JP3797083B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP3797083B2
JP3797083B2 JP2000282795A JP2000282795A JP3797083B2 JP 3797083 B2 JP3797083 B2 JP 3797083B2 JP 2000282795 A JP2000282795 A JP 2000282795A JP 2000282795 A JP2000282795 A JP 2000282795A JP 3797083 B2 JP3797083 B2 JP 3797083B2
Authority
JP
Japan
Prior art keywords
operating angle
intake valve
rotation
control shaft
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000282795A
Other languages
Japanese (ja)
Other versions
JP2002089215A (en
Inventor
信一 竹村
孝伸 杉山
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000282795A priority Critical patent/JP3797083B2/en
Publication of JP2002089215A publication Critical patent/JP2002089215A/en
Application granted granted Critical
Publication of JP3797083B2 publication Critical patent/JP3797083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0073Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "Delphi" type

Description

【0001】
【発明の属する技術分野】
本発明は、吸気弁の作動角を連続的に変更可能な作動角変更機構と、吸気弁の作動角の中心位相(以下、必要に応じて吸気位相と略す)を連続的に変更可能な位相変更機構と、を有する内燃機関の可変動弁装置に関する。
【0002】
【従来の技術】
特開2000−18056号公報には、吸気弁の作動角及びバルブリフト量を大小2段に切り換えるバルブリフト変更機構と、吸気弁の作動角の中心位相を連続的に変更可能なバルブタイミング変更機構と、を備えた内燃機関の可変動弁装置が開示されている。この公報の装置では、低回転中負荷時に、吸気弁の開時期を上死点よりも進角させて、所定量のオーバーラップを確保し、内部EGRの増加に伴う燃費の向上を図るとともに、高回転高負荷時にも、同じく吸気弁の開時期を上死点よりも進角させて所定量のオーバーラップを確保し、トルクの向上を図る技術が開示されている。
【0003】
【発明が解決しようとする課題】
この公報のバルブリフト変更機構では、作動角及びバルブリフト量を大小2段にしか切り替えれないが、例えば吸気弁の作動角及びバルブリフト量を連続的に変更可能な作動角変更機構を用いた場合、制御の自由度が高くなり、機関運転性能の更なる向上を図ることができる。
【0004】
例えば、低回転中負荷時には、吸気作動角を小リフト・小作動角側に設定して、吸気弁の開時期(IVO)を上死点よりも進角させることにより、内部EGRの増加に伴う燃費の向上が図られるとともに、吸気弁の閉時期を下死点よりも進角させることにより、残留ガスの増加に伴うポンプ損失の低減化を図ることができる。また、中回転全開(高負荷)時には、中リフト・中作動角に設定するとともに、IVOを上死点よりも進角させることにより、掃気効果利用による全開性能の向上を図ることができる。更に、高回転高負荷時には、大リフト・大作動角に設定して、IVOを上死点よりも大きく進角させることにより、掃気効果利用による全開性能の向上を図ることができる。
【0005】
しかしながら、このように作動角変更機構及び位相変更機構の双方ともに連続的に変更可能な構成とした場合、制御の自由度が高い反面、上述したように吸気弁の開時期が上死点よりも進角する状態のときに、吸気弁と気筒内のピストンとが不用意に干渉する危険性も増すこととなり、このような干渉を確実に回避する重要性が高くなる。
【0006】
特に、変更機構が簡素な油圧駆動式のような場合、バルブスプリング反力,慣性力等により吸気弁の開時期が不用意に変動し、かつ、この変動量が機関回転数や負荷等に応じてバラツキを生じるおそれがある。更に言えば、作動角変更機構が後述する実施形態のように制御カム,制御軸等を用いた構成の場合、そのときの吸気作動角の設定によっても、制御軸を不用意に回動させようとする制御軸トルクの大きさが変動し、上記変動量にバラツキを生じてしまう。
【0007】
従って、吸気弁とピストンとの干渉を確実に回避するためには、上述したような吸気弁の開時期の変動,バラツキを考慮して吸気弁の開時期を設定する必要がある。しかしながら、吸気弁の開時期の進角量を過度に抑制すると、制御の自由度が低くなり、機関運転性能を十分に向上させることができなくなってしまう。
【0008】
本発明はこのような課題に鑑みてなされたものであり、機関運転性能を損ねることなく、吸気弁とピストンとの干渉を確実に回避することを一つの目的としている。
【0009】
【課題を解決するための手段】
そこで、請求項1に係る発明は、吸気弁の作動角を連続的に変更可能な作動角変更機構と、吸気弁の作動角の中心位相を連続的に変更可能な位相変更機構と、を有する内燃機関の可変動弁装置において、上記作動角変更機構により所定の小作動角に設定される低回転中負荷時に、吸気弁の開時期が全回転域の中で最も進角するように設定されていることを特徴としている。
【0010】
つまり、低回転域では、中回転以上の運転域に比して、例えば作動角変更機構の回転部品の慣性力が小さいため、作動角(及びバルブリフト量)の変動,バラツキが低く抑制される。従って、吸気弁の開時期を進角させても、吸気弁とピストンとが干渉する可能性が低い。
【0011】
また、同じ低回転域でも、中負荷以下の運転域では、負荷の増加に伴って吸気弁の開時期を進角させる一方、中負荷以上の運転域では、負荷の増加に伴って主に作動角を増加させて、吸気弁の開時期を遅角させることが、燃費,排気等の運転性能の点で有利である。
【0012】
従って、低回転中負荷時に吸気弁の開時期を最も進角するように設定することにより、吸気弁のバルブリフト特性の変更制御の自由度の低下つまり機関性能の低下を抑制しつつ、吸気弁とピストンとの干渉を確実に回避することができる。
【0013】
また、請求項2に係る発明は、機関と連動して回転する吸気駆動軸と、この吸気駆動軸に回転可能に外嵌し、吸気弁を開閉駆動する揺動カムと、の間に上記作動角変更機構が設けられ、この作動角変更機構は、上記吸気駆動軸に偏心して設けられる駆動カムと、この駆動カムに回転可能に外嵌するリング状リンクと、所定の回転範囲内で回動される制御軸と、この制御軸に偏心して設けられる制御カムと、この制御カムに回転可能に外嵌するとともに、一端が上記リング状リンクに連結されたロッカアームと、このロッカアームの他端と上記揺動カムとに連結されたロッド状リンクと、を有し、上記制御軸を一方向へ回動することにより吸気弁の作動角が増加し、上記制御軸を他方向へ回動することにより吸気弁の作動角が減少するように設定され、かつ、この作動角変更機構により最大作動角に設定されているときに、上記ロッカアームから制御軸へ作用する制御軸トルクが中間作動角の場合の制御軸トルクよりも小となるように設定されていることを特徴としている。
【0014】
このような作動角変更機構は、駆動カムとリング状リンクとの摺接部分や制御カムとロッカアームとの摺接部分等の各回転部品の連結部分が面接触となっているため、潤滑が行い易く、耐久性,信頼性に優れているとともに、作動角変更時の抵抗も低く抑制される。また、吸気弁を駆動する揺動カムが吸気駆動軸と同軸上に配置されているため、例えば揺動カムを吸気駆動軸とは異なる別の支軸で支持するような構成に比して、制御精度に優れているとともに、装置自体がコンパクトなものとなり、車両搭載性が良く、部品点数も低く抑制される。
【0015】
また、この作動角変更機構では、バルブスプリング反力や揺動カムの慣性力等に起因して、ロッカアームから制御軸の制御カム中心へ荷重が作用するため、制御軸には、この制御軸を不用意に回動させようとする制御軸トルクが作用する。上記荷重は、作動角変更機構による作動角(及びバルブリフト量)の増加に伴って大きくなる傾向にある。そこで、請求項に係る発明では、吸気弁の作動角が最大となるとき、つまり上記荷重が最も大きくなるときに、上記ロッカアームから制御軸へ作用する制御軸トルクが中間作動角の場合の制御軸トルクよりも小となるように設定されている。
【0016】
請求項3に係る発明は、上記制御軸と機関本体側との間に、上記制御軸の回転範囲を機械的に規制するストッパ機構が設けられていることを特徴としている。
【0017】
この場合、上記制御軸を最小作動角及び最大作動角の位置に確実かつ正確に保持することができる。
【0018】
請求項4に係る発明は、上記作動角変更機構により所定の中作動角に設定される中回転高負荷時に、吸気弁の開時期が中回転域の中で最も進角するように設定され、上記作動角変更機構により最大作動角に設定される高回転高負荷時に、吸気弁の閉時期が高回転域の中で最も進角するように設定されていることを特徴としている。
【0019】
つまり、排気動的効果を活用できる中回転以上の運転域では、負荷の増加に応じて主に作動角を増加させて、吸気弁の開時期を進角させることが望ましい。従って、上記のように、高負荷時に吸気弁の開時期が最も進角するように設定されている。
【0020】
請求項5に係る発明は、上記低回転中負荷時,中回転高負荷時及び高回転高負荷時の中で、中回転高負荷時に吸気弁の開時期が最も遅角するように設定されていることを特徴としている。
【0021】
つまり、中回転高負荷時と高回転高負荷時とを比較した場合、高回転高負荷時には、作動角変更機構により作動角が大きく設定されている関係で、中回転高負荷時に比して、制御軸トルクが低く抑制されるため、吸気弁の開時期が変動するおそれが低い。従って、このような高回転高負荷時には中回転高負荷時に比して吸気弁の開時期を更に進角させることにより、更なる全開性能の向上を図ることができる。一方、中回転高負荷時には、吸気弁とピストンとの干渉を確実に回避するために、吸気弁の開時期の進角量を相対的に小さくする。
【0022】
また、低回転中負荷時と高回転高負荷時とを比較した場合、低回転中負荷時には、回転数が低く作動角も小さいため、吸気弁の作動角や吸気位相の変動,バラツキを生じる可能性が低い。
【0023】
そこで請求項6に係る発明では、上記低回転中負荷時の吸気弁の開時期が上記高回転高負荷時の吸気弁の開時期よりも進角側に設定されている。
【0024】
【発明の効果】
請求項1に係る発明によれば、低回転中負荷時に吸気弁の開時期が最も進角するように設定することにより、吸気弁のバルブリフト特性の変更制御の自由度を最大限に確保しつつ、吸気弁とピストンとの干渉を確実に回避することができる。
【0025】
また、請求項に係る発明によれば、耐久性,信頼性に優れ、作動角変更時の抵抗も低く抑制され、制御精度に優れ、コンパクトかつ簡素な構成の作動角変更機構を得ることができる。また、吸気弁の作動角が最大となるとき、つまりロッカアームから制御軸へ作用する荷重が最も大きくなるときに、上記ロッカアームから制御軸へ作用する制御軸トルクが比較的小さくなるように設定されているため、制御軸トルクに起因する作動角の変動,バラツキを有効に抑制することができる。
【0026】
請求項3に係る発明によれば、制御軸を最小作動角及び最大作動角の位置に確実かつ正確に保持することができるため、制御軸の不用意な変動をより確実に防止することができる。
【0027】
請求項4に係る発明によれば、排気動的効果を活用できる中回転以上の運転域では、負荷の増加に応じて吸気弁の開時期を進角させることができ、主に機関出力の向上を図ることができる。
【0028】
請求項5に係る発明によれば、高回転高負荷時における全開性能の向上を図りつつ、中回転高負荷時に吸気弁とピストンとが干渉することを確実に防止することができる。
【0029】
請求項6に係る発明によれば、低回転中負荷時に吸気弁の開時期を十分に進角させつつ、高回転高負荷時に吸気弁とピストンとが干渉することを確実に防止することができる。
【0030】
【発明の実施の形態】
以下、本発明の一実施形態に係る内燃機関の可変動弁装置を図面に基づいて詳細に説明する。
【0031】
図1に示すように、内燃機関の各気筒には一対の吸気弁1及び一対の排気弁(図示省略)が設けられ、各吸気弁1の上部にはバルブリフタ2が配設されている。これらのバルブリフタ2の上方には、図外のクランクシャフトに連動して軸周りに回転駆動される吸気駆動軸3が気筒列方向に延在している。この吸気駆動軸3の外周には、各吸気弁1に対応して揺動カム4が揺動可能に外嵌されており、この揺動カム4がバルブリフタ2に当接してこれを押圧することにより、吸気弁1が図外のバルブスプリングのバネ力に抗して開閉駆動される。
【0032】
そして、この実施形態に係る可変動弁装置は、吸気弁1の作動角(開閉期間)及びバルブリフト量(リフト作動角)を連続的に変更可能な作動角変更機構10と、作動油(作動流体)の供給圧に応じて作動角変更機構10を駆動する作動角変更アクチュエータ30と、吸気弁1の作動角の中心位相(吸気位相)を連続的に変更可能な位相変更機構20と、作動油の供給圧に応じて位相変更機構20を駆動する位相変更アクチュエータ40と、これらのアクチュエータ30,40への供給圧をソレノイドバルブ31,41を介して制御する制御部(エンジンコントロールユニット;ECU)50と、を有している。これらのソレノイドバルブ31,41には、上記供給圧の圧力源としての油圧ポンプ9が接続されている。
【0033】
作動角変更機構10は、吸気駆動軸3と揺動カム4との間に設けられ、両者3,4を機械的に連携するリンクの姿勢を変化させて、主に吸気弁1の作動角及びバルブリフト量を連続的に変化させるようになっている。つまり、この作動角変更機構10は、吸気駆動軸3に偏心して設けられて吸気駆動軸3と一体的に回転する駆動カム11と、この駆動カム11の外周に相対回転可能に外嵌するリング状リンク(第1のリンク)12と、吸気駆動軸3と略平行に気筒列方向へ延在する制御軸13と、この制御軸13に偏心して設けられて制御軸13と一体的に回転する制御カム14と、この制御カム14の外周に相対回転可能に外嵌するとともに、一端がリング状リンク12の先端と相対回転可能に連結されたロッカアーム15と、このロッカアーム15の他端と揺動カム4の先端とに回転可能に連結され、両者15,4を機械的に連携するロッド状リンク(第2のリンク)16と、を有している。
【0034】
上記の吸気駆動軸3及び制御軸13は、軸受ブラケットを介して内燃機関のシリンダヘッド側へ回転可能に支持されている。制御軸13の一端には上記の作動角変更アクチュエータ30が接続されており、このアクチュエータ30によって制御軸13が所定の制御角度範囲内で軸周りに回転駆動されるとともに、所定の回転位相に保持される。
【0035】
このような構成により、クランクシャフトに連動して吸気駆動軸3が回転すると、駆動カム11を介してリング状リンク12が実質的に並進作動するとともに、ロッカアーム15が制御カム14周りを揺動し、ロッド状リンク16を介して揺動カム4が揺動して、吸気弁1が開閉駆動される。
【0036】
また、作動角変更アクチュエータ30により制御軸13を回動することにより、ロッカアーム15の揺動中心となる制御カム14の中心位置が変化して、各リンク12,16等の姿勢が変化し、揺動カム4の揺動角度範囲が変化する。これにより、図4にも示すように、作動角の中心位相が略一定のままで、作動角及びバルブリフト量が連続的に変化する。より具体的には、制御軸13を一方向へ回動することにより、作動角及びバルブリフト量が増加し、他方向へ回動することにより作動角及びバルブリフト量が低下するようになっている。
【0037】
このような作動角変更機構10は、駆動カム11とリング状リンク12との摺接部分や制御カム14とロッカアーム15との摺接部分等の各回転部品の連結部分が面接触となっているため、潤滑が行い易く、耐久性,信頼性に優れているとともに、作動角変更時の抵抗も低く抑制される。また、吸気弁1を駆動する揺動カム4が吸気駆動軸3と同軸上に配置されているため、例えば揺動カムを駆動軸とは異なる別の支軸で支持するような構成に比して、制御精度に優れているとともに、装置自体がコンパクトなものとなり、車両搭載性が良く、部品点数も低く抑制される。
【0038】
次に、図2を参照して作動角変更アクチュエータ30について説明する。このアクチュエータ30の内部には、ピストン32の受圧部32aを挟んで第1油圧室33と第2油圧室34とが画成されている。このピストン32の先端部にはピン32bが設けられ、このピン32bは、上記の制御軸13の端部に設けられたディスク17の径方向溝17aへ摺動可能に嵌合している。従って、第1油圧室33及び第2油圧室34への供給油圧に応じてピストン32が進退することにより、上記のピン32b及びディスク17を介して制御軸13が回転して吸気弁1の作動角が変化する。
【0039】
これら油圧室33,34への供給油圧は、ソレノイドバルブ31のスプール35の位置に応じて切り換えられ、このソレノイドバルブ31は制御部50からの出力信号によりON−OFF駆動(デューティ制御)される。つまり、機関運転状態に応じて出力信号のデューティー比を変化させることにより、上記スプール35の位置が切り換えられる。
【0040】
例えば、スプール35が図の最も右側に保持されている状態では、第1油圧室33に接続する第1油路36と油圧ポンプ9とが連通し、第1油圧室33へ油圧が供給されるとともに、第2油圧室34に接続する第2油路37とドレン通路38とが連通し、第2油圧室34がドレンされる。このため、アクチュエータ30のピストン32は図の左側に押圧,移動される。
【0041】
一方、スプール35が図の最も左側に保持されている状態では、第1油路36とドレン通路38とが連通されて第1油圧室33がドレンされるとともに、第2油路37と油圧ポンプ9とが連通されて第2油圧室34へ油圧が供給される。このため、ピストン32は図の右側に押圧,移動される。
【0042】
更に、スプール35が中間位置に保持されている状態では、第1油路36のポート部と第2油路37のポート部の双方がスプール35により閉塞される。これにより、第1,第2油圧室33,34内の油圧が保持(ロック)され、ピストン32がその位置に保持される。
【0043】
このように、アクチュエータ30のピストン32を任意の位置に移動,保持することにより、吸気弁1の作動角を所定の回転範囲内で任意の作動角に変更,保持することが可能で、簡素な構造でありながら、制御の自由度が非常に高い。
【0044】
なお、上記の制御部50は、各種センサから検出又は推定されるエンジン回転数,負荷,水温及び車速等に応じて、上記の変更機構10,20の制御を行う他、点火時期制御,燃料供給量制御,過渡時補正制御やフェールセーフ制御等のエンジン制御を行うようになっている。
【0045】
次に、図3を参照して位相変更機構20側の構成について説明する。上記の吸気駆動軸3の前端部の外周側にはカムスプロケット(又はカムプーリ)6が同軸上に配置されている。このカムスプロケット6は、チェーン(又はベルト)を介してクランクシャフトから回転動力が伝達され、クランクシャフトと同期して回転する。
【0046】
位相変更機構20は、カムスプロケット6の内周側に一体的に形成された外筒部21と、吸気駆動軸3に中空のボルト22を介して固定され、この吸気駆動軸3と一体的に回転する内筒部23と、これらの外筒部21と内筒部23との間に介装されるリング状のピストン42と、を有している。ピストン42の内,外周面と、内筒部23の外周面及び外筒部21の内周面との噛合部分25はヘリカルスプラインとなっている。従って、ピストン42が内,外筒部の軸方向(図3の左右方向)へ移動することにより、この軸方向の運動が内筒部23と外筒部21との相対回転運動に変換され、外筒部21と内筒部23との相対回転位相が連続的に変化する(変換手段)。これにより、カムスプロケット6に対する吸気駆動軸3の相対回転位相が変化し、吸気弁1の作動角の位相が作動角一定のままで連続的に変化する。
【0047】
このような構成の位相変更機構20は、コンパクトで機関への搭載性に優れ、部品点数も低く抑制される。また、上記の作動角変更機構10と併用した場合にも、互いに干渉せずに容易に配置することができる。
【0048】
上記のピストン42は、その前後に画成される第1油圧室43及び第2油圧室44への供給油圧に応じて駆動される。つまり、上記の外筒部21,内筒部23及びピストン42等により上記の位相変更アクチュエータ40が構成されている。
【0049】
これら油圧室43,44への供給油圧はソレノイドバルブ41のスプール45の位置に応じて切り換えられ、このソレノイドバルブ41は制御部50からの出力信号によりON−OFF駆動(デューティ制御)される。つまり、機関運転状態に応じて出力信号のデューティー比を変化させることにより、スプール45の位置が切り換えられる。
【0050】
例えば、スプール45が図の最も左側に保持されている状態では、第1油圧室43に接続する第1油路46と油圧ポンプ9とが連通し、第1油圧室43へ油圧が供給されるとともに、第2油圧室44に接続する第2油路47とドレン通路48とが連通し、第2油圧室44がドレンされる。このため、アクチュエータ40のピストン42は図の左側に押圧,移動される。
【0051】
一方、スプール45が図の最も右側に保持されている状態では、第1油路46とドレン通路48とが連通されて第1油圧室43がドレンされるとともに、第2油路47と油圧ポンプ9とが連通されて第2油圧室44へ油圧が供給される。このため、ピストン42は図の右側に押圧,移動される。
【0052】
更に、スプール45が中間位置に保持されている状態では、第1油路46のポート部と第2油路47のポート部の双方がスプール45により閉塞される。これにより、第1,第2油圧室43,44内の油圧が保持(ロック)され、ピストン42がその位置に保持される。
【0053】
このように、アクチュエータ40のピストン42を任意の位置に移動,保持することにより、吸気弁1の作動角の位相を任意の位相に変更,保持することが可能で、簡素な構造でありながら、制御の自由度が非常に高い。
【0054】
図5は、作動角変更機構10と位相変更機構20とを組み合わせて用いた場合の吸気弁1のバルブリフト特性の一設定例を示している。
【0055】
アイドル等の低回転極低負荷域(a)では、ピストン上面を上死点から吸気負圧に晒さず、ある程度ピストンが変位して筒内が負圧となってから吸気弁を開とすることによるポンプ損失の低減化及び残留ガスの低減化等を図るために、吸気弁の開時期を上死点(TDC)よりも大幅に遅角させるとともに、主に燃焼改善を図るために吸気弁の閉時期を下死点(BDC)の近傍に設定し、かつ、フリクション低減化及びガス流動強化による燃料霧化促進を図るために、作動角変更機構10を最小作動角,最小リフトの設定とする。すなわち、変更機構10,20により吸気作動角を最小作動角に、吸気位相を最遅角位相に設定する。これにより、燃費及び排気の双方の改善を図ることができる。
【0056】
一方、低回転中負荷域(c)では、残留ガスの増化に伴うポンプ損失の低減化及び高温の残留ガスによる燃焼改善等を図るため、吸気弁の開時期を上死点よりも大きく進角させるとともに、主に吸入吸気量(充填効率)低減によるポンプ損失低減化を図るために、吸気弁の閉時期を下死点前とする。このため、上記のアイドル域(a)に比して、作動角変更機構10によりリフト作動角を所定の小作動角に増加させるとともに、位相変更機構20により吸気位相を最進角位相へ進角させる。
【0057】
また、この中負荷域(c)より要求吸気量の少ない低回転低負荷域(b)では、燃焼悪化の防止及び残留ガスの低減化等を図るため、リフト作動角を所定の小作動角から最小作動角の範囲内に設定するとともに、吸気位相を所定の進角位相に設定し、有効圧縮比の向上に伴うポンプ損失低減で燃費向上を図る。
【0058】
全開域つまり高負荷域(d)〜(f)では、吸気作動角を中間位相の近傍に設定するとともに、主に充填効率を向上させるために、機関回転数の増加に伴ってリフト作動角を増加させて、全開性能の向上を図る。これにより、回転数の増加に伴ってIVOが進角し、特に中回転以上の運転域で排気動的効果を有効に活用できる。
【0059】
このように、低回転域(a)〜(d)の中では、中負荷時(c)に吸気弁の開時期が最も進角するように設定されている。また、中回転域では、高負荷時(e)に吸気弁の開時期が最も進角するように設定されている。同様に、高回転域(例えば4000rpm以上の回転域)では、高負荷時(f)に吸気弁の開時期が最も進角するように設定されている。
【0060】
次に、図5〜図8を参照して、本実施形態の特徴的な構成及び作用について説明する。
【0061】
図7は、リフト作動角が最大作動角に設定されている状態を示し、図8は図7の要部拡大図である。ロッカアーム15から制御軸13の制御カム中心14aへ作用する荷重F3は、主として、ロッド状リンク16からロッカアーム15へ作用する荷重F1と、リング状リンク12からロッカアーム15へ作用する荷重F2と、の合力となる。この荷重F3の方向は、吸気駆動軸3の回転に応じて変化するものの、荷重F3が大きくなる上死点や下死点付近では、吸気駆動軸3の中心3aと制御軸13の中心13aとを結ぶ線αに略平行となる。
【0062】
このような荷重F3により、制御軸13を不用意に回動させようとする制御軸トルクTが作用する。従って、上述したように、吸気弁の開時期が進角している設定状態(c),(e),(f)のときに、制御軸トルクTにより制御軸13が不用意に大作動角側へ回動する(あるいは吸気位相が不用意に進角する)と、吸気弁の開時期が過度に進角して、吸気弁1と図外のピストンとが干渉するおそれがある。
【0063】
このような制御軸13の不用意な変動を招く制御軸トルクTは、荷重F3の増加に伴って増加するとともに、荷重F3のベクトルと制御軸13の中心13aとの距離すなわち腕長さLが長くなるに従って大きくなる。
【0064】
荷重F3の大きさは、作動角変更機構10による吸気作動角の設定に応じて変化し、バルブリフト量が最大となる最大作動角の設定のときに最も大きくなる。従って、この実施形態では、最大作動角の設定のときに、上記の腕長さLが最も短くなるように設定している。
【0065】
この関係で、図6に示すように制御軸13の回転範囲が約180°程度まで設定されている場合、吸気作動角が最大作動角(3)又は最小作動角(1)の場合に比して、所定の中作動角(2)のときに腕長さLが長くなり、制御軸トルクTが大きくなり易い。
【0066】
また、制御軸トルクTの大きさは、機関回転数に応じて増加する。つまり、低回転時では、作動角変更機構10の各部品の慣性力が小さいため、バルブスプリング反力が支配的である。従って、低回転時には、荷重F3が相対的に低く、かつ、この荷重F3の向きも、ほぼ一定(図7,図8に示す向き)となる。一方、高回転時には、揺動カム4等の慣性力が非常に大きくなり、このような慣性力が支配的となるため、上記の低回転時に比して、荷重F3が大きくなる。また、揺動カム4の揺動動作に伴って慣性力の作用方向が反転するために、揺動カム4の作用方向も互いに反転する。従って、このように慣性力が支配的な高回転時には、制御軸13が大リフト作動角側にばらつく可能性が高く、低回転時に比して上記の干渉が発生する危険性が高い。
【0067】
このようなことから、上述した吸気弁とピストンとの干渉を招くおそれのある運転状態、すなわち、吸気弁開時期が大きく進角している低回転中負荷時(c),中回転高負荷時(e),及び高回転高負荷時(f)の中で、低回転中負荷時(c)では、回転数が低く、かつ、吸気作動角が小作動角に設定されており、腕長さLも中作動角の場合に比して短くなるため、吸気弁とピストンとが干渉する可能性が最も低い。また、高回転高負荷時(f)では、最大作動角に設定されており、腕長さLが最小化されるため、中回転高負荷時(e)に比して、吸気弁とピストンとが干渉する可能性が相対的に低くなる。
【0068】
更に言えば、低回転中負荷時(c)では位相変更機構20により吸気位相が最遅角位相に設定されており、それ以上進角するおそれがなく、また高回転高負荷時(f)には作動角変更機構10により作動角が最大作動角に設定されており、それ以上増加するおそれがないのに対し、中回転高負荷域(e)では、吸気位相及び作動角ともに油圧により中間値に保持された不安定な状態となっているために、バルブリフト特性の変動,バラツキを生じやすい。
【0069】
従って、図5にも示すように、吸気弁の開時期が大きく進角している3つの運転状態(c),(e),(f)の中で、低回転中負荷時(c)に吸気弁の開時期(M1)が最も進角し、中回転高負荷時(e)に吸気弁の開時期(M2)の進角量が最も小さくなるように設定している。つまり、低回転中負荷時(c),高回転高負荷時(f),中回転高負荷時(e)の順に吸気弁の開時期の進角量が小さくなるように設定している。これにより、吸気弁とピストンとの干渉を確実に回避しつつ、機関運転状態に応じて吸気弁開時期を十分に進角させることができる。従って、制御の自由度が増し、機関運転性能の向上を図ることができる。
【0070】
なお、好ましくは図9に示すように、制御軸13と機関本体側のシリンダヘッド7との間に、制御軸13の回転範囲を機械的に規制するストッパ機構60を設ける。このストッパ機構60は、制御軸13の一端より径方向に張り出した係止ピン61と、シリンダヘッド7又はこれに固定される軸受ブラケット8に設けられ、係止ピン61に当接して制御軸13の回転範囲を規制する一対のストッパピン62,63と、を備えている。このようなストッパ機構60を設けた場合、制御軸13を確実かつ正確に最小作動角及び最大作動角の位置に保持することができ、リフト作動角のばらつきをより確実に防止できるため、吸気弁とピストンの干渉回避に更に有利である。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る可変動弁装置を示す概略構成図。
【図2】上記可変動弁装置の作動角変更アクチュエータ側の構成を示す断面対応図。
【図3】上記可変動弁装置の位相変更機構を示す断面対応図。
【図4】上記可変動弁装置の作動角変更機構による作動角及びバルブリフト量の変化の態様を示す特性図。
【図5】各運転状態における吸気バルブリフト特性を示す特性図。
【図6】本実施形態の作用説明図。
【図7】本実施形態の作用説明図。
【図8】図7の要部拡大図。
【図9】上記可変動弁装置にストッパ機構を適用した場合の断面対応図。
【符号の説明】
1…吸気弁
3…吸気駆動軸
4…揺動カム
10…作動角変更機構
11…駆動カム
12…リング状リンク
13…制御軸
14…制御カム
15…ロッカアーム
16…ロッド状リンク
20…位相変更機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operating angle changing mechanism capable of continuously changing the operating angle of the intake valve, and a phase capable of continuously changing the center phase of the operating angle of the intake valve (hereinafter, abbreviated as an intake phase if necessary). And a variable valve mechanism for an internal combustion engine having a change mechanism.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 2000-18056 discloses a valve lift changing mechanism that switches the operating angle and valve lift amount of the intake valve between two stages of large and small, and a valve timing changing mechanism that can continuously change the center phase of the operating angle of the intake valve. And a variable valve operating apparatus for an internal combustion engine. In the device of this publication, the opening timing of the intake valve is advanced from the top dead center during a load during low rotation, a predetermined amount of overlap is ensured, and fuel efficiency is increased with an increase in internal EGR. Similarly, a technique is disclosed in which the opening timing of the intake valve is advanced from the top dead center to ensure a predetermined amount of overlap to improve torque even at high rotation and high load.
[0003]
[Problems to be solved by the invention]
In the valve lift changing mechanism of this publication, the operating angle and the valve lift amount can be switched to only two stages of large and small. For example, when the operating angle changing mechanism capable of continuously changing the operating angle and valve lift amount of the intake valve is used. As a result, the degree of freedom of control is increased and the engine operation performance can be further improved.
[0004]
For example, when the load is low, the intake operating angle is set to the small lift / small operating angle side, and the intake valve opening timing (IVO) is advanced from the top dead center, thereby increasing the internal EGR. The fuel consumption can be improved and the closing time of the intake valve can be advanced from the bottom dead center to reduce the pump loss due to the increase in residual gas. Further, when the middle rotation is fully opened (high load), the middle lift / medium operating angle is set, and the IVO is advanced from the top dead center, whereby the full opening performance can be improved by using the scavenging effect. Furthermore, at the time of high rotation and high load, the full opening performance can be improved by using the scavenging effect by setting the large lift and the large operating angle to advance the IVO larger than the top dead center.
[0005]
However, when both the operating angle changing mechanism and the phase changing mechanism are continuously changeable in this way, the degree of freedom of control is high, but as described above, the opening timing of the intake valve is higher than the top dead center. In the advanced state, the risk of inadvertent interference between the intake valve and the piston in the cylinder also increases, and the importance of reliably avoiding such interference increases.
[0006]
In particular, when the change mechanism is a simple hydraulic drive type, the opening timing of the intake valve fluctuates inadvertently due to valve spring reaction force, inertial force, etc., and this fluctuation amount depends on the engine speed, load, etc. May cause variation. Furthermore, in the case where the operating angle changing mechanism uses a control cam, a control shaft, etc. as in the embodiments described later, the control shaft may be rotated carelessly depending on the setting of the intake operating angle at that time. The magnitude of the control shaft torque fluctuates to cause variations in the fluctuation amount.
[0007]
Therefore, in order to reliably avoid the interference between the intake valve and the piston, it is necessary to set the opening timing of the intake valve in consideration of the variation and variation of the opening timing of the intake valve as described above. However, if the advance amount of the intake valve opening timing is excessively suppressed, the degree of freedom of control becomes low, and the engine operating performance cannot be sufficiently improved.
[0008]
The present invention has been made in view of such problems, and an object thereof is to reliably avoid interference between the intake valve and the piston without impairing the engine operation performance.
[0009]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 has an operating angle changing mechanism capable of continuously changing the operating angle of the intake valve, and a phase changing mechanism capable of continuously changing the center phase of the operating angle of the intake valve. In a variable valve operating apparatus for an internal combustion engine, the intake valve opening timing is set to be the most advanced in the entire rotation range when the operating angle changing mechanism is set to a predetermined small operating angle and the load is low. It is characterized by having.
[0010]
That is, in the low rotation range, for example, the inertial force of the rotating parts of the operating angle changing mechanism is small compared to the operation range of medium rotation or higher, so that fluctuations and variations in the operating angle (and valve lift amount) are suppressed low. . Therefore, even if the opening timing of the intake valve is advanced, the possibility that the intake valve and the piston interfere with each other is low.
[0011]
Even in the same low speed range, in the operating range below the middle load, the opening timing of the intake valve is advanced as the load increases, while in the operating range above the middle load, it mainly operates as the load increases. Increasing the angle to retard the opening timing of the intake valve is advantageous in terms of driving performance such as fuel efficiency and exhaust.
[0012]
Therefore, by setting the opening timing of the intake valve to be the most advanced during a load during low rotation, the intake valve can be controlled while suppressing a decrease in the degree of freedom in changing the valve lift characteristics of the intake valve, that is, a decrease in engine performance. And the piston can be reliably avoided.
[0013]
According to a second aspect of the present invention, there is provided the above-described operation between an intake drive shaft that rotates in conjunction with the engine and a swing cam that is rotatably fitted on the intake drive shaft and drives the intake valve to open and close. An angle changing mechanism is provided, and the operating angle changing mechanism is rotated within a predetermined rotation range, a drive cam provided eccentric to the intake drive shaft, a ring-shaped link rotatably fitted on the drive cam, and A control shaft that is eccentrically disposed on the control shaft, a rocker arm that is rotatably fitted to the control cam and has one end connected to the ring-shaped link, the other end of the rocker arm, and the above-mentioned A rod-like link connected to the swing cam, and the operating angle of the intake valve is increased by rotating the control shaft in one direction, and the control shaft is rotated in the other direction. Set to reduce the operating angle of the intake valve. When the maximum operating angle is set by the operating angle changing mechanism, the control shaft torque acting on the control shaft from the rocker arm is set to be smaller than the control shaft torque in the case of the intermediate operating angle. It is characterized by being.
[0014]
Such an operating angle changing mechanism is lubricated because the connecting parts of rotating parts such as the sliding contact part between the drive cam and the ring-shaped link and the sliding contact part between the control cam and the rocker arm are in surface contact. It is easy and has excellent durability and reliability, and resistance when changing the operating angle is also kept low. In addition, since the swing cam that drives the intake valve is disposed coaxially with the intake drive shaft, for example, compared to a configuration in which the swing cam is supported by another support shaft different from the intake drive shaft, In addition to being excellent in control accuracy, the device itself is compact, so that it can be mounted on a vehicle and the number of parts can be kept low.
[0015]
In this operating angle changing mechanism, a load acts from the rocker arm to the control cam center of the control shaft due to the valve spring reaction force, the inertial force of the swing cam, etc. A control shaft torque is applied to rotate the wheel carelessly. Above load Tends to increase with an increase in operating angle (and valve lift) by the operating angle changing mechanism. Therefore, the claim 1 In the invention according to the above, when the operating angle of the intake valve is maximized, that is, Above load Is set so that the control shaft torque acting on the control shaft from the rocker arm is smaller than the control shaft torque in the case of the intermediate operating angle.
[0016]
The invention according to claim 3 is characterized in that a stopper mechanism for mechanically restricting the rotation range of the control shaft is provided between the control shaft and the engine body side.
[0017]
In this case, the control shaft can be reliably and accurately held at the minimum operating angle and the maximum operating angle.
[0018]
The invention according to claim 4 is set so that the opening timing of the intake valve is advanced most in the middle rotation range at the time of medium rotation and high load set to a predetermined medium operation angle by the operation angle changing mechanism, It is characterized in that the intake valve closing timing is set to be the most advanced in the high rotation range at the time of high rotation and high load set to the maximum operation angle by the operation angle changing mechanism.
[0019]
In other words, it is desirable to advance the opening timing of the intake valve mainly by increasing the operating angle in response to an increase in the load in an operation range of medium rotation or higher where the exhaust dynamic effect can be utilized. Therefore, as described above, the opening timing of the intake valve is set to advance most at the time of high load.
[0020]
The invention according to claim 5 is set such that the opening timing of the intake valve is most retarded at the time of medium rotation and high load during the low rotation and middle load, the middle rotation and high load, and the high rotation and high load. It is characterized by being.
[0021]
In other words, when comparing the medium rotation high load and the high rotation high load, at the time of high rotation high load, because the operation angle is set larger by the operation angle change mechanism, compared with the medium rotation high load, Since the control shaft torque is suppressed low, there is a low possibility that the opening timing of the intake valve will fluctuate. Therefore, the full opening performance can be further improved by further advancing the opening timing of the intake valve at the time of such high rotation and high load than at the time of medium rotation and high load. On the other hand, in order to reliably avoid interference between the intake valve and the piston during medium rotation and high load, the advance amount of the opening timing of the intake valve is made relatively small.
[0022]
Also, when comparing low load during high rotation and high load, when the load is low, the rotation speed is low and the operating angle is small, which may cause fluctuations and variations in the intake valve operating angle and intake phase. The nature is low.
[0023]
Therefore, in the invention according to claim 6, the opening timing of the intake valve at the time of low load during the low rotation is set to the advance side with respect to the opening timing of the intake valve at the time of high rotation and high load.
[0024]
【The invention's effect】
According to the first aspect of the invention, the degree of freedom in changing the valve lift characteristics of the intake valve is ensured to the maximum by setting the opening timing of the intake valve to be the most advanced during a load during low rotation. However, it is possible to reliably avoid interference between the intake valve and the piston.
[0025]
Also, Claim 1 According to the present invention, it is possible to obtain an operating angle changing mechanism that is excellent in durability and reliability, has low resistance when changing the operating angle, has excellent control accuracy, and has a compact and simple configuration. Also, when the operating angle of the intake valve is maximum, that is, Load acting on the control shaft from the rocker arm Since the control shaft torque acting on the control shaft from the rocker arm is set to be relatively small when the value of the rocker arm becomes the largest, it is possible to effectively suppress fluctuations and variations in the operating angle caused by the control shaft torque. it can.
[0026]
According to the third aspect of the invention, the control shaft can be reliably and accurately held at the positions of the minimum operating angle and the maximum operating angle, so that inadvertent fluctuation of the control shaft can be prevented more reliably. .
[0027]
According to the fourth aspect of the present invention, in the operation range of medium rotation or higher where the exhaust dynamic effect can be utilized, the opening timing of the intake valve can be advanced according to the increase in load, mainly improving the engine output. Can be achieved.
[0028]
According to the invention which concerns on Claim 5, it can prevent reliably that an intake valve and a piston interfere at the time of medium rotation high load, improving the fully open performance at the time of high rotation high load.
[0029]
According to the sixth aspect of the present invention, it is possible to reliably prevent the intake valve and the piston from interfering at the time of high rotation and high load while sufficiently advancing the opening timing of the intake valve at the time of low rotation and high load. .
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a variable valve operating apparatus for an internal combustion engine according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0031]
As shown in FIG. 1, each cylinder of the internal combustion engine is provided with a pair of intake valves 1 and a pair of exhaust valves (not shown), and a valve lifter 2 is disposed above each intake valve 1. Above these valve lifters 2, an intake drive shaft 3 that is driven to rotate around an axis in conjunction with a crankshaft (not shown) extends in the cylinder row direction. A swing cam 4 is fitted on the outer periphery of the intake drive shaft 3 so as to be swingable corresponding to each intake valve 1, and the swing cam 4 contacts and presses the valve lifter 2. Thus, the intake valve 1 is driven to open and close against the spring force of a valve spring (not shown).
[0032]
The variable valve operating apparatus according to this embodiment includes an operating angle changing mechanism 10 capable of continuously changing the operating angle (opening / closing period) and valve lift amount (lift operating angle) of the intake valve 1, and hydraulic oil (operating). An operating angle changing actuator 30 that drives the operating angle changing mechanism 10 according to the supply pressure of the fluid), a phase changing mechanism 20 that can continuously change the center phase (intake phase) of the operating angle of the intake valve 1, and an operation. A phase change actuator 40 that drives the phase change mechanism 20 according to the supply pressure of oil, and a control unit (engine control unit; ECU) that controls the supply pressure to these actuators 30 and 40 via solenoid valves 31 and 41 50. These solenoid valves 31 and 41 are connected to a hydraulic pump 9 as a pressure source for the supply pressure.
[0033]
The operating angle changing mechanism 10 is provided between the intake drive shaft 3 and the swing cam 4, and changes the posture of the link that mechanically links both the shafts 3 and 4 so that the operating angle of the intake valve 1 and The valve lift is continuously changed. In other words, the operating angle changing mechanism 10 is provided with a drive cam 11 which is provided eccentric to the intake drive shaft 3 and rotates integrally with the intake drive shaft 3, and a ring which is fitted around the outer periphery of the drive cam 11 so as to be relatively rotatable. Link (first link) 12, a control shaft 13 extending in the cylinder row direction substantially parallel to the intake drive shaft 3, and provided eccentric to the control shaft 13, and rotates integrally with the control shaft 13. A control cam 14, a rocker arm 15 that is fitted on the outer periphery of the control cam 14 so as to be relatively rotatable, and has one end connected to the tip of the ring-shaped link 12 so as to be relatively rotatable, and swings with the other end of the rocker arm 15. It has a rod-like link (second link) 16 that is rotatably connected to the tip of the cam 4 and mechanically links the two 15 and 4.
[0034]
The intake drive shaft 3 and the control shaft 13 are rotatably supported on the cylinder head side of the internal combustion engine via a bearing bracket. The operating shaft changing actuator 30 is connected to one end of the control shaft 13, and the actuator 30 is driven to rotate around the shaft within a predetermined control angle range and is held at a predetermined rotational phase. Is done.
[0035]
With such a configuration, when the intake drive shaft 3 rotates in conjunction with the crankshaft, the ring-shaped link 12 substantially translates via the drive cam 11 and the rocker arm 15 swings around the control cam 14. Then, the swing cam 4 swings through the rod-shaped link 16, and the intake valve 1 is driven to open and close.
[0036]
Further, when the control shaft 13 is rotated by the operating angle changing actuator 30, the center position of the control cam 14 serving as the rocking center of the rocker arm 15 is changed, and the postures of the links 12, 16 and the like are changed. The swing angle range of the moving cam 4 changes. As a result, as shown in FIG. 4, the operating angle and the valve lift amount continuously change while the central phase of the operating angle remains substantially constant. More specifically, the operating angle and the valve lift amount are increased by rotating the control shaft 13 in one direction, and the operating angle and the valve lift amount are decreased by rotating in the other direction. Yes.
[0037]
In such an operating angle changing mechanism 10, the contact portions of the rotating parts such as the sliding contact portion between the drive cam 11 and the ring-shaped link 12 and the sliding contact portion between the control cam 14 and the rocker arm 15 are in surface contact. Therefore, lubrication is easy, durability and reliability are excellent, and resistance when changing the operating angle is suppressed to a low level. Further, since the swing cam 4 for driving the intake valve 1 is disposed coaxially with the intake drive shaft 3, for example, the swing cam is supported by another support shaft different from the drive shaft. Thus, the control accuracy is excellent, the device itself is compact, the vehicle mountability is good, and the number of components is suppressed low.
[0038]
Next, the operating angle changing actuator 30 will be described with reference to FIG. Inside the actuator 30, a first hydraulic chamber 33 and a second hydraulic chamber 34 are defined with a pressure receiving portion 32a of the piston 32 interposed therebetween. A pin 32b is provided at the tip of the piston 32, and the pin 32b is slidably fitted in a radial groove 17a of the disk 17 provided at the end of the control shaft 13. Therefore, when the piston 32 advances and retreats according to the hydraulic pressure supplied to the first hydraulic chamber 33 and the second hydraulic chamber 34, the control shaft 13 rotates via the pin 32b and the disk 17 to operate the intake valve 1. The angle changes.
[0039]
The hydraulic pressure supplied to the hydraulic chambers 33 and 34 is switched according to the position of the spool 35 of the solenoid valve 31, and the solenoid valve 31 is ON-OFF driven (duty control) by an output signal from the control unit 50. That is, the position of the spool 35 is switched by changing the duty ratio of the output signal according to the engine operating state.
[0040]
For example, in a state where the spool 35 is held on the rightmost side in the drawing, the first oil passage 36 connected to the first hydraulic chamber 33 and the hydraulic pump 9 communicate with each other, and hydraulic pressure is supplied to the first hydraulic chamber 33. At the same time, the second oil passage 37 connected to the second hydraulic chamber 34 and the drain passage 38 communicate with each other, and the second hydraulic chamber 34 is drained. For this reason, the piston 32 of the actuator 30 is pressed and moved to the left side of the drawing.
[0041]
On the other hand, in a state where the spool 35 is held at the leftmost side in the drawing, the first oil passage 36 and the drain passage 38 are communicated to drain the first hydraulic chamber 33, and the second oil passage 37 and the hydraulic pump are connected. 9 is connected to supply hydraulic pressure to the second hydraulic chamber 34. For this reason, the piston 32 is pressed and moved to the right side of the figure.
[0042]
Further, in a state where the spool 35 is held at the intermediate position, both the port portion of the first oil passage 36 and the port portion of the second oil passage 37 are closed by the spool 35. As a result, the hydraulic pressure in the first and second hydraulic chambers 33 and 34 is held (locked), and the piston 32 is held in that position.
[0043]
In this way, by moving and holding the piston 32 of the actuator 30 to an arbitrary position, the operating angle of the intake valve 1 can be changed and held at an arbitrary operating angle within a predetermined rotation range. Although it is a structure, the degree of freedom of control is very high.
[0044]
The control unit 50 controls the change mechanisms 10 and 20 according to the engine speed, load, water temperature, vehicle speed, and the like detected or estimated from various sensors, as well as ignition timing control and fuel supply. Engine control such as quantity control, transient correction control, and fail-safe control is performed.
[0045]
Next, the configuration on the phase changing mechanism 20 side will be described with reference to FIG. A cam sprocket (or cam pulley) 6 is coaxially arranged on the outer peripheral side of the front end portion of the intake drive shaft 3. This cam sprocket 6 receives rotational power from the crankshaft via a chain (or belt) and rotates in synchronization with the crankshaft.
[0046]
The phase changing mechanism 20 is fixed to the intake drive shaft 3 through a hollow bolt 22 integrally formed on the inner peripheral side of the cam sprocket 6 and the intake drive shaft 3. It has a rotating inner cylinder part 23 and a ring-shaped piston 42 interposed between the outer cylinder part 21 and the inner cylinder part 23. A meshing portion 25 between the inner and outer peripheral surfaces of the piston 42 and the outer peripheral surface of the inner cylindrical portion 23 and the inner peripheral surface of the outer cylindrical portion 21 is a helical spline. Therefore, when the piston 42 moves in the axial direction of the inner and outer cylinder parts (left and right direction in FIG. 3), the movement in the axial direction is converted into the relative rotational movement between the inner cylinder part 23 and the outer cylinder part 21, The relative rotational phase between the outer cylinder part 21 and the inner cylinder part 23 changes continuously (conversion means). As a result, the relative rotational phase of the intake drive shaft 3 with respect to the cam sprocket 6 changes, and the phase of the operating angle of the intake valve 1 continuously changes while the operating angle remains constant.
[0047]
The phase change mechanism 20 having such a configuration is compact and excellent in mountability to the engine, and the number of parts is suppressed to be low. Further, even when used together with the operating angle changing mechanism 10 described above, it can be easily arranged without interfering with each other.
[0048]
The piston 42 is driven according to the hydraulic pressure supplied to the first hydraulic chamber 43 and the second hydraulic chamber 44 defined before and after the piston 42. That is, the phase change actuator 40 is configured by the outer cylinder portion 21, the inner cylinder portion 23, the piston 42, and the like.
[0049]
The hydraulic pressure supplied to the hydraulic chambers 43 and 44 is switched according to the position of the spool 45 of the solenoid valve 41, and the solenoid valve 41 is ON-OFF driven (duty control) by an output signal from the control unit 50. That is, the position of the spool 45 is switched by changing the duty ratio of the output signal according to the engine operating state.
[0050]
For example, in a state where the spool 45 is held at the leftmost side in the drawing, the first oil passage 46 connected to the first hydraulic chamber 43 and the hydraulic pump 9 communicate with each other, and hydraulic pressure is supplied to the first hydraulic chamber 43. At the same time, the second oil passage 47 connected to the second hydraulic chamber 44 and the drain passage 48 communicate with each other, and the second hydraulic chamber 44 is drained. For this reason, the piston 42 of the actuator 40 is pressed and moved to the left side of the figure.
[0051]
On the other hand, in a state where the spool 45 is held at the rightmost side in the drawing, the first oil passage 46 and the drain passage 48 are communicated to drain the first hydraulic chamber 43, and the second oil passage 47 and the hydraulic pump are connected. 9 is connected to supply hydraulic pressure to the second hydraulic chamber 44. For this reason, the piston 42 is pressed and moved to the right side of the figure.
[0052]
Further, in a state where the spool 45 is held at the intermediate position, both the port portion of the first oil passage 46 and the port portion of the second oil passage 47 are closed by the spool 45. Thereby, the hydraulic pressure in the first and second hydraulic chambers 43 and 44 is held (locked), and the piston 42 is held in that position.
[0053]
In this way, by moving and holding the piston 42 of the actuator 40 to an arbitrary position, the phase of the operating angle of the intake valve 1 can be changed and held to an arbitrary phase. The degree of freedom of control is very high.
[0054]
FIG. 5 shows a setting example of the valve lift characteristic of the intake valve 1 when the operating angle changing mechanism 10 and the phase changing mechanism 20 are used in combination.
[0055]
In the low rotation extremely low load range (a) such as idle, the piston upper surface is not exposed to the intake negative pressure from the top dead center, and the intake valve is opened after the piston is displaced to some extent and the cylinder becomes negative pressure. In order to reduce pump loss and residual gas, etc., the opening timing of the intake valve is greatly retarded from the top dead center (TDC), and the intake valve is mainly used to improve combustion. In order to set the closing time near the bottom dead center (BDC) and to promote fuel atomization by reducing friction and enhancing gas flow, the operating angle changing mechanism 10 is set to the minimum operating angle and the minimum lift. . That is, the change mechanism 10, 20 sets the intake operation angle to the minimum operation angle and the intake phase to the most retarded angle phase. Thereby, improvement of both a fuel consumption and exhaust_gas | exhaustion can be aimed at.
[0056]
On the other hand, in the low-rotation middle load range (c), the intake valve opening timing is advanced more than the top dead center in order to reduce the pump loss accompanying the increase in residual gas and improve the combustion due to the high-temperature residual gas. In order to reduce the pump loss mainly by reducing the intake air intake amount (filling efficiency), the intake valve closing timing is set before the bottom dead center. For this reason, the lift operating angle is increased to a predetermined small operating angle by the operating angle changing mechanism 10 and the intake phase is advanced to the most advanced angle phase by the phase changing mechanism 20 as compared with the idle range (a). Let
[0057]
Further, in the low rotation and low load range (b) where the required intake air amount is smaller than that in the middle load range (c), the lift operating angle is increased from a predetermined small operating angle in order to prevent combustion deterioration and reduce residual gas. In addition to setting within the range of the minimum operating angle, the intake phase is set to a predetermined advance angle phase, and the fuel efficiency is improved by reducing the pump loss accompanying the improvement of the effective compression ratio.
[0058]
In the fully open range, that is, in the high load range (d) to (f), the intake operating angle is set in the vicinity of the intermediate phase, and the lift operating angle is increased with the increase of the engine speed in order to mainly improve the charging efficiency. Increase it to improve the fully open performance. As a result, the IVO advances with an increase in the number of revolutions, and the exhaust dynamic effect can be effectively utilized particularly in an operation range of medium revolution or more.
[0059]
As described above, in the low rotation speed ranges (a) to (d), the intake valve opening timing is set so as to advance most during the middle load (c). In the middle rotation range, the intake valve opening timing is set to advance most at the time of high load (e). Similarly, in a high rotation range (for example, a rotation range of 4000 rpm or more), the opening timing of the intake valve is set to advance most at high load (f).
[0060]
Next, a characteristic configuration and operation of the present embodiment will be described with reference to FIGS.
[0061]
FIG. 7 shows a state where the lift operating angle is set to the maximum operating angle, and FIG. 8 is an enlarged view of the main part of FIG. The load F3 acting on the control cam center 14a of the control shaft 13 from the rocker arm 15 is mainly the resultant force of the load F1 acting on the rocker arm 15 from the rod-shaped link 16 and the load F2 acting on the rocker arm 15 from the ring-shaped link 12. It becomes. Although the direction of the load F3 changes according to the rotation of the intake drive shaft 3, near the top dead center and the bottom dead center where the load F3 increases, the center 3a of the intake drive shaft 3 and the center 13a of the control shaft 13 Is substantially parallel to the line α connecting the two.
[0062]
Due to such a load F3, a control shaft torque T that causes the control shaft 13 to rotate carelessly acts. Therefore, as described above, when the opening timing of the intake valve is advanced (c), (e), (f), the control shaft 13 is inadvertently operated at a large operating angle by the control shaft torque T. If the valve is turned to the side (or the intake phase is advanced inadvertently), the opening timing of the intake valve is excessively advanced, and the intake valve 1 and a piston (not shown) may interfere with each other.
[0063]
The control shaft torque T that causes such inadvertent fluctuation of the control shaft 13 increases as the load F3 increases, and the distance between the vector of the load F3 and the center 13a of the control shaft 13, that is, the arm length L is the same. It gets bigger as it gets longer.
[0064]
The magnitude of the load F3 changes according to the setting of the intake operating angle by the operating angle changing mechanism 10, and becomes the largest when the maximum operating angle is set to maximize the valve lift amount. Therefore, in this embodiment, the arm length L is set to be the shortest when the maximum operating angle is set.
[0065]
In this connection, as shown in FIG. 6, when the rotation range of the control shaft 13 is set to about 180 °, the intake operating angle is larger than the maximum operating angle (3) or the minimum operating angle (1). Thus, the arm length L becomes long and the control shaft torque T tends to increase at a predetermined medium operating angle (2).
[0066]
Further, the magnitude of the control shaft torque T increases according to the engine speed. That is, at the time of low rotation, since the inertial force of each component of the operating angle changing mechanism 10 is small, the valve spring reaction force is dominant. Therefore, at the time of low rotation, the load F3 is relatively low, and the direction of the load F3 is also substantially constant (the direction shown in FIGS. 7 and 8). On the other hand, at the time of high rotation, the inertial force of the swing cam 4 or the like becomes very large and such inertial force becomes dominant, so that the load F3 becomes larger than that at the time of the low rotation. Further, since the action direction of the inertial force is reversed with the swinging motion of the swing cam 4, the action direction of the swing cam 4 is also reversed. Therefore, during the high rotation in which the inertia force is dominant as described above, the control shaft 13 is likely to vary to the large lift operating angle side, and the risk of the above-described interference occurring is higher than that during the low rotation.
[0067]
For this reason, the above-described operation state that may cause the interference between the intake valve and the piston, that is, when the intake valve opening timing is greatly advanced during low rotation and medium load (c), during medium rotation and high load Among (e) and during high rotation and high load (f), during low rotation and medium load (c), the rotation speed is low and the intake operation angle is set to a small operation angle, and the arm length Since L is also shorter than in the case of the medium operating angle, the possibility of interference between the intake valve and the piston is the lowest. Also, at the time of high rotation and high load (f), the maximum operating angle is set, and the arm length L is minimized, so that the intake valve and the piston Is less likely to interfere.
[0068]
Furthermore, the intake phase is set to the most retarded angle phase by the phase change mechanism 20 at the time of low rotation load (c), and there is no risk of further advance, and at the time of high rotation high load (f). The operating angle is set to the maximum operating angle by the operating angle changing mechanism 10 and there is no risk of further increase, whereas in the middle rotation high load range (e), both the intake phase and the operating angle are intermediate values by hydraulic pressure. Therefore, fluctuations and variations in valve lift characteristics are likely to occur.
[0069]
Therefore, as shown in FIG. 5, among the three operating states (c), (e), and (f) in which the opening timing of the intake valve is greatly advanced, at the time of low load during the rotation (c). The opening timing (M1) of the intake valve is advanced the most, and the amount of advancement of the opening timing (M2) of the intake valve is set to be the smallest at the time of medium rotational high load (e). In other words, the advance amount of the opening timing of the intake valve is set to be smaller in the order of low rotation and medium load (c), high rotation and high load (f), and medium rotation and high load (e). Thus, the intake valve opening timing can be sufficiently advanced according to the engine operating state while reliably avoiding interference between the intake valve and the piston. Therefore, the degree of freedom of control is increased and the engine operation performance can be improved.
[0070]
Preferably, as shown in FIG. 9, a stopper mechanism 60 that mechanically restricts the rotation range of the control shaft 13 is provided between the control shaft 13 and the cylinder head 7 on the engine body side. The stopper mechanism 60 is provided on the locking pin 61 projecting in the radial direction from one end of the control shaft 13 and the cylinder head 7 or the bearing bracket 8 fixed thereto, and comes into contact with the locking pin 61 to control the control shaft 13. And a pair of stopper pins 62 and 63 for restricting the rotation range. When such a stopper mechanism 60 is provided, the control shaft 13 can be reliably and accurately held at the minimum operating angle and the maximum operating angle, and variations in the lift operating angle can be more reliably prevented. It is further advantageous for avoiding interference between the piston and the piston.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a variable valve operating apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a configuration of an operating angle changing actuator side of the variable valve device.
FIG. 3 is a cross-sectional view showing a phase changing mechanism of the variable valve operating apparatus.
FIG. 4 is a characteristic diagram showing how the operating angle and the valve lift are changed by the operating angle changing mechanism of the variable valve device.
FIG. 5 is a characteristic diagram showing intake valve lift characteristics in each operation state.
FIG. 6 is an operation explanatory diagram of the present embodiment.
FIG. 7 is an operation explanatory diagram of the present embodiment.
FIG. 8 is an enlarged view of a main part of FIG.
FIG. 9 is a cross-sectional view when a stopper mechanism is applied to the variable valve device.
[Explanation of symbols]
1 ... Intake valve
3 ... Intake drive shaft
4 ... Oscillating cam
10 ... Working angle change mechanism
11 ... Driving cam
12 ... Ring-shaped link
13 ... Control axis
14 ... Control cam
15 ... Rocker arm
16 ... Rod-shaped link
20 ... Phase change mechanism

Claims (6)

吸気弁の作動角を連続的に変更可能な作動角変更機構と、吸気弁の作動角の中心位相を連続的に変更可能な位相変更機構と、を有する内燃機関の可変動弁装置において、
上記作動角変更機構により所定の小作動角に設定される低回転中負荷時に、吸気弁の開時期が全回転域の中で最も進角するように設定され
かつ、機関と連動して回転する吸気駆動軸と、この吸気駆動軸に回転可能に外嵌し、吸気弁を開閉駆動する揺動カムと、の間に上記作動角変更機構が設けられ、
この作動角変更機構は、上記吸気駆動軸に偏心して設けられる駆動カムと、この駆動カムに回転可能に外嵌するリング状リンクと、所定の回転範囲内で回動される制御軸と、この制御軸に偏心して設けられる制御カムと、この制御カムに回転可能に外嵌するとともに、一端が上記リング状リンクに連結されたロッカアームと、このロッカアームの他端と上記揺動カムとに連結されたロッド状リンクと、を有し、
上記制御軸を一方向へ回動することにより吸気弁の作動角が増加し、上記制御軸を他方向へ回動することにより吸気弁の作動角が減少するように設定され、
かつ、この作動角変更機構により最大作動角に設定されているときに、上記ロッカアームから制御軸へ作用する制御軸トルクが中間作動角の場合の制御軸トルクよりも小となるように設定されていることを特徴とする内燃機関の可変動弁装置。
In a variable valve operating system for an internal combustion engine having an operating angle changing mechanism capable of continuously changing the operating angle of the intake valve and a phase changing mechanism capable of continuously changing the center phase of the operating angle of the intake valve,
When the load during low rotation is set to a predetermined small operating angle by the operating angle changing mechanism, the opening timing of the intake valve is set to advance most in the entire rotational range ,
The operating angle changing mechanism is provided between an intake drive shaft that rotates in conjunction with the engine, and a swing cam that is rotatably fitted to the intake drive shaft and drives the intake valve to open and close,
The operating angle changing mechanism includes a drive cam eccentrically provided on the intake drive shaft, a ring-shaped link rotatably fitted on the drive cam, a control shaft rotated within a predetermined rotation range, A control cam that is eccentrically provided on the control shaft, a rocker arm that is rotatably fitted to the control cam and has one end connected to the ring-shaped link, and the other end of the rocker arm and the swing cam. A rod-shaped link,
The operation angle of the intake valve is increased by rotating the control shaft in one direction, and the operation angle of the intake valve is decreased by rotating the control shaft in the other direction.
In addition, when the maximum operating angle is set by the operating angle changing mechanism, the control shaft torque acting on the control shaft from the rocker arm is set to be smaller than the control shaft torque in the case of the intermediate operating angle. A variable valve operating apparatus for an internal combustion engine characterized by comprising:
上記作動角変更機構により最大作動角に設定されているときに、ロッカアームから制御カムへ作用する荷重のベクトルと制御軸の中心との距離が最も短くなるように設定されていることを特徴とする請求項1に記載の内燃機関の可変動弁装置。 When the maximum operating angle is set by the operating angle changing mechanism, the distance between the vector of the load acting from the rocker arm to the control cam and the center of the control shaft is set to be the shortest. The variable valve operating apparatus for an internal combustion engine according to claim 1. 上記制御軸と機関本体側との間に、上記制御軸の回転範囲を機械的に規制するストッパ機構が設けられていることを特徴とする請求項1又は2に記載の内燃機関の可変動弁装置。The variable valve for an internal combustion engine according to claim 1 or 2, wherein a stopper mechanism for mechanically regulating a rotation range of the control shaft is provided between the control shaft and the engine body side. apparatus. 上記作動角変更機構により所定の中作動角に設定される中回転高負荷時に、吸気弁の開時期が中回転域の中で最も進角するように設定され、
上記作動角変更機構により最大作動角に設定される高回転高負荷時に、吸気弁の閉時期が高回転域の中で最も進角するように設定されていることを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変動弁装置。
When the medium rotation high load is set to a predetermined medium operation angle by the operation angle changing mechanism, the intake valve opening timing is set to advance most in the medium rotation range,
2. The intake valve closing timing is set so as to advance most in a high rotation range at a high rotation and high load set to a maximum operation angle by the operation angle changing mechanism . 4. The variable valve operating apparatus for an internal combustion engine according to any one of 3 above.
上記低回転中負荷時,中回転高負荷時及び高回転高負荷時の中で、中回転高負荷時に吸気弁の開時期が最も遅角するように設定されていることを特徴とする請求項4に記載の内燃機関の可変動弁装置。  The intake valve opening timing is set so as to be most retarded during medium rotation and high load among the low rotation and medium load, medium rotation and high load, and high rotation and high load. 5. A variable valve operating apparatus for an internal combustion engine according to 4. 上記低回転中負荷時の吸気弁の開時期が上記高回転高負荷時の吸気弁の開時期よりも進角側に設定されていることを特徴とする請求項4又は5に記載の内燃機関の可変動弁装置。  6. The internal combustion engine according to claim 4 or 5, wherein an opening timing of the intake valve at the time of the low rotation and high load is set to an advance side with respect to an opening timing of the intake valve at the time of the high rotation and high load. Variable valve gear.
JP2000282795A 2000-09-19 2000-09-19 Variable valve operating device for internal combustion engine Expired - Lifetime JP3797083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282795A JP3797083B2 (en) 2000-09-19 2000-09-19 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282795A JP3797083B2 (en) 2000-09-19 2000-09-19 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002089215A JP2002089215A (en) 2002-03-27
JP3797083B2 true JP3797083B2 (en) 2006-07-12

Family

ID=18767242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282795A Expired - Lifetime JP3797083B2 (en) 2000-09-19 2000-09-19 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3797083B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109078A1 (en) * 2003-05-28 2004-12-16 Honda Motor Co., Ltd. Valve moving device for engine
WO2005075798A1 (en) * 2004-02-06 2005-08-18 Mikuni Corp. Variable valve operating device for engine
JP4046105B2 (en) 2004-06-11 2008-02-13 トヨタ自動車株式会社 Variable valve mechanism for engine
JP4792952B2 (en) * 2005-12-06 2011-10-12 トヨタ自動車株式会社 Control device for internal combustion engine
JP5380220B2 (en) * 2009-09-17 2014-01-08 日立オートモティブシステムズ株式会社 Variable valve operating device for internal combustion engine

Also Published As

Publication number Publication date
JP2002089215A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3975652B2 (en) Variable valve operating device for internal combustion engine
JP4336444B2 (en) Variable valve operating device for internal combustion engine
JP3912147B2 (en) Variable valve operating device for internal combustion engine
US7793625B2 (en) Variable valve actuating apparatus for internal combustion engine
US8061311B2 (en) Variable valve actuating apparatus for internal combustion engine
US7334547B2 (en) Variable expansion-ratio engine
JP4827865B2 (en) Variable valve operating device for internal combustion engine
US7481199B2 (en) Start control apparatus of internal combustion engine
JP4092490B2 (en) Variable valve operating device for internal combustion engine
JP2010138737A (en) Variable valve gear for internal combustion engine and controller of the same
JP2012251483A (en) Variable valve gear of internal combustion engine and start control apparatus of internal combustion engine
JP4483637B2 (en) Internal combustion engine
US8844481B2 (en) Variable valve apparatus for internal combustion engine
JP4024121B2 (en) Valve operating device for internal combustion engine
JP3829629B2 (en) Combustion control device for internal combustion engine
JP3823675B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP4345197B2 (en) Knocking control device for internal combustion engine
JP3797083B2 (en) Variable valve operating device for internal combustion engine
JP4423775B2 (en) Variable valve operating device for internal combustion engine
JP3698006B2 (en) Intake valve drive control device for internal combustion engine
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP4433591B2 (en) Variable valve operating device for internal combustion engine
JP4622431B2 (en) Variable valve gear for engine
JP4085886B2 (en) Variable valve operating device for internal combustion engine
JP5020339B2 (en) Variable valve operating device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3797083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

EXPY Cancellation because of completion of term