用することにより、例えば低速域でも作動角変更機構10を優先的に駆動させることが可能となる。また、機関温度(冷機時又は暖機後)にかかわらず作動角を迅速に増加させることができる。このため、冷機時に作動角の増加遅れを生じ易い油圧駆動式の構成に比して、最小作動角を十分に小さく設定することが可能で、これより、冷機始動時におけるガス流動を効果的に強化させて燃焼を改善し、更なる排気の清浄化を図ることが可能となる。
【0053】
このように双方の変更機構10,20を電動式としているため、上述したように、加速過渡期の途中であっても、両変更機構10,20の優先度を切り換えるような制御が可能となる。
【0054】
ところで、この実施形態のように、吸気駆動軸3の角度検出センサ31からの検出信号に基づいて、クランク角度に対する吸気駆動軸3の中心位相の実測値(実中心位相)を検知する構成の場合、吸気駆動軸3の1回転毎に吸気位相が検知されることとなる。一方、制御軸13の角度検出センサ32からの検出信号に基づいて、吸気作動角の実測値(実作動角)を検知する構成の場合、その検知間隔は自由であり、任意のタイミングで実作動角を検知することができる。従って、実吸気位相が検知されるタイミングにあわせて、実作動角を検知することにより、同時期に検出される実吸気位相及び実作動角に基づいて吸気作動角,吸気位相の目標値の設定等の制御を行うことができ、その制御精度が向上する。
【0055】
このような制御の流れを、図9のフローチャートを参照して詳述する。S11において、吸気駆動軸3の角度検出センサ31からの検出信号に基づいて実吸気位相が検知されると、S12へ進み、制御軸13の角度検出センサ32の検出信号に基づいて、実作動角を検知する。続くS13において、加速状態にあると判定されると、S14へ進み、機関温度等に基づいて冷機状態か暖機後かを判定する。冷機時の場合、S16へ進み、機関回転数に基づいて極低回転域か低回転域かを判定する。極低回転域の場合、S17へ進み、位相変更機構20を優先的に駆動する制御を行う。一方、低回転域の場合にはS18へ進み、作動角変更機構10を優先的に駆動する制御を行う。
【0056】
また、S14において暖機後と判定された場合、S15へ進み、吸気弁開時期(IVO)が過度に早いか否かを判定する。過度に早い場合は、上記のS17へ進み、位相変更機構20を優先的に駆動する制御を行う。比較的遅いと判定された場合、上記のS16へ進み、機関回転数に応じていずれの変更機構10,20を優先的に駆動するかを判定する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る可変動弁装置を示す概略斜視図。
【図2】上記可変動弁装置の作動角変更機構を示す断面対応図。
【図3】上記可変動弁装置の位相変更機構を示す断面図。
【図4】上記実施形態の作用説明図。
【図5】冷機アイドル域からの加速時の説明図。
【図6】暖機アイドル域からの加速時の説明図。
【図7】暖機低負荷域からの加速時の説明図。
【図8】アイドル域における吸気作動角及び吸気位相の設定制御の流れを示すフローチャート。
【図9】変更機構の優先度の設定制御の流れを示すフローチャート。
【符号の説明】
2…吸気弁
3…吸気駆動軸
4…揺動カム
10…作動角変更機構
11…駆動カム
12…リング状リンク
13…制御軸
14…制御カム
15…ロッカアーム
16…ロッド状リンク
20…位相変更機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operating angle changing mechanism that changes an operating angle of an intake valve (hereinafter abbreviated as an intake operating angle if necessary) and a central phase of an operating angle of an intake valve (hereinafter abbreviated as an intake phase as required). And a phase change mechanism that changes the pressure control mechanism of the internal combustion engine.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 2000-18056 discloses a valve lift amount changing mechanism that changes the valve lift amount and operating angle of the intake valve, a valve timing changing mechanism that changes the opening / closing timing of the intake valve (the center phase of the operating angle), Is disclosed. In this publication, only the intake phase is changed by the valve timing changing mechanism without changing the valve lift amount in the low rotation range.
[0003]
[Problems to be solved by the invention]
In an apparatus having two such change mechanisms, when changing both the operating angle and phase of the intake valve, such as during a transition period in which the engine operating state changes, particularly during acceleration to increase the engine speed, There is a possibility that the opening / closing timing of the intake valve temporarily becomes undesirable and the driving performance is deteriorated. For example, when only the operating angle is increased during acceleration from the idle state set to the minimum operating angle and the most retarded angle phase by both changing mechanisms, the closing timing of the intake valve becomes excessively late, and the torque temporarily May decrease.
[0004]
In addition, even when accelerating from the same load range, if both change mechanisms are driven and controlled in the same way at the time of cooling and after warming up, the torque may not be increased effectively during cooling or warming up. is there.
[0005]
The present invention has been made in view of such problems, and an object thereof is to increase torque quickly and efficiently during engine acceleration.
[0006]
[Means for Solving the Problems]
In view of this, the invention according to claim 1 provides a variable motion of an internal combustion engine having an operating angle changing mechanism that changes the operating angle of the intake valve and an electric phase changing mechanism that changes the center phase of the operating angle of the intake valve. In the valve device, in the extremely low load range when the engine is cold, the intake valve operating angle is set to the minimum operating angle, and the central phase of the intake valve operating angle is set to the most retarded angle phase. During acceleration of the engine, the phase change mechanism is preferentially driven to the advance side rather than the operating angle change mechanism.
[0007]
That is, even when accelerating from the same load range, the change mechanism that is driven preferentially is controlled based on the engine speed or the engine temperature. As a result, it is possible to prevent the torque from dropping during acceleration and improve the engine operating performance.
[0008]
The invention according to claim 2 is characterized in that the center phase of the operating angle of the intake valve in the extremely low load region is set to the retard side when the engine is cold than after the warm-up.
[0009]
According to the third aspect of the present invention, when accelerating from an extremely low load / ultra-low rotation range, the phase change mechanism is preferentially driven when cold, and the operating angle change mechanism is preferentially driven after warm-up. It is a feature.
[0010]
The invention according to claim 4 is characterized in that at the time of acceleration at the time of engine start, the phase change mechanism is preferentially driven when the engine is cold, and the operating angle change mechanism is preferentially driven after the engine is warmed up.
[0011]
The invention according to claim 5 preferentially drives the phase change mechanism in the extremely low rotation range and preferentially drives the operating angle change mechanism in the low rotation range when accelerating from the extremely low load range during cold operation. It is characterized by.
[0012]
The invention according to claim 6 is characterized in that the operating angle changing mechanism is electrically operated.
[0013]
The invention according to claim 7 is characterized in that the operating angle of the intake valve in the extremely low load region is set to be smaller at the time of cold operation than after warm-up.
[0014]
Driving invention of claim 8, the operating angle change mechanism, is fitted to be rotatable relative to the air intake drive shaft, a swing cam for opening and closing the intake valve, which is provided eccentrically on the intake drive shaft a cam, and a ring-shaped link fitted relatively rotatably to the drive cam, control and control shaft control cam provided eccentrically, as well as fitted as to be relatively rotatable to the control cam, one end of the ring-shaped It has a rocker arm connected to the link, and a rod-like link connected to the other end of the rocker arm and the swing cam.
[0015]
The invention according to claim 9 is a means for detecting the rotation angle of the intake drive shaft, a phase detection means for detecting the actual center phase of the operating angle of the intake valve based on the rotation angle of the intake drive shaft, and the control Means for detecting the rotation angle of the shaft, and operating angle detection means for detecting the actual operating angle of the intake valve based on the rotation angle of the control shaft, and the actual center phase is detected by the phase detection means. In this case, the actual operating angle is detected by the operating angle detecting means, and a target value of the operating angle of the intake valve is set.
[0016]
【The invention's effect】
According to the first aspect of the invention, the engine operability can be improved by efficiently increasing the torque during engine acceleration in accordance with the engine speed or the engine temperature.
[0017]
Moreover, since the phase change mechanism is an electric type, the phase can be reliably changed even when the engine is cold. Therefore, as in the invention according to claim 2, in the extremely low load region such as idle, the intake phase at the time of cooling can be further retarded than after warming up.
[0018]
According to the second aspect of the present invention, the opening timing of the intake valve can be greatly retarded at the time of cold start, etc., gas flow can be strengthened, combustion improvement and exhaust purification can be achieved. . On the other hand, after the warm-up, the intake phase is relatively advanced as compared with the cold-time, thereby suppressing the suction resistance and improving the fuel consumption. That is, it is possible to achieve both a high level of improvement in exhaust performance when cold and high fuel efficiency after warming up.
[0019]
According to the invention according to claim 3 or 4, torque during acceleration transient can be obtained by preferentially advancing the phase by the phase change mechanism during cold, when accelerating from an extremely low load / ultra low rotation range or starting. Can be reliably avoided. In addition, during warm-up when the phase is advanced compared to when cold, the operating angle can be increased quickly and efficiently by preferentially increasing the operating angle by the operating angle changing mechanism.
[0020]
According to the fifth aspect of the present invention, when accelerating from an extremely light load range during cold operation, the phase change mechanism is preferentially driven and the retardation of the intake phase is quickly performed at the time of extremely low rotation with sufficient intake time. When the engine speed is low and the intake time decreases, the operating angle change mechanism is preferentially driven to increase the operating angle to increase the intake air volume, thereby effectively increasing the torque during the transition. Can do.
[0021]
According to the sixth aspect of the invention, the operating angle of the intake valve can be quickly changed by the operating angle changing mechanism regardless of the engine temperature or the like. For this reason, for example, the minimum operating angle at the time of cooling can be set sufficiently small as compared with the case of the hydraulic drive type that tends to cause a delay in the increase of the operating angle at the time of starting the cold machine. This further enhances the gas flow, improving combustion and further purifying exhaust gas.
[0022]
According to the seventh aspect of the present invention, since the operating angle at the time of cold start is further smaller than that at the time of warm start, the gas flow is further strengthened to improve the combustion, and the exhaust performance can be further improved. it can. On the other hand, at the time of warm-up start, the operating angle becomes relatively larger than that at the time of cold start, and the suction resistance is suppressed, so that fuel efficiency can be improved.
[0023]
According to the invention which concerns on Claim 8, it is possible to arrange | position both change mechanisms of a comparatively simple structure, without interfering with each other. In particular, in this operating angle changing mechanism, since the connecting portions of the members such as the bearing portion of the drive cam and the bearing portion of the control cam are in surface contact, lubrication is easy, and durability and reliability are excellent. At the same time, the resistance when changing the operating angle is also kept low. In addition, since the swing cam that drives the intake valve is disposed coaxially with the intake drive shaft, for example, compared to a configuration in which the swing cam is supported by another support shaft different from the intake drive shaft, In addition to excellent control accuracy, the device itself is compact and has good vehicle mountability.
[0024]
According to the ninth aspect of the present invention, the actual intake phase is detected every time the intake drive shaft rotates in conjunction with the crankshaft, while the actual operating angle is detected based on the angle of the control shaft. Therefore, it can be detected at an arbitrary timing. Therefore, by detecting the actual operating angle at the timing when the actual intake phase is detected and setting the target value of the operating angle, it is possible to accurately detect the operating angle and phase at the same time, and the control Accuracy is improved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 shows a variable valve operating apparatus according to an embodiment of the present invention. Each cylinder is provided with a pair of intake valves 2. A hollow intake drive shaft 3 extends in the cylinder row direction above the intake valves 2. A swing cam 4 that contacts the valve lifter 2a of the intake valve 2 and opens and closes the intake valve 2 is fitted on the intake drive shaft 3 so as to be relatively rotatable.
[0027]
Then, between the intake drive shaft 3 and the swing cam 4, electric operation is performed to change the operation angle and valve lift amount of the intake valve 2 while keeping the central phase (intake phase) of the operation angle of the intake valve 2 substantially constant. An operating angle changing mechanism 10 of the type is provided. Further, an electric phase changing mechanism 20 that changes the intake phase by changing the phase of the intake drive shaft 3 with respect to a crankshaft (not shown) is disposed at one end of the intake drive shaft 3.
[0028]
As shown in FIGS. 1 and 2, the operating angle changing mechanism 10 includes a drive cam 11 that is eccentrically provided on the intake drive shaft 3, a ring-shaped link 12 that is externally fitted to the drive cam 11 so as to be relatively rotatable, and an intake air A control shaft 13 extending substantially parallel to the drive shaft 3 in the cylinder row direction, a control cam 14 provided eccentric to the control shaft 13, and externally fitted to the control cam 14 so as to be rotatable relative to each other. The rocker arm 15 is connected to the tip of the link 12, and the rod-like link 16 is connected to the other end of the rocker arm 15 and the swing cam 4.
[0029]
The control shaft 13 is driven to rotate within a predetermined control range via the gear train 18 by the electric actuator 17. The ECU 30 as an engine control unit includes an angle of the intake drive shaft 3 and the control shaft 13 detected by the angle detection sensors 31 and 32, a crank angle detected or estimated by various sensors, an engine speed, a load, and a water temperature. In addition to performing general engine control such as fuel injection and ignition timing control based on the engine operating conditions such as the above, the electric actuator 17 is driven and controlled, and the phase changing mechanism 20 described later is driven and controlled, and the intake valve 2 Controls opening and closing timing and operating angle.
[0030]
With the above configuration, when the intake drive shaft 3 rotates in conjunction with the crankshaft, the ring-shaped link 12 moves substantially in translation through the drive cam 11 and the rocker arm 15 swings around the axis of the control cam 14. Then, the swing cam 4 swings via the rod-shaped link 16 and the intake valve 2 is driven to open and close.
[0031]
Further, by changing the rotation angle of the control shaft 13, the axial center position of the control cam 14 that becomes the swing center of the rocker arm 15 is changed, and the posture of the swing cam 4 is changed. As a result, the operating angle (opening / closing period) and the valve lift amount of the intake valve 2 continuously change while the central phase of the operating angle of the intake valve 2 remains substantially constant.
[0032]
In such an operating angle changing mechanism 10, since the connecting portions of the members such as the bearing portion of the drive cam 11 and the bearing portion of the control cam 14 are in surface contact, lubrication is easy and durability and reliability are improved. While being excellent, the resistance at the time of changing an operating angle is also suppressed low. In addition, since the swing cam 4 that drives the intake valve 2 is arranged coaxially with the intake drive shaft 3, for example, the swing cam is supported by another support shaft different from the intake drive shaft 3. In comparison, the control accuracy is excellent, the device itself is compact, and the vehicle mountability is good.
[0033]
FIG. 3 shows an electric phase change mechanism 20. The configuration of the phase changing mechanism 20 is known as disclosed in Japanese Patent Application Laid-Open No. 10-153105. Briefly, the first rotating body 21 that rotates in synchronization with the crankshaft, the intake air, Between the 2nd rotary body 22 rotated with the drive shaft 3, the cyclic | annular piston 23 meshed with both 21 and 22 via the helical spline is interposed. Then, by driving the piston 23 in the axial direction by the electromagnetic solenoid 24, the relative phase of the rotating bodies 21 and 22 changes, and the phase of the intake drive shaft 3 with respect to the crankshaft is variably controlled. The electromagnetic solenoid 24 is driven and controlled according to the engine operating state by the control signal from the ECU 30 described above.
[0034]
Next, a setting example of the intake operation angle and the intake phase according to the present embodiment will be described with reference to FIG. Note that the value of the intake phase to be described later has a relationship of P1 <P2 <P3 <P4 <P5 when the advance side is positive.
[0035]
First, the valve lift characteristics after warming up will be described. In an extremely low load range (a2) such as idling, the intake phase is set to a predetermined retarded phase P2, the intake operating angle is set to the minimum operating angle, and the intake valve is opened after top dead center. The valve closing timing is near the bottom dead center. As a result, the residual gas is reduced and the upper surface of the piston is not exposed to the negative intake pressure from the top dead center, and the intake valve is opened after the piston is displaced to some extent and the cylinder becomes negative pressure. , Pump loss is reduced. Further, since the intake operating angle is minimized, the friction is reduced, the gas flow is enhanced, and the atomization of fuel is promoted. As a result, fuel efficiency and exhaust performance are improved.
[0036]
In the middle load range (c), in order to reduce pump loss mainly due to an increase in residual gas and improve combustion due to high-temperature residual gas, the intake valve opening timing is set to before the top dead center, and mainly the intake air In order to reduce pump loss by reducing the amount (filling efficiency), the intake valve closing timing is set before the bottom dead center. Therefore, a predetermined small operating angle larger than the minimum operating angle is set, and the intake phase is set to the most advanced angle phase P5.
[0037]
In the low load range (b) where the intake air amount is smaller than the middle load range (c), the intake operating angle is reduced from the minimum operating angle to a small operating angle in order to prevent combustion deterioration and reduce residual gas. And the intake phase is set to a predetermined advance phase P4. As a result, fuel efficiency is improved by reducing pump loss accompanying an increase in effective compression ratio.
[0038]
In the fully open areas (d) to (f), in order to mainly improve the charging efficiency, the intake phase is set at or near the predetermined intermediate phase P3, and the intake operating angle is increased as the engine speed increases. . For example, in the fully open / low speed range (d), IVO is set to approximately the top dead center, and IVC is set after the bottom dead center.
[0039]
On the other hand, in an extremely low load region (a1) such as an idling in a cold state where the engine temperature is equal to or lower than a predetermined value, such as at the time of cold start, catalyst warm-up is insufficient, so exhaust purification and exhaust temperature increase due to combustion improvement Therefore, the intake operating angle is set to the minimum operating angle, the intake phase is set to the most retarded angle phase P1, and the IVO is significantly retarded from the top dead center. With this setting, fuel atomization by gas flow enhancement is promoted, and the intake valve opens after the cylinder negative pressure is sufficiently developed by retarding the IVO. The flow is further strengthened.
[0040]
Although not shown in the figure, in the low / medium load range in the cold state, combustion may deteriorate if the lift characteristics (b) and (c) in the warm state are the same. The lift characteristics (d) must be set substantially the same.
[0041]
The flow of setting control of the intake operating angle and intake phase in the idling region described above will be described in detail with reference to the flowchart of FIG. If it is determined in S (step) 1 that the engine is in the idling state, the process proceeds to S2, where it is determined whether the engine is cold or warmed based on the engine temperature or the like. If it is cold, the process proceeds to S3, where the intake operation angle is set to the minimum operation angle, and the intake phase is set to the most retarded angle phase P1. On the other hand, at the time of warm-up, the intake operation angle is set to a predetermined small operation angle larger than the minimum value, and the intake phase is set to the retard angle phase P2.
[0042]
In this flowchart, unlike the setting shown in FIG. 4 (a2), the operating angle of the intake valve in an extremely low load region such as when the engine is started is set to be smaller when the engine is cold than after warming up. . In this case, since the operating angle becomes smaller at the time of cold start than at the time of warm-up, the gas flow is strengthened and combustion is improved. On the other hand, at the time of warm-up start, the operating angle becomes relatively larger than that at the time of cold start, and the suction resistance is suppressed, so that fuel efficiency can be improved.
[0043]
Next, with reference to FIGS. 5-7, the case where it accelerates from each driving | running state is considered. Note that L1 in the figure represents a reference characteristic corresponding to the reference setting of the intake operation angle and the intake phase in the driving state before acceleration. L2 is a target characteristic corresponding to the target operating angle and target phase, and L3 is a characteristic in a state where only the intake operating angle is changed by a predetermined amount toward the target operating angle with respect to the reference characteristic L1. L4 represents a characteristic in a state in which only the intake phase is changed by a predetermined amount toward the target phase with respect to the reference characteristic L1.
[0044]
First, with reference to FIG. 5, the acceleration from the extremely low load region (cold idle state) during cold operation will be considered. In the cold machine idle state, as described above, the intake phase is set to the most retarded phase P1. Therefore, when only the intake operating angle is increased in the extremely low load region, there is a possibility that the torque may temporarily decrease because the intake valve closing timing is excessively delayed. For example, in the rotation range lower than the first rotation speed N1 shown in FIG. 5, the torque of the characteristic L3 after the increase of the operating angle is lower than the reference characteristic L1, and therefore the torque is temporarily changed when only the operating angle is changed. Will be reduced.
[0045]
On the other hand, even if only the intake phase is advanced during acceleration from such an extremely low load, the torque surely goes in the increasing direction. Therefore, at the time of acceleration from such an extremely low load and extremely low rotation range, the phase change mechanism 20 preferentially advances the intake phase. That is, only the phase change mechanism 20 is driven, or the change amount of the intake phase by the phase change mechanism 20 is controlled to be sufficiently larger than the change amount of the operating angle by the operating angle changing mechanism 10. As a result, the torque during the acceleration transition is surely moved in the increasing direction, and the torque drop during the transition can be reliably avoided.
[0046]
By the way, the reference setting (minimum operating angle and most retarded angle phase) L1 of the cold idle state is used also in a low rotational speed range where the rotational speed is somewhat higher than the extremely low rotational speed range, mainly for the purpose of improving combustion. However, as the engine speed increases, the intake time decreases at the same operating angle, so that the fully open torque cannot be increased effectively even if only the intake phase is advanced. Therefore, in the extremely low rotation range (for example, the rotation range below the second rotation speed N2 in which the torque is reversed between the characteristic L3 in the increased operating angle state and the characteristic L4 in the phase advance state shown in FIG. 5), as described above. Torque can be increased most efficiently by preferentially advancing the intake phase and preferentially increasing the intake operation angle in a low rotation range (for example, a rotation range exceeding the second rotation speed N2). it can.
[0047]
Next, a case where acceleration is performed from an extremely low load range in a state after warm-up will be considered with reference to FIG. In the extremely low load range after warming up, the intake phase is set to the post-warming retarded phase P2 that is advanced from the most retarded phase P1, as described above, mainly in order to suppress the intake resistance and improve fuel efficiency. is doing. That is, in order to improve the combustion mainly by increasing the effective compression ratio, the intake valve closing timing is advanced more than the cold engine. Therefore, if only the intake phase is advanced, the effective compression ratio and the charging efficiency may be reduced, and the torque may not be increased effectively. Therefore, during acceleration from such an extremely low load range after warm-up, the torque can be efficiently increased by preferentially increasing the intake operating angle.
[0048]
Thus, even when acceleration is performed from the same load range, priority is given to one of the operating angle changing mechanism 10 or the phase changing mechanism 20 based on at least one of the engine speed or the engine temperature (cold or warmed up). By driving automatically, the torque can be increased efficiently and drivability can be improved.
[0049]
Next, a case where acceleration is performed from a low load range in a state after warm-up will be considered with reference to FIG. When accelerating from the low load range, as is apparent from the fact that both the characteristics L3 and L4 have higher torque than the reference characteristic L1 in FIG. 7, the torque increases even if the operating angle is increased or the phase is retarded. . However, in FIG. 7, as apparent from the fact that the characteristic L3 in the increased operating angle state is always higher in torque than the characteristic L4 in the retarded phase state, the intake operating angle by the operating angle changing mechanism 10 regardless of the engine speed. The torque can be increased efficiently by giving priority to the increase in the acceleration to the retardation of the intake phase by the phase change mechanism 20.
[0050]
Although not shown, for acceleration from the middle load region as shown in FIG. 4C, if priority is given to an increase in the operating angle, there is a possibility that the IVO becomes excessively fast and the intake valve and the piston interfere with each other. Therefore, preferably, the phase change mechanism 20 preferentially retards the intake phase.
[0051]
As described above, in the present embodiment, since the phase change mechanism 20 has an electric configuration, the intake phase can be quickly changed regardless of the engine temperature (when cold or hot). That is, the phase can be changed quickly even when the engine is cold, as opposed to the hydraulic drive that tends to cause a phase change delay when the engine is cold. As a result, the intake valve opening timing is greatly retarded at the time of cold start to enhance the gas flow, thereby improving combustion and purifying exhaust. Also, after warming up, the intake phase is slightly advanced to reduce intake resistance and improve fuel efficiency. As a result, it is possible to achieve both a high level of purification of exhaust gas when cold and improved fuel efficiency after warming up.
[0052]
Further, since the operating angle changing mechanism 10 is also of an electric type, the intake operating angle can be changed reliably and quickly even when the cold machine is started or at extremely low speed. That is, by employing such an electric operating angle changing mechanism 10, for example, the operating angle changing mechanism 10 can be preferentially driven even in a low speed range. In addition, the operating angle can be quickly increased regardless of the engine temperature (during cold or after warm-up). For this reason, it is possible to set the minimum operating angle sufficiently small compared to the hydraulic drive type configuration that tends to cause an increase in operating angle during cold operation. It is possible to improve the combustion and improve the exhaust emission.
[0053]
Thus, since both the change mechanisms 10 and 20 are motorized, as described above, control can be performed so as to switch the priority of both the change mechanisms 10 and 20 even during the acceleration transition period. .
[0054]
By the way, as in this embodiment, based on the detection signal from the angle detection sensor 31 of the intake drive shaft 3, the actual value (actual center phase) of the center phase of the intake drive shaft 3 with respect to the crank angle is detected. The intake phase is detected every rotation of the intake drive shaft 3. On the other hand, in the case of a configuration in which an actual measured value (actual operating angle) of the intake operating angle is detected based on a detection signal from the angle detection sensor 32 of the control shaft 13, the detection interval is free and the actual operation is performed at an arbitrary timing. Corners can be detected. Therefore, by detecting the actual operating angle in accordance with the timing at which the actual intake phase is detected, setting the target value for the intake operating angle and the intake phase based on the actual intake phase and actual operating angle detected at the same time The control accuracy can be improved.
[0055]
The flow of such control will be described in detail with reference to the flowchart of FIG. In S11, when the actual intake phase is detected based on the detection signal from the angle detection sensor 31 of the intake drive shaft 3, the process proceeds to S12, and the actual operating angle is determined based on the detection signal of the angle detection sensor 32 of the control shaft 13. Is detected. In subsequent S13, if it is determined that the vehicle is in the acceleration state, the process proceeds to S14, and it is determined whether the engine is in the cold state or after the warm-up based on the engine temperature or the like. When the engine is cold, the process proceeds to S16, and it is determined whether the engine is in the extremely low speed range or the low speed range based on the engine speed. In the case of the extremely low rotation range, the process proceeds to S17, and control for preferentially driving the phase changing mechanism 20 is performed. On the other hand, in the case of the low rotation range, the process proceeds to S18, and the control for preferentially driving the operating angle changing mechanism 10 is performed.
[0056]
If it is determined in S14 that the engine has been warmed up, the process proceeds to S15 to determine whether the intake valve opening timing (IVO) is excessively early. If it is too early, the process proceeds to S17 described above, and control for preferentially driving the phase change mechanism 20 is performed. If it is determined that it is relatively slow, the process proceeds to S16, and it is determined which of the change mechanisms 10 and 20 is preferentially driven according to the engine speed.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a variable valve operating apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an operating angle changing mechanism of the variable valve operating apparatus.
FIG. 3 is a sectional view showing a phase changing mechanism of the variable valve operating apparatus.
FIG. 4 is an operation explanatory diagram of the embodiment.
FIG. 5 is an explanatory diagram at the time of acceleration from a cold machine idle region.
FIG. 6 is an explanatory diagram during acceleration from a warm-up idle range.
FIG. 7 is an explanatory diagram during acceleration from a warm-up low load region.
FIG. 8 is a flowchart showing a flow of setting control of an intake operation angle and an intake phase in an idle range.
FIG. 9 is a flowchart showing a flow of priority setting control of the change mechanism.
[Explanation of symbols]
2 ... Intake valve 3 ... Intake drive shaft 4 ... Oscillating cam 10 ... Operating angle changing mechanism 11 ... Drive cam 12 ... Ring link 13 ... Control shaft 14 ... Control cam 15 ... Rocker arm 16 ... Rod link 20 ... Phase changing mechanism

Claims (9)

吸気弁の作動角を変化させる作動角変更機構と、吸気弁の作動角の中心位相を変化させる電動式の位相変更機構と、を有する内燃機関の可変動弁装置において、
機関冷機時における極低負荷域では、吸気弁の作動角が最少作動角、吸気弁の作動角の中心位相が最遅角位相に設定され、
この機関冷機時における極低負荷域からの機関加速時には作動角変更機構よりも位相変更機構優先的に進角側に駆動させることを特徴とする内燃機関の可変動弁装置。
In a variable valve operating apparatus for an internal combustion engine having an operating angle changing mechanism that changes the operating angle of the intake valve and an electric phase changing mechanism that changes the center phase of the operating angle of the intake valve,
In the extremely low load range when the engine is cold, the intake valve operating angle is set to the minimum operating angle, and the center phase of the intake valve operating angle is set to the most retarded angle phase.
The engine when the engine is accelerating from cold extremely low load region at the time, the variable valve device for an internal combustion engine, characterized in that to drive the phase change mechanism to preferentially advance side of the operating angle altering mechanism.
極低負荷域における吸気弁の作動角の中心位相が、機関冷機時では暖機後よりも遅角側に設定されることを特徴とする請求項1に記載の内燃機関の可変動弁装置。2. The variable valve operating system for an internal combustion engine according to claim 1, wherein the center phase of the operating angle of the intake valve in the extremely low load region is set to a retarded angle side after warming up when the engine is cold. 極低負荷・極低回転域からの加速時には、冷機時では位相変更機構を優先的に駆動し、暖機後では作動角変更機構を優先的に駆動することを特徴とする請求項2に記載の内燃機関の可変動弁装置。3. The acceleration according to claim 2, wherein when accelerating from an extremely low load / ultra-low rotation range, the phase change mechanism is preferentially driven when the engine is cold, and the operating angle changing mechanism is preferentially driven after the engine is warmed up. The variable valve operating apparatus for an internal combustion engine. 機関始動時の加速時には、冷機時では位相変更機構を優先的に駆動し、暖機後では作動角変更機構を優先的に駆動することを特徴とする請求項2に記載の内燃機関の可変動弁装置。3. The variable motion of the internal combustion engine according to claim 2, wherein at the time of acceleration at the time of starting the engine, the phase change mechanism is preferentially driven when the engine is cold, and the operating angle change mechanism is preferentially driven after the engine is warmed up. Valve device. 冷機時における極低負荷域からの加速時には、極低回転域では位相変更機構を優先的に駆動し、低回転域では作動角変更機構を優先的に駆動することを特徴とする請求項1〜4のいずれかに記載の内燃機関の可変動弁装置。The first aspect of the invention is characterized in that when accelerating from an extremely low load region during cold machine, the phase change mechanism is preferentially driven in the extremely low rotation region, and the operating angle changing mechanism is preferentially driven in the low rotation region. 5. The variable valve operating apparatus for an internal combustion engine according to any one of 4 above. 上記作動角変更機構が電動式であることを特徴とする請求項1〜5のいずれかに記載の内燃機関の可変動弁装置。6. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the operating angle changing mechanism is an electric type. 極低負荷域における吸気弁の作動角が、冷機時では暖機後よりも小さくなるように設定されていることを特徴とする請求項1〜6のいずれかに記載の内燃機関の可変動弁装置。The variable valve for an internal combustion engine according to any one of claims 1 to 6, wherein the operating angle of the intake valve in an extremely low load range is set to be smaller when the engine is cold than after the engine is warmed up. apparatus. 上記作動角変更機構が、気駆動軸に相対回転可能に外嵌されて、吸気弁を開閉させる揺動カムと、上記吸気駆動軸に偏心して設けられた駆動カムと、この駆動カムに相対回転可能に外嵌するリング状リンクと、御軸に偏心して設けられた制御カムと、この制御カムに相対回転可能に外嵌するとともに、一端が上記リング状リンクに連結されたロッカアームと、このロッカアームの他端と上記揺動カムとに連結されたロッド状リンクと、を有することを特徴とする請求項1〜7のいずれかに記載の内燃機関の可変動弁装置。The working angle changing mechanism, it is fitted to be rotatable relative to the air intake drive shaft, a swing cam for opening and closing the intake valve, a drive cam provided eccentrically to the intake drive shaft, relative to the drive cam a ring-shaped link rotatably fitted, braking control cam eccentrically provided on your axis, as well as fitted as to be relatively rotatable to the control cam, a rocker arm having one end connected to the ring shaped link, The variable valve operating apparatus for an internal combustion engine according to any one of claims 1 to 7, further comprising: a rod-shaped link connected to the other end of the rocker arm and the swing cam. 上記吸気駆動軸の回転角度を検出する手段と、
この吸気駆動軸の回転角度に基づいて吸気弁の作動角の実中心位相を検知する位相検知手段と、
上記制御軸の回転角度を検出する手段と、
この制御軸の回転角度に基づいて吸気弁の実作動角を検知する作動角検知手段と、を有し、
上記位相検知手段により実中心位相が検知される際に、上記作動角検知手段により実作動角を検知して、吸気弁の作動角の目標値を設定することを特徴とする請求項8に記載の内燃機関の可変動弁装置。
Means for detecting the rotation angle of the intake drive shaft;
Phase detection means for detecting the actual center phase of the operating angle of the intake valve based on the rotation angle of the intake drive shaft;
Means for detecting the rotation angle of the control shaft;
An operating angle detecting means for detecting the actual operating angle of the intake valve based on the rotation angle of the control shaft,
9. The target value of the intake valve operating angle is set by detecting the actual operating angle by the operating angle detecting means when the actual center phase is detected by the phase detecting means. The variable valve operating apparatus for an internal combustion engine.
JP2000279418A 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine Expired - Fee Related JP4433591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279418A JP4433591B2 (en) 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279418A JP4433591B2 (en) 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002089304A JP2002089304A (en) 2002-03-27
JP4433591B2 true JP4433591B2 (en) 2010-03-17

Family

ID=18764425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279418A Expired - Fee Related JP4433591B2 (en) 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4433591B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261838B2 (en) * 2002-08-13 2009-04-30 株式会社日立製作所 Actuator device
JP2008303773A (en) * 2007-06-07 2008-12-18 Hitachi Ltd Variable valve system of internal combustion engine
JP4858729B2 (en) * 2008-11-12 2012-01-18 三菱自動車工業株式会社 Variable valve gear
JP5206565B2 (en) * 2009-04-15 2013-06-12 トヨタ自動車株式会社 Internal combustion engine control system
EP2584179B1 (en) * 2010-06-16 2018-05-16 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5273306B2 (en) * 2010-07-05 2013-08-28 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2002089304A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3912147B2 (en) Variable valve operating device for internal combustion engine
JP4336444B2 (en) Variable valve operating device for internal combustion engine
JP4516401B2 (en) Engine start control device
JP4957611B2 (en) Control method for internal combustion engine
JP3783589B2 (en) Variable valve operating device for internal combustion engine
US7481199B2 (en) Start control apparatus of internal combustion engine
JP4792882B2 (en) Control device for internal combustion engine
JP4136926B2 (en) Start control device and start control method for internal combustion engine
JP2009030584A (en) Control apparatus for internal combustion engine
JP3829629B2 (en) Combustion control device for internal combustion engine
JP4366850B2 (en) Valve control device for internal combustion engine
JP4345197B2 (en) Knocking control device for internal combustion engine
JP4433591B2 (en) Variable valve operating device for internal combustion engine
US20190285005A1 (en) Variable system of internal combustion engine and method for controlling the same
JP4697485B2 (en) Start control device for internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP4423775B2 (en) Variable valve operating device for internal combustion engine
JP4126791B2 (en) Variable valve operating device for internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP3889063B2 (en) Valve operating device for internal combustion engine
JP3909299B2 (en) Valve operating device for internal combustion engine
JP4470305B2 (en) Variable valve operating device for internal combustion engine
JP4136161B2 (en) Variable valve operating device for internal combustion engine
JPH11247637A (en) Variable valve system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees