JP4423775B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP4423775B2
JP4423775B2 JP2000279419A JP2000279419A JP4423775B2 JP 4423775 B2 JP4423775 B2 JP 4423775B2 JP 2000279419 A JP2000279419 A JP 2000279419A JP 2000279419 A JP2000279419 A JP 2000279419A JP 4423775 B2 JP4423775 B2 JP 4423775B2
Authority
JP
Japan
Prior art keywords
phase
retarded
intake
internal combustion
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000279419A
Other languages
Japanese (ja)
Other versions
JP2002089305A (en
Inventor
信一 竹村
孝伸 杉山
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000279419A priority Critical patent/JP4423775B2/en
Publication of JP2002089305A publication Critical patent/JP2002089305A/en
Application granted granted Critical
Publication of JP4423775B2 publication Critical patent/JP4423775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0073Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "Delphi" type

Description

【0001】
【発明の属する技術分野】
本発明は、吸気弁の作動角(以下、必要に応じて吸気作動角と略す)を変化させる作動角変更機構と、吸気弁の作動角の中心位相(以下、必要に応じて吸気位相と略す)を変化させる位相変更機構と、を有する内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
特開平11−210424号公報には、ベーンを用いた油圧駆動式の位相変更機構が開示されている。つまり、この位相変更機構は、クランクシャフトと同期して回転するハウジングと、吸気弁を開閉駆動するカムシャフトとともに回転するベーン体と、を備え、油圧アクチュエータによりハウジングとベーン体とを相対的に回動させることにより、クランクシャフトに対するカムシャフトの相対位相を変化させて、吸気弁の作動角の中心位相(開閉時期)を可変制御するようになっている。
【0003】
また、ハウジングとベーンとが不用意に相対回動し易い機関始動直後の油圧が非常に低い状態で、カムシャフトの位相(吸気弁の作動角の中心位相)を最遅角位置(位相)に確実に保持するために、この最遅角位置で互いに係合可能な最遅角位置ロックピン及びロック孔がハウジング及びベーン体にそれぞれ設けられている。
【0004】
加えて、この最遅角位相の係止を解除してから油温が十分に上昇するまでの間に、ハウジングとベーンとが不用意に相対回動することのないように、カムシャフトの位相を所定の中間位相に保持する中間位置ロックピン及びロック孔がハウジング及びベーン体のそれぞれに設けられている。
【0005】
上記の最遅角位置ロックピン及び中間位置ロックピンは、クランクシャフトによって駆動される油圧ポンプからの供給油圧によって駆動されるようになっている。
【0006】
【発明が解決しようとする課題】
しかしながら、この公報の位相変更機構では、機関始動時には、最遅角位置ロックピンへ常時供給されている油圧ポンプからの機関油圧がスプリングの付勢力に打ち勝って最遅角位置ロックピンが係止解除方向へ移動することによって、最遅角位相の係止解除がなされるように構成されているため、初期・経時劣化等による油圧・オイル粘度のばらつき等により、機関始動から最遅角位置の係止が解除されるまでの期間にばらつきを生じ易く、排気性能に悪影響を及ぼすおそれがある。
【0007】
特に、冷機状態での機関始動時には、機関油圧の上昇が遅れる傾向にあるため、最遅角位置の係止解除までの期間が過度に長くなるおそれがある。
【0008】
また、この公報の装置には、吸気弁の作動角を変化させる作動角変更機構が設けられていないので、当然のことながら、機関運転状態に応じて吸気弁の作動角を調整することができない。
【0009】
本発明の一つの目的は、作動角変更機構及び位相変更機構の双方を吸気弁に適用した構成において、特に冷機始動時における機関性能の向上を図ることにある。
【0010】
【課題を解決するための手段】
そこで、請求項1に係る発明は、吸気弁の作動角を変化させる作動角変更機構と、吸気弁の作動角の中心位相を変化させる位相変更機構と、を有する内燃機関の可変動弁装置において、上記中心位相を最遅角位相に保持する第1の保持手段と、少なくとも暖機後のアイドル域で、上記中心位相を上記最遅角位相よりも進角した暖機後遅角位相に保持する第2の保持手段と、機関温度又は機関始動後の経過時間を検知する検知手段と、を有し、冷機始動時には、上記第1の保持手段により上記中心位相を最遅角位相に保持させるとともに、上記機関温度又は機関始動後の経過時間が所定の基準値以上となったときに、上記第1の保持手段による最遅角位相の保持を解除することを特徴としている。
【0011】
また上記中心位相を検知する位相検知手段を有し、上記第2の保持手段により暖機後遅角位相に保持されている状態での冷機始動時には、燃料噴射を開始する前に、上記第2の保持手段による暖機後遅角位相の保持を解除して、上記位相変更機構により上記中心位相を最遅角位相へ向けて遅角させることを特徴としている。
【0012】
更に、上記中心位相の最遅角位相への到達が検知又は予測されるまで、燃料噴射を禁止することを特徴としている。
【0013】
請求項に係る発明は、少なくとも上記最遅角位相から暖機後遅角位相への移行時には、上記中心位相の進角化に応じて点火時期を進角させることを特徴としている。
【0014】
請求項に係る発明は、上記位相変更機構が電動式であることを特徴としている。
【0015】
請求項に係る発明は、上記位相変更機構が油圧駆動式であることを特徴としている。
【0016】
請求項に係る発明は、上記位相変更機構が、クランクシャフトと同期して回転する第1の回転体と、吸気弁を開閉させる吸気駆動軸とともに回転する第2の回転体と、供給油圧に応じて第1の回転体と第2の回転体とを相対的に回動させる油圧駆動手段と、を有し、上記第1の保持手段及び第2の保持手段のそれぞれが、上記第1の回転体及び第2の回転体の一方に設けられ、供給油圧に応じて駆動される係合ピンと、上記第1の回転体及び第2の回転体の他方に設けられ、上記係合ピンが係合可能な係合孔と、上記係合ピンへの供給油圧を切り換える油圧制御弁と、を有することを特徴としている。
【0017】
請求項に係る発明は、上記第2の保持手段の係合ピンへ油圧を供給する油圧ポンプが、外部電源により駆動されることを特徴としている。
【0018】
請求項に係る発明は、冷機始動時に、上記第2の保持手段による暖機後遅角位相の保持状態から保持解除状態への切換が可能であることを特徴としている。
【0019】
請求項に係る発明は、少なくとも上記最遅角位相に保持されている状態では、上記作動角変更機構により吸気弁の作動角が最小作動角に設定されることを特徴としている。
【0020】
【発明の効果】
請求項1に係る発明によれば、作動角変更機構及び位相変更機構の双方を吸気弁に適用した構成において、冷機始動時には吸気作動角の中心位相を最遅角位相に保持させることで、吸気弁の開時期を上死点よりも遅角した状態に安定して保持することができる。これにより、筒内が負圧となった後に吸気弁が開くこととなり、ガス流動の強化による燃料の霧化が促進され、燃焼性能が改善されて、点火時期の遅角化及び排気性能の向上等を図ることができる。
【0021】
そして、このような冷機始動時に、機関温度又は機関始動後の経過時間が所定の基準値以上となったところで、第1の保持手段による最遅角位相の保持を解除する構成としたため、上記公報の装置のように機関油圧に応じて最遅角位相の保持を解除する構成に比して、初期劣化等によるばらつきが抑制され、ひいては冷機始動時における排気性能等が向上される。
【0022】
また、暖機後のアイドル域では、上記中心位相が最遅角位相よりも進角した暖機後遅角位相に保持されるため、主にポンプ損失の低減化を図ることができる。
【0023】
更に、第2の保持手段により暖機後遅角位相に保持されている冷機状態で機関を始動させた場合に、燃料噴射を行う前のクランキング中に、暖機後遅角位相の保持を解除して、上記中間位相を最遅角位相へ遅角させて、最遅角位相となるまで燃料噴射を行わない構成としたため、冷機始動時に最遅角位相から外れた状態で燃料噴射が行われるおそれがなく、これに起因する運転性の低下を確実に防止できる。
【0024】
請求項に係る発明によれば、図9にも示すように、最遅角位相から暖機後遅角位相への移行時には、吸気位相の進角化に伴うガス流動の強化・燃料の霧化促進に見合う形で、点火時期の位相が進角化されることとなり、燃焼安定性の低下を招くことなく、排温上昇等の排気性能を有効に向上させることができる。
【0025】
請求項に係る発明によれば、位相変更機構が電動式であるため、冷機始動時のように機関油圧が非常に低い状態であっても、位相変更機構により吸気位相を確実かつ迅速に変更,保持することが可能となる。つまり、冷機始動時に吸気位相を速やかに最遅角位相へ移行させて、この最遅角位相に保持し、機関温度又は機関始動後の経過時間が所定の基準値以上となったときに、吸気位相を速やかに進角させることができる。
【0026】
請求項4,5に係る発明によれば、位相変更機構を油圧駆動式とすることにより、その構造が簡素化され、コストの低減化を図ることができる。つまり、安価かつ簡素な位相変更機構で冷機始動時の排気性能の向上を図れる。
【0027】
請求項6,7に係る発明によれば、油圧駆動式の簡素な構造の位相変更機構でありながら、暖機後遅角位相に保持された状態での冷機始動時に、燃料噴射を開始する前のクランキング中であっても、暖機後遅角位相の保持状態を速やかに解除して、吸気位相を最遅角位相へ向けて遅角させることが可能となる。
【0028】
請求項に係る発明によれば、冷機始動時には吸気弁が最遅角位相かつ最小作動角の設定となるため、吸気弁の開弁後も作動角の最小化によるガス流動効果を利用でき、かつ、作動角の最小化により吸気弁の閉時期が適宜に進角化される形となり、有効圧縮比が高くなって燃焼安定性が向上し、更なる排気性能の向上を図ることができる。
【0029】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面を参照して説明する。
【0030】
図1は、本発明の第1実施形態に係る可変動弁装置を示している。各気筒には一対の吸気弁2が設けられ、これら吸気弁2の上方には中空状の吸気駆動軸3が気筒列方向に延在している。吸気駆動軸3には、吸気弁2のバルブリフタ2aに当接して吸気弁2を開閉駆動する揺動カム4が相対回転可能に外嵌している。
【0031】
そして、吸気駆動軸3と揺動カム4との間に、吸気弁2の作動角の中心位相(吸気位相)を略一定としたままで吸気弁2の作動角及びバルブリフト量を連続的に変化させる作動角変更機構10が設けられている。また、吸気駆動軸3の一端部に、図外のクランクシャフトに対する吸気駆動軸3の位相を変化させることにより、吸気位相を連続的に変化させる位相変更機構20が配設されている。
【0032】
作動角変更機構10は、図2にも示すように、吸気駆動軸3に偏心して設けられる駆動カム11と、この駆動カム11に相対回転可能に外嵌するリング状リンク12と、吸気駆動軸3と略平行に気筒列方向へ延びる制御軸13と、この制御軸13に偏心して設けられた制御カム14と、この制御カム14に相対回転可能に外嵌するとともに、一端がリング状リンク12の先端に連結されたロッカアーム15と、このロッカアーム15の他端と揺動カム4とに連結されたロッド状リンク16と、を有している。
【0033】
制御軸13は、電動アクチュエータ17によりギヤ列18を介して所定の制御範囲内で回転駆動される。エンジンコントロールユニットとしてのECU30は、角度検出センサ31,32から検出される吸気駆動軸3及び制御軸13の角度の他、各種センサ等から検出又は推定されるクランク角度,エンジン回転数,負荷,水温等の機関運転条件に基づいて、燃料噴射及び点火時期制御等の一般的なエンジン制御を行う他、上記電動アクチュエータ17を駆動制御するとともに、後述する位相変更機構20を駆動制御し、吸気弁2の開閉時期及び作動角を制御する。
【0034】
上記の構成により、クランクシャフトに連動して吸気駆動軸3が回転すると、駆動カム11を介してリング状リンク12がほぼ並進移動するとともに、ロッカアーム15が制御カム14の軸心周りに揺動し、ロッド状リンク16を介して揺動カム4が揺動して吸気弁2が開閉駆動される。
【0035】
また、制御軸13の回転角度を変化させることにより、ロッカアーム15の揺動中心となる制御カム14の軸心位置が変化して揺動カム4の姿勢が変化する。これにより、吸気位相が略一定のままで、吸気弁2の作動角(開閉期間)及びバルブリフト量が連続的に変化する。
【0036】
このような作動角変更機構10は、駆動カム11の軸受部分や制御カム14の軸受部分等の各部材の連結部分が面接触となっているため、潤滑が行い易く、耐久性,信頼性に優れているとともに、作動角を変更させる際の抵抗も低く抑制される。また、吸気弁2を駆動する揺動カム4が吸気駆動軸3と同軸上に配置されているため、例えば揺動カムを吸気駆動軸3とは異なる別の支軸で支持するような構成に比して、制御精度に優れているとともに、装置自体がコンパクトなものとなり、車両搭載性が良い。
【0037】
図3は、電動式の位相変更機構20を示している。この位相変更機構20の構成については、特開平10−153105号公報にも開示されているように公知であり、簡単に説明すると、クランクシャフトと同期して回転する第1回転体21と、吸気駆動軸3とともに回転する第2回転体22との間に、ヘリカルスプラインを介して両者21,22に噛合する環状のピストン23が介装されている。そして、このピストン23を電磁ソレノイド24により軸方向へ駆動することにより、回転体21,22の相対位相が変化して、クランクシャフトに対する吸気駆動軸3の位相が可変制御される。上記の電磁ソレノイド24は、上述したECU30からの制御信号により機関運転状態に応じて駆動制御される。
【0038】
次に、図4を参照して本実施形態に係る吸気作動角及び吸気位相の一設定例を説明する。なお、後述する吸気位相の値は、進角側を正とするとP1<P2<P3<P4<P5の関係にある。
【0039】
冷機始動時のように、機関温度が所定温度以下の冷機状態で、かつ無負荷状態を含む極低負荷域であるアイドル域(a1)では、作動角変更機構10により吸気弁2の作動角を最小作動角にするとともに、位相変更機構20により吸気位相を最遅角位相P1に設定,保持する。つまり、このような冷機始動時では、触媒の暖機促進化及び燃焼改善化に伴う排気清浄化や排温上昇を図るために、上記のように最小作動角及び最遅角位相P1として、IVO(吸気開時期)を最も遅角させる。この結果、作動角の最小化によりガス流動が強化されるとともに、IVOの遅角化により筒内負圧が十分発達した後に吸気弁が開弁することとなり、吸気弁の開時期におけるガス流動が強化されて、燃料霧化が促進される。
【0040】
一方、暖機後におけるアイドル域(a2)では、作動角変更機構10により吸気弁2の作動角を最小作動角にするとともに、位相変更機構20により吸気位相を上記の最遅角位相P1よりも進角した所定の暖機後遅角位相P2に設定,保持する。つまり、残留ガスの低減化及びポンプ損失の低減化(ピストン上面を上死点から吸気負圧に晒さず、ある程度ピストン変位して筒内が負圧となってから吸気弁を開くことによるポンプ損失の低減化)のために、吸気弁開時期は上死点後とし、かつ、主に燃焼改善のために吸気弁閉時期は下死点近傍とし、更に、主にフリクション低減化及びガス流動強化による燃料の霧化促進化のために、吸気作動角を最小作動角とする。これにより、暖機後におけるアイドル域(a2)で、燃費・排気性能の向上を図ることができる。
【0041】
また、暖機後の中負荷域(c)では、残留ガスの増加によるポンプ損失の低減化及び高温の残留ガスによる燃焼改善化等を図るため、吸気弁開時期を上死点前とし、かつ、主に吸入吸気量(充填効率)の低減化によるポンプ損失低減化を図るために、吸気弁閉時期を下死点前とすることが望ましい。そこで、上述した暖機後のアイドル域(a2)に対し、作動角変更機構10により吸気弁の作動角を上記の最小作動角よりも大きい所定の小作動角とするとともに、位相変更機構20により吸気位相を最進角位相P5とする。
【0042】
更に、上記の中負荷域(c)より要求吸気量の少ない暖機後の低負荷域(b)では、主に燃焼悪化の防止及び残留ガス量の低減化のために、吸気弁2の作動角を、上記の最小作動角から小作動角の間の値に設定するとともに、吸気位相を所定の進角位相P4に設定し、有効圧縮比によるポンプ損失低減効果で燃費向上を図る。
【0043】
暖機後の全開域(d)〜(f)では、吸気位相を所定の中間位相P3近傍に設定するとともに、機関回転数の増加に伴って作動角を増加させることにより、充填効率を向上させる。例えば低回転域(d)では、IVOが上死点よりわずかに進角し、IVCが下死点よりわずかに遅角するように設定する。
【0044】
なお、アイドル以外の冷機時におけるバルブリフト特性を明記してないが、例えば冷機時における低・中負荷域のリフト特性を上記の暖機後のリフト特性(b),(c)と同じように設定すると、燃焼が悪化する可能性があるため、例えば暖機後の低速全開域のリフト特性(d)と略同一にする等の必要がある。
【0045】
次に、第2実施形態について説明する。この第2実施形態は、図5〜7に示すように、図1等に示す第1実施形態の電動式の位相変更機構20を、簡素な構成で安価に実現できる油圧駆動式の位相変更機構40とした点で、第1実施形態と異なっている。なお、その他の構成は上記第1実施形態とほぼ同様であり、同一部分には同じ参照符号を付して重複する説明を適宜省略する。
【0046】
この油圧駆動式の位相変更機構40は、基本的には上記の特開平11−210424号公報に記載されているものと同様の構成である。簡単に説明すると、位相変更機構40は、クランクシャフトと同期して回転する第1回転体としてのハウジング41と、吸気駆動軸3と一体的に回転する第2回転体としてのベーン体42と、を有している。ハウジング41内部は仕切壁部43によって複数の区画室に区画されており、各区画室が、ベーン体42のベーン44によって進角側油圧室45と遅角側油圧室46とに隔成されている。
【0047】
進角側油圧室45及び遅角側油圧室46には、クランクシャフトにより駆動される油圧源としての油圧ポンプ47から機関油圧が供給される。油圧ポンプ47と各油圧室45,46との間の油圧通路には、油圧制御弁48が設けられている。この油圧制御弁48は、上記のECU30からの制御信号に基づいて、各油圧室45,46への供給油圧を切替制御し、これにより、ハウジング41とベーン体42との相対回転位置が変化して、クランクシャフトに対する吸気駆動軸3の位相が変化し、吸気位相が可変制御される。
【0048】
このような油圧式の位相変更機構40においては、機関始動時等のように、機関回転数や機関油圧が非常に低い状態のときに、バルブスプリング反力等に起因するトルク変動によりベーン44がハウジング41に対して不用意に回動し、騒音を発生する等のおそれがある。そこで、図5及び図6に示すように、吸気位相を最遅角位相P1に機械的に係止,保持する第1の保持機構50と、この最遅角位相よりも進角した所定の暖機後遅角位相P2に機械的に係止,保持する第2の保持機構60と、が設けられている。
【0049】
図7に示すように、各保持機構50,60には、最遅角位相P1又は暖機後遅角位相P2の際に互いに係合する係合ピン51,61及び係合孔52,62が、それぞれベーン44とハウジング41とに設けられている。各係合ピン51,61は、それぞれスプリング53,63により嵌合方向(図7の下方向)へ常に付勢されており、各油圧通路54,64を介して導入される油圧ポンプ55,65からの油圧が所定圧を越えると、スプリング53,63の付勢力に抗して各係合孔52,62から抜けて、保持状態が解除され得るようになっている。上記の油圧通路54,64へ導入される油圧は、それぞれ油圧制御弁56,66によって切替制御される。各油圧制御弁56,66は、上記のECU30からの制御信号により機関運転状態に応じて制御される。
【0050】
ここで、後述するように、冷機始動時のように機関油圧がほぼゼロのような状態でも、暖機後遅角位相P2の保持状態の解除を確実に行えるように、少なくとも第2保持機構60の第2油圧ポンプ65は、モータ等の外部電源により駆動される油圧ポンプとなっている。同様に、第1保持機構50の第1油圧ポンプ55も、好ましくは上記の油圧ポンプ65のように外部電源を有するタイプとされる。
【0051】
次に、この第2実施例の作用を図4を参照して説明する。基本的には、第1実施形態と同じ様に吸気弁2の開閉時期が制御される。すなわち、冷機状態での機関始動時(a1)には、燃料を霧化し難く、HC排出量が増加し易い。また、冷機時には燃焼状態があまり良くないので、点火時期を十分に遅角できず、排温も上昇し難い。そこで、作動角変更機構10により吸気弁の作動角を最小作動角に設定するとともに第1保持機構50により吸気位相を最遅角位相P1に保持させる。これにより、吸気弁開時期が遅角化され、ピストン降下と共に筒内が負圧となり、吸気弁開とした場合にバルブに付着した燃料が適宜に吹き飛ばされて、燃料霧化が促進される。また、最小作動角とすることにより筒内ガス流動が強化されて、燃焼が改善される。さらに、作動角の最小化により吸気弁の閉時期が過度に遅角することがなく、十分な有効圧縮比を確保することが可能となる。
【0052】
一方、暖機後のアイドル域(a2)では、作動角変更機構10により最小作動角に設定することにより、上述したように燃焼が改善されるものの、仮に吸気位相が最遅角位相P1となっていると、ピストンが負圧に晒される期間が長くなり、ポンプ損失が増大して燃費の悪化を招くおそれがある。このため、暖機後のアイドル域では、第2保持機構60により吸気位相を暖機後遅角位相P2に保持させる。
【0053】
以上のように、第1,第2実施形態では、例えば機関温度に基づいて、冷機時か暖機後かを判断し、冷機時には、主に排気性能の向上を図るために、吸気位相を速やかに最遅角位相P1に保持させる。上記の機関温度は、水温,油温,あるいは触媒活性化状態を検知するセンサ等から求められ、あるいは単純に始動後の経過時間から推定される。
【0054】
また、上記の位相変更機構20,40は、ON−OFF式の2位置切換型の構成でもよいが、機関温度や始動後の経過時間等に応じて連続的に制御(デューティー制御)することにより、更に機関運転条件に応じて吸気位相を細かく調整することが可能で、例えばポンプ損失を最小限とすることにより更なる燃費向上を図ることもできる。
【0055】
機関運転条件によっては、暖機後に機関を停止し、冷機状態で再始動の可能性がある。この場合、吸気位相が暖機後遅角位相P2に保持された状態で機関停止されることとなり、このように暖機後遅角位相P2に保持された状態で冷機始動時に燃料噴射が行われると、十分な排気清浄効果等が得られない。
【0056】
そこで、上記の第1実施形態では、クランキング中、つまりイグニッションスイッチのオンを検出してから燃料噴射を開始する前に、電動式の位相変更機構20により暖機後遅角位相P2の保持状態を解除して吸気位相を最遅角位相P1へ速やかに移行させる。そして吸気位相の最遅角位相P1への到達が確認又は予想された時点で、燃料噴射及び点火時期制御を開始する。これより、冷機始動後に吸気位相が最遅角位相P1から外れた状態で燃焼が行われるおそれがなく、これに起因する排気性能の低下を確実に防止することができる。
【0057】
また、第2実施形態のように安価な油圧駆動式の位相変更機構40を用いた場合でも、同様の効果が得られる。すなわち、第2保持機構60により暖機後遅角位相P2に保持された状態での冷機始動時には、燃料噴射を開始する前のクランキング中に、第2保持機構60による暖機後遅角位相P2の保持状態を解除して、吸気位相を速やかに最遅角位相P1へ移行させる。これにより、冷機始動時に最遅角位相P1から外れた状態で燃焼が行われるおそれがなく、これに起因する排気性能の低下を確実に防止することができる。このように、冷機始動時においても、第2保持機構60により速やかに暖機後遅角位相P2の保持状態を解除し得るように、上述したように、第2保持機構60の油圧ポンプ65を外部電動モータにより駆動する構成としている。
【0058】
このような機関始動時の制御の流れを、図8のフローチャートを参照して更に詳述する。S(ステップ)1でクランキングが開始されると、S2へ進み、機関温度等に基づいて冷機状態か否かを判定する。暖機後の状態と判定された場合、S3へ進み、通常制御(吸気作動角及び吸気位相の通常制御,燃料噴射及び点火時期の制御等)を行う。一方、冷機状態と判定された場合、S4へ進み、吸気位相が実質的に最遅角位相P1に到達したかを判断する。最遅角位相P1に到達していないと判定された場合、S5へ進み、暖機後遅角位相P2に保持されている状態であれば、その保持状態を速やかに解除して、位相変更機構20,40により吸気位相を最遅角位相P1へ移行させる。そして、最遅角位相P1への到達が確認又は予測された時点で、S4からS6へ進み、燃料噴射及び点火時期制御を開始する。つまり、最遅角位相P1への到達が検知(確認)又は予測されるるまで、燃料噴射を禁止する。
【0059】
続くS7では、暖機運転が終了したかを判定する。より具体的には、燃料噴射による実質的な機関始動からの経過時間又は機関温度が所定の基準値以上かを判定する。基準値未満の場合、S8へ進み、最遅角位相P1の保持状態を継続する。基準値以上となった時点で、S7からS9へ進み、最遅角位相P1の保持状態を解除して、位相変更機構20,40により吸気位相を暖機後遅角位相P2へ向けて進角させる。
【0060】
以上のように本発明を具体的な実施の形態に基づいて説明したが、本発明は上記実施形態に限定されるものではない。例えば、第2実施形態では第2保持機構60を外部電動モータを有する油圧ポンプにより駆動する構成としているが、外部電源により直接的に第2保持機構60の係合ピン61を駆動する構成としてもほぼ同様の効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る可変動弁装置を示す概略斜視図。
【図2】作動角変更機構を示す断面対応図。
【図3】電動式の位相変更機構を示す断面図。
【図4】第1及び第2実施形態の作用説明図。
【図5】本発明の第2実施形態に係る可変動弁装置を示す概略斜視図。
【図6】油圧式の位相変更機構を示す構成図。
【図7】油圧式位相変更機構の保持機構を示す断面対応図。
【図8】機関始動時の制御の流れを示すフローチャート。
【図9】吸気位相と点火時期との関係を示す特性図。
【符号の説明】
2…吸気弁
3…吸気駆動軸
10…作動角変更機構
20…位相変更機構
21…第1回転体
22…第2回転体
40…位相変更機構
41…ハウジング(第1の回転体)
42…ベーン体(第2の回転体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operating angle changing mechanism that changes an operating angle of an intake valve (hereinafter abbreviated as an intake operating angle if necessary) and a central phase of an operating angle of an intake valve (hereinafter abbreviated as an intake phase as required). And a phase change mechanism that changes the pressure control mechanism of the internal combustion engine.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 11-210424 discloses a hydraulically driven phase change mechanism using a vane. That is, this phase change mechanism includes a housing that rotates in synchronization with the crankshaft and a vane body that rotates together with a camshaft that drives the intake valve to open and close, and the housing and the vane body are rotated relative to each other by a hydraulic actuator. By moving the camshaft, the relative phase of the camshaft with respect to the crankshaft is changed to variably control the center phase (opening / closing timing) of the operating angle of the intake valve.
[0003]
Also, the camshaft phase (the central phase of the intake valve operating angle) is set to the most retarded angle position (phase) when the hydraulic pressure immediately after engine startup is very low, where the housing and vane tend to rotate relative to each other. In order to securely hold, the housing and the vane body are provided with the most retarded angle position lock pin and the lock hole which can be engaged with each other at the most retarded angle position.
[0004]
In addition, the camshaft phase is set so that the housing and the vane do not rotate relative to each other during the period from when the most retarded phase lock is released until the oil temperature rises sufficiently. An intermediate position lock pin and a lock hole are provided in each of the housing and the vane body.
[0005]
The most retarded angle position lock pin and the intermediate position lock pin are driven by hydraulic pressure supplied from a hydraulic pump driven by a crankshaft.
[0006]
[Problems to be solved by the invention]
However, in the phase change mechanism of this publication, when the engine is started, the engine hydraulic pressure from the hydraulic pump that is always supplied to the most retarded position lock pin overcomes the urging force of the spring and the most retarded position lock pin is released. Since the most retarded phase is unlocked by moving in the direction, the position of the most retarded angle from the start of the engine due to variations in oil pressure and oil viscosity due to initial / aging deterioration, etc. The period until the stop is released is likely to vary, which may adversely affect the exhaust performance.
[0007]
In particular, when the engine is started in a cold state, the increase in engine oil pressure tends to be delayed, and therefore the period until the most retarded position is released may be excessively long.
[0008]
Further, since the device of this publication is not provided with an operating angle changing mechanism for changing the operating angle of the intake valve, it is natural that the operating angle of the intake valve cannot be adjusted according to the engine operating state. .
[0009]
One object of the present invention is to improve engine performance, particularly at the time of cold start, in a configuration in which both the operating angle changing mechanism and the phase changing mechanism are applied to an intake valve.
[0010]
[Means for Solving the Problems]
Accordingly, the invention according to claim 1 is a variable valve operating apparatus for an internal combustion engine having an operating angle changing mechanism that changes the operating angle of the intake valve and a phase changing mechanism that changes the center phase of the operating angle of the intake valve. The first holding means for holding the center phase at the most retarded angle phase, and the center phase at the retarded phase after the warm-up which is advanced from the most retarded phase at least in the idle region after the warm-up. A second holding unit that detects the engine temperature or an elapsed time after starting the engine, and at the time of cold start, the first holding unit holds the center phase at the most retarded phase. At the same time, when the engine temperature or the elapsed time after the engine start becomes a predetermined reference value or more, the holding of the most retarded phase by the first holding means is released.
[0011]
Also , At the time of cold start with the phase detection means for detecting the center phase and being held in the retarded phase after warm-up by the second holding means, before the fuel injection is started, the second It is characterized in that holding of the retarded phase after warm-up by the holding means is released and the center phase is retarded toward the most retarded phase by the phase changing mechanism.
[0012]
More The fuel injection is prohibited until the arrival of the center phase at the most retarded angle phase is detected or predicted.
[0013]
Claim 2 The invention according to the present invention is characterized in that the ignition timing is advanced in accordance with the advancement of the center phase at least during the transition from the most retarded phase to the delayed phase after warm-up.
[0014]
Claim 3 The invention according to claim is characterized in that the phase changing mechanism is electrically operated.
[0015]
Claim 4 The invention according to claim is characterized in that the phase changing mechanism is hydraulically driven.
[0016]
Claim 5 In the invention according to the first aspect, the phase changing mechanism includes a first rotating body that rotates in synchronization with the crankshaft, a second rotating body that rotates together with an intake drive shaft that opens and closes the intake valve, and a first rotating body that corresponds to the supply hydraulic pressure. Hydraulic driving means for relatively rotating the first rotating body and the second rotating body, and each of the first holding means and the second holding means includes the first rotating body and An engagement pin provided on one side of the second rotary body and driven according to the supply hydraulic pressure, and provided on the other of the first rotary body and the second rotary body, and engageable with the engagement pin It has an engagement hole and a hydraulic control valve for switching the hydraulic pressure supplied to the engagement pin.
[0017]
Claim 6 The invention according to the above is characterized in that the hydraulic pump for supplying hydraulic pressure to the engaging pin of the second holding means is driven by an external power source.
[0018]
Claim 7 The invention according to the present invention is characterized in that, at the time of cold start, the second holding means can be switched from the holding state of the retarded phase after warming up to the holding releasing state.
[0019]
Claim 8 The invention according to the present invention is characterized in that the operating angle of the intake valve is set to the minimum operating angle by the operating angle changing mechanism at least in the state where the phase is held at the most retarded angle phase.
[0020]
【The invention's effect】
According to the first aspect of the present invention, in the configuration in which both the operating angle changing mechanism and the phase changing mechanism are applied to the intake valve, the air intake operating angle is maintained at the most retarded angle phase when the cold engine is started. The valve opening timing can be stably maintained in a state delayed from the top dead center. As a result, the intake valve opens after the inside of the cylinder becomes negative pressure, fuel atomization is promoted by enhancing gas flow, combustion performance is improved, ignition timing is retarded, and exhaust performance is improved. Etc. can be achieved.
[0021]
Then, at the time of cold start, when the engine temperature or the elapsed time after the engine start becomes equal to or greater than a predetermined reference value, the configuration in which the holding of the most retarded phase by the first holding means is canceled is described above. Compared to the configuration in which the retention of the most retarded angle phase is released according to the engine oil pressure as in the above device, variation due to initial deterioration or the like is suppressed, and as a result, exhaust performance at the time of cold start is improved.
[0022]
Further, in the idle region after warm-up, the center phase is held at the delayed phase after warm-up that is advanced from the most retarded phase, so that the pump loss can be mainly reduced.
[0023]
Furthermore, When the engine is started in a cold state that is held in the retarded phase after warming up by the second holding means, the holding of the retarded phase after warming up is canceled during cranking before fuel injection. To delay the intermediate phase to the most retarded phase. And Since the fuel injection is not performed until the most retarded phase is reached, there is no risk that the fuel will be injected out of the most retarded phase at the time of cold start, and it is possible to reliably prevent a decrease in drivability due to this. .
[0024]
Claim 2 According to the invention according to FIG. 9, as shown in FIG. 9, at the time of transition from the most retarded phase to the retarded retarded phase, the gas flow is strengthened and the fuel atomization is promoted along with the advance of the intake phase. The phase of the ignition timing is advanced in a commensurate manner, and exhaust performance such as an increase in exhaust temperature can be effectively improved without deteriorating combustion stability.
[0025]
Claim 3 According to the present invention, since the phase change mechanism is electrically operated, the phase change mechanism reliably and quickly changes and holds the intake phase even when the engine oil pressure is very low, such as during cold start. It becomes possible. In other words, when the cold engine is started, the intake phase is quickly shifted to the most retarded angle phase and is maintained at this most retarded angle phase, and when the engine temperature or the elapsed time after the engine start exceeds a predetermined reference value, The phase can be rapidly advanced.
[0026]
Claim 4,5 According to the invention, the phase change mechanism is hydraulically driven, so that the structure is simplified and the cost can be reduced. That is, it is possible to improve the exhaust performance at the time of cold start with an inexpensive and simple phase change mechanism.
[0027]
Claim 6,7 According to the invention according to the present invention, it is a hydraulic drive type simple-structure phase change mechanism, but during cranking before starting fuel injection at the time of cold start in the state of being held in the retarded phase after warm-up. Even in such a case, it is possible to quickly release the hold state of the retarded phase after warming up and retard the intake phase toward the most retarded phase.
[0028]
Claim 8 According to the invention, since the intake valve is set to the most retarded phase and the minimum operating angle at the time of cold start, the gas flow effect by minimizing the operating angle can be used even after the intake valve is opened, and the operation is performed. By minimizing the angle, the closing timing of the intake valve is appropriately advanced, the effective compression ratio is increased, combustion stability is improved, and exhaust performance can be further improved.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0030]
FIG. 1 shows a variable valve operating apparatus according to a first embodiment of the present invention. Each cylinder is provided with a pair of intake valves 2. A hollow intake drive shaft 3 extends in the cylinder row direction above the intake valves 2. A swing cam 4 that contacts the valve lifter 2a of the intake valve 2 and opens and closes the intake valve 2 is fitted on the intake drive shaft 3 so as to be relatively rotatable.
[0031]
The operating angle and valve lift amount of the intake valve 2 are continuously set between the intake drive shaft 3 and the swing cam 4 while the central phase (intake phase) of the operating angle of the intake valve 2 is substantially constant. An operating angle changing mechanism 10 to be changed is provided. Further, a phase changing mechanism 20 that continuously changes the intake phase by changing the phase of the intake drive shaft 3 with respect to a crankshaft (not shown) is disposed at one end of the intake drive shaft 3.
[0032]
As shown in FIG. 2, the operating angle changing mechanism 10 includes a drive cam 11 that is eccentrically provided on the intake drive shaft 3, a ring-shaped link 12 that is externally fitted to the drive cam 11 so as to be relatively rotatable, and an intake drive shaft. 3, a control shaft 13 that extends substantially parallel to the cylinder row direction, a control cam 14 that is eccentrically provided on the control shaft 13, and a control cam 14 that is fitted on the control cam 14 so as to be relatively rotatable. And a rod-like link 16 connected to the other end of the rocker arm 15 and the swing cam 4.
[0033]
The control shaft 13 is driven to rotate within a predetermined control range via the gear train 18 by the electric actuator 17. The ECU 30 as an engine control unit includes an angle of the intake drive shaft 3 and the control shaft 13 detected by the angle detection sensors 31 and 32, a crank angle detected or estimated by various sensors, an engine speed, a load, and a water temperature. In addition to performing general engine control such as fuel injection and ignition timing control based on the engine operating conditions such as the above, the electric actuator 17 is driven and controlled, and the phase changing mechanism 20 described later is driven and controlled, and the intake valve 2 Controls opening and closing timing and operating angle.
[0034]
With the above configuration, when the intake drive shaft 3 rotates in conjunction with the crankshaft, the ring-shaped link 12 moves substantially in translation through the drive cam 11 and the rocker arm 15 swings around the axis of the control cam 14. Then, the swing cam 4 swings via the rod-shaped link 16 and the intake valve 2 is driven to open and close.
[0035]
Further, by changing the rotation angle of the control shaft 13, the axial center position of the control cam 14 that becomes the swing center of the rocker arm 15 is changed, and the posture of the swing cam 4 is changed. Thereby, the operating angle (opening / closing period) and the valve lift amount of the intake valve 2 continuously change while the intake phase remains substantially constant.
[0036]
In such an operating angle changing mechanism 10, since the connecting portions of the members such as the bearing portion of the drive cam 11 and the bearing portion of the control cam 14 are in surface contact, lubrication is easy and durability and reliability are improved. While being excellent, the resistance at the time of changing an operating angle is also suppressed low. In addition, since the swing cam 4 that drives the intake valve 2 is arranged coaxially with the intake drive shaft 3, for example, the swing cam is supported by another support shaft different from the intake drive shaft 3. In comparison, the control accuracy is excellent, the device itself is compact, and the vehicle mountability is good.
[0037]
FIG. 3 shows an electric phase change mechanism 20. The configuration of the phase changing mechanism 20 is known as disclosed in Japanese Patent Application Laid-Open No. 10-153105. Briefly, the first rotating body 21 that rotates in synchronization with the crankshaft, the intake air, Between the 2nd rotary body 22 rotated with the drive shaft 3, the cyclic | annular piston 23 meshed with both 21 and 22 via the helical spline is interposed. Then, by driving the piston 23 in the axial direction by the electromagnetic solenoid 24, the relative phase of the rotating bodies 21 and 22 changes, and the phase of the intake drive shaft 3 with respect to the crankshaft is variably controlled. The electromagnetic solenoid 24 is driven and controlled according to the engine operating state by the control signal from the ECU 30 described above.
[0038]
Next, a setting example of the intake operation angle and the intake phase according to the present embodiment will be described with reference to FIG. Note that the value of the intake phase to be described later has a relationship of P1 <P2 <P3 <P4 <P5 when the advance side is positive.
[0039]
In the idling range (a1), which is an extremely low load range including a no-load state when the engine temperature is equal to or lower than a predetermined temperature as in the cold start, the operating angle of the intake valve 2 is set by the operating angle changing mechanism 10. In addition to the minimum operating angle, the phase change mechanism 20 sets and holds the intake phase at the most retarded angle phase P1. That is, at the time of such cold start, the minimum operating angle and the most retarded angle phase P1 as described above are used as the IVO in order to purify the exhaust gas and increase the exhaust temperature accompanying the promotion of the warm-up of the catalyst and the improvement of the combustion. (Intake opening timing) is most retarded. As a result, the gas flow is strengthened by minimizing the operating angle, and the intake valve is opened after the in-cylinder negative pressure is sufficiently developed by retarding the IVO, so that the gas flow at the opening timing of the intake valve is reduced. Intensified, fuel atomization is promoted.
[0040]
On the other hand, in the idle range (a2) after warm-up, the operating angle of the intake valve 2 is set to the minimum operating angle by the operating angle changing mechanism 10, and the intake phase is set to be greater than the most retarded angle phase P1 by the phase changing mechanism 20. It is set and held at a predetermined retarded phase P2 after warm-up. In other words, reduction of residual gas and reduction of pump loss (pump loss by opening the intake valve after the piston is displaced to some extent and the cylinder becomes negative pressure without exposing the upper surface of the piston to the intake negative pressure from top dead center. The intake valve opening timing is after top dead center, and the intake valve closing timing is close to bottom dead center mainly to improve combustion. Furthermore, friction reduction and gas flow enhancement are mainly performed. In order to promote the atomization of fuel by the intake air, the intake operating angle is set to the minimum operating angle. As a result, fuel efficiency and exhaust performance can be improved in the idle region (a2) after warm-up.
[0041]
In the middle load range (c) after warm-up, the intake valve opening timing is set to before the top dead center in order to reduce the pump loss due to the increase in residual gas and improve the combustion due to the high temperature residual gas. In order to reduce the pump loss mainly by reducing the intake air intake amount (filling efficiency), it is desirable to set the intake valve closing timing before the bottom dead center. Therefore, the operating angle of the intake valve is set to a predetermined small operating angle larger than the minimum operating angle by the operating angle changing mechanism 10 with respect to the idle region (a2) after the warming-up, and the phase changing mechanism 20 Let the intake phase be the most advanced angle phase P5.
[0042]
Further, in the low load region (b) after warm-up where the required intake air amount is smaller than the medium load region (c), the operation of the intake valve 2 is mainly performed for the purpose of preventing deterioration of combustion and reducing the residual gas amount. The angle is set to a value between the minimum operating angle and the small operating angle, and the intake phase is set to a predetermined advance angle phase P4 to improve the fuel efficiency by reducing the pump loss by the effective compression ratio.
[0043]
In the fully open areas (d) to (f) after warm-up, the intake phase is set in the vicinity of the predetermined intermediate phase P3, and the operating angle is increased as the engine speed increases, thereby improving the charging efficiency. . For example, in the low rotation range (d), the IVO is advanced slightly from the top dead center, and the IVC is set slightly retarded from the bottom dead center.
[0044]
In addition, although the valve lift characteristics at the time of cooling other than idling are not specified, for example, the lift characteristics in the low / medium load region at the time of cooling are the same as the lift characteristics (b) and (c) after the warm-up described above. If it is set, combustion may be deteriorated. For example, it is necessary to make the lift characteristic (d) substantially the same as the low speed fully open region after warm-up.
[0045]
Next, a second embodiment will be described. As shown in FIGS. 5 to 7, the second embodiment is a hydraulic drive type phase change mechanism capable of realizing the electric phase change mechanism 20 of the first embodiment shown in FIG. It is different from the first embodiment in that it is 40. Other configurations are substantially the same as those of the first embodiment, and the same portions are denoted by the same reference numerals, and redundant description is appropriately omitted.
[0046]
The hydraulic drive type phase changing mechanism 40 basically has the same configuration as that described in the above Japanese Patent Laid-Open No. 11-210424. Briefly, the phase change mechanism 40 includes a housing 41 as a first rotating body that rotates in synchronization with the crankshaft, a vane body 42 as a second rotating body that rotates integrally with the intake drive shaft 3, have. The inside of the housing 41 is divided into a plurality of compartments by partition walls 43, and each compartment is divided into an advance side hydraulic chamber 45 and a retard side hydraulic chamber 46 by a vane 44 of the vane body 42. .
[0047]
The advance hydraulic chamber 45 and the retard hydraulic chamber 46 are supplied with engine hydraulic pressure from a hydraulic pump 47 as a hydraulic source driven by a crankshaft. A hydraulic control valve 48 is provided in the hydraulic passage between the hydraulic pump 47 and the hydraulic chambers 45 and 46. The hydraulic control valve 48 switches and controls the hydraulic pressure supplied to the hydraulic chambers 45 and 46 based on the control signal from the ECU 30, thereby changing the relative rotational position between the housing 41 and the vane body 42. Thus, the phase of the intake drive shaft 3 with respect to the crankshaft changes, and the intake phase is variably controlled.
[0048]
In such a hydraulic phase change mechanism 40, when the engine speed and the engine oil pressure are very low, such as when the engine is started, the vane 44 is caused by torque fluctuation caused by a valve spring reaction force or the like. There is a risk that the housing 41 may turn carelessly and generate noise. Therefore, as shown in FIGS. 5 and 6, the first holding mechanism 50 that mechanically locks and holds the intake phase at the most retarded phase P1 and a predetermined warming angle advanced from the most retarded phase. And a second holding mechanism 60 that mechanically locks and holds the after-retard retardation phase P2.
[0049]
As shown in FIG. 7, each holding mechanism 50, 60 has engagement pins 51, 61 and engagement holes 52, 62 that are engaged with each other during the most retarded phase P 1 or the warm-up retarded phase P 2. The vane 44 and the housing 41 are provided respectively. The engagement pins 51 and 61 are always urged in the fitting direction (downward in FIG. 7) by the springs 53 and 63, respectively, and hydraulic pumps 55 and 65 introduced through the hydraulic passages 54 and 64, respectively. When the hydraulic pressure from the upper side exceeds a predetermined pressure, the holding state can be released by detaching from the engagement holes 52 and 62 against the urging force of the springs 53 and 63. The hydraulic pressure introduced into the hydraulic passages 54 and 64 is switched and controlled by hydraulic control valves 56 and 66, respectively. The hydraulic control valves 56 and 66 are controlled according to the engine operating state by the control signal from the ECU 30 described above.
[0050]
Here, as will be described later, at least the second holding mechanism 60 is provided so that the held state of the retarded phase P2 after warm-up can be reliably released even in a state where the engine hydraulic pressure is substantially zero, such as at the time of cold start. The second hydraulic pump 65 is a hydraulic pump driven by an external power source such as a motor. Similarly, the first hydraulic pump 55 of the first holding mechanism 50 is preferably of a type having an external power source like the hydraulic pump 65 described above.
[0051]
Next, the operation of the second embodiment will be described with reference to FIG. Basically, the opening and closing timing of the intake valve 2 is controlled as in the first embodiment. That is, when the engine is started in the cold state (a1), it is difficult to atomize the fuel and the HC emission amount is likely to increase. Also, since the combustion state is not so good when cold, the ignition timing cannot be retarded sufficiently and the exhaust temperature is difficult to increase. Therefore, the operating angle change mechanism 10 sets the operating angle of the intake valve to the minimum operating angle, and the first holding mechanism 50 holds the intake phase at the most retarded angle phase P1. As a result, the intake valve opening timing is retarded, the inside of the cylinder becomes negative pressure as the piston descends, and fuel adhering to the valve is appropriately blown off when the intake valve is opened, thereby promoting fuel atomization. Further, by setting the minimum operating angle, the in-cylinder gas flow is enhanced and combustion is improved. Furthermore, by minimizing the operating angle, the closing timing of the intake valve is not excessively delayed, and a sufficient effective compression ratio can be ensured.
[0052]
On the other hand, in the idle region (a2) after warm-up, although the combustion is improved as described above by setting the minimum operating angle by the operating angle changing mechanism 10, the intake phase becomes the most retarded phase P1. If this is the case, the period during which the piston is exposed to negative pressure becomes longer, which may increase pump loss and lead to deterioration of fuel consumption. For this reason, in the idle region after warming up, the second holding mechanism 60 holds the intake phase at the retarded phase P2 after warming up.
[0053]
As described above, in the first and second embodiments, for example, based on the engine temperature, it is determined whether the engine is cold or after warm-up, and when the engine is cold, the intake phase is quickly adjusted to mainly improve exhaust performance. Is held at the most retarded phase P1. The engine temperature is obtained from a sensor that detects a water temperature, an oil temperature, or a catalyst activation state, or simply estimated from an elapsed time after starting.
[0054]
Further, the phase change mechanisms 20 and 40 may be of an ON-OFF type two-position switching type, but are continuously controlled (duty control) according to the engine temperature, the elapsed time after starting, or the like. Further, it is possible to finely adjust the intake phase in accordance with the engine operating conditions. For example, the fuel consumption can be further improved by minimizing the pump loss.
[0055]
Depending on engine operating conditions, the engine may be stopped after warming up and restarted in a cold state. In this case, the engine is stopped in a state in which the intake phase is held at the retarded phase P2 after warming up, and fuel injection is performed at the time of cold start in the state held in the retarded phase phase P2 after warming up in this way. In this case, a sufficient exhaust purification effect cannot be obtained.
[0056]
Therefore, in the first embodiment, during the cranking, that is, before the fuel injection is started after the ignition switch is detected to be on, the electric phase change mechanism 20 holds the retarded phase P2 after the warm-up. And the intake phase is immediately shifted to the most retarded phase P1. Then, when the arrival of the intake phase to the most retarded angle phase P1 is confirmed or predicted, the fuel injection and ignition timing control are started. As a result, there is no possibility that combustion is performed in a state in which the intake phase deviates from the most retarded phase P1 after the start of the cold engine, and it is possible to reliably prevent the exhaust performance from being deteriorated due to this.
[0057]
Further, the same effect can be obtained even when an inexpensive hydraulically driven phase change mechanism 40 is used as in the second embodiment. That is, at the time of cold start with the second holding mechanism 60 held at the retarded phase P2 after warming up, the retarded phase after warming up by the second holding mechanism 60 during cranking before starting fuel injection. The holding state of P2 is released, and the intake phase is quickly shifted to the most retarded phase P1. Thereby, there is no possibility that combustion is performed in a state deviating from the most retarded phase P1 at the time of cold start, and it is possible to reliably prevent the exhaust performance from being deteriorated due to this. Thus, as described above, the hydraulic pump 65 of the second holding mechanism 60 is turned off so that the second holding mechanism 60 can quickly release the holding state of the retarded phase P2 after the warm-up, even at the time of cold start. It is configured to be driven by an external electric motor.
[0058]
The flow of control at the time of starting the engine will be described in further detail with reference to the flowchart of FIG. When cranking is started in S (step) 1, the process proceeds to S2, and it is determined whether or not the engine is in a cold state based on the engine temperature or the like. If it is determined that the state is after warm-up, the routine proceeds to S3, where normal control (normal control of the intake operation angle and intake phase, control of fuel injection, ignition timing, etc.) is performed. On the other hand, if it is determined that the engine is cold, the process proceeds to S4, and it is determined whether the intake phase has substantially reached the most retarded phase P1. If it is determined that the most retarded phase P1 has not been reached, the process proceeds to S5. 20 and 40 shift the intake phase to the most retarded phase P1. Then, when the arrival at the most retarded phase P1 is confirmed or predicted, the process proceeds from S4 to S6, and fuel injection and ignition timing control are started. That is, fuel injection is prohibited until reaching the most retarded phase P1 is detected (confirmed) or predicted.
[0059]
In subsequent S7, it is determined whether the warm-up operation is completed. More specifically, it is determined whether the elapsed time from the substantial engine start by fuel injection or the engine temperature is equal to or higher than a predetermined reference value. If it is less than the reference value, the process proceeds to S8, and the holding state of the most retarded phase P1 is continued. When it becomes equal to or greater than the reference value, the process proceeds from S7 to S9, the holding state of the most retarded phase P1 is released, and the intake phase is advanced toward the retarded phase P2 after warming up by the phase change mechanisms 20 and 40. Let
[0060]
As mentioned above, although this invention was demonstrated based on specific embodiment, this invention is not limited to the said embodiment. For example, in the second embodiment, the second holding mechanism 60 is driven by a hydraulic pump having an external electric motor, but the engaging pin 61 of the second holding mechanism 60 can be directly driven by an external power source. Almost the same effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a variable valve gear according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an operating angle changing mechanism.
FIG. 3 is a cross-sectional view showing an electric phase change mechanism.
FIG. 4 is an operation explanatory diagram of the first and second embodiments.
FIG. 5 is a schematic perspective view showing a variable valve gear according to a second embodiment of the present invention.
FIG. 6 is a configuration diagram showing a hydraulic phase change mechanism.
FIG. 7 is a cross-sectional view showing a holding mechanism of a hydraulic phase change mechanism.
FIG. 8 is a flowchart showing a flow of control at the time of engine start.
FIG. 9 is a characteristic diagram showing the relationship between the intake phase and the ignition timing.
[Explanation of symbols]
2 ... Intake valve
3 ... Intake drive shaft
10 ... Working angle change mechanism
20 ... Phase change mechanism
21 ... 1st rotating body
22 ... Second rotating body
40: Phase change mechanism
41. Housing (first rotating body)
42 ... Vane body (second rotating body)

Claims (8)

吸気弁の作動角を変化させる作動角変更機構と、吸気弁の作動角の中心位相を変化させる位相変更機構と、を有する内燃機関の可変動弁装置において、
上記中心位相を最遅角位相に保持する第1の保持手段と、
少なくとも暖機後のアイドル域で、上記中心位相を上記最遅角位相よりも進角した暖機後遅角位相に保持する第2の保持手段と、
機関温度又は機関始動後の経過時間を検知する検知手段と、
上記中心位相を検知する位相検知手段と、を有し、
冷機始動時には、上記第1の保持手段により上記中心位相を最遅角位相に保持させるとともに、上記機関温度又は機関始動後の経過時間が所定の基準値以上となったときに、上記第1の保持手段による最遅角位相の保持を解除し、
かつ、上記第2の保持手段により暖機後遅角位相に保持されている状態での冷機始動時には、燃料噴射を開始する前に、上記第2の保持手段による暖機後遅角位相の保持を解除して、上記位相変更機構により上記中心位相を最遅角位相へ向けて遅角させて、上記中心位相の最遅角位相への到達が検知又は予測されるまで、燃料噴射を禁止することを特徴とする内燃機関の可変動弁装置。
In a variable valve operating apparatus for an internal combustion engine, comprising: an operating angle changing mechanism that changes the operating angle of the intake valve; and a phase changing mechanism that changes the center phase of the operating angle of the intake valve.
First holding means for holding the center phase at the most retarded angle phase;
A second holding means for holding the center phase at a delayed phase after warm-up that is advanced from the most retarded phase at least in an idle region after warm-up;
Detection means for detecting the engine temperature or the elapsed time after engine start;
Phase detection means for detecting the center phase ,
At the time of cold start, the first holding means holds the center phase at the most retarded angle phase, and when the engine temperature or the elapsed time after the engine start becomes equal to or greater than a predetermined reference value, Release the holding of the most retarded phase by the holding means ,
Further, at the time of cold start in a state where the second holding means holds the retarded phase after warming up, the retarded phase after warming up is held by the second holding means before starting fuel injection. And the phase change mechanism retards the center phase toward the most retarded phase, and prohibits fuel injection until the arrival of the center phase at the most retarded phase is detected or predicted. A variable valve operating apparatus for an internal combustion engine.
少なくとも上記最遅角位相から暖機後遅角位相への移行時には、上記中心位相の進角化に応じて点火時期を進角させることを特徴とする請求項に記載の内燃機関の可変動弁装置。2. The variable motion of an internal combustion engine according to claim 1 , wherein at least at the time of transition from the most retarded phase to the retarded phase after warm-up, the ignition timing is advanced according to advancement of the center phase. Valve device. 上記位相変更機構が電動式であることを特徴とする請求項1又は2に記載の内燃機関の可変動弁装置。The variable valve operating apparatus for an internal combustion engine according to claim 1 or 2 , wherein the phase changing mechanism is electrically operated. 上記位相変更機構が油圧駆動式であることを特徴とする請求項1又は2に記載の内燃機関の可変動弁装置。 3. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the phase change mechanism is a hydraulic drive type. 上記位相変更機構が、クランクシャフトと同期して回転する第1の回転体と、吸気弁を開閉させる吸気駆動軸とともに回転する第2の回転体と、供給油圧に応じて第1の回転体と第2の回転体とを相対的に回動させる油圧駆動手段と、を有し、
上記第1の保持手段及び第2の保持手段のそれぞれが、上記第1の回転体及び第2の回転体の一方に設けられ、供給油圧に応じて駆動される係合ピンと、上記第1の回転体及び第2の回転体の他方に設けられ、上記係合ピンが係合可能な係合孔と、上記係合ピンへの供給油圧を切り換える油圧制御弁と、を有することを特徴とする請求項に記載の内燃機関の可変動弁装置。
A first rotating body that rotates in synchronization with the crankshaft; a second rotating body that rotates together with an intake drive shaft that opens and closes an intake valve; and Hydraulic drive means for relatively rotating the second rotating body,
Each of the first holding means and the second holding means is provided on one of the first rotating body and the second rotating body, and is driven according to supply hydraulic pressure. An engagement hole provided in the other of the rotating body and the second rotating body and capable of engaging with the engaging pin, and a hydraulic control valve that switches a hydraulic pressure supplied to the engaging pin. The variable valve operating apparatus for an internal combustion engine according to claim 4 .
上記第2の保持手段の係合ピンへ油圧を供給する油圧ポンプが、外部電源により駆動されることを特徴とする請求項に記載の内燃機関の可変動弁装置。6. The variable valve operating apparatus for an internal combustion engine according to claim 5 , wherein the hydraulic pump that supplies hydraulic pressure to the engagement pin of the second holding means is driven by an external power source. 冷機始動時に、上記第2の保持手段による暖機後遅角位相の保持状態から保持解除状態への切換が可能であることを特徴とする請求項4〜6のいずれかに記載の内燃機関の可変動弁装置。7. The internal combustion engine according to claim 4 , wherein when the engine is cold-started, the second holding means can switch from the holding state of the retarded phase after warm-up to the holding-released state. Variable valve gear. 少なくとも上記最遅角位相に保持されている状態では、上記作動角変更機構により吸気弁の作動角が最小作動角に設定されることを特徴とする請求項1〜のいずれかに記載の内燃機関の可変動弁装置。The internal combustion engine according to any one of claims 1 to 7 , wherein the operating angle of the intake valve is set to a minimum operating angle by the operating angle changing mechanism at least in a state in which the phase is held at the most retarded angle phase. Variable valve gear for engine.
JP2000279419A 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine Expired - Lifetime JP4423775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279419A JP4423775B2 (en) 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279419A JP4423775B2 (en) 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002089305A JP2002089305A (en) 2002-03-27
JP4423775B2 true JP4423775B2 (en) 2010-03-03

Family

ID=18764426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279419A Expired - Lifetime JP4423775B2 (en) 2000-09-14 2000-09-14 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4423775B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081661B2 (en) * 2002-07-30 2008-04-30 三菱自動車工業株式会社 Intake air amount control device for internal combustion engine
JP4845391B2 (en) * 2005-02-28 2011-12-28 トヨタ自動車株式会社 Control device for internal combustion engine
JP4743169B2 (en) 2007-06-13 2011-08-10 トヨタ自動車株式会社 Internal combustion engine control apparatus and method
JP4858397B2 (en) * 2007-10-15 2012-01-18 株式会社豊田自動織機 Premixed compression ignition engine
JP4759622B2 (en) 2009-01-09 2011-08-31 本田技研工業株式会社 Control device for internal combustion engine
JP4858619B2 (en) * 2010-02-08 2012-01-18 株式会社デンソー Engine valve control device
JP2018200028A (en) * 2017-05-29 2018-12-20 トヨタ自動車株式会社 Internal-combustion-engine control apparatus

Also Published As

Publication number Publication date
JP2002089305A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3912147B2 (en) Variable valve operating device for internal combustion engine
US7703424B2 (en) Variable valve actuation system of internal combustion engine
JP3699654B2 (en) Valve timing control device for internal combustion engine
JP5302173B2 (en) Variable valve operating device for internal combustion engine
JP4776447B2 (en) Variable valve operating device for internal combustion engine
JP5662264B2 (en) Variable valve operating device for internal combustion engine
US6502535B2 (en) Valve timing and lift control system
US20110088644A1 (en) Internal Combustion Engine Control Device and Internal Combustion Engine Control System
JP2010138737A (en) Variable valve gear for internal combustion engine and controller of the same
JP2009074414A (en) Variable valve gear system and variable valve device for internal combustion engine
US8776743B2 (en) Variably operated valve apparatus of internal combustion engine and start control apparatus of internal combustion engine
JP5654940B2 (en) Variable valve operating controller and internal combustion engine variable valve operating device
JP2010138898A (en) Variable valve gear
JP2009156029A (en) Variable valve system for internal combustion engine, and controller to be used for the same
JP4423775B2 (en) Variable valve operating device for internal combustion engine
JP3699645B2 (en) Valve timing control device for internal combustion engine
JP2002235567A (en) Combustion control device for internal combustion engine
JP2011089467A (en) Control method for internal combustion engine, and internal combustion engine system
JP3826668B2 (en) Valve timing adjusting device for internal combustion engine
JP4166132B2 (en) Valve operating device for internal combustion engine
JP4194445B2 (en) Control device for variable valve lift mechanism
JP5236786B2 (en) Variable valve system and variable valve apparatus for internal combustion engine
JP4433591B2 (en) Variable valve operating device for internal combustion engine
JP3797083B2 (en) Variable valve operating device for internal combustion engine
JP4369457B2 (en) Variable valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4423775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

EXPY Cancellation because of completion of term