JP4591645B2 - Variable valve timing device - Google Patents

Variable valve timing device Download PDF

Info

Publication number
JP4591645B2
JP4591645B2 JP2001004983A JP2001004983A JP4591645B2 JP 4591645 B2 JP4591645 B2 JP 4591645B2 JP 2001004983 A JP2001004983 A JP 2001004983A JP 2001004983 A JP2001004983 A JP 2001004983A JP 4591645 B2 JP4591645 B2 JP 4591645B2
Authority
JP
Japan
Prior art keywords
valve
exhaust
intake
timing
valve timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004983A
Other languages
Japanese (ja)
Other versions
JP2002206436A (en
Inventor
真一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001004983A priority Critical patent/JP4591645B2/en
Priority to DE10156140A priority patent/DE10156140B4/en
Priority to KR10-2001-0072322A priority patent/KR100425543B1/en
Priority to CNB01134959XA priority patent/CN1265080C/en
Priority to US09/989,405 priority patent/US6637386B2/en
Publication of JP2002206436A publication Critical patent/JP2002206436A/en
Application granted granted Critical
Publication of JP4591645B2 publication Critical patent/JP4591645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/18

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの吸気弁及び排気弁の開閉タイミングを調整する可変バルブタイミング装置に関するものである。
【0002】
【関連する背景技術】
周知のように、エンジンから排出される未燃HCの多くは冷態始動時のものであり、その対策として、触媒の性能向上や容量増大等が図られている。しかしながら、この触媒に関する対策のみで冷態始動時の多量の未燃HCを浄化するには、触媒への貴金属の使用量が大幅に増加してコスト効率が悪いという問題がある。
【0003】
そこで、例えば特開平11−336574号公報に記載の可変バルブタイミング装置のように、冷態始動時において吸排気弁の開閉タイミングを適切に制御し、触媒を早期に活性化させて未燃HCを低減する技術が提案されている。この可変バルブタイミング装置では、冷態始動時に通常時より排気弁を進角させて燃焼中の排ガスを排出させ、排ガスに含まれる未燃HCが排気通路内で燃焼したときの後燃え効果により、触媒を早期に活性化させている。又、このときの後燃え効果を促進すべく、吸気弁を大幅に進角させて排気弁とのオーバラップ量を増大させ、吸気側に逆流する排ガス(内部EGR)を増加させて燃焼を緩慢化し、未燃HCの排出量を増加させている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報の可変バルブタイミング装置ではフローチャートの記載等から明らかなように、冷態始動時に吸排気弁の進角制御を同時に行っているため、以下に述べる不具合が生じる。
吸排気弁の進角制御は初爆から数行程経過後に行われるが、この時点では未だ排気通路等の温度が十分に昇温されていないことから、排気弁の進角により燃焼中の排ガスを排出させても、排気通路内で後燃えが途絶えてそのまま排出されてしまう事態が生じる。
【0005】
又、冷態始動時の初期には、吸気ポート内に噴射された燃料が吸気弁の閉弁中にポート内に溜まり、吸気弁の開弁に伴って筒内に流入し、その一部は燃焼することなくオーバラップ期間中に未燃HCとして排気側に通り抜ける。このとき、排気弁が上死点TDC以前に閉弁されるため、排気側に通り抜けた未燃HCの大半は筒内に再吸入されずに、そのまま排出されてしまう。
【0006】
一方、吸気弁が進角されて早期に開弁されると、排ガスの一部は吸気側に逆流して吸気ポート内の燃料の気化促進、及び吸気ポート自体の昇温作用を奏するが、排気弁の早期開弁により筒内に残る排ガス温度が低くなるため、これらの好ましい作用も大きく低下する。
以上の要因から、冷態始動時の初期に吸排気弁を同時に進角させることは最適な制御とは言い難く、より冷態始動時のエンジンの昇温状況に合致した適切な制御が望まれていた。
【0007】
本発明の目的は、始動時に吸排気弁の開閉タイミングを適切に制御し、もって、未燃HCの排出を確実に抑制することができる可変バルブタイミング装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明では、吸気弁及び排気弁のバルブタイミングを可変させて、吸気弁と排気弁のオーバラップ量を可変させる可変バルブタイミング装置において、吸気弁のバルブタイミングを可変させる吸気バルブタイミング可変手段と、排気弁のバルブタイミングを可変させる排気バルブタイミング可変手段と、エンジン始動時の初爆から所定時間後に吸気バルブタイミング可変手段又は排気バルブタイミング可変手段の少なくとも一方を作動させて吸気弁及び排気弁についてそれぞれ上死点を跨いでオーバラップ量を増大させ、上記吸気バルブタイミング可変手段又は上記排気バルブタイミング可変手段の少なくとも一方の作動によるオーバラップ量の増大の開始より所定期間後に排気バルブタイミング可変手段にて排気弁を進角させるバルブタイミング制御手段とを備えた。
【0009】
従って、エンジン始動時の初爆から所定時間後には、まず、吸気バルブタイミング可変手段又は排気バルブタイミング可変手段の少なくとも一方により吸気弁及び排気弁についてそれぞれ上死点を跨いで吸排気のオーバラップ量が増大され、これにより一旦排気側に通り抜けた排ガスが筒内に引き戻されて燃焼して、未燃HCの排出が抑制される共に、排ガスが吸気側に逆流して燃料の気化促進や吸気ポートの昇温が行われ、吸気バルブタイミング可変手段又は排気バルブタイミング可変手段の少なくとも一方の作動によるオーバラップ量の増大の開始より所定期間後に排気バルブタイミング可変手段にて排気弁が進角され、燃焼中の排ガスが排出されて排気通路内での後燃え効果により触媒が早期に活性化される。つまり、始動時のエンジンの昇温状況に応じて、吸排気弁の開閉タイミングが常に最適に制御される。
【0010】
又、請求項2の発明では、吸気弁及び排気弁のバルブタイミングを可変させて、吸気弁と排気弁のオーバラップ量を可変させる可変バルブタイミング装置において、吸気弁のバルブタイミングを可変させる吸気バルブタイミング可変手段と、排気弁のバルブタイミングを可変させる排気バルブタイミング可変手段と、エンジン始動時の初爆から所定時間後に吸気バルブタイミング可変手段を進角側に作動させて吸気弁及び排気弁についてそれぞれ上死点を跨いでオーバラップ量を増大させ、該吸気バルブタイミング可変手段の作動による吸気弁の進角開始より所定期間後に、排気バルブタイミング可変手段を作動させて排気弁を進角させるバルブタイミング制御手段とを備えた。
【0011】
従って、エンジン始動時の初爆から所定時間後には、まず、吸気バルブタイミング可変手段により吸気弁の進角が開始されて吸気弁及び排気弁についてそれぞれ上死点を跨いでオーバラップ量が増大され、これにより一旦排気側に通り抜けた排ガスが筒内に引き戻されて燃焼して、未燃HCの排出が防止される共に、排ガスが吸気側に逆流して燃料の気化促進や吸気ポートの昇温が行われ、吸気弁の進角開始から所定期間後に排気バルブタイミング可変手段にて排気弁が進角され、燃焼中の排ガスが排出されて排気通路内での後燃え効果により触媒が早期に活性化される。つまり、始動時のエンジンの昇温状況に応じて、吸排気弁の開閉タイミングが常に最適に制御される。
【0012】
【発明の実施の形態】
[第1実施形態]
以下、請求項1の発明を具体化した第1実施形態の可変バルブタイミング装置を説明する。
図1は第1実施形態の可変バルブタイミング装置を示す全体構成図である。この図に示すように、エンジン1は吸気管噴射型エンジンとして構成されており、その動弁機構としてはDOHC4弁式が採用されている。シリンダヘッド2上の吸気カム軸3a及び排気カム軸3bの前端にはタイミングプーリ4a,4bが接続され、これらのタイミングプーリ4a,4bはタイミングベルト5を介してクランク軸6に連結されている。クランク軸6の回転に伴ってタイミングプーリ4a,4bと共にカム軸3a,3bが回転駆動され、これらのカム軸3,3bにより吸気弁7a及び排気弁7bが開閉駆動される。
【0013】
各カム軸3a,3bとタイミングプーリ4a,4bとの間には、吸気バルブタイミング可変手段及び排気バルブタイミング可変手段としてのベーン式のタイミング可変機構8a,8bが設けられている。タイミング可変機構8a,8bの構成は、例えば特開2000−27609号公報等で公知のため詳細は説明しないが、タイミングプーリ4a,4bに設けたハウジング内にベーンロータを回動可能に設け、そのベーンロータに吸気カム軸3a或いは排気カム軸3bを連結して構成されている。タイミング可変機構8a,8bにはオイルコントロールバルブ(以下、OCVという)9a,9bが接続され、エンジン1のオイルポンプ10から供給される作動油を利用して、OCV9a,9bの切換に応じてベーンロータに油圧を作用させ、その結果、タイミングプーリ4a,4bに対するカム軸3a,3bの位相、即ち、吸排気弁7a,7bの開閉タイミングを調整するようになっている。
【0014】
一方、シリンダヘッド2の吸気ポート11には吸気通路12が接続され、ピストン16の下降に伴ってエアクリーナ13から吸気通路12内に導入された吸入空気は、スロットルバルブ14の開度に応じて流量調整された後に燃料噴射弁15からの噴射燃料と混合され、吸気ポート11を経て吸気弁7aの開弁時に筒内に流入する。
【0015】
又、シリンダヘッド2の排気ポート17には排気通路18が接続され、点火プラグ19により点火されて燃焼後の排ガスは、排気弁7bの開弁時にピストン16の上昇に伴って排気ポート17から排気通路18に案内され、触媒20及び図示しない消音器を経て外部に排出される。
車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM,BURAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたバルブタイミング制御手段としてのECU(エンジン制御ユニット)31が設置されており、エンジン1の総合的な制御を行う。ECU31の入力側には、エンジン回転速度Neを検出する回転速度センサ32、スロットルバルブ14の開度TPSを検出するスロットルセンサ33、冷却水温Twを検出する水温センサ34等の各種センサが接続されている。又、ECU31の出力側には、前記OCV9a,9b、燃料噴射弁15、点火プラグ19等が接続されている。
【0016】
ECU31は、各センサからの検出情報に基づいて点火時期及び燃料噴射量等を決定し、点火プラグ19や燃料噴射弁15を駆動制御する。又、予め設定されたマップに従って、エンジン回転速度Ne及びスロットル開度TPSからタイミング可変機構8a,8bの目標位相角を算出し、OCV9a,9bを駆動して実際の位相角を目標位相角に制御する。更に、エンジン1の冷態始動時には、未燃HCの排出を抑制するために、温態始動時の場合と異なる専用の位相角制御を実行する。
【0017】
そこで、この冷態始動時にECU31により実行される位相角制御を図2,3に基づいて説明する。
図2は冷態始動時におけるカム軸の位相角制御を示すタイムチャートであり、図3は冷態始動時のカム軸の位相変化を順に示した説明図である。
まず、エンジン停止時において、図2,3の(1)に示すように吸気カム軸3aの位相は遅角位置に保持され、排気カム軸3bの位相は進角位置に保持され、吸排気のオーバラップはほとんど形成されていない。運転者にてイグニションスイッチがスタート操作されると、この位相位置でエンジン1のクランキングが開始されると共に、ECU31により点火時期制御や燃料噴射制御が実行される。この時点の吸気ポート11は外気温相当のため燃料気化が促進されず、燃料増量による多量の噴射燃料の大半は、液状燃料のまま吸気弁7aの閉弁中に吸気ポート11内に溜まり、吸気弁7aの開弁に伴って筒内に流入する。ここで、上記のように吸排気がほとんどオーバラップしないため、筒内に流入した燃料は排気側に通り抜けることなく燃焼されて、未燃HCを多量に排出することなく初爆に至る。
【0018】
ここまでの位相角制御は温態始動と冷態始動で共通のものである。そして、ECU31により冷却水温Tw等に基づいて温態始動と判定されたときには、始動完了後もアイドル運転が継続されている限り、吸気弁7aの開閉タイミングは遅角位置に保持され、排気弁7bの開閉タイミングは進角位置に保持され続け、車両の発進等によりエンジン回転速度Neやスロットル開度TPSが増加すると、それに応じて進角側に制御される。
【0019】
一方、冷態始動時には、初爆から所定時間t(例えば、2〜3sec)待機した後に、図2,3の(2)に示すように排気カム軸3bの位相が遅角側に制御される。これにより排気弁7bの閉弁が上死点TDC以降となり、一旦排気側に通り抜けた排ガスがピストン16の下降により筒内に引き戻されて、次回の燃焼行程で燃焼される。そして、このときの排ガスは、未燃HCを特に多く含む排気行程の終盤の排ガスであるため、多くの未燃HCが次回の燃焼行程で燃焼されて、そのまま排出される事態が防止される。又、排気弁7bの開弁も遅延されることから、燃焼期間が長くなって未燃HCの酸化が促進されると共に、筒内の排ガス温度が高められる。
【0020】
更に、この排気カム軸3bの遅角に伴ってオーバラップ量が増大されることから、高温の排ガスが内部EGRとして吸気側に逆流して、吸気ポート11内の燃料の気化促進、及び吸気ポート11自体の昇温作用を奏すると共に、この時点では、初爆に伴うエンジン回転速度Neの急増により吸気側の負圧が高まっているため、排ガスの逆流が急激なものとなり、吸気ポート11内に滞留している液状燃料を吹き飛ばして微粒化する作用も奏する。
【0021】
上記した排気カム軸3bの遅角制御と同時、若しくは若干遅れたタイミングで、図2,3の(3)に示すように吸気カム軸3aの位相が進角側に制御されて、吸排気のオーバラップ量が更に増大される。この時点では、排ガス温度の上昇に伴って初爆時に比較すると燃料気化し易い条件となると共に、吸気弁7aの開弁が早期となり圧縮温度と共に筒内温度も上昇しており、しかも、上記した内部EGRによる液状燃料の微粒化作用は依然として奏されていることから、オーバラップ量の増大により内部EGRを増加させても、安定した燃焼が継続される。
【0022】
そして、所定時間の経過後(所定期間後)に、図2,3の(4)に示すように排気カム軸3bの位相が進角側に制御される。この時点では、上記した(3)の時点と比較して排気通路18等の温度が上昇しているため、排気弁7bの進角により燃焼中の排ガスが排出されると、排ガスは後燃え効果により排気通路18内でも燃焼を継続し、触媒20を早期に活性化する。尚、排気弁7bの進角によりオーバラップ量は減少するが、この時点では吸気側の負圧がより高まっているため、上記した排ガスの筒内への引き戻し作用は十分に奏されて、未燃HCの排出が抑制される。
【0023】
一方、その後に所定時間が経過すると、吸気カム軸3aの位相が遅角側に制御され、吸排気のオーバラップ量が減少されて燃焼の安定化が図られる。同時に、燃料の燃え残りによる未燃HCの発生を抑制すべく空燃比がリーン側に制御されると共に、このリーン運転による発熱量の低下を補い、且つ排気温度を昇温させるために点火時期のリタードが実施されて、引き続き触媒20の昇温が図られる。
【0024】
以上のように本実施形態の可変バルブタイミング装置では、未だ排気通路18等が十分に昇温されずに後燃え効果が期待できない冷態始動時の初期には、排気弁7bの遅角及び吸気弁7aの進角によりオーバラップ量を増大させ(図3の(2)(3))、これにより一旦排気側に通り抜けた排ガスを筒内に引き戻して燃焼させて、未燃HCの排出を防止する共に、排ガスを吸気側に逆流させて燃料の気化促進や吸気ポート11の昇温を実現し、一方、その後に排気通路18等が昇温されると(図3の(4))、排気弁7bを進角させて燃焼中の排ガスを排出させ、排気通路18内での後燃え効果により触媒20を早期活性化している。
【0025】
つまり、冷態始動時のエンジン1の昇温状況(排気通路18等の昇温状況)に応じて、吸排気弁7a,7bの開閉タイミングを常に最適に制御することから、未燃HCの排出を確実に抑制することができる。
又、特に始動時のようにエンジン回転速度Neが低い場合には、エンジン1のオイルポンプ10から供給される作動油が十分でないが、上記のように冷態始動時には吸排気のカム軸3a,3bの位相を相前後して変更しているため、限られた作動油が常に一方のタイミング可変機構8a,8bに集中的に供給されて、確実な位相角制御を実現することができる。
【0026】
[第2実施形態]
次に、請求項2の発明を具体化した第2実施形態の可変バルブタイミング装置を説明する。本実施形態の可変バルブタイミング装置は、吸排気カム軸3a,3bの位相角制御の順序を変更したものであり、その他の構成は第1実施形態と同一である。従って、共通の構成部分の説明は省略し、相違点を重点的に説明する。
【0027】
図4は冷態始動時におけるカム軸の位相角制御を示すタイムチャートであり、図5は冷態始動時のカム軸の位相変化を順に示した説明図である。
まず、エンジン停止時において、図4,5の(1)に示すように吸排気のカム軸3a,3bの位相は共に遅角位置に保持され、吸気行程及び排気行程を含むオーバラップが形成されている。この位相位置で始動が行われると、一旦排気側に通り抜けた排ガスがピストン16の下降により筒内に引き戻されて次回の燃焼行程で燃焼され、未燃HCを排出することなく初爆に至る。尚、このときに吸気行程のみのオーバラップを形成するようにしてもよく、この場合には、排ガスの排気側への通り抜けをより確実に防止できる。
【0028】
そして、冷態始動時には、初爆から所定時間t(例えば、2〜3sec)待機した後に、図4,5の(2)に示すように吸気カム軸3aの位相が進角側に制御される。このときの作用は第1実施形態の図2,3の(3)の場合と同様であり、排気側に通り抜けた排ガスが筒内に引き戻されて未燃HCの排出が防止されると共に、オーバラップ量の増大により吸気側に逆流する内部EGRが増加して、吸気ポート11内の燃料の気化促進や吸気ポート11自体の昇温作用が奏される。
【0029】
更に所定時間の経過後(所定期間後)に、図4,5の(3)に示すように排気カム軸3bの位相が進角側に制御される。このときの作用は第1実施形態の図2,3の(3)の場合と同様であり、排気弁7bの進角により燃焼中の排ガスが排出されて、後燃え効果により排気通路18内でも燃焼を継続し、触媒20が早期に活性化される。
尚、その後に所定時間が経過すると、排気カム軸3bの位相が遅角側に制御され、続いて吸気カム軸3aの位相が遅角側に制御され、これと同時に、第1実施形態と同じく空燃比のリーン化と点火時期のリタードが実施される。
【0030】
以上のように本実施形態の可変バルブタイミング装置では、後燃え効果が期待できない冷態始動時の初期には、吸気弁7aの進角によりオーバラップ量を増大させ(図5の(2))、これにより排ガスを筒内に引き戻して未燃HCの排出を防止する共に、排ガスを吸気側に逆流させて燃料の気化促進や吸気ポート11の昇温を実現し、一方、その後に排気通路18等が昇温されると(図5の(3))、排気弁7bを進角させて後燃え効果により触媒20を早期活性化している。よって、冷態始動時のエンジン1の昇温状況に応じて吸排気弁7a,7bの開閉タイミングを常に最適に制御でき、未燃HCの排出を確実に抑制することができる。
【0031】
しかも、吸排気のカム軸3a,3bの位相を相前後して変更しているため、オイルポンプ10の限られた作動油を常に一方のタイミング可変機構8a,8bに集中的に供給して、確実な位相角制御を実現することができる。
以上で実施形態の説明を終えるが、本発明の態様は上記第1及び第2実施形態に限定されるものではない。例えば上記各実施形態では、ベーン式のタイミング可変機構8a,8bを備えたが、タイミング可変機構の構成はこれに限らず、例えば、ヘリカル式のタイミング可変機構に代えてもよいし、カム軸に対するカムの偏心量を変更する偏心式のタイミング可変機構、或いは、異なる特性のカムを選択的に作動させる切換式のタイミング可変機構、電磁式アクチュエータによりバルブを直接的に開閉する電磁式のタイミング可変機構等に代えてもよい。
【0032】
又、上記各実施形態では吸気管噴射型のエンジン1に適用したが、例えば、筒内に直接燃料を噴射する筒内噴射型エンジンに適用してもよい。
更に、上記各実施形態では、一方のカム軸3a,3bの位相角制御を完了した後に、他方のカム軸3a,3bの位相角制御を開始するようにしたが、双方の位相角制御をオーバラップさせて実行してもよく、例えば図2に破線で示すように、排気カム軸3bの遅角側への位相角制御が完了する以前に、吸気カム軸3aの進角側への位相角制御を開始してもよい。
【0033】
一方、上記各実施形態では、冷態始動時を例に挙げて説明したが、必ずしも冷態始動時に限ることなく、温態始動時においても同様の制御を実行するようにしてもよい。
【0034】
【発明の効果】
以上説明したように本発明の可変バルブタイミング装置によれば、始動時に吸排気弁の開閉タイミングを適切に制御し、もって、未燃HCの排出を確実に抑制することができる。
【図面の簡単な説明】
【図1】第1及び第2実施形態の可変バルブタイミング装置を示す全体構成図である。
【図2】第1実施形態の可変バルブタイミング装置による冷態始動時のカム軸の位相角制御を示すタイムチャートである。
【図3】第1実施形態の可変バルブタイミング装置による冷態始動時のカム軸の位相変化を順に示した説明図である
【図4】第2実施形態の可変バルブタイミング装置による冷態始動時のカム軸の位相角制御を示すタイムチャートである。
【図5】第2実施形態の可変バルブタイミング装置による冷態始動時のカム軸の位相変化を順に示した説明図である
【符号の説明】
7a 吸気弁
7b 排気弁
8a タイミング可変機構(吸気バルブタイミング可変手段)
8b タイミング可変機構(排気バルブタイミング可変手段)
31 ECU(バルブタイミング制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable valve timing device that adjusts opening and closing timings of an intake valve and an exhaust valve of an engine.
[0002]
[Related background]
As is well known, most of the unburned HC discharged from the engine is at the time of cold start, and as a countermeasure against this, improvement in the performance of the catalyst, increase in capacity, and the like are attempted. However, in order to purify a large amount of unburned HC at the time of cold start only by measures relating to this catalyst, there is a problem that the amount of noble metal used for the catalyst is greatly increased and the cost efficiency is poor.
[0003]
Therefore, for example, as in the variable valve timing device described in Japanese Patent Application Laid-Open No. 11-336574, the open / close timing of the intake and exhaust valves is appropriately controlled at the time of cold start, and the catalyst is activated at an early stage so that unburned HC is removed. Reduction techniques have been proposed. In this variable valve timing device, at the time of cold start, the exhaust valve is advanced from the normal time to discharge the exhaust gas during combustion, and the afterburning effect when the unburned HC contained in the exhaust gas burns in the exhaust passage, The catalyst is activated early. In order to promote the afterburning effect at this time, the intake valve is greatly advanced to increase the amount of overlap with the exhaust valve, and the exhaust gas (internal EGR) flowing back to the intake side is increased to slow down the combustion. To increase unburned HC emissions.
[0004]
[Problems to be solved by the invention]
However, as is apparent from the description of the flowchart and the like in the variable valve timing device of the above publication, the following problems arise because the advance / retreat control of the intake / exhaust valves is simultaneously performed at the cold start.
The advance control of the intake / exhaust valve is performed after several strokes have passed since the initial explosion.At this time, the temperature of the exhaust passage and the like has not yet been sufficiently raised, so the exhaust valve during combustion is controlled by the advance angle of the exhaust valve. Even if it is discharged, there will be a situation in which the afterburning in the exhaust passage stops and is discharged as it is.
[0005]
In addition, at the initial stage of cold start, fuel injected into the intake port accumulates in the port while the intake valve is closed, and flows into the cylinder as the intake valve opens, part of which is It passes through the exhaust side as unburned HC during the overlap period without burning. At this time, since the exhaust valve is closed before the top dead center TDC, most of the unburned HC passing through the exhaust side is discharged as it is without being re-inhaled into the cylinder.
[0006]
On the other hand, when the intake valve is advanced and opened early, a part of the exhaust gas flows backward to the intake side, promoting fuel vaporization in the intake port and raising the temperature of the intake port itself. Since the exhaust gas temperature remaining in the cylinder is lowered by the early opening of the valve, these preferable actions are greatly reduced.
Because of the above factors, it is difficult to say that the intake and exhaust valves are advanced simultaneously at the initial stage of cold start, which is not optimal control, and more appropriate control that matches the temperature rise of the engine at cold start is desired. It was.
[0007]
An object of the present invention is to provide a variable valve timing device that can appropriately control the opening / closing timing of an intake / exhaust valve at the time of start-up, thereby reliably suppressing the discharge of unburned HC.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, in a variable valve timing device that varies the valve timing of the intake valve and the exhaust valve to vary the overlap amount of the intake valve and the exhaust valve, the valve timing of the intake valve At least one of an intake valve timing varying means, an exhaust valve timing varying means for varying the valve timing of the exhaust valve, and an intake valve timing varying means or an exhaust valve timing varying means after a predetermined time from the initial explosion at the start of the engine. From the start of the increase of the overlap amount due to the operation of at least one of the intake valve timing variable means or the exhaust valve timing variable means by operating and increasing the overlap amount across the top dead center for the intake valve and the exhaust valve, respectively. Exhaust valve timing variable means after a predetermined period And a valve timing control means for advancing the exhaust valve Te.
[0009]
Therefore, after a predetermined time from the initial explosion at the start of the engine, first, at least one of the intake valve timing varying means and the exhaust valve timing varying means, the intake valve and the exhaust valve overlap each other over the top dead center. As a result, the exhaust gas that has once passed through the exhaust side is drawn back into the cylinder and burned, and the discharge of unburned HC is suppressed, while the exhaust gas flows backward to the intake side to promote fuel vaporization and the intake port. The exhaust valve is advanced by the exhaust valve timing varying means after a predetermined period from the start of the increase of the overlap amount due to the operation of at least one of the intake valve timing varying means or the exhaust valve timing varying means , and combustion is performed. The exhaust gas therein is discharged and the catalyst is activated early due to the afterburning effect in the exhaust passage. That is, the opening / closing timing of the intake / exhaust valve is always optimally controlled in accordance with the temperature rise state of the engine at the time of starting.
[0010]
According to a second aspect of the present invention, in the variable valve timing device that varies the valve timing of the intake valve and the exhaust valve to vary the overlap amount of the intake valve and the exhaust valve, the intake valve that varies the valve timing of the intake valve. Timing variable means, exhaust valve timing variable means for changing the valve timing of the exhaust valve, and intake valve timing variable means by operating the intake valve timing variable means to the advance side after a predetermined time from the initial explosion at the start of the engine A valve that increases the amount of overlap across each top dead center and operates the exhaust valve timing variable means to advance the exhaust valve after a predetermined period from the start of advancement of the intake valve by the operation of the intake valve timing variable means Timing control means.
[0011]
Therefore, after a predetermined time from the first explosion at the start of the engine, first, the intake valve timing advancement is started by the intake valve timing variable means, and the overlap amount increases across the top dead center for the intake valve and the exhaust valve, respectively. are, thereby temporarily exhaust gas through the exhaust side is burned pulled back into the cylinder, both the discharge of unburned HC can be prevented, the exhaust gas temperature of the vaporization promotion and the intake port of the fuel flows back to the intake side The exhaust valve is advanced by the exhaust valve timing variable means after a predetermined period from the start of the advancement of the intake valve, and the exhaust gas during combustion is discharged, and the catalyst is accelerated by the afterburning effect in the exhaust passage. Activated. That is, the opening / closing timing of the intake / exhaust valve is always optimally controlled in accordance with the temperature rise state of the engine at the time of starting.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
A variable valve timing apparatus according to a first embodiment embodying the invention of claim 1 will be described below.
FIG. 1 is an overall configuration diagram showing the variable valve timing device of the first embodiment. As shown in this figure, the engine 1 is configured as an intake pipe injection type engine, and a DOHC 4-valve type is adopted as the valve operating mechanism. Timing pulleys 4 a and 4 b are connected to the front ends of the intake cam shaft 3 a and the exhaust cam shaft 3 b on the cylinder head 2, and these timing pulleys 4 a and 4 b are connected to the crankshaft 6 via a timing belt 5. As the crankshaft 6 rotates, the camshafts 3a and 3b are rotationally driven together with the timing pulleys 4a and 4b, and the intake and exhaust valves 7a and 7b are driven to open and close by the camshafts 3 and 3b.
[0013]
Between the camshafts 3a and 3b and the timing pulleys 4a and 4b, vane type timing variable mechanisms 8a and 8b are provided as intake valve timing variable means and exhaust valve timing variable means. The structure of the timing variable mechanisms 8a and 8b is well known in, for example, Japanese Patent Application Laid-Open No. 2000-27609 and will not be described in detail. However, a vane rotor is rotatably provided in a housing provided in the timing pulleys 4a and 4b. And an intake camshaft 3a or an exhaust camshaft 3b. Oil control valves (hereinafter referred to as OCV) 9a and 9b are connected to the timing variable mechanisms 8a and 8b, and the vane rotor is switched according to the switching of the OCVs 9a and 9b using the hydraulic oil supplied from the oil pump 10 of the engine 1. As a result, the phase of the cam shafts 3a and 3b with respect to the timing pulleys 4a and 4b, that is, the opening and closing timings of the intake and exhaust valves 7a and 7b are adjusted.
[0014]
On the other hand, an intake passage 12 is connected to the intake port 11 of the cylinder head 2, and intake air introduced into the intake passage 12 from the air cleaner 13 as the piston 16 descends flows in accordance with the opening of the throttle valve 14. After the adjustment, the fuel is mixed with the fuel injected from the fuel injection valve 15 and flows into the cylinder through the intake port 11 when the intake valve 7a is opened.
[0015]
Further, an exhaust passage 18 is connected to the exhaust port 17 of the cylinder head 2, and the exhaust gas after being ignited by the spark plug 19 and exhausted is exhausted from the exhaust port 17 as the piston 16 rises when the exhaust valve 7b is opened. It is guided to the passage 18 and discharged to the outside through the catalyst 20 and a silencer (not shown).
Valve timing control provided with an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.), a central processing unit (CPU), a timer counter, etc. An ECU (engine control unit) 31 is installed as means, and performs overall control of the engine 1. Various sensors such as a rotational speed sensor 32 for detecting the engine rotational speed Ne, a throttle sensor 33 for detecting the opening degree TPS of the throttle valve 14, and a water temperature sensor 34 for detecting the cooling water temperature Tw are connected to the input side of the ECU 31. Yes. Further, the OCVs 9a and 9b, the fuel injection valve 15, the spark plug 19 and the like are connected to the output side of the ECU 31.
[0016]
The ECU 31 determines an ignition timing, a fuel injection amount, and the like based on detection information from each sensor, and drives and controls the spark plug 19 and the fuel injection valve 15. Further, according to a preset map, the target phase angle of the timing variable mechanisms 8a and 8b is calculated from the engine speed Ne and the throttle opening TPS, and the actual phase angle is controlled to the target phase angle by driving the OCVs 9a and 9b. To do. Further, when the engine 1 is cold-started, in order to suppress the discharge of unburned HC, dedicated phase angle control different from that at the time of warm-start is executed.
[0017]
Therefore, the phase angle control executed by the ECU 31 at the cold start will be described with reference to FIGS.
FIG. 2 is a time chart showing camshaft phase angle control at the time of cold start, and FIG. 3 is an explanatory diagram sequentially showing phase changes of the camshaft at the time of cold start.
First, when the engine is stopped, the phase of the intake camshaft 3a is held at the retard position and the phase of the exhaust camshaft 3b is held at the advance position as shown in (1) of FIGS. Little overlap is formed. When the ignition switch is started by the driver, cranking of the engine 1 is started at this phase position, and ignition timing control and fuel injection control are executed by the ECU 31. Since the intake port 11 at this point corresponds to the outside air temperature, fuel vaporization is not promoted, and most of the large amount of injected fuel due to the increase in fuel remains in the intake port 11 while the intake valve 7a is closed as the liquid fuel. It flows into the cylinder as the valve 7a opens. Here, since the intake and exhaust air hardly overlap as described above, the fuel that has flowed into the cylinder is burned without passing through to the exhaust side, and the first explosion occurs without discharging a large amount of unburned HC.
[0018]
The phase angle control up to this point is common to the warm start and the cold start. When the ECU 31 determines that the temperature is started based on the coolant temperature Tw or the like, as long as the idling operation is continued even after the start is completed, the opening / closing timing of the intake valve 7a is held at the retard position, and the exhaust valve 7b The opening / closing timing of the engine is kept at the advance position, and when the engine speed Ne or the throttle opening TPS increases due to the start of the vehicle or the like, it is controlled to the advance side accordingly.
[0019]
On the other hand, at the time of cold start, after waiting for a predetermined time t (for example, 2 to 3 seconds) from the first explosion, the phase of the exhaust camshaft 3b is controlled to the retard side as shown in (2) of FIGS. . As a result, the exhaust valve 7b is closed after the top dead center TDC, and the exhaust gas that has once passed through the exhaust side is drawn back into the cylinder by the lowering of the piston 16 and burned in the next combustion stroke. Since the exhaust gas at this time is exhaust gas at the end of the exhaust stroke containing particularly a large amount of unburned HC, a situation where a lot of unburned HC is burned in the next combustion stroke and discharged as it is is prevented. Further, since the opening of the exhaust valve 7b is also delayed, the combustion period is lengthened to promote the oxidation of unburned HC and the exhaust gas temperature in the cylinder is raised.
[0020]
Further, since the overlap amount increases with the delay of the exhaust camshaft 3b, the high-temperature exhaust gas flows back to the intake side as the internal EGR, thereby promoting the vaporization of fuel in the intake port 11, and the intake port. 11 itself has a temperature raising action, and at this time, the negative pressure on the intake side is increased due to the rapid increase in the engine rotational speed Ne accompanying the first explosion, so that the backflow of the exhaust gas becomes abrupt, and the intake port 11 enters the intake port 11. There is also an effect of atomizing the remaining liquid fuel by blowing it off.
[0021]
The phase of the intake camshaft 3a is controlled to the advance side as shown in (3) of FIG. The amount of overlap is further increased. At this time, as the exhaust gas temperature rises, the fuel vaporization condition becomes easier as compared with the time of the first explosion, the intake valve 7a is opened earlier, and the in-cylinder temperature rises together with the compression temperature. Since the atomization effect of the liquid fuel by the internal EGR is still exhibited, stable combustion is continued even if the internal EGR is increased by increasing the overlap amount.
[0022]
Then, after the elapse of a predetermined time ( after a predetermined period) , the phase of the exhaust camshaft 3b is controlled to the advance side as shown in (4) of FIGS. At this time, since the temperature of the exhaust passage 18 and the like is increased compared to the time (3) described above, if the exhaust gas during combustion is exhausted by the advance angle of the exhaust valve 7b, the exhaust gas becomes an afterburning effect. Thus, the combustion is continued in the exhaust passage 18 and the catalyst 20 is activated early. Although the amount of overlap is reduced by the advance angle of the exhaust valve 7b, since the negative pressure on the intake side is further increased at this point, the above-described action of returning the exhaust gas into the cylinder has been sufficiently achieved. The emission of fuel HC is suppressed.
[0023]
On the other hand, when a predetermined time elapses thereafter, the phase of the intake camshaft 3a is controlled to the retard side, the overlap amount of intake and exhaust is reduced, and combustion is stabilized. At the same time, the air-fuel ratio is controlled to the lean side to suppress the generation of unburned HC due to unburned fuel, and at the same time the ignition timing is set to compensate for the decrease in the heat generation amount due to the lean operation and to raise the exhaust gas temperature. Retarding is performed, and the temperature of the catalyst 20 is continuously increased.
[0024]
As described above, in the variable valve timing device according to the present embodiment, the exhaust valve 18b and the like are not sufficiently heated up and the afterburning effect cannot be expected. The amount of overlap is increased by the advance angle of the valve 7a ((2) and (3) in FIG. 3), whereby the exhaust gas that has once passed through the exhaust side is drawn back into the cylinder and burned to discharge unburned HC. In addition to preventing the exhaust gas from flowing backward to the intake side, fuel vaporization is promoted and the intake port 11 is heated. On the other hand, when the exhaust passage 18 and the like are subsequently heated ((4) in FIG. 3), The exhaust valve 7 b is advanced to discharge the exhaust gas during combustion, and the catalyst 20 is activated early by the afterburning effect in the exhaust passage 18.
[0025]
In other words, the open / close timing of the intake / exhaust valves 7a and 7b is always optimally controlled according to the temperature rise status of the engine 1 during the cold start (temperature rise status of the exhaust passage 18 and the like). Can be reliably suppressed.
In particular, when the engine rotational speed Ne is low, such as at the time of starting, the hydraulic oil supplied from the oil pump 10 of the engine 1 is not sufficient. However, as described above, the intake and exhaust camshafts 3a, 3a, Since the phase of 3b is changed before and after, limited hydraulic oil is always supplied intensively to one of the timing variable mechanisms 8a and 8b, and reliable phase angle control can be realized.
[0026]
[Second Embodiment]
Next, a variable valve timing apparatus according to a second embodiment embodying the invention of claim 2 will be described. The variable valve timing device of this embodiment is obtained by changing the order of phase angle control of the intake and exhaust camshafts 3a and 3b, and the other configurations are the same as those of the first embodiment. Therefore, description of common components will be omitted, and differences will be described mainly.
[0027]
FIG. 4 is a time chart showing the phase angle control of the cam shaft at the cold start, and FIG. 5 is an explanatory diagram showing the phase change of the cam shaft at the cold start in order.
First, when the engine is stopped, the phases of the intake and exhaust camshafts 3a and 3b are both held at the retarded position as shown in FIG. 4 and 5 (1), and an overlap including the intake stroke and the exhaust stroke is formed. ing. When starting is performed at this phase position, the exhaust gas that has once passed through the exhaust side is drawn back into the cylinder by the lowering of the piston 16 and burned in the next combustion stroke, leading to the first explosion without discharging unburned HC. At this time, an overlap of only the intake stroke may be formed. In this case, passage of exhaust gas to the exhaust side can be more reliably prevented.
[0028]
At the time of cold start, after waiting for a predetermined time t (for example, 2 to 3 seconds) from the initial explosion, the phase of the intake camshaft 3a is controlled to the advance side as shown in (2) of FIGS. . The operation at this time is the same as in the case of (3) in FIGS. 2 and 3 of the first embodiment, and the exhaust gas passing through the exhaust side is drawn back into the cylinder to prevent the unburned HC from being discharged and The increase in the lap amount increases the internal EGR that flows back to the intake side, thereby promoting the vaporization of fuel in the intake port 11 and raising the temperature of the intake port 11 itself.
[0029]
Further, after the elapse of a predetermined time ( after the predetermined period) , the phase of the exhaust camshaft 3b is controlled to the advance side as shown in (3) of FIGS. The operation at this time is the same as in the case of (3) in FIGS. 2 and 3 of the first embodiment, and the exhaust gas during combustion is discharged by the advance angle of the exhaust valve 7b, and also in the exhaust passage 18 by the afterburning effect. Combustion is continued and the catalyst 20 is activated early.
When a predetermined time elapses thereafter, the phase of the exhaust camshaft 3b is controlled to the retarded side, and subsequently the phase of the intake camshaft 3a is controlled to the retarded side. At the same time, as in the first embodiment. The air-fuel ratio is made lean and the ignition timing is retarded.
[0030]
As described above, in the variable valve timing apparatus of the present embodiment, the overlap amount is increased by the advance angle of the intake valve 7a in the initial stage of the cold start where the afterburning effect cannot be expected ((2) in FIG. 5). As a result, the exhaust gas is drawn back into the cylinder to prevent the discharge of unburned HC, and the exhaust gas is caused to flow backward to the intake side to promote fuel vaporization and to raise the temperature of the intake port 11, while thereafter the exhaust passage 18. When the temperature of the catalyst 20 is increased ((3) in FIG. 5), the exhaust valve 7b is advanced to activate the catalyst 20 early due to the afterburning effect. Therefore, the opening / closing timings of the intake / exhaust valves 7a, 7b can always be optimally controlled according to the temperature rise state of the engine 1 at the cold start, and the discharge of unburned HC can be reliably suppressed.
[0031]
Moreover, since the phases of the intake and exhaust camshafts 3a and 3b are changed before and after, the limited hydraulic oil of the oil pump 10 is always supplied to one of the timing variable mechanisms 8a and 8b in a concentrated manner. Reliable phase angle control can be realized.
Although the description of the embodiment is finished as described above, the aspect of the present invention is not limited to the first and second embodiments. For example, in each of the above embodiments, the vane-type timing variable mechanisms 8a and 8b are provided. However, the configuration of the timing variable mechanism is not limited to this, and for example, a helical-type timing variable mechanism may be used. Eccentric variable timing mechanism that changes the amount of cam eccentricity, or a switchable variable timing mechanism that selectively operates cams with different characteristics, or an electromagnetic timing variable mechanism that directly opens and closes a valve using an electromagnetic actuator. Or the like.
[0032]
In each of the above embodiments, the present invention is applied to the intake pipe injection type engine 1. However, for example, the present invention may be applied to an in-cylinder injection type engine in which fuel is directly injected into a cylinder.
Further, in each of the above embodiments, the phase angle control of the other cam shafts 3a and 3b is started after the phase angle control of the one cam shafts 3a and 3b is completed. For example, as shown by a broken line in FIG. 2, the phase angle of the intake camshaft 3a toward the advance side is completed before the phase angle control of the exhaust camshaft 3b toward the retard side is completed. Control may be started.
[0033]
On the other hand, in each of the above embodiments, the cold start time has been described as an example. However, the present invention is not necessarily limited to the cold start time, and the same control may be executed at the warm start time.
[0034]
【The invention's effect】
As described above, according to the variable valve timing device of the present invention, the opening / closing timing of the intake / exhaust valve can be appropriately controlled at the time of start-up, and the discharge of unburned HC can be reliably suppressed.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a variable valve timing device according to first and second embodiments.
FIG. 2 is a time chart showing camshaft phase angle control during cold start by the variable valve timing device of the first embodiment;
FIGS. 3A and 3B are explanatory diagrams sequentially showing a phase change of a camshaft at the time of cold start by the variable valve timing device of the first embodiment. FIG. 4 at the time of cold start by the variable valve timing device of the second embodiment. 6 is a time chart showing phase angle control of the cam shaft.
FIGS. 5A and 5B are explanatory diagrams sequentially showing changes in the phase of the camshaft during cold start by the variable valve timing device of the second embodiment.
7a Intake valve 7b Exhaust valve 8a Timing variable mechanism (intake valve timing variable means)
8b Variable timing mechanism (exhaust valve timing variable means)
31 ECU (valve timing control means)

Claims (2)

吸気弁及び排気弁のバルブタイミングを可変させて、該吸気弁と排気弁のオーバラップ量を可変させる可変バルブタイミング装置において、
上記吸気弁のバルブタイミングを可変させる吸気バルブタイミング可変手段と、
上記排気弁のバルブタイミングを可変させる排気バルブタイミング可変手段と、
エンジン始動時の初爆から所定時間後に上記吸気バルブタイミング可変手段又は上記排気バルブタイミング可変手段の少なくとも一方を作動させてそれぞれ上死点を跨いでオーバラップ量を増大させ、上記吸気バルブタイミング可変手段又は上記排気バルブタイミング可変手段の少なくとも一方の作動によるオーバラップ量の増大の開始より所定期間が経過すると排気バルブタイミング可変手段にて上記排気弁を進角させるバルブタイミング制御手段と
を備えたことを特徴とする可変バルブタイミング装置。
In a variable valve timing device that varies the valve timing of the intake valve and the exhaust valve to vary the amount of overlap between the intake valve and the exhaust valve,
Intake valve timing varying means for varying the valve timing of the intake valve;
Exhaust valve timing varying means for varying the valve timing of the exhaust valve;
Across top dead center, respectively Re Teso actuates at least one of the intake valve timing varying means or the exhaust valve timing varying means after a predetermined time from the initial explosion at the time of starting the engine to increase the overlap amount, the intake valve Valve timing control means for advancing the exhaust valve by the exhaust valve timing variable means when a predetermined period has elapsed from the start of an increase in overlap amount due to the operation of at least one of the timing variable means or the exhaust valve timing variable means. A variable valve timing device characterized by that.
吸気弁及び排気弁のバルブタイミングを可変させて、該吸気弁と排気弁のオーバラップ量を可変させる可変バルブタイミング装置において、
上記吸気弁のバルブタイミングを可変させる吸気バルブタイミング可変手段と、
上記排気弁のバルブタイミングを可変させる排気バルブタイミング可変手段と、
エンジン始動時の初爆から所定時間後に上記吸気バルブタイミング可変手段を進角側に作動させて上記吸気弁及び上記排気弁についてそれぞれ上死点を跨いでオーバラップ量を増大させ、上記吸気バルブタイミング可変手段の作動による上記吸気弁の進角開始より所定期間後に、上記排気バルブタイミング可手段を作動させて上記排気弁を進角させるバルブタイミング制御手段と
を備えたことを特徴とする可変バルブタイミング装置。
In a variable valve timing device that varies the valve timing of the intake valve and the exhaust valve to vary the amount of overlap between the intake valve and the exhaust valve,
Intake valve timing varying means for varying the valve timing of the intake valve;
Exhaust valve timing varying means for varying the valve timing of the exhaust valve;
Predetermined time after the initial explosion at the time of starting the engine to actuate the intake valve timing varying means to the advance side by increasing the amount of overlap across the respective top dead center for the intake valves and the exhaust valves, the intake valve A variable valve comprising: valve timing control means for operating the exhaust valve timing enable means to advance the exhaust valve after a predetermined period from the start of advance of the intake valve by the operation of the timing variable means. Timing device.
JP2001004983A 2000-11-21 2001-01-12 Variable valve timing device Expired - Fee Related JP4591645B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001004983A JP4591645B2 (en) 2001-01-12 2001-01-12 Variable valve timing device
DE10156140A DE10156140B4 (en) 2000-11-21 2001-11-15 Variable valve control
KR10-2001-0072322A KR100425543B1 (en) 2000-11-21 2001-11-20 Variable valve timing apparatus
CNB01134959XA CN1265080C (en) 2000-11-21 2001-11-20 Variable valve timer
US09/989,405 US6637386B2 (en) 2000-11-21 2001-11-21 Variable valve timing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004983A JP4591645B2 (en) 2001-01-12 2001-01-12 Variable valve timing device

Publications (2)

Publication Number Publication Date
JP2002206436A JP2002206436A (en) 2002-07-26
JP4591645B2 true JP4591645B2 (en) 2010-12-01

Family

ID=18873089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004983A Expired - Fee Related JP4591645B2 (en) 2000-11-21 2001-01-12 Variable valve timing device

Country Status (1)

Country Link
JP (1) JP4591645B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127180A (en) * 2003-10-22 2005-05-19 Toyota Motor Corp Valve characteristic control device of internal combustion engine
JP4289364B2 (en) 2005-12-05 2009-07-01 トヨタ自動車株式会社 Control device for internal combustion engine
JP4941352B2 (en) * 2008-02-22 2012-05-30 トヨタ自動車株式会社 Control device for internal combustion engine
JP5654940B2 (en) * 2011-04-21 2015-01-14 日立オートモティブシステムズ株式会社 Variable valve operating controller and internal combustion engine variable valve operating device
EP3029287B1 (en) * 2013-07-31 2018-01-31 Aisin Seiki Kabushiki Kaisha Control device for internal combustion engine
JP6869475B2 (en) 2017-05-12 2021-05-12 アイシン精機株式会社 Internal combustion engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642379A (en) * 1992-05-27 1994-02-15 Fuji Heavy Ind Ltd Valve timing control device for valve system
JPH06346764A (en) * 1993-06-04 1994-12-20 Toyota Motor Corp Valve timing control device for internal combustion engine
JPH11336574A (en) * 1998-03-25 1999-12-07 Denso Corp Control device for internal combustion engine
JP2000008896A (en) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2000054872A (en) * 1998-08-06 2000-02-22 Mitsubishi Motors Corp Internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642379A (en) * 1992-05-27 1994-02-15 Fuji Heavy Ind Ltd Valve timing control device for valve system
JPH06346764A (en) * 1993-06-04 1994-12-20 Toyota Motor Corp Valve timing control device for internal combustion engine
JPH11336574A (en) * 1998-03-25 1999-12-07 Denso Corp Control device for internal combustion engine
JP2000008896A (en) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2000054872A (en) * 1998-08-06 2000-02-22 Mitsubishi Motors Corp Internal combustion engine

Also Published As

Publication number Publication date
JP2002206436A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR100425543B1 (en) Variable valve timing apparatus
JP4831373B2 (en) Engine with variable valve system
US6761147B2 (en) Control apparatus and method for internal combustion engine
KR100863475B1 (en) Control apparatus and control method for internal combustion engine
JP4701871B2 (en) Engine control device
JP3699654B2 (en) Valve timing control device for internal combustion engine
JP3933386B2 (en) Variable valve timing control device for internal combustion engine
JP3939079B2 (en) Variable valve timing control device for internal combustion engine
KR100575506B1 (en) Internal combustion engine
JP3605354B2 (en) Valve timing control device for internal combustion engine
JP3748518B2 (en) Valve timing control device for internal combustion engine
JP4677844B2 (en) Engine valve timing control device
JP3699645B2 (en) Valve timing control device for internal combustion engine
JP4591645B2 (en) Variable valve timing device
JP4182888B2 (en) Engine control device
JP3997384B2 (en) Variable valve timing device
JP4577469B2 (en) Variable valve timing device
JP4386199B2 (en) Variable valve timing device
JP4069349B2 (en) Control device for internal combustion engine
JP2005061279A (en) Variable valve control device of engine
JP4045743B2 (en) Control device for internal combustion engine
JP4325514B2 (en) Valve timing control device for internal combustion engine
JP2007127134A (en) Variable valve timing device
JP4075614B2 (en) In-cylinder injection internal combustion engine control device
JP2004346752A (en) Control device for internal combustion engine, and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4591645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees