JP2002235567A - Combustion control device for internal combustion engine - Google Patents

Combustion control device for internal combustion engine

Info

Publication number
JP2002235567A
JP2002235567A JP2001030655A JP2001030655A JP2002235567A JP 2002235567 A JP2002235567 A JP 2002235567A JP 2001030655 A JP2001030655 A JP 2001030655A JP 2001030655 A JP2001030655 A JP 2001030655A JP 2002235567 A JP2002235567 A JP 2002235567A
Authority
JP
Japan
Prior art keywords
intake valve
ignition timing
state
internal combustion
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001030655A
Other languages
Japanese (ja)
Other versions
JP3829629B2 (en
Inventor
Shunichi Aoyama
俊一 青山
Shinichi Takemura
信一 竹村
Tsuneyasu Nohara
常靖 野原
Takanobu Sugiyama
孝伸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001030655A priority Critical patent/JP3829629B2/en
Publication of JP2002235567A publication Critical patent/JP2002235567A/en
Application granted granted Critical
Publication of JP3829629B2 publication Critical patent/JP3829629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve exhaust emission control performance by delaying an ignition timing as much as possible, promoting a rise in an exhaust temperature and early activating a catalyst 3, in a cold state. SOLUTION: This device is provided with an operating angle changing mechanism 5 for changing an operating angle of an intake valve 4, a phase changing mechanism 6 for changing the center phase and an ignition timing changing device 14 for changing the ignition timing. In an exhaust passage 2, a catalyst 3 for exhaust emission control is disposed. An opening timing of the intake valve 4 is delayed as much as possible so that the ignition timing may be delayed as compared with an optimum ignition timing and a delay limit of the ignition timing may be expanded in the cold state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気系に触媒が配
設された火花点火式の内燃機関に関し、特に、冷機状態
の際に触媒を速やかに活性化温度まで上昇させるための
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark ignition type internal combustion engine in which a catalyst is provided in an exhaust system, and more particularly to a technique for quickly raising a catalyst to an activation temperature in a cold state.

【0002】[0002]

【従来の技術】近年のガソリン機関に代表される火花点
火式の内燃機関においては、一般的に、三元触媒等の排
気浄化用の触媒が排気系に配設されている。しかしなが
ら、今日の進化した触媒技術をもってしても、機関始動
直後のように機関の冷却水温度や触媒温度が低く、触媒
が所定の活性化温度に達していない機関冷機状態におい
ては、暖機後の状態に比して、排気ガスに対する触媒の
効果が大幅に制限されるのが現状である。
2. Description of the Related Art In a spark ignition type internal combustion engine represented by a gasoline engine in recent years, a catalyst for purifying exhaust gas such as a three-way catalyst is generally provided in an exhaust system. However, even with today's advanced catalyst technology, in the engine cooling state where the engine cooling water temperature or catalyst temperature is low, such as immediately after engine startup, and the catalyst has not reached the predetermined activation temperature, the engine is not warmed up. At present, the effect of the catalyst on the exhaust gas is greatly limited as compared with the state described above.

【0003】この問題は古くから認識されており、触媒
の早期活性化を図るために、触媒の活性化温度自体を低
下させる手法や、二次空気を触媒の上流に導入して化学
的に活性化の時期を早める技術等が知られている。しか
しながら、基本的には、触媒が転換を開始する活性化温
度まで触媒温度を如何に早く上昇させるかが重要であ
る。そこで、点火時期を最良効率が得られる最適点火時
期よりも遅角させて、燃焼開始時期をリタードさせるこ
とにより、排気温度を上昇させて、触媒温度を速やかに
上昇させる手法が、燃費性能等に悪影響があるにもかか
わらず、従来より試みられている。
[0003] This problem has been recognized for a long time, and in order to achieve early activation of the catalyst, a method of lowering the activation temperature itself of the catalyst or a method of introducing secondary air upstream of the catalyst to chemically activate the catalyst is used. There are known techniques for accelerating the time of formation. However, it is fundamentally important how quickly the catalyst temperature is raised to the activation temperature at which the catalyst starts to convert. Therefore, a method of raising the exhaust gas temperature and quickly raising the catalyst temperature by retarding the ignition timing from the optimum ignition timing at which the best efficiency can be obtained and retarding the combustion start timing is one of fuel consumption performance and the like. Despite the adverse effects, attempts have been made in the past.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、点火時
期を最適点火時期よりも遅らせると、燃焼が不安定とな
り、甚だしい場合には失火に至り、未燃のHCが大量に
放出されるなどのおそれがある。従って、このように点
火時期を遅らせる際には、燃焼の改善が不可欠となる。
燃焼改善を行う代表手的な手法としては、吸気ポートに
スワールコントロール弁(SCV)を設ける手法が挙げ
られる。
However, if the ignition timing is delayed from the optimum ignition timing, combustion becomes unstable, and in severe cases, a misfire may occur and a large amount of unburned HC may be released. is there. Therefore, when delaying the ignition timing in this way, it is essential to improve the combustion.
As a typical method for improving combustion, there is a method of providing a swirl control valve (SCV) at an intake port.

【0005】ところで、低温時の燃焼改善等を図るため
に、吸気弁の作動特性を変化させる機構として、これま
で公知となっている発明も多い。その幾つかを以下に列
記する。
By the way, there are many inventions which have been known as mechanisms for changing the operating characteristics of the intake valve in order to improve combustion at low temperatures. Some of them are listed below.

【0006】第1に、特開平11−036906号公報
には、吸気弁の作動角を連続的に変更可能な作動角変更
機構が開示されている。この機構により機関低速時から
高速時に至る幅広い運転領域で、燃焼性能の向上と、充
填効率の最適化による燃費性能の向上と、を図ることが
できる。また、吸気弁の作動角の中心位相を可変制御す
る位相変更機構を上記の作動角変更機構と組み合わせる
ことにより、吸気弁の開時期(以下、必要に応じてIV
Oと呼ぶ)及び吸気弁の閉時期(以下、必要に応じてI
VCと呼ぶ)を個々に変更制御することも可能となる。
First, Japanese Patent Laid-Open Publication No. Hei 11-036906 discloses an operating angle changing mechanism capable of continuously changing the operating angle of an intake valve. With this mechanism, the combustion performance can be improved and the fuel efficiency can be improved by optimizing the charging efficiency in a wide operating range from a low engine speed to a high engine speed. Further, by combining a phase changing mechanism for variably controlling the center phase of the operating angle of the intake valve with the above operating angle changing mechanism, the opening timing of the intake valve (hereinafter, IV
O) and closing timing of the intake valve (hereinafter referred to as I
VC (hereinafter referred to as VC) can be individually controlled.

【0007】第2に、実開昭62−116106号公報
には、吸気弁のバルブリフト量及び開閉時期を2段階に
切り替える切替機構が設けられている。クランキング時
(始動時)には、バルブリフト量を小さくするとともに
IVOを吸気下死点近傍まで遅らせており、吸気の絞り
摩擦熱による温度上昇(燃料気化性)を図るとともに、
小リフト化によるクランキング時の速度増加によって始
動性の向上を図っている。しかしながら、機関始動後に
おけるIVOやIVCの制御についての記載がほとんど
無く、特に点火時期を遅らせて排気温度を高める点につ
いては何ら記載されていない。
Second, Japanese Utility Model Laid-Open Publication No. Sho 62-116106 discloses a switching mechanism for switching the valve lift and opening / closing timing of an intake valve between two stages. At the time of cranking (at the time of starting), the valve lift is reduced and the IVO is delayed to the vicinity of the bottom dead center of the intake to increase the temperature (fuel vaporization) due to the frictional heat of the intake throttle.
Startability is improved by increasing the speed during cranking due to the small lift. However, there is almost no description about the control of IVO and IVC after the engine is started, and nothing is described particularly about raising the exhaust gas temperature by delaying the ignition timing.

【0008】第3に、特開平3−202640号公報に
は、吸気弁のバルブタイミングを2段階に変更可能な切
替機構を設け、(暖機状態における)低回転・低負荷時
には、排気温度を上昇させるために、IVCを遅らせる
とともに、EVO(排気弁の開時期)を早め、膨張行程
中の排気を早く流出させることが記載されている。しか
しながら、この公報にも、点火時期を遅らせて排気温度
を高める点についての記載はない。
Third, Japanese Patent Application Laid-Open No. Hei 3-202640 discloses a switching mechanism capable of changing the valve timing of an intake valve in two stages. It is described that, in order to raise the pressure, the IVC is delayed, the EVO (opening timing of the exhaust valve) is advanced, and the exhaust gas during the expansion stroke is quickly discharged. However, this publication does not disclose that the ignition timing is delayed to increase the exhaust gas temperature.

【0009】本発明は、排気系に排気浄化用の触媒を備
えた火花点火式の内燃機関において、吸気弁の開時期及
び閉時期を変更する吸気特性変更手段を有効に利用し
て、冷機状態における点火時期の大幅な遅角化を実現
し、この点火時期の遅角化に伴う排気温度の上昇によ
り、触媒の早期活性化を図り、排気浄化性能を大幅に向
上させることを一つの目的としている。
According to the present invention, in a spark ignition type internal combustion engine provided with an exhaust gas purifying catalyst in an exhaust system, an intake characteristic changing means for changing an opening timing and a closing timing of an intake valve is effectively used to achieve a cold state. One of the objectives is to realize a large delay in the ignition timing at the, and to achieve early activation of the catalyst and a significant improvement in the exhaust purification performance by increasing the exhaust gas temperature with the retardation of the ignition timing. I have.

【0010】すなわち、冷機状態では、触媒が活性化温
度に達するまでのあらゆる運転状態(例えば始動直後の
冷機ハイアイドル状態、冷機加速状態、及び冷機定常運
転状態等)において、燃費が過度に悪化したり失火等を
招くことのない安定限界まで点火時期を遅角させること
により、排気温度の上昇に伴う触媒の早期活性化を図る
ことを目的としている。
[0010] That is, in the cold state, in all operating states until the catalyst reaches the activation temperature (for example, a cold high idling state immediately after starting, a cold accelerating state, a cold steady operating state, etc.), the fuel efficiency is excessively deteriorated. It is an object of the present invention to early activate the catalyst with a rise in the exhaust gas temperature by retarding the ignition timing to a stability limit that does not cause a fire or misfire.

【0011】[0011]

【課題を解決するための手段】本発明に係る火花点火式
の内燃機関の燃焼制御装置は、吸気弁の開時期及び閉時
期を変更する吸気特性変更手段と、点火時期を変更する
点火時期変更手段と、機関の冷機状態を検出する冷機検
出手段と、を有し、かつ、排気系に排気浄化用の触媒が
設けられている。この触媒としては、酸化触媒、三元触
媒等の酸化還元触媒、及び還元触媒等が挙げられる。
SUMMARY OF THE INVENTION A combustion control apparatus for a spark ignition type internal combustion engine according to the present invention includes an intake characteristic changing means for changing an opening timing and a closing timing of an intake valve, and an ignition timing changing for changing an ignition timing. Means, and a cold detecting means for detecting a cold state of the engine, and a catalyst for purifying exhaust gas is provided in the exhaust system. Examples of the catalyst include an oxidation reduction catalyst such as an oxidation catalyst and a three-way catalyst, and a reduction catalyst.

【0012】そして、上記冷機状態では、点火時期を最
適な燃焼効率が得られる最適点火時期よりも遅角すると
ともに、この点火時期の遅角限界を拡大するように、吸
気弁の開時期を遅角することを特徴としている。
In the above-mentioned cold state, the ignition timing is retarded from the optimal ignition timing at which the optimum combustion efficiency is obtained, and the opening timing of the intake valve is delayed so as to extend the retardation limit of the ignition timing. It is characterized by horns.

【0013】典型的には、上記冷機状態では、吸気弁の
開時期(IVO)を排気上死点よりも遅角する。この場
合、吸入行程に入っても初期には吸気が供給されないた
め、筒内の負圧は急速に増大する。さらにピストン速度
は行程中央が最大であり、上死点から行程中央までは単
調に増大する特性であるから、IVOを上死点よりも遅
らせると、筒内の負圧は非常に大きくなるとともに、吸
気弁が開弁した時の吸気流速が非常に大きくなる。筒内
の負圧が増大すると、ポンプ損失が増大するものの、こ
れに伴って吸気温度が上昇する。また、吸気流速の増加
により、吸気ポートに噴射された燃料の霧化が十分に促
進され、燃焼状態が改善される。更に、吸気流速の増加
に伴う吸気の乱れ度合いの増加に対応して、燃焼速度そ
のものも上昇する。このように、吸気弁の開時期を遅角
することにより、燃焼状態が改善され、その分、点火時
期の遅角限界(リタード限界)を拡大(遅角化)するこ
とができる。
Typically, in the cold state, the opening timing (IVO) of the intake valve is retarded from the exhaust top dead center. In this case, even when the intake stroke is started, the intake air is not initially supplied, so that the negative pressure in the cylinder rapidly increases. Furthermore, since the piston speed is the largest at the center of the stroke and increases monotonically from the top dead center to the center of the stroke, if the IVO is delayed from the top dead center, the negative pressure in the cylinder becomes extremely large, The intake flow velocity when the intake valve is opened becomes very large. When the negative pressure in the cylinder increases, although the pump loss increases, the intake air temperature increases accordingly. In addition, due to the increase in the intake flow velocity, the atomization of the fuel injected into the intake port is sufficiently promoted, and the combustion state is improved. Further, the combustion speed itself increases in response to the increase in the degree of intake turbulence accompanying the increase in the intake air flow velocity. Thus, by retarding the opening timing of the intake valve, the combustion state is improved, and the retard limit (retard limit) of the ignition timing can be extended (retarded) accordingly.

【0014】このように、点火時期の最適点火時期から
の遅角限界を拡大することによって、排気温度の上昇が
促進され、排気系に設けられた触媒の温度上昇が促進さ
れるため、触媒が早期に活性化され、排気浄化性能の著
しい向上を図ることができる。
As described above, by increasing the retardation limit of the ignition timing from the optimum ignition timing, a rise in the exhaust gas temperature is promoted, and a rise in the temperature of the catalyst provided in the exhaust system is promoted. It is activated at an early stage, and remarkable improvement in exhaust gas purification performance can be achieved.

【0015】具体的には、上記冷機状態では、ほぼ同じ
運転条件の暖機状態よりも吸気弁の開時期を遅角する。
つまり、冷機状態では、点火時期の遅角限界を最大限に
拡大するために、ポンプ損失等の悪影響があるものの、
吸気弁の開時期を可能な限り遅角させている。これに対
し、暖機状態では、最適な燃費効率が得られるように、
吸気弁の開時期が上記の冷機状態に比して進角した設定
とされる。
Specifically, in the cold state, the opening timing of the intake valve is retarded more than in the warm-up state under substantially the same operating conditions.
In other words, in the cold state, although there is an adverse effect such as pump loss in order to maximize the retard limit of the ignition timing,
The opening timing of the intake valve is retarded as much as possible. On the other hand, in the warm-up state, in order to obtain optimal fuel efficiency,
The opening timing of the intake valve is set to be advanced compared to the above-described cold state.

【0016】より好ましくは、上記冷機状態では、吸気
弁の閉時期を吸気下死点近傍に設定する。この場合、実
圧縮比が増加するとともに、吸入負圧も上昇するため、
燃焼速度が増加し、点火時期の遅角限界を更に拡大する
ことができる。
More preferably, in the above-mentioned cold state, the closing timing of the intake valve is set near the intake bottom dead center. In this case, since the actual compression ratio increases and the suction negative pressure also increases,
The combustion speed is increased, and the ignition timing retard limit can be further expanded.

【0017】このように、上記冷機状態では、失火等を
招くことのない範囲で、機関運転状態に応じてIVO及
び点火時期を可能な限り遅角させている。例えば、冷機
状態において機関負荷が増加すると、作動角を拡大する
必要があるため、機関負荷の増加に応じて吸気弁の開時
期の遅角度合いが縮小され、これに伴って点火時期の遅
角度合いも縮小されることになる。
As described above, in the above-mentioned cold state, the IVO and the ignition timing are retarded as much as possible according to the engine operating state within a range that does not cause misfire or the like. For example, when the engine load increases in a cold state, it is necessary to increase the operating angle, so that the delay in the opening timing of the intake valve is reduced in accordance with the increase in the engine load, and accordingly, the ignition timing is retarded. The match will also be reduced.

【0018】このような本発明によれば、点火時期を、
通常の最適点火時期よりもクランク角度で20〜30°
程度まで遅らせることが可能となり、例えば冷機ハイア
イドル状態では圧縮上死点近傍まで遅角させることが可
能となる。
According to the present invention, the ignition timing is
20 to 30 degrees crank angle than normal optimal ignition timing
For example, in a cold high idle state, it is possible to retard the pressure to near the compression top dead center.

【0019】上記吸気特性変更手段は、典型的には、吸
気弁の作動角及びバルブリフト量を変更する作動角変更
機構と、吸気弁の作動角の中心位相を変更する位相変更
機構と、を有している。そして、双方の機構を個々に駆
動制御することにより、吸気弁の開時期と閉時期とを互
いに独立して任意の値に制御することが可能となる。具
体的には、冷機状態において、吸気弁の閉時期を下死点
近傍に保持したまま、吸気弁の開時期を安定限界まで遅
角させることが可能となる。
The intake characteristic changing means typically includes an operating angle changing mechanism for changing the operating angle and the valve lift of the intake valve, and a phase changing mechanism for changing the central phase of the operating angle of the intake valve. Have. By individually controlling the driving of both mechanisms, the opening timing and the closing timing of the intake valve can be controlled to arbitrary values independently of each other. Specifically, in the cold state, the opening timing of the intake valve can be retarded to the stability limit while the closing timing of the intake valve is kept near the bottom dead center.

【0020】また、上記冷機状態では、ほぼ同じ運転条
件の暖機状態に比して、吸気弁のバルブリフト量を同等
以下に設定することが好ましい。このようにバルブリフ
ト量を小さくすると、吸気流路の開口面積が減少する
分、吸気流速は増大する。特に、吸気弁とバルブシート
との間のノズル効果(最小絞り部)が増すため、吸気ポ
ートに噴射された燃料の霧化が効果的に促進される。従
って、燃焼改善による点火時期の更なる遅角化が可能と
なる。
In the above-mentioned cold state, it is preferable that the valve lift of the intake valve be set equal to or less than that in the warm-up state under substantially the same operating conditions. When the valve lift amount is reduced in this way, the intake flow velocity increases as the opening area of the intake passage decreases. In particular, since the nozzle effect (minimum throttle portion) between the intake valve and the valve seat increases, atomization of the fuel injected into the intake port is effectively promoted. Therefore, it is possible to further retard the ignition timing by improving the combustion.

【0021】更に、暖機アイドル状態よりも機関回転数
の高い冷機ハイアイドル状態では、暖機アイドル状態に
比して、吸気弁の開時期及び閉時期ともに遅角させる必
要があるため、主に吸気弁の作動角の中心位相を遅角さ
せれば良い。
Furthermore, in the cold high idling state where the engine speed is higher than the warm idling state, it is necessary to retard both the opening timing and the closing timing of the intake valve compared to the warm idling state. What is necessary is just to retard the center phase of the operating angle of the intake valve.

【0022】上記作動角変更機構は、典型的には、クラ
ンクシャフトから伝達される回転動力により回転する駆
動軸と、この駆動軸に揺動可能に取り付けられ、吸気弁
に当接してこれを作動させる揺動カムと、上記駆動軸に
偏心して設けられた偏心カムと、作動角の変更時に回転
駆動される制御軸と、この制御軸に偏心して設けられた
制御カムと、この制御カムに回転可能に取り付けられた
ロッカーアームと、このロッカーアームの一端と上記偏
心カムとを連携する第1リンクと、上記ロッカーアーム
の他端と上記揺動カムとを連携する第2リンクと、を有
している。
The operating angle changing mechanism is typically mounted on a drive shaft that is rotated by rotational power transmitted from a crankshaft, and is swingably mounted on the drive shaft. An oscillating cam to be driven, an eccentric cam provided eccentrically to the drive shaft, a control shaft rotatively driven when the operating angle is changed, a control cam eccentrically provided to the control shaft, and a rotation A rocker arm that is mounted so as to be able to move, a first link that links one end of the rocker arm and the eccentric cam, and a second link that links the other end of the rocker arm and the swing cam. ing.

【0023】この場合、機関運転状態に応じて制御軸を
回動することにより、ロッカーアームの揺動中心となる
制御カムの機関本体に対する位置が変化して、各リンク
や揺動カム等の初期姿勢が変化する。この結果、クラン
ク角度に対する吸気弁の作動角の中心位相が略一定のま
まで、吸気弁の作動角及びバルブリフト量が連続的に変
化する。このような構成の作動角変更機構は、吸気弁を
作動させる揺動カムが駆動軸と同軸上に配置されている
ため、揺動カムと駆動軸との軸ズレ等を生じるおそれが
なく、制御精度に優れていると共に、ロッカーアームや
各リンクを駆動軸の周囲に集約させて、機構のコンパク
ト化を図ることができる。また、偏心カムと第1リンク
との軸受部や、制御カムとロッカーアームとの軸受部の
ように、部材間の連結部の多くが面接触となっているた
め、潤滑が行いやすく、耐久性,信頼性にも優れてい
る。更に、この作動角変更機構を、固定カム及びカムシ
ャフトを備えた一般的な直動式動弁系に適用する場合に
も、これら固定カム及びカムシャフトの位置に揺動カム
及び駆動軸を配置すれば良く、レイアウトの変更が非常
に少なくて済むため、その適用が極めて容易である。
In this case, by rotating the control shaft in accordance with the operating state of the engine, the position of the control cam, which is the rocking center of the rocker arm, with respect to the engine body changes, and the initial position of each link, rocking cam and the like changes. Posture changes. As a result, the operating angle of the intake valve and the valve lift continuously change while the center phase of the operating angle of the intake valve with respect to the crank angle remains substantially constant. In the operating angle changing mechanism having such a configuration, since the swing cam for operating the intake valve is arranged coaxially with the drive shaft, there is no possibility that the swing cam and the drive shaft may be misaligned. In addition to being excellent in accuracy, the rocker arm and each link are integrated around the drive shaft, so that the mechanism can be made compact. In addition, since many of the connecting portions between the members are in surface contact, such as the bearing portion between the eccentric cam and the first link and the bearing portion between the control cam and the rocker arm, lubrication is easily performed and durability is improved. , Excellent in reliability. Further, when the operating angle changing mechanism is applied to a general direct-acting valve train having a fixed cam and a camshaft, the swing cam and the drive shaft are arranged at the positions of the fixed cam and the camshaft. The layout can be changed very little, and the application is very easy.

【0024】上記位相変更機構は、典型的には、上記作
動角変更機構を介して吸気弁を開閉駆動する駆動軸に設
けられた第1ギヤと、この駆動軸と同軸上に配設され、
クランクシャフトと同期して回転するスプロケット又は
プーリに設けられた第2ギヤと、これら第1ギヤ及び第
2ギヤに噛合するヘリカルギヤを備えたプランジャと、
位相変更時に上記プランジャを駆動軸の軸方向へ駆動す
る駆動手段と、を有している。
The phase change mechanism is typically provided on a drive shaft that opens and closes an intake valve via the operation angle change mechanism, and is provided coaxially with the drive shaft.
A second gear provided on a sprocket or pulley that rotates in synchronization with the crankshaft, and a plunger including a helical gear meshing with the first gear and the second gear;
Drive means for driving the plunger in the axial direction of the drive shaft when the phase is changed.

【0025】[0025]

【発明の効果】本発明によれば、機関の冷機状態では、
点火時期を最適点火時期よりも遅角するとともに、この
点火時期の遅角限界を拡大するように、吸気弁の開時期
を遅角することにより、冷機状態における点火時期の大
幅な遅角化を実現し、この点火時期の遅角化に伴う排気
温度の上昇により、触媒の早期活性化を図り、排気浄化
性能を大幅に向上させることができる。
According to the present invention, when the engine is in a cold state,
The ignition timing is retarded from the optimal ignition timing, and the ignition timing in the cold state is greatly retarded by retarding the opening timing of the intake valve so as to extend the retardation limit of the ignition timing. As a result, the catalyst is activated early due to the increase in the exhaust gas temperature caused by the retardation of the ignition timing, and the exhaust gas purification performance can be greatly improved.

【0026】[0026]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0027】図1に示すように、この内燃機関1は、ガ
ソリンを燃料とする火花点火式の自動車用内機機関であ
り、かつ、排気系の一部をなす排気通路2には排気浄化
用の三元触媒等の触媒3が設けられている。また、この
内燃機関1には、吸気弁4の開時期及び閉時期を変更す
る吸気時期変更手段として、吸気弁4の作動角及びバル
ブリフト量を連続的に変更可能な作動角変更機構5と、
吸気弁4の作動角の中心位相を連続的に変更可能な位相
変更機構6と、が設けられている。
As shown in FIG. 1, the internal combustion engine 1 is a gasoline-fueled, spark-ignition type internal combustion engine for a vehicle, and has an exhaust passage 2 forming a part of an exhaust system for purifying exhaust gas. The catalyst 3 such as a three-way catalyst is provided. The internal combustion engine 1 has an operating angle changing mechanism 5 that can continuously change the operating angle and the valve lift amount of the intake valve 4 as an intake timing changing unit that changes the opening timing and the closing timing of the intake valve 4. ,
A phase changing mechanism 6 that can continuously change the center phase of the operating angle of the intake valve 4.

【0028】機関制御部としてのECU(エンジンコン
トロールユニット)7は、各種センサより検出又は推定
されるエンジン回転数,エンジン負荷,吸入負圧,排気
温度の他、水温センサ8により検出される機関冷却水温
度,触媒温度センサ9により検出される触媒温度等に基
づいて、各種の機関制御プログラムを記憶及び実行する
メモリ及びCPUを備えた周知のマイクロコンピュータ
である。すなわち、ECU7は、機関運転状態に応じて
各種アクチュエータ等へ制御信号を出力して、機関1の
作動を統括的に制御している。
An ECU (engine control unit) 7 serving as an engine control unit includes an engine cooling speed detected by a water temperature sensor 8 in addition to an engine speed, an engine load, a suction negative pressure, and an exhaust temperature detected or estimated by various sensors. It is a known microcomputer including a memory and a CPU for storing and executing various engine control programs based on the water temperature, the catalyst temperature detected by the catalyst temperature sensor 9, and the like. That is, the ECU 7 outputs a control signal to various actuators and the like according to the engine operating state, and controls the operation of the engine 1 in an integrated manner.

【0029】より具体的には、ECU7は、作動角変更
機構5を油圧駆動する作動角制御アクチュエータ10へ
の供給油圧を切り替える第1油圧装置11へ制御信号を
出力し、位相変更機構6を油圧駆動する位相制御アクチ
ュエータ12への供給油圧を切り替える第2油圧装置1
3へ制御信号を出力し、かつ、各気筒毎に設けられた点
火プラグ(図示省略)の火花点火時期を変更する点火時
期制御装置(点火時期変更手段)14へ制御信号を出力
する。この点火時期変更装置14により、例えば点火プ
ラグによる火花点火時期が、最良効率を与える最適点火
時期よりも遅角補正される。
More specifically, the ECU 7 outputs a control signal to the first hydraulic device 11 that switches the hydraulic pressure supplied to the operating angle control actuator 10 that hydraulically drives the operating angle changing mechanism 5, and controls the phase changing mechanism 6 Second hydraulic device 1 for switching hydraulic pressure supplied to driven phase control actuator 12
3 and outputs a control signal to an ignition timing control device (ignition timing changing means) 14 for changing the spark ignition timing of a spark plug (not shown) provided for each cylinder. By the ignition timing changing device 14, for example, the spark ignition timing by the ignition plug is corrected to be more retarded than the optimum ignition timing that gives the best efficiency.

【0030】次に、図2〜4を参照して作動角変更機構
5について説明する。この作動角変更機構5は、クラン
クシャフトから位相変更機構6を介して伝達される回転
動力により軸周りに回転する駆動軸21と、この駆動軸
21に揺動可能に取り付けられ、吸気弁4のバルブリフ
タ4aに当接してこれを押圧作動させる揺動カム22
と、駆動軸21に偏心して一体的に設けられた偏心カム
23と、作動角変更時に作動角制御アクチュエータ10
により回転駆動される制御軸24と、この制御軸24に
偏心して一体的に設けられた制御カム25と、この制御
カム25に回転可能に取り付けられたロッカーアーム2
6と、このロッカーアーム26の一端と偏心カム23と
を連携するリング状の第1リンク27と、ロッカーアー
ム26の他端と揺動カム22とを連携するロッド状の第
2リンク28と、を有している。
Next, the operating angle changing mechanism 5 will be described with reference to FIGS. The operating angle changing mechanism 5 is attached to the driving shaft 21 which is rotatable around the axis by the rotational power transmitted from the crankshaft via the phase changing mechanism 6, and is swingably attached to the driving shaft 21. Swing cam 22 which comes into contact with and presses valve lifter 4a
An eccentric cam 23 eccentrically provided on the drive shaft 21 and an operating angle control actuator 10 for changing the operating angle.
, A control cam 25 eccentrically provided on the control shaft 24, and a rocker arm 2 rotatably mounted on the control cam 25.
6, a ring-shaped first link 27 that links one end of the rocker arm 26 and the eccentric cam 23, a rod-shaped second link 28 that links the other end of the rocker arm 26 and the swing cam 22, have.

【0031】従って、クランクシャフトに連動して駆動
軸21が回転すると、この駆動軸21の偏心カム23を
中心として第1リンク27がほぼ並進作動し、この第1
リンク27に連携するロッカーアーム26及び第2リン
ク28を介して揺動カム22が揺動し、吸気弁が開閉作
動する。
Therefore, when the drive shaft 21 rotates in conjunction with the crankshaft, the first link 27 substantially translates around the eccentric cam 23 of the drive shaft 21 and the first link 27 moves.
The swing cam 22 swings through the rocker arm 26 and the second link 28 linked to the link 27, and the intake valve opens and closes.

【0032】また、機関運転状態に応じて制御軸24を
回動することにより、ロッカーアーム26の揺動中心と
なる制御カム25の機関本体に対する位置が変化して、
各リンク27,28や揺動カム22等の初期姿勢が変化
する。この結果、図3に示すように、クランク角度に対
する吸気弁の作動角の中心位相が略一定のままで、吸気
弁の作動角及びバルブリフト量が連続的に変化する。な
お、図4の上段はゼロリフトの状態を示しており、下段
はフルリフトの状態を示している。
Further, by rotating the control shaft 24 in accordance with the operating state of the engine, the position of the control cam 25, which is the rocking center of the rocker arm 26, with respect to the engine body changes.
The initial posture of each of the links 27 and 28 and the swing cam 22 changes. As a result, as shown in FIG. 3, while the center phase of the operating angle of the intake valve with respect to the crank angle remains substantially constant, the operating angle and the valve lift of the intake valve continuously change. In addition, the upper part of FIG. 4 shows a state of zero lift, and the lower part shows a state of full lift.

【0033】このような構成の作動角変更機構5は、吸
気弁4のバルブリフタ4aを押し下げる揺動カム22が
駆動軸21と同軸上に配置されているため、揺動カム2
2と駆動軸21との軸ズレ等を生じるおそれがなく、制
御精度に優れていると共に、ロッカーアーム26や各リ
ンク27,28を駆動軸21の周囲に集約させて、機構
のコンパクト化を図ることができる。また、偏心カム2
3と第1リンク27との軸受部や、制御カム25とロッ
カーアーム26との軸受部のように、部材間の連結部の
多くが面接触となっているため、潤滑が行いやすく、耐
久性,信頼性にも優れている。更に、この作動角変更機
構5を、固定カム及びカムシャフトを備えた一般的な直
動式動弁系に適用する場合にも、これら固定カム及びカ
ムシャフトの位置に揺動カム22及び駆動軸21を配置
すれば良く、レイアウトの変更が非常に少なくて済むた
め、その適用が極めて容易である。
In the operating angle changing mechanism 5 having such a configuration, since the swing cam 22 for pushing down the valve lifter 4a of the intake valve 4 is arranged coaxially with the drive shaft 21, the swing cam 2
There is no possibility that the shaft 2 may be displaced from the drive shaft 21 and the control accuracy is excellent, and the rocker arm 26 and the links 27 and 28 are integrated around the drive shaft 21 to reduce the size of the mechanism. be able to. Eccentric cam 2
Many of the connecting portions between the members are in surface contact, such as the bearing portion between the third link 27 and the first link 27 and the bearing portion between the control cam 25 and the rocker arm 26. , Excellent in reliability. Further, when the operating angle changing mechanism 5 is applied to a general direct-acting valve train having a fixed cam and a camshaft, the swing cam 22 and the drive shaft are located at the positions of the fixed cam and the camshaft. 21 can be arranged, and the layout change is very small, so that the application is very easy.

【0034】図5は位相変更機構6を示している。この
位相変更機構6は、駆動軸21(又はカムシャフト)の
一端外周に固定又は一体的に取り付けられた内周側ギヤ
(第1ギヤ)31と、カムプーリ(又はスプロケット)
32の内周に固定又は一体的に取り付けられた外周側ギ
ヤ(第2ギヤ)33と、これら内周側ギヤ31及び外周
側ギヤ33にそれぞれ噛合するヘリカルギヤ34が内周
及び外周にそれぞれ形成されたプランジャ35と、を有
している。
FIG. 5 shows the phase changing mechanism 6. The phase changing mechanism 6 includes an inner peripheral gear (first gear) 31 fixed or integrally attached to the outer periphery of one end of the drive shaft 21 (or camshaft), and a cam pulley (or sprocket).
An outer peripheral gear (second gear) 33 fixed or integrally attached to the inner periphery of the inner peripheral gear 32 and a helical gear 34 meshing with the inner peripheral gear 31 and the outer peripheral gear 33 are formed on the inner periphery and the outer periphery, respectively. Plunger 35.

【0035】カムプーリ32は、駆動軸21の外周に同
軸上に配設される。このカムプーリ(又はスプロケッ
ト)32には、これに巻き掛けられる図外のタイミング
ベルト(又はタイミングチェーン)を介してクランクシ
ャフトから回転動力が伝達され、このクランクシャフト
と同期して回転する。
The cam pulley 32 is disposed coaxially on the outer periphery of the drive shaft 21. To the cam pulley (or sprocket) 32, rotational power is transmitted from a crankshaft via a timing belt (or timing chain) (not shown) wound around the cam pulley, and the cam pulley (or sprocket) rotates in synchronization with the crankshaft.

【0036】プランジャ35は、吸気弁の作動角の中心
位相の変更時に位相制御アクチュエータ(駆動手段)1
2により駆動軸21の軸方向に進退駆動される。すなわ
ち、油圧室36に油圧が供給されていない初期状態で
は、プランジャ35がリターンスプリング37のバネ力
により遅角方向(図5の左方向)に付勢されており、吸
気弁の作動角の中心位相が図5(b)の遅角側に保持さ
れる。一方、第2油圧装置13(図1,2参照)により
油圧室36へ所定の作動油圧が供給されると、プランジ
ャ35がリターンスプリング37のバネ力に抗して進角
方向(図5の右方向)へ移動し、吸気弁の作動角の中心
位相が図5(b)の進角側に変更される。そして、油圧
室36内の油圧を適切に制御することにより、プランジ
ャ35を任意の位置に移動,保持して、吸気弁の作動角
の中心位相を実質的に任意の値に変更,保持することが
できる。
The plunger 35 is a phase control actuator (driving means) 1 for changing the center phase of the operating angle of the intake valve.
2 drives the shaft 21 in the axial direction of the drive shaft 21. That is, in the initial state where the hydraulic pressure is not supplied to the hydraulic chamber 36, the plunger 35 is biased in the retard direction (leftward in FIG. 5) by the spring force of the return spring 37, and the center of the operating angle of the intake valve is set. The phase is held on the retard side in FIG. On the other hand, when the predetermined hydraulic pressure is supplied to the hydraulic chamber 36 by the second hydraulic device 13 (see FIGS. 1 and 2), the plunger 35 is advanced in the advance direction (rightward in FIG. 5) against the spring force of the return spring 37. Direction), and the center phase of the operating angle of the intake valve is changed to the advanced side in FIG. Then, by appropriately controlling the oil pressure in the oil pressure chamber 36, the plunger 35 is moved and held at an arbitrary position, and the center phase of the operating angle of the intake valve is changed and held at a substantially arbitrary value. Can be.

【0037】このような作動角変更機構5と位相変更機
構6とは、互いに干渉することなく併用することが可能
である。そして、これら作動角変更機構5と位相変更機
構6とを個々に駆動制御することにより、吸気弁の開時
期(IVO)及び閉時期(IVC)を互いに独立して実
質的に任意の値に制御することが可能である。
The operating angle changing mechanism 5 and the phase changing mechanism 6 can be used together without interfering with each other. By individually controlling the drive of the operating angle changing mechanism 5 and the phase changing mechanism 6, the opening timing (IVO) and closing timing (IVC) of the intake valve are controlled to substantially arbitrary values independently of each other. It is possible to

【0038】図6は、機関の冷機状態における吸気弁の
作動特性(IVO,IVC,バルブリフト量)と、排気
温度の上昇効果と、の相関関係を示している。
FIG. 6 shows the correlation between the operating characteristics (IVO, IVC, valve lift) of the intake valve and the effect of increasing the exhaust gas temperature in a cold state of the engine.

【0039】ここで、本実施形態の特徴として、冷機状
態では、点火時期を可能な限り(燃焼が不安定となる安
定限界まで)遅角させて、燃焼開始時期をリタードさせ
ることにより、排気温度を速やかに上昇させて、排気通
路2に設けられた触媒3の早期活性化を図っている。従
って、図中の排温上昇効果は、点火時期の遅角限界すな
わちリタード限界と置き換えることもできる。
Here, as a feature of this embodiment, in a cold state, the ignition timing is retarded as much as possible (to a stability limit at which combustion becomes unstable) and the combustion start timing is retarded, so that the exhaust gas temperature is reduced. Is quickly raised to achieve early activation of the catalyst 3 provided in the exhaust passage 2. Therefore, the exhaust temperature increase effect in the figure can be replaced with the retard limit of the ignition timing, that is, the retard limit.

【0040】IVOの遅角化(排気上死点よりも遅角
させていく場合) IVOを排気上死点よりも遅らせると、吸入行程に入っ
ても初期には吸気が供給されないため、筒内の負圧は急
速に増大する。つまり、ピストン速度は行程中央が最大
であり、排気上死点から行程中央までは単調に増大する
特性であるから、IVOを上死点よりも遅らせると、筒
内の負圧が急激に大きくなるとともに、吸気弁が開弁し
た時の吸気流速が非常に大きくなる。筒内の負圧が増大
すると、ポンプ損失が増大する反面、これに伴って吸気
温度が上昇する。また、吸気流速の増加により、吸気ポ
ートに噴射された燃料の霧化が十分に促進され、燃焼状
態が改善される。更に、吸気流速の増加に伴う吸気の乱
れ度合いの増加に対応して、燃焼速度そのものも上昇す
る。このように、IVOを排気上死点よりも遅らせてい
くと、燃焼状態が改善し、その分、点火時期のリタード
限界の拡大(遅角化)が可能となって、排温上昇効果が
向上する。
Retardation of IVO (when retarding from exhaust top dead center) If IVO is retarded from exhaust top dead center, intake air is not initially supplied even after entering the suction stroke. Negative pressure increases rapidly. In other words, the piston speed is the maximum at the stroke center and monotonically increases from the exhaust top dead center to the stroke center. Therefore, if the IVO is delayed from the top dead center, the negative pressure in the cylinder increases rapidly. At the same time, the intake flow velocity when the intake valve is opened becomes extremely large. When the negative pressure in the cylinder increases, the pump loss increases, but the intake air temperature increases accordingly. In addition, due to the increase in the intake flow velocity, the atomization of the fuel injected into the intake port is sufficiently promoted, and the combustion state is improved. Further, the combustion speed itself increases in response to the increase in the degree of intake turbulence accompanying the increase in the intake air flow velocity. As described above, if the IVO is delayed from the top dead center of the exhaust gas, the combustion state is improved, and accordingly, the retard limit of the ignition timing can be expanded (delayed), and the effect of increasing the exhaust temperature is improved. I do.

【0041】吸気弁の低リフト化 バルブリフト量を小さくすると、吸気流路の開口面積が
減少する分、吸気流速は増大する。特に、吸気弁とバル
ブシートとの間のノズル効果(最小絞り部)が増すた
め、吸気ポートに噴射された燃料の霧化が効果的に促進
され、点火時期のリタード限界(排温上昇効果)を拡大
することができる。
Reducing the Lift of the Intake Valve When the valve lift is reduced, the intake flow velocity increases as the opening area of the intake passage decreases. In particular, since the nozzle effect (minimum throttle portion) between the intake valve and the valve seat increases, atomization of the fuel injected into the intake port is effectively promoted, and the ignition timing retard limit (exhaust temperature rise effect). Can be expanded.

【0042】IVCの遅角化(吸気下死点よりも遅角
させていく場合) IVCを吸気下死点よりも遅角させると、実圧縮比が低
下する。これは筒内に吸入された混合気が、圧縮行程初
期に吸気ポート内に逆流するためである。当然ながら、
実圧縮比の低下に伴って充填効率も低下するため、吸入
負圧も低下する。また、圧縮比の低下により圧縮時の混
合気温度が低下するため、燃焼速度が遅くなる。更に、
吸入負圧が低下するため、燃料の気化があまり促進され
ず、燃焼速度も低下する。このように、IVCを下死点
よりも遅角させていくと、点火時期のリタード限界が低
下(進角化)する傾向にある。
Retardation of IVC (when retarding from bottom dead center of intake) When IVC is retarded from bottom dead center of intake, the actual compression ratio decreases. This is because the air-fuel mixture sucked into the cylinder flows back into the intake port at the beginning of the compression stroke. Of course,
Since the charging efficiency also decreases as the actual compression ratio decreases, the suction negative pressure also decreases. Further, the temperature of the air-fuel mixture at the time of compression is reduced due to the reduction of the compression ratio, and the combustion speed is reduced. Furthermore,
Since the suction negative pressure is reduced, fuel vaporization is not so promoted, and the combustion speed is also reduced. As described above, when the IVC is retarded from the bottom dead center, the retard limit of the ignition timing tends to be reduced (advanced).

【0043】IVCの進角化(吸気下死点よりも進角
させていく場合) IVCを吸気下死点よりも進角させると、下死点よりも
遅角させる場合と同様、実圧縮比の低下を招く。現象と
してはIVCを遅角させる場合と異なり、筒内に吸入さ
れた混合気がIVCから下死点まで断熱膨張するため、
下死点での混合気温度が低下することになる。当然なが
ら、充填効率の低下も伴うため、吸入負圧も低下する。
従ってIVCを下死点よりも進角させていくと、燃焼速
度は遅くなり、点火時期のリタード限界が低下する傾向
にある。
Advancement of IVC (when advanced from bottom dead center of intake) When the IVC is advanced beyond bottom dead center of intake, the actual compression ratio is similar to the case where it is retarded from bottom dead center. Causes a decrease in As a phenomenon, unlike the case where the IVC is retarded, the air-fuel mixture sucked into the cylinder adiabatically expands from the IVC to the bottom dead center.
The mixture temperature at the bottom dead center will decrease. As a matter of course, the charging efficiency is also reduced, so that the suction negative pressure is also reduced.
Therefore, when the IVC is advanced from the bottom dead center, the combustion speed tends to decrease, and the retard limit of the ignition timing tends to decrease.

【0044】IVCを吸気下死点近傍に設定する場合 この場合、上記のIVCを遅角又は進角させる場合とは
逆に、実圧縮比の上昇に伴って吸入負圧が上昇するた
め、燃焼速度が増加する。従って、点火時期のリタード
限界を拡大することができる。
In the case where the IVC is set in the vicinity of the intake bottom dead center. In this case, contrary to the case where the IVC is retarded or advanced, the intake negative pressure increases with the increase of the actual compression ratio. Speed increases. Therefore, the retard limit of the ignition timing can be expanded.

【0045】このようなことから、図7,8にも示すよ
うに、冷機状態では、主に点火時期の遅角限界を拡大す
る目的で、IVOを吸気上死点よりも大きく遅角させて
いる。具体的には、冷機状態では、ほぼ同じ運転条件
(機関回転数,機関負荷,加速度等)の暖機状態よりも
IVOを大幅に遅らせている。
For this reason, as shown in FIGS. 7 and 8, in the cold state, the IVO is retarded more than the intake top dead center mainly for the purpose of expanding the retardation limit of the ignition timing. I have. Specifically, in a cold state, the IVO is greatly delayed compared to a warm-up state under substantially the same operating conditions (engine speed, engine load, acceleration, etc.).

【0046】また、冷機状態では、主に点火時期のリタ
ード限界を拡大する目的で、吸気弁の閉時期(IVC)
を下死点近傍に設定しているとともに、ほぼ同じ運転条
件(機関回転数,機関負荷,加速度等)の暖機状態に比
して、作動角及びバルブリフト量を同等以下に設定して
いる。
Further, in the cold state, the closing timing (IVC) of the intake valve is mainly set to increase the retard limit of the ignition timing.
Is set near the bottom dead center, and the operating angle and valve lift are set to be equal to or less than the warm-up state under almost the same operating conditions (engine speed, engine load, acceleration, etc.). .

【0047】図7及び図8を参照して個々の運転状態に
ついて詳述すると、クランキング等の冷機起動時(C
1)には、主に始動性を向上するために、IVOを上死
点後、IVCを下死点近傍とする初期設定が適用され
る。すなわち、IVOを上死点よりも遅角させることに
より、主に吸気流速を増加させて燃焼を改善するととも
に、主に実圧縮比を確保する目的でIVCを下死点近傍
としている。なお、暖機アイドル状態(H2)において
も、冷機起動時(C1)と同様の初期設定が適用され
る。従って、暖機アイドル状態で機関を停止する際に、
吸気弁の作動特性を敢えて変化させる必要がない。
The individual operating states will be described in detail with reference to FIG. 7 and FIG.
In 1), in order to mainly improve the startability, an initial setting in which the IVO is set at the top dead center and the IVC is set near the bottom dead center is applied. That is, by retarding the IVO from the top dead center, the intake air flow rate is mainly increased to improve combustion, and the IVC is set near the bottom dead center mainly for the purpose of ensuring the actual compression ratio. In the warm-up idle state (H2), the same initial settings as in the cold start (C1) are applied. Therefore, when stopping the engine in the warm-up idle state,
There is no need to change the operating characteristics of the intake valve.

【0048】冷機ハイアイドル状態(C2)では、暖機
アイドル状態(H2)に比して、バルブリフト量及び作
動角を同等以下として、主に中心位相φを遅角させてい
る。言い換えると、冷機起動時(C1)に比して、IV
Cを吸気下死点近傍に保持したままで、IVOを大きく
遅角させている。理由として、暖機アイドル状態(H
2)でもIVOを上死点より遅角させているが、これは
ポンプ損失を減少させることを主たる目的としているた
め、その遅角の度合いは冷機ハイアイドル状態(C2)
に比して小さい。これに対し、回転数が相対的に高い冷
機ハイアイドル状態(C2)では、筒内負圧や吸気流速
を増大させて燃焼を改善し、点火時期のリタード限界を
拡大させて、排温上昇効果を最大限に得ることを主たる
目的としており、従って、実圧縮比が過度に低下しない
範囲で、IVOを可能な限り遅らせている。
In the cold high idle state (C2), the valve lift and the operating angle are set equal to or less than the warm idle state (H2), and the center phase φ is mainly retarded. In other words, compared with the time of cold start (C1), IV
While keeping C near the bottom dead center of the intake, the IVO is greatly retarded. The reason is that the warm-up idle state (H
In the case of 2), the IVO is retarded from the top dead center. However, since the main purpose is to reduce the pump loss, the degree of the retard is set in the cold high idle state (C2).
Smaller than. On the other hand, in the cold high idle state (C2) where the rotational speed is relatively high, the in-cylinder negative pressure and the intake air flow rate are increased to improve combustion, and the retard limit of the ignition timing is expanded to increase the exhaust temperature increase effect. The main purpose is to obtain the maximum compression ratio, and therefore, the IVO is delayed as much as possible within a range where the actual compression ratio does not excessively decrease.

【0049】冷機定常走行状態(C3)では、冷機ハイ
アイドル状態(C2)に比して、吸入空気量が多くなる
ため、作動角を大きくする必要がある。また、上述した
ようにIVCは下死点近傍が望ましい。従って、冷機定
常走行状態(C3)では、冷機ハイアイドル状態(C
2)に比して、作動角を拡大した分、IVOの遅角度合
いが緩和される。つまり、冷機状態では機関負荷の増加
に応じてIVOの遅角度合いが縮小される。また、冷機
定常走行状態(C3)では、ほぼ同じ運転条件の暖機R
/L状態(H3)に比して、主に中心位相φを大きく遅
角させた設定となっている。
In the cold steady running state (C3), the amount of intake air is larger than in the cold high idling state (C2), so that the operating angle must be increased. As described above, the IVC is preferably near the bottom dead center. Accordingly, in the cold steady running state (C3), the cold high idling state (C3)
Compared to 2), the retard angle of the IVO is reduced by an amount corresponding to the increase in the operating angle. That is, in the cold state, the retard angle of the IVO is reduced in accordance with the increase in the engine load. In the cold running steady state (C3), the warm-up R
The center phase φ is set to be largely retarded compared to the / L state (H3).

【0050】冷機加速状態(C4)では、冷機定常走行
状態(C3)に比して、吸入空気量がさらに多くなる
為、それに対応して作動角を増やす必要がある。この場
合、大量の混合気が燃焼するため、IVCを下死点より
も多少遅らせる余裕が出てくる。従って、作動角の拡大
分を、IVOの遅角度合いの緩和と、IVCの遅角化と
に分配することになる。具体的には、冷機定常走行状態
(C3)に対し、中心位相φをほぼ一定として、作動角
のみを拡大すれば良い。ちなみに、暖機加速状態(H4
a,H4b,H4c)では、冷機加速状態(C4)に比
して、IVCが大幅に進角した設定とされる。
In the cold acceleration state (C4), the amount of intake air is further increased as compared with the cold steady running state (C3). Therefore, it is necessary to increase the operating angle accordingly. In this case, since a large amount of the air-fuel mixture burns, there is a margin to slightly delay the IVC from the bottom dead center. Therefore, the increase in the operating angle is distributed to the relief of the retard angle of the IVO and the retardation of the IVC. Specifically, it is sufficient to make the center phase φ substantially constant and increase only the operating angle in the cold steady running state (C3). By the way, the warm-up acceleration state (H4
In a, H4b, H4c), the IVC is set to be significantly advanced compared to the cold acceleration state (C4).

【0051】図9は、冷機起動時(C1)から冷機ハイ
アイドル状態(C2)へ至る過渡期の具体的な制御状況
を示すタイミングチャートである。
FIG. 9 is a timing chart showing a specific control situation in a transitional period from the start of the cold (C1) to the high idle state of the cold (C2).

【0052】クランキング時には、点火時期を最も始動
し易い圧縮上死点前の最適点火時期に設定する必要があ
る。また、IVC及びIVOが図7(C1)に示す設定
値となるように、吸気弁の作動角及び中心位相が設定さ
れている。このクランキングから冷機ハイアイドル状態
等の冷機状態へ移行すると、排気温度を速やかに上昇さ
せて触媒の早期活性化を図るために、点火時期を可能な
限り最適点火時期から遅角させていく。
At the time of cranking, it is necessary to set the ignition timing to the optimum ignition timing before the compression top dead center, at which the ignition is most easily started. Further, the operating angle and the center phase of the intake valve are set so that IVC and IVO have the set values shown in FIG. 7 (C1). When shifting from this cranking to a cold state such as a cold high idle state, the ignition timing is retarded from the optimal ignition timing as much as possible in order to quickly raise the exhaust gas temperature and activate the catalyst early.

【0053】先ず冷機ハイアイドル状態(C2)では、
クランキング時に比して、IVOを速やかにリタードさ
せる。具体的には、回転数に応じて作動角を僅かに縮小
しつつ、中心位相を大きく遅角させる。これに伴って、
IVCは下死点前から下死点後に移行するが、それでも
下死点近傍に保たれており、実圧縮比への悪影響は小さ
い。そして、点火時期を燃焼状態に応じて最適点火時期
から圧縮上死点近傍へ向けて遅角させていく。具体的に
は、時間の経過に伴って燃焼状態が良くなるため、点火
時期を徐々にリタードさせる。
First, in the cold high idle state (C2),
The IVO is retarded more quickly than during cranking. Specifically, the central phase is greatly retarded while the operating angle is slightly reduced according to the rotation speed. Along with this,
The IVC shifts from before the bottom dead center to after the bottom dead center. However, the IVC is kept near the bottom dead center, and the adverse effect on the actual compression ratio is small. Then, the ignition timing is retarded from the optimum ignition timing toward the vicinity of the compression top dead center according to the combustion state. Specifically, the ignition timing is gradually retarded because the combustion state improves over time.

【0054】図10は、冷機ハイアイドル(C2)から
冷機緩加速(C3)を経て冷機定常走行(C4)へ移行
した後、暖機状態へ達する場合の制御状況を示すタイミ
ングチャートである。複雑な制御に見えるが、基本的に
は図7の各設定に従っている。
FIG. 10 is a timing chart showing a control state in a case where the state is shifted from the cold high idling (C2) to the cold steady running (C4) through the cold slow acceleration (C3) and then to the warm state. Although it looks like a complicated control, it basically follows the settings in FIG.

【0055】緩加速状態(C3)のように、負荷が増加
する状況では、上述したように作動角の拡大に伴ってI
VOの遅角度合いが徐々に縮小されるため、点火時期の
遅角限界も徐々に縮小される。つまり、負荷の増加に応
じて点火時期が徐々に進角することとなる。触媒3が活
性化温度つまり転換開始温度(T)に達すると、それ以
降は徐々に点火リタードを解除すると共に、IVO、I
VCも暖機後の設定に徐々に戻される。具体的には、燃
費等の運転性能が最良となる暖機後の目標値へ向けて制
御される。参考までに、暖機状態における点火時期(最
適点火時期に相当)を破線(イ)で描いており、この暖
機状態に比して冷機状態では点火時期が大幅にリタード
されていることがわかる。
In a situation where the load increases, such as in the slow acceleration state (C3), as described above, I is increased with an increase in the operating angle.
Since the retard angle of VO is gradually reduced, the retard limit of the ignition timing is also gradually reduced. That is, the ignition timing gradually advances in accordance with the increase in the load. When the catalyst 3 reaches the activation temperature, that is, the conversion start temperature (T), the ignition retard is gradually released thereafter, and the IVO, I
VC is also gradually returned to the setting after warming up. Specifically, control is performed toward a target value after warm-up, at which driving performance such as fuel efficiency becomes the best. For reference, the ignition timing in the warm-up state (corresponding to the optimum ignition timing) is drawn by a broken line (a), and it can be seen that the ignition timing is significantly retarded in the cold state compared to the warm-up state. .

【0056】また、図9,10に示すように、本実施形
態では、作動応答性の向上等を図るために、作動角変更
機構5による作動角の変更幅を最小限に抑制して、位相
変更機構6による中心位相φの変更幅を相対的に多く設
定している。そして、IVCを下死点近傍に保ちつつ、
IVOを遅角限界へ向けてきめ細かく制御している。
As shown in FIGS. 9 and 10, in the present embodiment, in order to improve the operation response and the like, the operation angle changing mechanism 5 suppresses the change width of the operation angle to a minimum, thereby reducing the phase. The change width of the center phase φ by the change mechanism 6 is set relatively large. And while keeping the IVC near the bottom dead center,
The IVO is finely controlled toward the retard limit.

【0057】更に、図7に示すように、起動時及び機関
停止時における初期設定(C1)では、IVOが上死点
後、IVCが下死点近傍(下死点前)に設定されている
ため、主に中心位相を少し遅角させることによって、冷
機ハイアイドル状態へ速やかに移行することができる。
従って、極低温始動時のように、油圧アクチュエータ1
0,12等の応答性が極端に遅い場合でも、比較的早期
に点火時期のリタード限界を拡大することが可能とな
る。
Further, as shown in FIG. 7, in the initial setting (C1) when the engine is started and when the engine is stopped, the IVO is set to a position after the top dead center and the IVC is set to a position near the bottom dead center (before the bottom dead center). Therefore, mainly by slightly delaying the center phase, it is possible to quickly shift to the cold high idle state.
Therefore, as in the case of the cryogenic start, the hydraulic actuator 1
Even when the response of 0, 12, etc. is extremely slow, the retard limit of the ignition timing can be expanded relatively early.

【0058】図11はECU7により実行される制御の
流れを示すフローチャートである。S10では、暖機状
態か冷機状態かが判定(検出)される。具体的には、水
温センサ8や触媒温度センサ9で検出される冷却水温や
触媒温度が所定値以上かを判定し、YESであれば暖機
状態、NOであれば冷機状態と判定される。続くS11
又はS21では、予め個別に用意された冷機状態用又は
暖機状態用の点火時期(IT),IVO,及びIVCの
制御マップが読み込まれる。続くS12又はS22で
は、機関回転数やスロットル開度等の各種機関運転条件
が検出される。この機関運転条件に応じて、S11又は
S21で読み込まれた制御マップを参照することによ
り、IVO及びIVCが目標値となるように作動角変更
機構5及び位相変更機構6が駆動制御されるとともに
(S13及びS14、又はS23及びS24)、ITが
目標値となるように点火時期変更装置14が駆動制御さ
れる(S15及びS16、又はS25及びS26)。
FIG. 11 is a flowchart showing the flow of control executed by the ECU 7. In S10, it is determined (detected) whether the apparatus is in a warm-up state or a cold state. Specifically, it is determined whether the cooling water temperature or the catalyst temperature detected by the water temperature sensor 8 or the catalyst temperature sensor 9 is equal to or higher than a predetermined value. If YES, it is determined that the engine is warm, and if NO, it is determined that the engine is cold. Following S11
Alternatively, in S21, control maps of the ignition timing (IT), IVO, and IVC for the cold state or the warm-up state, which are individually prepared in advance, are read. In subsequent S12 or S22, various engine operating conditions such as the engine speed and the throttle opening are detected. By referring to the control map read in S11 or S21 in accordance with the engine operating conditions, the operation angle changing mechanism 5 and the phase changing mechanism 6 are drive-controlled so that IVO and IVC become target values ( In S13 and S14, or S23 and S24), the drive of the ignition timing changing device 14 is controlled so that IT becomes the target value (S15 and S16, or S25 and S26).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る内燃機関の燃焼制御
装置を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing a combustion control device for an internal combustion engine according to an embodiment of the present invention.

【図2】上記実施形態の作動角変更機構を示す斜視対応
図。
FIG. 2 is a perspective view showing the operating angle changing mechanism of the embodiment.

【図3】上記作動角変更機構による吸気弁の作動角及び
バルブリフト量の変更特性を示す特性図。
FIG. 3 is a characteristic diagram showing a change characteristic of an operating angle and a valve lift of an intake valve by the operating angle changing mechanism.

【図4】上記作動角変更機構のゼロリフト及びフルリフ
トにおける最小又は最大揺動時の態様を示す作動説明
図。
FIG. 4 is an operation explanatory view showing a mode at the time of minimum or maximum swing of a zero lift and a full lift of the operating angle changing mechanism.

【図5】上記実施形態の位相変更機構に係る断面対応図
及び特性図。
FIG. 5 is a sectional view and a characteristic diagram of the phase changing mechanism of the embodiment.

【図6】吸気弁の作動特性と、排温上昇効果との関係を
示す説明図。
FIG. 6 is an explanatory diagram showing a relationship between an operation characteristic of an intake valve and an exhaust temperature increase effect.

【図7】冷機状態における吸気弁の作動特性を示す説明
図。
FIG. 7 is an explanatory diagram showing operation characteristics of an intake valve in a cold state.

【図8】暖機状態における吸気弁の作動特性を示す説明
図。
FIG. 8 is an explanatory diagram showing operating characteristics of an intake valve in a warm-up state.

【図9】冷機始動時から冷機ハイアイドル状態へ移行す
る際のタイミングチャート。
FIG. 9 is a timing chart when shifting from a cold start to a cold high idle state.

【図10】冷機ハイアイドル状態から冷機加速状態及び
冷機定常走行状態を経て暖機状態へ移行する際のタイミ
ングチャート。
FIG. 10 is a timing chart when shifting from a cold high idle state to a warm state through a cold acceleration state and a cold steady running state;

【図11】本実施形態に係る制御の流れを示すフローチ
ャート。
FIG. 11 is a flowchart showing a control flow according to the embodiment.

【符号の説明】[Explanation of symbols]

2…排気通路(排気系) 3…触媒 4…吸気弁 5…作動角変更機構(吸気特性変更手段) 6…位相変更機構(吸気特性変更手段) 8…水温センサ(冷機検出手段) 9…触媒温度センサ(冷機検出手段) 14…点火時期変更装置(点火時期変更手段) 2. Exhaust passage (exhaust system) 3. Catalyst 4. Intake valve 5. Operating angle changing mechanism (intake characteristic changing means) 6. Phase changing mechanism (intake characteristic changing means) 8. Water temperature sensor (cooler detecting means) 9. Catalyst Temperature sensor (cooling device detecting means) 14 ... Ignition timing changing device (ignition timing changing means)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 ZAB F01N 3/24 ZABR 3G301 F02D 41/06 320 F02D 41/06 320 43/00 301 43/00 301B 301Z F02P 5/15 F02P 5/15 E (72)発明者 野原 常靖 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 杉山 孝伸 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G018 AB07 AB16 BA02 BA09 BA10 BA17 BA19 BA29 BA33 CA12 CA19 DA03 DA70 EA03 EA12 EA17 EA22 EA32 EA35 FA01 FA06 FA08 FA16 GA09 3G022 CA01 CA02 CA03 CA06 DA02 FA03 GA05 GA07 GA09 GA10 3G084 BA17 BA23 BA24 CA01 CA02 CA03 CA09 DA10 EC03 FA11 FA18 FA20 FA27 FA33 3G091 AA02 AA17 AB01 AB03 BA03 CB05 CB08 DA07 DB10 EA01 EA03 EA06 EA07 EA16 EA17 EA18 FA02 FA04 FA12 FA17 FA18 FB02 FC07 HA38 HA39 3G092 AA01 AA05 AA11 AB02 BA09 BB06 DA01 DA04 DA05 DC15 DF05 DG05 DG09 EA04 EA05 EA11 FA18 GA01 GA02 GA04 GA17 HA11Z HA13Z HC09Z HD02Z HE01Z HE08Z 3G301 HA01 HA19 JA26 KA01 KA05 KA07 KA24 LA07 LC01 LC08 LC10 NA08 NB18 NE12 PA07Z PA17Z PD12Z PE01Z PE08Z PE09Z PE10Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F01N 3/24 ZAB F01N 3/24 ZABR 3G301 F02D 41/06 320 F02D 41/06 320 43/00 301 43/00 301B 301Z F02P 5/15 F02P 5/15 E (72) Inventor Tsuneyasu Nohara 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Pref. Nissan Motor Co., Ltd. (72) Takanobu Sugiyama 2 Takara-cho 2 Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Automobile Stock In-house F-term (reference) 3G018 AB07 AB16 BA02 BA09 BA10 BA17 BA19 BA29 BA33 CA12 CA19 DA03 DA70 EA03 EA12 EA17 EA22 EA32 EA35 FA01 FA06 FA08 FA16 GA09 3G022 CA01 CA02 CA03 CA06 DA02 FA03 GA05 GA07 GA09 GA10 3G084 BA23 BA23 CA09 DA10 EC03 FA11 FA18 FA20 FA27 FA33 3G091 AA02 AA17 AB01 AB03 BA03 CB05 CB08 DA07 DB10 EA01 EA03 EA06 EA07 EA16 EA17 EA18 FA02 FA04 FA12 FA17 FA18 FB02 FC07 HA38 HA39 3G092 AA01 DA01 DA02 DA02 DA02 15 DF05 DG05 DG09 EA04 EA05 EA11 FA18 GA01 GA02 GA04 GA17 HA11Z HA13Z HC09Z HD02Z HE01Z HE08Z 3G301 HA01 HA19 JA26 KA01 KA05 KA07 KA24 LA07 LC01 LC08 LC10 NA08 NB18 NE12 PA07Z PA17Z PD12Z PE01Z PE08Z

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁の開時期及び閉時期を変更する吸
気特性変更手段と、点火時期を変更する点火時期変更手
段と、機関の冷機状態を検出する冷機検出手段と、を有
し、かつ、排気系に排気浄化用の触媒が設けられた火花
点火式の内燃機関の燃焼制御装置において、 上記冷機状態では、点火時期を最適点火時期よりも遅角
するとともに、この点火時期の遅角限界を拡大するよう
に、吸気弁の開時期を遅角することを特徴とする内燃機
関の燃焼制御装置。
An intake characteristic changing means for changing an opening timing and a closing timing of an intake valve, an ignition timing changing means for changing an ignition timing, and a cold detecting means for detecting a cold state of an engine, and In a combustion control apparatus for a spark ignition type internal combustion engine in which an exhaust purification catalyst is provided in an exhaust system, in the above-mentioned cold state, the ignition timing is retarded from the optimal ignition timing, and the ignition timing A combustion control device for an internal combustion engine, characterized in that the opening timing of an intake valve is retarded so as to increase the pressure.
【請求項2】 上記冷機状態では、吸気弁の開時期を排
気上死点よりも遅角することを特徴とする請求項1に記
載の内燃機関の燃焼制御装置。
2. The combustion control device for an internal combustion engine according to claim 1, wherein in the cold state, the opening timing of the intake valve is retarded from the exhaust top dead center.
【請求項3】 上記冷機状態では、ほぼ同じ運転条件の
暖機状態よりも吸気弁の開時期を遅角することを特徴と
する請求項1又は2に記載の内燃機関の燃焼制御装置。
3. The combustion control device for an internal combustion engine according to claim 1, wherein in the cold state, the opening timing of the intake valve is retarded more than in the warm-up state under substantially the same operating conditions.
【請求項4】 上記冷機状態では、吸気弁の閉時期を吸
気下死点近傍に設定することを特徴とする請求項1〜3
のいずれかに記載の内燃機関の燃焼制御装置。
4. The intake valve close timing is set near the intake bottom dead center in the cold state.
The combustion control device for an internal combustion engine according to any one of the above.
【請求項5】 上記冷機状態では、機関負荷の増加に応
じて、吸気弁の開時期の遅角度合いを縮小するととも
に、点火時期の遅角度合いを縮小することを特徴とする
請求項1〜4のいずれかに記載の内燃機関の燃焼制御装
置。
5. In the cold state, the retardation of the opening timing of the intake valve and the retardation of the ignition timing are reduced in accordance with an increase in the engine load. 5. The combustion control device for an internal combustion engine according to any one of 4.
【請求項6】 少なくとも冷機ハイアイドル状態では、
点火時期を圧縮上死点近傍まで遅角させることを特徴と
する請求項1〜5のいずれかに記載の内燃機関の燃焼制
御装置。
6. At least in a cold high idle state,
The combustion control device for an internal combustion engine according to any one of claims 1 to 5, wherein the ignition timing is retarded to near the compression top dead center.
【請求項7】 上記吸気特性変更手段が、吸気弁の作動
角及びバルブリフト量を変更する作動角変更機構と、吸
気弁の作動角の中心位相を変更する位相変更機構と、を
有することを特徴とする請求項1〜6のいずれかに記載
の内燃機関の燃焼制御装置。
7. The intake characteristic changing means includes an operating angle changing mechanism for changing an operating angle and a valve lift of an intake valve, and a phase changing mechanism for changing a central phase of an operating angle of the intake valve. The combustion control device for an internal combustion engine according to any one of claims 1 to 6, wherein:
【請求項8】 上記冷機状態では、ほぼ同じ運転条件の
暖機状態に比して、吸気弁のバルブリフト量を同等以下
に設定することを特徴とする請求項7に記載の内燃機関
の燃焼制御装置。
8. The combustion of an internal combustion engine according to claim 7, wherein the valve lift amount of the intake valve is set to be equal to or less than the warm state under substantially the same operating conditions in the cold state. Control device.
【請求項9】 暖機アイドル状態よりも機関回転数の高
い冷機ハイアイドル状態では、上記暖機アイドル状態に
比して、主に吸気弁の作動角の中心位相を遅角させるこ
とを特徴とする請求項7又は8に記載の内燃機関の燃焼
制御装置。
9. In a cold high idling state in which the engine speed is higher than in a warm idling state, the center phase of the operating angle of the intake valve is mainly retarded compared to the warm idling state. The combustion control device for an internal combustion engine according to claim 7 or 8, wherein:
【請求項10】 上記作動角変更機構が、クランクシャ
フトから伝達される回転動力により回転する駆動軸と、
この駆動軸に揺動可能に取り付けられ、吸気弁に当接し
てこれを作動させる揺動カムと、上記駆動軸に偏心して
設けられた偏心カムと、作動角の変更時に回転駆動され
る制御軸と、この制御軸に偏心して設けられた制御カム
と、この制御カムに回転可能に取り付けられたロッカー
アームと、このロッカーアームの一端と上記偏心カムと
を連携する第1リンクと、上記ロッカーアームの他端と
上記揺動カムとを連携する第2リンクと、を有すること
を特徴とする請求項7〜9のいずれかに記載の内燃機関
の燃焼制御装置。
10. A drive shaft which is rotated by a rotational power transmitted from a crankshaft;
A swing cam that is swingably mounted on the drive shaft and contacts the intake valve to operate the intake valve; an eccentric cam provided eccentrically to the drive shaft; and a control shaft that is driven to rotate when the operating angle is changed. A control cam provided eccentrically to the control shaft, a rocker arm rotatably mounted on the control cam, a first link for linking one end of the rocker arm and the eccentric cam, and the rocker arm The combustion control device for an internal combustion engine according to any one of claims 7 to 9, further comprising a second link that links the other end of the swing cam and the swing cam.
【請求項11】 上記位相変更機構が、上記作動角変更
機構を介して吸気弁を開閉駆動する駆動軸に設けられた
第1ギヤと、この駆動軸と同軸上に配設され、クランク
シャフトと同期して回転するスプロケット又はプーリに
設けられた第2ギヤと、これら第1ギヤ及び第2ギヤに
噛合するヘリカルギヤを備えたプランジャと、位相変更
時に上記プランジャを駆動軸の軸方向へ駆動する駆動手
段と、を有することを特徴とする請求項7〜10のいず
れかに記載の内燃機関の燃焼制御装置。
11. A first gear provided on a drive shaft for opening and closing an intake valve via the operation angle changing mechanism, a first gear provided coaxially with the drive shaft, and a phase change mechanism provided with a crankshaft. A second gear provided on a sprocket or pulley that rotates synchronously, a plunger having a helical gear meshing with the first gear and the second gear, and a drive for driving the plunger in the axial direction of the drive shaft when the phase is changed The combustion control device for an internal combustion engine according to any one of claims 7 to 10, comprising:
JP2001030655A 2001-02-07 2001-02-07 Combustion control device for internal combustion engine Expired - Lifetime JP3829629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030655A JP3829629B2 (en) 2001-02-07 2001-02-07 Combustion control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030655A JP3829629B2 (en) 2001-02-07 2001-02-07 Combustion control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002235567A true JP2002235567A (en) 2002-08-23
JP3829629B2 JP3829629B2 (en) 2006-10-04

Family

ID=18894843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030655A Expired - Lifetime JP3829629B2 (en) 2001-02-07 2001-02-07 Combustion control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3829629B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014383A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Controller of generator for vehicle
JP2006112366A (en) * 2004-10-18 2006-04-27 Hitachi Ltd Start controller of engine
JP2006233913A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Variable valve system control device for internal combustion engine
JP2006266200A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Valve characteristic control device for internal combustion engine
JP2006329022A (en) * 2005-05-25 2006-12-07 Mazda Motor Corp Intake control device for internal combustion engine
JP2006336494A (en) * 2005-05-31 2006-12-14 Mazda Motor Corp Intake control device for engine
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine
JP2007138869A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007255199A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Engine control device
KR100771821B1 (en) 2006-10-31 2007-10-30 지멘스 오토모티브 주식회사 Method for controlling variable valve timing apparatus for catalyst heating
JP2008196384A (en) * 2007-02-13 2008-08-28 Hitachi Ltd Intake air control device for internal combustion engine
WO2013061684A1 (en) 2011-10-24 2013-05-02 日産自動車株式会社 Rotational speed control device and rotational speed control method for internal combustion engine
JP2015137619A (en) * 2014-01-23 2015-07-30 トヨタ自動車株式会社 Control device of spark ignition type internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473518B1 (en) * 2021-08-24 2022-10-18 Ford Global Technologies, Llc Methods for reducing cold start emissions for engines

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014383A (en) * 2004-06-22 2006-01-12 Nissan Motor Co Ltd Controller of generator for vehicle
JP4529555B2 (en) * 2004-06-22 2010-08-25 日産自動車株式会社 Control device for vehicle generator
JP4516401B2 (en) * 2004-10-18 2010-08-04 日立オートモティブシステムズ株式会社 Engine start control device
JP2006112366A (en) * 2004-10-18 2006-04-27 Hitachi Ltd Start controller of engine
JP2006233913A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Variable valve system control device for internal combustion engine
JP4525385B2 (en) * 2005-02-25 2010-08-18 トヨタ自動車株式会社 Variable valve mechanism control apparatus for internal combustion engine
JP2006266200A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Valve characteristic control device for internal combustion engine
JP4525406B2 (en) * 2005-03-25 2010-08-18 トヨタ自動車株式会社 Valve characteristic control device for internal combustion engine
JP2006329022A (en) * 2005-05-25 2006-12-07 Mazda Motor Corp Intake control device for internal combustion engine
JP4682697B2 (en) * 2005-05-25 2011-05-11 マツダ株式会社 Engine intake control device
JP2006336494A (en) * 2005-05-31 2006-12-14 Mazda Motor Corp Intake control device for engine
JP4506566B2 (en) * 2005-05-31 2010-07-21 マツダ株式会社 Engine intake control device
JP2006348774A (en) * 2005-06-13 2006-12-28 Mazda Motor Corp Intake control device for engine
JP4682713B2 (en) * 2005-06-13 2011-05-11 マツダ株式会社 Engine intake control device
JP2007138869A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007255199A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Engine control device
KR100771821B1 (en) 2006-10-31 2007-10-30 지멘스 오토모티브 주식회사 Method for controlling variable valve timing apparatus for catalyst heating
JP2008196384A (en) * 2007-02-13 2008-08-28 Hitachi Ltd Intake air control device for internal combustion engine
WO2013061684A1 (en) 2011-10-24 2013-05-02 日産自動車株式会社 Rotational speed control device and rotational speed control method for internal combustion engine
US9284893B2 (en) 2011-10-24 2016-03-15 Nissan Motor Co., Ltd. Apparatus and method for controlling rotation speed of internal combustion engine
JP2015137619A (en) * 2014-01-23 2015-07-30 トヨタ自動車株式会社 Control device of spark ignition type internal combustion engine

Also Published As

Publication number Publication date
JP3829629B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP4416377B2 (en) Control device for internal combustion engine
JP3912147B2 (en) Variable valve operating device for internal combustion engine
JP4516401B2 (en) Engine start control device
JP4957611B2 (en) Control method for internal combustion engine
JP4336444B2 (en) Variable valve operating device for internal combustion engine
JP2982581B2 (en) Variable valve train for internal combustion engine
JP4035963B2 (en) Control device for internal combustion engine
JP2002285876A (en) Combustion control system for internal combustion engine
JP4385509B2 (en) Control device for internal combustion engine for vehicle
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP2002235567A (en) Combustion control device for internal combustion engine
JP2001355469A (en) Variable valve system for internal combustion engine
JP4366850B2 (en) Valve control device for internal combustion engine
JP2001336446A (en) Knocking controller of internal combustion engine
JP4433591B2 (en) Variable valve operating device for internal combustion engine
JP4423775B2 (en) Variable valve operating device for internal combustion engine
JP2002227669A (en) Variable valve device for internal combustion engine
JP4591645B2 (en) Variable valve timing device
JP5032000B2 (en) Internal combustion engine
JP4577469B2 (en) Variable valve timing device
JP7354645B2 (en) Cam switching mechanism and internal combustion engine
JPH07247815A (en) Valve system for internal combustion engine
JP3909299B2 (en) Valve operating device for internal combustion engine
JP2005061279A (en) Variable valve control device of engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3829629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term