WO2014199425A1 - 機関制御装置 - Google Patents

機関制御装置 Download PDF

Info

Publication number
WO2014199425A1
WO2014199425A1 PCT/JP2013/065925 JP2013065925W WO2014199425A1 WO 2014199425 A1 WO2014199425 A1 WO 2014199425A1 JP 2013065925 W JP2013065925 W JP 2013065925W WO 2014199425 A1 WO2014199425 A1 WO 2014199425A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank angle
engine
combustion
heat generation
generation rate
Prior art date
Application number
PCT/JP2013/065925
Other languages
English (en)
French (fr)
Inventor
一康 岩田
晃 山下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/065925 priority Critical patent/WO2014199425A1/ja
Priority to CN201380077253.2A priority patent/CN105308295B/zh
Priority to EP13886750.2A priority patent/EP3009643B1/en
Priority to RU2015152152A priority patent/RU2628019C2/ru
Priority to BR112015030775-2A priority patent/BR112015030775B1/pt
Priority to JP2015522274A priority patent/JP5950041B2/ja
Priority to US14/896,772 priority patent/US9657681B2/en
Publication of WO2014199425A1 publication Critical patent/WO2014199425A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine control device that controls the combustion state of fuel in an internal combustion engine. More specifically, the present invention relates to an engine control device that can control the combustion state of fuel in an internal combustion engine and reduce noise and vibration generated by the control.
  • an internal combustion engine such as a diesel engine (hereinafter also simply referred to as “engine”)
  • engine part of the energy generated by the combustion of fuel is converted into work for rotating the crankshaft, but the rest is lost.
  • This loss includes a cooling loss lost as heat generated from the engine body, an exhaust loss released into the atmosphere by exhaust gas, a pump loss caused by intake and exhaust, and a mechanical resistance loss.
  • cooling loss and exhaust loss account for a large percentage of the total loss. Therefore, it is effective to reduce the cooling loss and the exhaust loss in order to improve the fuel consumption of the internal combustion engine.
  • cooling loss in general, there is a trade-off between cooling loss and exhaust loss. That is, when the cooling loss is decreased, the exhaust loss is increased, and when the exhaust loss is decreased, the cooling loss is increased. Therefore, if the combustion state in which the sum of the cooling loss and the exhaust loss is reduced can be realized, the fuel efficiency of the engine is improved.
  • combustion state of the fuel (air mixture) in the engine changes according to “many parameters affecting the combustion state” such as the fuel injection timing and the supercharging pressure.
  • parameters that affect the combustion state are also simply referred to as “combustion parameters”.
  • combustion parameters it is not easy to obtain appropriate values (combinations) for a plurality of combustion parameters in advance by various experiments and simulations, and enormous adaptation time is required. Therefore, methods for systematically determining combustion parameters have been developed.
  • one of the conventional control devices is “a crank angle at which half of the total heat generated during one combustion stroke is generated (hereinafter referred to as “ crank angle ”).
  • crank angle hereinafter referred to as “combustion barycenter angle”.
  • the conventional apparatus corrects the fuel injection timing or adjusts the EGR rate to adjust the oxygen concentration in the combustion chamber (cylinder). By adjusting, the combustion barycentric angle is matched with the reference value (see, for example, Patent Document 1).
  • multistage injection may be performed in which fuel is injected multiple times for one cycle of combustion. More specifically, in a diesel engine, pilot injection may be performed prior to main injection (main injection), and then main injection may be performed. Furthermore, after injection may be performed after main injection.
  • the relationship between the crank angle and the heat generation rate when pilot injection and main injection are performed is represented by, for example, a waveform indicated by a curve C1 in FIG.
  • the heat generation rate is the amount of heat generated by combustion of the air-fuel mixture per unit crank angle (unit change amount of the rotational position of the crankshaft), that is, the amount of heat generation per unit crank angle.
  • This waveform is hereinafter also referred to as “combustion waveform”.
  • the waveform shown in FIG. 7A has a maximum value Lp by pilot injection started at the crank angle ⁇ 1, and has a maximum value Lm by main injection started at the crank angle ⁇ 2.
  • FIG. 7B shows the relationship between the crank angle and “the ratio of the integrated value of the amount of heat generated by the combustion shown by the curve C1 to the total amount of generated heat (heat generation ratio)”.
  • the combustion gravity center angle described above is the crank angle ⁇ 3.
  • FIG. 9 Curves Hb1 to Hb3 in FIG. 9 are measurement results in the case of a low rotation speed and a low load, a medium rotation speed and a medium load, and a high rotation speed and a high load, respectively.
  • the inventor says that when the engine load and / or engine speed is different, the combustion center-of-gravity angle at which the fuel consumption deterioration rate is minimized (combustion center-of-gravity angle at which fuel consumption is the best) is also different. Obtained knowledge.
  • heat generation rate gravity center position instead of the conventional combustion gravity center angle as an index value representing the combustion state.
  • This heat generation rate center of gravity position is determined by the heat generation rate, which is the amount of heat generated by the combustion of fuel per unit crank angle, and is represented by the crankshaft rotation position (ie, crank angle).
  • the definition of the heat release rate center of gravity position will be described in detail later, but the heat release rate center of gravity position is an index value that more accurately reflects the combustion state than the conventional combustion state index value of the combustion center of gravity. I can say that there is.
  • the inventor can maintain the combustion state of the engine in a specific state by maintaining the heat generation rate gravity center position at a predetermined constant value regardless of the engine load and / or the engine rotational speed, and improve the fuel efficiency.
  • the knowledge that it can be improved was obtained.
  • the inventor is examining an engine control device that maintains the heat release rate gravity center position at a constant crank angle regardless of the engine load and / or engine speed.
  • the combustion state of the fuel (air mixture) in the engine changes in accordance with many combustion parameters such as the fuel injection timing and the supercharging pressure. Therefore, the heat release rate gravity center position described above also changes in accordance with combustion parameters such as fuel injection timing, fuel injection pressure, amount of fuel injected by pilot injection, and supercharging pressure.
  • combustion parameters such as fuel injection timing, fuel injection pressure, amount of fuel injected by pilot injection, and supercharging pressure can be used as parameters for controlling the heat release rate gravity center position.
  • injection system parameters parameters related to fuel injection such as fuel injection timing and fuel injection pressure
  • injection system parameters have a good response at the time of correction, and the deviation (correction deviation) ) Is easy to calculate. From this point of view, it is desirable to use an injection system parameter as a parameter for controlling the heat release rate gravity center position.
  • the heat generation rate gravity center position is controlled using the injection system parameters as described above, the amount of change in the pressure in the combustion chamber (in-cylinder pressure) per unit crank angle becomes large, for example, combustion noise or the like accompanying combustion. Since the influence on noise and vibration is increased, as a result, for example, there is a possibility of giving unpleasant feeling to a user (for example, a driver) of a vehicle in which the engine is mounted as a power source. Therefore, in order to improve the fuel consumption by maintaining the combustion state of the engine in a specific state, it is only necessary to maintain the center of gravity of the heat release rate at a predetermined constant value regardless of the engine load and / or engine speed. It is also desirable to pay attention to suppressing noise and vibration that cause discomfort to the user.
  • an engine control device capable of improving fuel consumption by maintaining the center of gravity of the heat release rate at a constant crank angle while suppressing an increase in noise and vibration that cause discomfort to the user.
  • an object of the present invention is an engine capable of improving fuel efficiency by maintaining the heat generation rate gravity center position at a constant crank angle while suppressing an increase in noise and vibration that cause discomfort to the user. It is to provide a control device.
  • the above object of the present invention is to An engine control device including a combustion control unit for setting a combustion parameter for controlling a combustion state of fuel supplied to a cylinder of an internal combustion engine including a supercharger, A heat generation rate that is an amount per unit crank angle of heat generated by combustion of the fuel when the load of the engine is within a specific load range from at least a first threshold value to a second threshold value that is greater than the first threshold value
  • the combustion control unit sets the combustion parameter so that the heat generation rate center of gravity position determined by is equal to the first crank angle.
  • the combustion control unit In the engine control device, In the case where the heat release rate gravity center position is on the retard side with respect to the first crank angle, When the rotational speed of the engine is less than the first rotational speed and the speed of the vehicle in which the engine is mounted is less than the first speed, the combustion control unit increases the supercharging pressure of the supercharger. And When the rotational speed of the engine is equal to or higher than the first rotational speed or the speed of the vehicle is equal to or higher than the first speed, the combustion control unit determines whether the fuel injection pressure is increased or the fuel injection timing is advanced. Perform one or both, Achieved by engine controller.
  • the heat generation rate gravity center position by using the parameters used for controlling the heat generation rate gravity center position according to the operating conditions of the engine and the vehicle on which the engine is mounted, noise and vibration that cause discomfort to the user are obtained. While suppressing the increase, the heat generation rate gravity center position can be maintained at a predetermined constant value regardless of the engine load and / or the engine speed, thereby improving the fuel efficiency.
  • FIG. 1 is a graph for explaining the heat generation rate gravity center position (heat generation rate gravity center crank angle), and (A) shows a combustion waveform when pilot injection and main injection are performed at a predetermined timing. , (B) shows a combustion waveform when pilot injection is advanced as compared with (A).
  • FIG. 2 is a graph showing the relationship between the heat generation rate gravity center position and the fuel consumption deterioration rate for each combination of engine rotation speed and engine load.
  • FIG. 3 is a schematic configuration diagram of an engine control device according to the first embodiment of the present invention and an internal combustion engine to which the engine control device is applied.
  • FIG. 4 is a flowchart showing a routine executed by the CPU of the control device shown in FIG. FIG.
  • FIG. 5 is a flowchart showing a routine executed by the CPU of the control device shown in FIG.
  • FIG. 6 is a flowchart showing a part of a routine executed by the CPU of the control device shown in FIG.
  • FIG. 7 is a graph for explaining the combustion barycenter angle.
  • FIG. 8 is a graph for explaining the combustion barycenter angle.
  • FIG. 9 is a graph showing the relationship between the combustion center-of-gravity angle and the fuel consumption deterioration rate for each engine speed.
  • the present invention improves fuel efficiency by maintaining the heat release rate gravity center position at a constant crank angle (first crank angle) while suppressing an increase in noise and vibration that cause discomfort to the user.
  • An object of the present invention is to provide an engine control device that can perform the above.
  • the present inventor uses the parameters used for controlling the heat generation rate gravity center position according to the operating conditions of the engine and the vehicle on which the engine is mounted, thereby It has been found that fuel consumption can be improved by suppressing the increase in noise and vibration that cause discomfort and maintaining the center of gravity of the heat release rate at a predetermined constant value regardless of the engine load and / or engine speed.
  • the present invention has been conceived.
  • the first embodiment of the present invention is: An engine control device including a combustion control unit for setting a combustion parameter for controlling a combustion state of fuel supplied to a cylinder of an internal combustion engine including a supercharger, A heat generation rate that is an amount per unit crank angle of heat generated by combustion of the fuel when the load of the engine is within a specific load range from at least a first threshold value to a second threshold value that is greater than the first threshold value
  • the combustion control unit sets the combustion parameter so that the heat generation rate center of gravity position determined by is equal to the first crank angle.
  • the combustion control unit In the case where the heat release rate gravity center position is on the retard side with respect to the first crank angle, When the rotational speed of the engine is less than the first rotational speed and the speed of the vehicle in which the engine is mounted is less than the first speed, the combustion control unit increases the supercharging pressure of the supercharger. And When the rotational speed of the engine is equal to or higher than the first rotational speed or the speed of the vehicle is equal to or higher than the first speed, the combustion control unit determines whether the fuel injection pressure is increased or the fuel injection timing is advanced. Perform one or both, It is an engine control device.
  • the engine control device is applied to an internal combustion engine including a supercharger. Furthermore, the engine control apparatus according to this embodiment includes a combustion control unit that controls the combustion state of the fuel supplied to the cylinder of the internal combustion engine.
  • the combustion control unit per unit crank angle of heat generated by the combustion of the fuel is set so that the heat generation rate gravity center position determined by the heat generation rate, which is a quantity, is equal to the first crank angle.
  • the first threshold value may be a minimum value among loads that the engine can take, or may be a value larger than the minimum value.
  • the second threshold value may be a maximum value among loads that the engine can take, or may be a value smaller than the maximum value. That is, the engine control apparatus according to this embodiment may set the combustion parameter so that the heat generation rate gravity center position is equal to the first crank angle in the entire load range that the engine can take, or in a specific load range. Only the heat generation rate center of gravity position may be set to be equal to the first crank angle. Further, controlling the combustion state is substantially equivalent to setting the combustion parameter (that is, setting / changing the combustion parameter to an appropriate value according to the operating state of the engine by feedforward control and / or feedback control). Is synonymous with The combustion parameters will be described later in detail.
  • the heat generation rate gravity center position is maintained at the first crank angle at least when the engine load is within the specific load range. Therefore, the running cost of the engine can be effectively improved by setting the first crank angle to, for example, the crank angle that provides the best fuel efficiency. Further, for example, the first crank angle is set to a predetermined crank angle such as a crank angle at which the total running cost including the running cost other than the fuel consumption (substantial cost required for running the vehicle on which the engine is mounted) is minimized. By setting this, the total running cost of the engine may be effectively improved.
  • the target center of gravity position (first crank angle) as a control target value of the heat generation rate center of gravity position that can effectively improve the fuel consumption, total running cost, etc. of the engine is obtained in advance by, for example, a prior experiment or the like. Can do.
  • the combination of various combustion parameters that can achieve the target center-of-gravity position (first crank angle) thus determined can also be determined in advance, for example, by a prior experiment.
  • the combination of the combustion parameter corresponding to the target center of gravity position (first crank angle) and the target center of gravity position (first crank angle) thus determined is, for example, a data storage provided in an engine ECU (electronic control unit) described later. It can be stored in a means (for example, a ROM), read out according to the actual operating state of the engine, and used for the control to make the heat generation rate gravity center position coincide with the target gravity center position (first crank angle).
  • the heat generation rate gravity center position can be defined by various methods as described below.
  • ⁇ Definition 1 As shown in FIG. 1 (A), the heat generation rate gravity center position Gc indicates that “the crank angle in one combustion stroke is set on the horizontal axis (one axis) and the heat generation rate (heat per unit crank angle is A region surrounded by the waveform of the heat release rate drawn on the coordinate system (graph) in which the amount of generation) is set to the vertical axis (the other axis orthogonal to the one axis) and the horizontal axis (the one axis) Is the crank angle corresponding to the geometric center of gravity G ( ⁇ 3 in FIG. 1A).
  • the heat generation rate center of gravity position Gc is “the crank angle in one combustion stroke is set on the horizontal axis (one axis) and the heat generation rate (the amount of heat generated per unit crank angle) is set on the vertical axis (the one axis).
  • the specific crank angle is such that the areas of the two regions divided by the crank angle are equal.
  • the heat release rate gravity center position Gc is a crank angle Gc that satisfies the following expression (1).
  • CAs is a crank angle at which fuel combustion starts
  • CAe is a crank angle at which the combustion ends
  • is an arbitrary crank angle
  • dQ ( ⁇ ) is heat generation at the crank angle ⁇ . Rate. That is, the heat generation rate gravity center position Gc is a specific crank angle from the start of combustion to the end of combustion in one combustion stroke, and is expressed as “any arbitrary first crank angle from the start of combustion to a specific crank angle and a specific crank angle”.
  • the product of “the magnitude of the difference between an arbitrary second crank angle between the angle and the end of combustion and the specific crank angle” and the “heat generation rate at the arbitrary second crank angle” is calculated from the specific crank angle to the end of combustion.
  • the specific crank angle is equal to the value obtained by integrating (integrating) the crank angle.
  • the heat release rate gravity center position Gc is a specific crank angle from the start of combustion to the end of combustion for one combustion stroke, and is obtained by subtracting the specific crank angle from an arbitrary crank angle.
  • a value obtained by integrating (integrating) the crank angle from the start of combustion to the end of combustion of the value corresponding to the product of the obtained value and the heat generation rate at the arbitrary crank angle is “0”. It is a specific crank angle.
  • the heat release rate gravity center position Gc is obtained by subtracting the combustion start crank angle (CAs) from an arbitrary crank angle in one combustion stroke, and at the arbitrary crank angle. It is defined as the value obtained by dividing the integral value of the product of the heat release rate and the area of the region defined by the waveform of the heat release rate with respect to the crank angle plus the combustion start crank angle (CAs).
  • the heat generation rate gravity center position Gc defined in various ways as described above is, for example, the crank angle ⁇ 3 in the example shown in FIG.
  • the heat release rate gravity center position Gc is The crank angle ⁇ 3 ′ is obtained by moving toward the advance side by the angle ⁇ g.
  • the heat generation rate gravity center position is an index value that more accurately reflects the combustion state as compared with the combustion gravity center angle that is an index value of the conventional combustion state.
  • the actual heat generation rate gravity center position can be estimated based on the in-cylinder pressure detected by a detecting means for detecting the in-cylinder pressure, such as a combustion pressure sensor (CPS: Combustion Pressure Sensor).
  • CPS Combustion Pressure Sensor
  • the inventor measured the “relation between the heat generation rate gravity center position and the fuel consumption deterioration rate” for various combinations of “engine load (required torque) and engine speed”.
  • the result is shown in FIG. Curves Gc1 to Gc3 in FIG. 2 are measurement results in the case of low rotation speed and low load, medium rotation speed and medium load, and high rotation speed and high load, respectively.
  • the heat release rate gravity center position at which the fuel consumption deterioration rate is minimized is a specific (constant) crank angle ⁇ a (in FIG. 2). In the example, it was 7 ° after compression top dead center).
  • the fuel consumption deterioration rate is the minimum value even if the engine load and / or the engine rotation speed change. It turned out to be a substantially constant value close to.
  • the heat generation rate center of gravity position is an index value indicating a good combustion state, and therefore the heat generation rate center of gravity position is set to a predetermined constant value (for example, regardless of the engine load and / or engine rotational speed). Further, the inventors have found that the combustion state of the engine can be maintained in a specific state and the fuel efficiency can be improved by maintaining the crank angle ⁇ a in the vicinity of the crank angle ⁇ a. Therefore, the inventor is examining an engine control device that maintains the heat generation rate gravity center position at a constant crank angle (first crank angle) regardless of the engine load and / or engine speed.
  • the combustion state of the fuel (air mixture) in the engine changes in accordance with many combustion parameters such as the fuel injection timing and the supercharging pressure. Therefore, the heat release rate gravity center position described above also changes in accordance with combustion parameters such as fuel injection timing, fuel injection pressure, amount of fuel injected by pilot injection, and supercharging pressure.
  • combustion parameters such as fuel injection timing, fuel injection pressure, amount of fuel injected by pilot injection, and supercharging pressure can be used as parameters for controlling the heat release rate gravity center position.
  • the combustion parameter one or more of the values described below can be adopted.
  • Timing of main injection Fuel injection pressure that is pressure when the fuel injection valve injects fuel (3) Injection amount of pilot injection that is fuel injection performed on the advance side of main injection ( 4) Number of pilot injections (5) Timing of pilot injection (6) Fuel injection amount of pilot injection (7) Injection amount of after injection which is fuel injection performed on the retard side from the main injection (8) Supercharging (9) Intercooler cooling efficiency (cooling capacity) (10) EGR rate (or amount of EGR gas) that is the ratio of EGR gas to intake air (11) Ratio of the amount of high pressure EGR gas recirculated by the high pressure EGR device to the amount of low pressure EGR gas recirculated by the low pressure EGR device (high / low pressure EGR rate) (12) EGR cooler cooling efficiency (cooling capacity) (13) The intensity of the swirl flow in the cylinder (for example, the opening of the swirl control valve)
  • the intake air temperature of the engine is one of the combustion parameters.
  • the amount of refrigerant flowing into these coolers can be reduced or mounted on these coolers.
  • the ratio of the amount of gas passing through the bypass passage to the amount of gas passing through the cooler can be increased by increasing the opening of a bypass valve that adjusts the flow rate of gas passing through the bypass passage.
  • specific means for increasing the cooling efficiency of these coolers include, for example, increasing the amount of refrigerant flowing into these coolers, or being installed in these coolers. It is possible to reduce the ratio of the amount of gas passing through the bypass passage to the amount of gas passing through the cooler by reducing the opening of a bypass valve that adjusts the flow rate of the gas passing through the bypass passage.
  • the EGR rate is a low-pressure EGR that recirculates exhaust gas downstream of the turbocharger turbine provided in the engine and disposed in the exhaust passage of the engine to the intake passage of the engine.
  • it refers to the ratio of the amount of low-pressure EGR gas recirculated by the low-pressure EGR device to the amount of intake air.
  • the EGR rate is the high-pressure EGR gas that is recirculated by the high-pressure EGR device. The ratio of the amount of air to the amount of intake air.
  • the EGR rate indicates the ratio of the total amount of the low pressure EGR gas and the high pressure EGR gas recirculated by these EGR devices to the amount of intake air.
  • the engine control device may perform the following operation.
  • (1a) The engine control device moves the timing of main injection to the advance side.
  • (2a) The engine control device increases the fuel injection pressure.
  • (3a) The engine control device increases the injection amount of pilot injection.
  • (4a) The engine control device sets the number of pilot injections so that the heat generation rate gravity center position (hereinafter referred to as “pilot heat generation rate gravity center position”) of pilot injection determined only for pilot injection moves to the advance side. change.
  • the engine control device changes the pilot injection timing so that the pilot heat generation rate gravity center position moves to the advance side.
  • (6a) The engine control device changes the fuel injection amount of the pilot injection so that the pilot heat generation rate gravity center position moves to the advance side.
  • the engine control device decreases the injection amount of after injection or does not perform after injection.
  • the engine control device increases the supercharging pressure.
  • the engine control device decreases the cooling efficiency of the intercooler (increases the intake air temperature).
  • the engine control device decreases the EGR rate (decreases the EGR amount).
  • the engine control device reduces the high and low pressure EGR rate.
  • the engine control device decreases the cooling efficiency of the EGR cooler (increases the intake air temperature).
  • the engine control device increases the strength of the swirl flow.
  • the engine control device may perform the following operation.
  • (1b) The engine control device moves the timing of the main injection to the retard side.
  • (2b) The engine control device decreases the fuel injection pressure.
  • (3b) The engine control device decreases the injection amount of the pilot injection.
  • (4b) The engine control device changes the number of pilot injections so that the pilot heat generation rate gravity center position moves to the retard side.
  • (5b) The engine control device changes the timing of pilot injection so that the pilot heat generation rate gravity center position moves to the retard side.
  • (6b) The engine control device changes the fuel injection amount of the pilot injection so that the pilot heat generation rate gravity center position moves to the retard side.
  • (7b) The engine control device increases the injection amount of after injection.
  • the engine control device decreases the supercharging pressure.
  • the engine control device increases the cooling efficiency of the intercooler (lowers the intake air temperature).
  • the engine control device increases the EGR rate (increases the EGR amount).
  • the engine control device increases the high and low pressure EGR rate.
  • the engine control device increases the cooling efficiency of the EGR cooler (lowers the intake air temperature).
  • the engine control device reduces the strength of the swirl flow.
  • injection system parameters parameters related to fuel injection such as fuel injection timing and fuel injection pressure (injection system parameters) have a good response at the time of correction as described above, and the heat release rate gravity center position associated with the correction. It is easy to calculate the deviation (corrected deviation). From this point of view, it is desirable to use an injection system parameter as a parameter for controlling the heat release rate gravity center position.
  • the heat generation rate gravity center position is maintained at a predetermined constant value.
  • combustion parameters include supercharging pressure by a supercharger.
  • combustion parameters include parameters relating to fuel injection (injection system parameters) such as fuel injection timing and fuel injection pressure.
  • the combustion control unit In the case where the heat release rate gravity center position is on the retard side with respect to the first crank angle, When the rotational speed of the engine is less than the first rotational speed and the speed of the vehicle in which the engine is mounted is less than the first speed, the combustion control unit increases the supercharging pressure of the supercharger. And When the rotational speed of the engine is equal to or higher than the first rotational speed or the speed of the vehicle is equal to or higher than the first speed, the combustion control unit determines whether the fuel injection pressure is increased or the fuel injection timing is advanced. Do one or both.
  • the rotational speed of the engine (engine rotational speed) will be described later, for example, based on signals from a crank angle sensor and a cam position sensor that output a signal corresponding to the rotational position (that is, crank angle) of the crankshaft. It can be acquired by an engine ECU (electronic control unit). Further, the speed of the vehicle on which the engine is mounted (travel speed, vehicle speed) can be detected by a vehicle speed sensor.
  • the combination of the first rotation speed and the first speed is, for example, for the user when the heat generation rate gravity center position is advanced by either one or both of the increase of the fuel injection pressure and the advance angle of the fuel injection timing. It can be defined as the combination of the minimum value of the engine speed and the vehicle speed that does not substantially cause an increase in noise and vibration that cause discomfort. In other words, when the engine speed is less than the first speed and the vehicle speed is less than the first speed, heat is generated by either or both of the increase in fuel injection pressure and the advance angle of fuel injection timing. Advancement of the center of gravity position is undesirable because noise and vibration that cause discomfort to the user are substantially increased.
  • the combination of the first rotational speed and the first speed is obtained in advance by, for example, preliminarily obtaining noise and vibration generated by the operation of the engine and the vehicle in various combinations of the engine rotational speed and the vehicle speed by an experiment or the like. Can be specified by. Further, in specifying the combination of the first rotational speed and the first speed, for example, wind noise, road noise, etc. may be taken into consideration in addition to noise and vibration generated by the operation of the engine and the vehicle. .
  • the engine to which the engine control apparatus according to this embodiment is applied needs to have a mechanism capable of adjusting the supercharging pressure by the supercharger.
  • a mechanism capable of adjusting the supercharging pressure by the supercharger include a nozzle vane, a bypass valve (exhaust pressure adjusting waste gate valve), and an exhaust throttle valve.
  • the engine to which the engine control apparatus according to this embodiment is applied needs to have a mechanism capable of adjusting the fuel injection pressure and / or the fuel injection timing.
  • the engine includes a fuel supply system including a fuel pressurization pump (supply pump), a fuel delivery pipe, a common rail (accumulation chamber), and a fuel injection valve (injector), for example, an engine ECU (electronic control unit) to be described later
  • the fuel pressurizing pump can be controlled to adjust the fuel injection pressure, or the valve opening operation of the fuel injection valve (injector) can be controlled to adjust the fuel injection timing.
  • the heat generation rate gravity center is controlled by the supercharging pressure, which is a combustion parameter with less concern about the increase in vibration.
  • the heat generation rate depends on the injection system parameter, which is a combustion parameter that has a good response at the time of correction and is easy to calculate the correction deviation.
  • the center of gravity is controlled.
  • the user uses the parameters used for controlling the heat generation rate gravity center position according to the operating conditions of the engine and the vehicle on which the engine is mounted. While suppressing an increase in noise and vibration that cause discomfort to the engine, the heat generation rate gravity center position can be maintained at a predetermined constant value regardless of the engine load and / or the engine rotational speed, thereby improving the fuel consumption.
  • the combustion control unit executes one or both of the increase in the fuel injection pressure and the advance angle of the fuel injection timing. That is, in the engine control apparatus according to the present embodiment, when the heat generation rate gravity center position is on the retard side with respect to the first crank angle, and the engine speed is equal to or higher than the first speed, the fuel injection pressure Either the increase in the angle or the advance of the fuel injection timing may be executed, or both may be executed. Similarly, when the speed of the vehicle on which the engine is mounted is equal to or higher than the first speed, either increase of the fuel injection pressure or advance of the fuel injection timing may be executed, or both may be executed. Good.
  • the combustion control unit executes one or both of the increase in the fuel injection pressure and the advance angle of the fuel injection timing when the heat generation rate gravity center position is on the retard side with respect to the first crank angle.
  • the engine rotational speed is equal to or higher than the first rotational speed and the speed (vehicle speed) of the vehicle on which the engine is mounted is equal to or higher than the first speed
  • the engine rotational speed is equal to the first rotational speed.
  • Three cases are assumed, that is, the vehicle speed is less than the first speed, and (c) the engine rotation speed is less than the first rotation speed and the vehicle speed is greater than or equal to the first speed.
  • the vehicle speed is not less than the first speed, but the engine speed is less than the first speed.
  • the noise and vibration generated from the engine are small, for example, when wind noise, road noise, etc. are small, it is assumed that a change in noise and vibration accompanying fuel combustion is easily detected by the user. The Therefore, when controlling the heat generation rate center of gravity using the injection system parameters when the speed of the vehicle on which the engine is mounted is high and the rotational speed of the engine is low, select the parameter that has the least influence on the combustion noise. It is desirable to do.
  • the engine speed is equal to or higher than the first speed or the vehicle on which the engine is mounted.
  • the fuel injection pressure and the fuel injection timing are included in the injection system parameters used for advancing the center of gravity of the heat release rate when the speed is equal to or higher than the first speed. Among these, the influence on the combustion noise is greater in the fuel injection pressure than in the fuel injection timing.
  • the rotational speed of the engine is equal to or higher than the first rotational speed.
  • noise and vibration generated from the engine are large, changes in noise and vibration due to fuel combustion tend not to be detected by the user.
  • a fuel injection pressure having a relatively large influence on combustion noise is selected when controlling the heat generation rate center of gravity, noise and vibration that cause discomfort to the user are substantially increased. The fear is low. Therefore, when controlling the heat generation rate gravity center using the injection system parameters when the engine speed is high, the heat generation rate gravity center is changed by changing the fuel injection pressure that has a relatively large effect on the combustion noise. You may control.
  • the second embodiment of the present invention is: An engine control apparatus according to the first embodiment of the present invention, In the case where the heat release rate gravity center position is on the retard side with respect to the first crank angle, Even if the speed of the vehicle is equal to or higher than the first speed, when the rotational speed of the engine is less than the first rotational speed, the combustion control unit executes only the advance of the fuel injection timing, When the rotational speed of the engine is equal to or higher than the first rotational speed, the combustion control unit increases the fuel injection pressure; It is an engine control device.
  • the engine rotation speed is equal to or higher than the first rotation speed, or the engine
  • the speed (vehicle speed) of the vehicle on which the vehicle is mounted is equal to or higher than the first speed
  • either or both of the increase of the fuel injection pressure and the advance angle of the fuel injection timing are executed.
  • the combustion control unit uses the fuel injection timing and the fuel injection pressure as parameters used for controlling the heat generation rate center of gravity as the engine rotation speed and vehicle speed. Use them carefully according to the situation.
  • the combustion control unit executes the advance of the fuel injection timing.
  • the combustion control unit executes the advance of the fuel injection timing.
  • the center of gravity of heat generation is controlled by changing the fuel injection timing that has a relatively small effect on the fuel injection. Accordingly, it is possible to improve the fuel efficiency by maintaining the heat generation rate gravity center position at a predetermined constant value while more effectively suppressing the increase in noise and vibration that cause discomfort to the user.
  • the engine control apparatus when the heat generation rate gravity center position is on the retard side with respect to the first crank angle, and when the rotational speed of the engine is equal to or higher than the first rotational speed.
  • the combustion control unit increases the fuel injection pressure.
  • the engine rotational speed is high, noise and vibration generated from the engine are large, and thus changes in noise and vibration due to fuel combustion tend not to be detected by the user. Therefore, in the engine control apparatus according to this embodiment, in controlling the heat generation rate gravity center using the injection system parameters in such a situation, first, the fuel injection pressure that has a relatively large effect on the combustion noise is changed.
  • the center of gravity is controlled. Thereby, it is possible to improve fuel efficiency by maintaining the heat generation rate center of gravity position at a predetermined constant value while suppressing an increase in noise and vibration that cause discomfort to the user.
  • the control of the heat generation rate center of gravity by changing the fuel injection timing may be additionally performed. That is, as described above, the combustion control unit increases the fuel injection pressure when the rotational speed of the engine is equal to or higher than the first rotational speed when the heat generation rate gravity center position is on the retard side with respect to the first crank angle. In this case, when the advanced heat generation rate gravity center position is still behind the first crank angle, the heat generation rate gravity center position may be further advanced by the advance angle of the fuel injection timing.
  • the engine rotational speed is equal to or higher than the first rotational speed
  • the speed (vehicle speed) of the vehicle on which the engine is mounted is equal to or higher than the first speed.
  • noise and vibration generated from the engine are large, for example, wind noise and road noise are also large. That is, in such a case, the user is more likely to detect changes in noise and vibration associated with fuel combustion. Therefore, when the speed of the vehicle on which the engine is mounted is high and the rotational speed of the engine is high, either the fuel injection pressure or the fuel injection timing is selected as an injection system parameter for controlling the heat generation rate center of gravity. Alternatively, both the fuel injection pressure and the fuel injection timing may be selected.
  • the combustion control unit uses the fuel injection timing and the fuel injection pressure as parameters used for controlling the heat generation rate center of gravity, for example, the engine speed and the vehicle speed. Depending on the situation, etc., it may be used more finely.
  • the increase in the fuel injection pressure and / or the decrease in the supercharging pressure accompanying the advance of the fuel injection timing is compensated. It is important to perform control so that the torque decrease due to the increase in pump loss occurring at this time does not exceed the torque increase associated with the advance of the heat generation rate center of gravity.
  • the third embodiment of the present invention An engine control apparatus according to any one of the first or second embodiments of the present invention, When the heat generation rate gravity center position is on the retard side with respect to the first crank angle, the rotational speed of the engine is equal to or higher than the first rotational speed, or the speed of the vehicle is equal to or higher than the first speed.
  • the absolute value of the increase range of the torque is the absolute value of the decrease range of the torque due to the increase in the pump loss of the engine accompanying the increase in the fuel injection pressure and / or the decrease in the supercharging pressure due to the advance of the fuel injection timing.
  • the combustion control unit does not execute either the increase of the fuel injection pressure or the advance angle of the fuel injection timing. It is an engine control device.
  • the combustion control unit executes either one or both of the increase in the fuel injection pressure and the advance angle of the fuel injection timing, thereby Control is performed so that the incidence centroid position becomes equal to the first crank angle.
  • the heat generation rate gravity center position is advanced by increasing the fuel injection pressure and / or the advance angle of the fuel injection timing, the increase of the fuel injection pressure and / or the advance angle of the fuel injection timing is caused.
  • Exhaust loss may be reduced, leading to a decrease in supercharging pressure.
  • the supercharging pressure is compensated by reducing the opening degree of the nozzle vane and / or the bypass valve provided in the turbine of the variable displacement supercharger, the pump loss is deteriorated (increased). There is a possibility that both acceleration performances are deteriorated.
  • the rotation speed of the engine is the first rotation. Even when the speed is greater than or equal to the first speed, the accelerator opening of the engine is greater than the first opening and the fuel injection pressure is increased and / or the fuel is injected.
  • the absolute value of the increase in torque resulting from the position of the heat generation rate center of gravity approaching the first crank angle due to the advance of the timing is the boost pressure due to the increase in the fuel injection pressure and / or the advance of the fuel injection timing.
  • the combustion control unit increases the fuel injection pressure and the fuel injection timing. What is the advance of It does not perform as well.
  • the increase in the fuel loss caused by the increase in the fuel injection pressure and / or the decrease in the supercharging pressure accompanying the advance of the fuel injection timing is caused. If it is determined that the torque decrease width is larger than the torque increase width associated with the advancement of the heat release rate center of gravity, neither increase in fuel injection pressure nor advance in fuel injection timing is executed. As a result, fuel efficiency can be improved while ensuring acceleration performance.
  • the accelerator opening of the engine can be detected, for example, based on a signal from a throttle valve opening sensor that detects the throttle valve opening. Further, the first opening can be set to the minimum value of the accelerator opening assumed in the situation where acceleration of the vehicle is required, for example.
  • the decrease in the torque accompanying the increase in the fuel injection pressure and / or the advance of the fuel injection timing can be calculated as follows, for example.
  • the amount of decrease in supercharging pressure ( ⁇ Pim) accompanying the increase in fuel injection pressure and / or the advance of fuel injection timing is calculated.
  • the amount of reduction in supercharging efficiency that occurs when the thus calculated ⁇ Pim is compensated, for example, by reducing the opening of the nozzle vane and / or bypass valve provided in the turbine of the variable displacement supercharger, for example, , Based on the supercharging pressure, turbine inlet pressure, nozzle vane and / or bypass valve opening, intake air amount, and the like. Then, it is possible to calculate the torque decrease width based on the supercharging efficiency thus calculated.
  • the increase in torque accompanying the advancement of the heat generation rate center of gravity position for example, at a new heat generation rate center of gravity position that is achieved as a result of an increase in fuel injection pressure and / or advancement of fuel injection timing. It can be calculated based on the values of various combustion parameters and the operating conditions of the engine and the vehicle on which the engine is mounted (for example, the engine speed, vehicle speed, etc.).
  • the combustion control unit executes any one or more of the advance angle of the fuel injection timing and controls so that the heat generation rate gravity center position becomes equal to the first crank angle. That is, the first crank angle can be set as the upper limit value of the allowable heat generation rate gravity center position.
  • the target heat generation rate centroid position (target centroid position) is defined as an allowable range having an upper limit value and a lower limit value instead of a specific one point, and the actual heat generation rate centroid position falls within the allowable range.
  • the combustion control unit may set the combustion parameter.
  • the combustion control unit change any one or more settings of the various combustion parameters so that the heat generation rate gravity center position is less than or equal to the first crank angle. Further, when the actual heat generation center of gravity is within an allowable range between the upper limit value and the lower limit value, a desired control result such as minimization of fuel consumption has been achieved. There is no need to change the position.
  • the combustion control unit changes any one or more settings of various combustion parameters so that the heat generation rate gravity center position becomes a crank angle equal to or greater than the lower limit value.
  • the fourth embodiment of the present invention is An engine control apparatus according to any one of the first to third embodiments of the present invention,
  • the combustion control unit reduces the fuel injection pressure and the fuel injection. Perform one or both of the timing delays,
  • the combustion control unit is configured to provide a boost pressure, a fuel injection pressure, and a fuel injection of the turbocharger. Do not change any of the times, It is an engine control device.
  • the first crank angle can be set as the upper limit value of the allowable heat generation rate gravity center position.
  • the second crank angle can be set as the lower limit value of the allowable heat release rate gravity center position. That is, when the heat generation rate gravity center position is equal to or less than the first crank angle and equal to or greater than the second crank angle (that is, when the heat generation rate gravity center position is within an allowable range), for example, a desired fuel consumption can be minimized. Control result is achieved. Therefore, in the engine control apparatus according to the present embodiment, when the actual heat generation center of gravity position is within the allowable range, the combustion control unit performs any of the supercharging pressure of the supercharger, the fuel injection pressure, and the fuel injection timing. Also do not change.
  • the heat generation gravity center position is not changed, and a state in which a desired control result is achieved is maintained.
  • a specific one point value is set as the target heat generation rate gravity center position (target gravity center position)
  • target gravity center position there is a high possibility that hunting of the heat generation gravity center position occurs at the upper limit of the specific one point value.
  • the exhaust loss may be reduced and the boost pressure may be lowered.
  • the supercharging pressure is compensated by reducing the opening degree of the nozzle vane and / or the bypass valve provided in the turbine of the variable displacement supercharger, the pump loss is deteriorated (increased).
  • the combustion control unit is Delay the center of gravity of heat release rate.
  • the combustion control unit executes one or both of a decrease in the fuel injection pressure and a delay in the fuel injection timing.
  • the injection system parameters such as the fuel injection timing and the fuel injection pressure have a good response at the time of correction, and the correction deviation can be easily calculated. Therefore, it is desirable to use the injection system parameter as a parameter for controlling the heat generation rate center of gravity position from the viewpoint of rapidly retarding the heat generation rate center of gravity position that is excessively advanced and within the allowable range.
  • the heat generation rate gravity center position is quickly retarded to fall within an allowable range, for example, minimization of fuel consumption, etc. A desired control result can be achieved.
  • the heat generation rate gravity center position can be defined by various methods. Specifically, the heat generation rate gravity center position can be defined by any one of the definitions 1, 2, 3, 3 ', 4, and 5 described above. As a matter of course, an engine control device that controls the heat generation rate center of gravity based on the heat generation rate center of gravity defined by these various definitions is also included in the embodiments of the present invention. Accordingly, various embodiments of the present invention using the heat release rate gravity center position defined by the above-described definitions 1, 2, 3, 3 ', 4 and 5 are listed below. However, since each of the definitions of the heat generation rate gravity center position has already been described in detail, the description thereof is omitted here.
  • the fifth embodiment of the present invention is: An engine control apparatus according to any one of the first to fourth embodiments of the present invention,
  • the heat generation rate center of gravity position is a waveform of the heat generation rate drawn on a graph in which the crank angle in one combustion stroke is set on one axis and the heat generation rate is set on the other axis orthogonal to the one axis;
  • the sixth embodiment of the present invention provides: An engine control apparatus according to any one of the first to fourth embodiments of the present invention,
  • the heat generation rate center of gravity position is a waveform of the heat generation rate drawn on a graph in which the crank angle in one combustion stroke is set on one axis and the heat generation rate is set on the other axis orthogonal to the one axis;
  • the specific crank angle is such that when the region surrounded by the one shaft is divided by the specific crank angle, the areas of the two regions divided by the specific crank angle are equal. It is an engine control device.
  • the seventh embodiment of the present invention provides An engine control apparatus according to any one of the first to fourth embodiments of the present invention,
  • the heat release rate center of gravity position is a specific crank angle from the start of combustion to the end of combustion in one combustion stroke, and “an arbitrary first crank angle from the start of combustion to a specific crank angle and a specific crank angle,
  • the product of the magnitude of the difference between the arbitrary second crank angle and the specific crank angle between "and the" heat generation rate at the arbitrary second crank angle is integrated over the crank angle from the specific crank angle to the end of combustion. Is a specific crank angle that is equal to the value obtained by It is an engine control device.
  • the eighth embodiment of the present invention provides: An engine control apparatus according to any one of the first to fourth embodiments of the present invention,
  • the heat release rate gravity center position is a specific crank angle from the start of combustion to the end of combustion for one combustion stroke, and is obtained by subtracting the specific crank angle from an arbitrary crank angle, and at the arbitrary crank angle.
  • a specific crank angle such that a value obtained by integrating a value corresponding to the product of the heat generation rate and the crank angle from the start of combustion to the end of combustion is “0”. It is an engine control device.
  • the ninth embodiment of the present invention provides: An engine control apparatus according to any one of the first to fourth embodiments of the present invention, An integral value of the product of the value obtained by subtracting the combustion start crank angle from an arbitrary crank angle and the heat generation rate at the arbitrary crank angle in a single combustion stroke is calculated as the heat generation rate gravity center position. It is a value obtained by adding the combustion start crank angle to a value obtained by dividing by the area of the region defined by the waveform of the heat generation rate with respect to the angle. It is an engine control device.
  • the tenth embodiment of the present invention provides: An engine control apparatus according to any one of the first to fourth embodiments of the present invention,
  • the heat release rate gravity center position is a crank angle obtained by calculation according to the following equation (3):
  • Gc represents the heat release rate gravity center position
  • CAs is a combustion start crank angle that is a crank angle at which fuel combustion starts
  • CAe is a combustion end crank angle that is a crank angle at which the combustion ends
  • dQ ( ⁇ ) is a heat generation rate at the crank angle ⁇ . It is an engine control device.
  • the user uses the parameters used for controlling the heat generation rate gravity center position according to the operating conditions of the engine and the vehicle on which the engine is mounted, thereby discomforting the user. While suppressing an increase in noise and vibrations that give rise to fuel, it is possible to improve fuel efficiency by maintaining the center of gravity of the heat release rate at a predetermined constant value regardless of the engine load and / or engine speed.
  • first device an engine control device (hereinafter also referred to as “first device”) according to a first embodiment of the present invention will be described with reference to the drawings.
  • the first device is applied to the internal combustion engine (engine) 10 shown in FIG.
  • the engine 10 is a multi-cylinder (in this example, in-line four cylinders), four-cycle, piston reciprocating type, and diesel engine.
  • the engine 10 includes an engine body 20, a fuel supply system 30, an intake system 40, an exhaust system 50, a high pressure EGR system 60, and a low pressure EGR system 90.
  • the engine main body 20 includes a main body 21 including a cylinder block, a cylinder head, a crankcase, and the like.
  • cylinders (combustion chambers) 22 are formed in the main body 21.
  • a fuel injection valve (injector) 23 is disposed above each cylinder 22. The fuel injection valve 23 opens in response to an instruction from an engine ECU (electronic control unit) 70 described later, and directly injects fuel into the cylinder.
  • the fuel supply system 30 includes a fuel pressurizing pump (supply pump) 31, a fuel delivery pipe 32, and a common rail (pressure accumulating chamber) 33.
  • the discharge port of the fuel pressurization pump 31 is connected to the fuel delivery pipe 32.
  • the fuel delivery pipe 32 is connected to the common rail 33.
  • the common rail 33 is connected to the fuel injection valve 23.
  • the fuel pressurizing pump 31 pumps up the fuel stored in a fuel tank (not shown) and pressurizes the fuel, and supplies the pressurized high-pressure fuel to the common rail 33 through the fuel delivery pipe 32.
  • the fuel pressurization pump 31 is operated by a drive shaft that is linked to the crankshaft of the engine 10.
  • the fuel pressurization pump 31 can adjust the pressure of the fuel in the common rail 33 (that is, the fuel injection pressure and the common rail pressure) in response to an instruction from the electronic control unit 70.
  • the intake system 40 includes an intake manifold 41, an intake pipe 42, an air cleaner 43, a compressor 44a of a supercharger 44, an intercooler 45, a throttle valve 46, and a throttle valve actuator 47.
  • the intake manifold 41 includes a branch portion connected to each cylinder and a collective portion in which the branch portions are gathered.
  • the intake pipe 42 is connected to the collecting portion of the intake manifold 41.
  • the intake manifold 41 and the intake pipe 42 constitute an intake passage.
  • an air cleaner 43, a compressor 44 a of the supercharger 44, an intercooler 45, and a throttle valve 46 are sequentially arranged from the upstream side to the downstream side of the intake air flow.
  • the throttle valve actuator 47 changes the opening degree of the throttle valve 46 in accordance with an instruction from the electronic control unit 70.
  • the exhaust system 50 includes an exhaust manifold 51, an exhaust pipe 52, a turbine 44b of the supercharger 44, a diesel oxidation catalyst (DOC) 53, a diesel particulate filter (DPF) 54, and an exhaust throttle valve 55.
  • DOC diesel oxidation catalyst
  • DPF diesel particulate filter
  • the exhaust manifold 51 includes a branch portion connected to each cylinder and a collective portion in which the branch portions are gathered.
  • the exhaust pipe 52 is connected to a collecting portion of the exhaust manifold 51.
  • the exhaust manifold 51 and the exhaust pipe 52 constitute an exhaust passage.
  • a turbine 44b, a DOC 53, a DPF 54, and an exhaust throttle valve 55 of the supercharger 44 are arranged from the upstream side to the downstream side of the exhaust gas flow.
  • the supercharger 44 is a known variable capacity supercharger, and a plurality of nozzle vanes (variable nozzles) (not shown) are provided in the turbine 44b. Further, the turbine 44b includes a “bypass passage of the turbine 44b and a bypass valve provided in the bypass passage” (not shown). The opening degree of the nozzle vane and the bypass valve is changed according to an instruction from the electronic control unit 70, and as a result, the supercharging pressure is changed (controlled). That is, in this specification, “controlling the supercharger 44” means changing the supercharging pressure by changing the angle of the nozzle vane and / or the opening of the bypass valve.
  • the DOC 53 oxidizes unburned gas (HC, CO) in the exhaust gas. That is, by DOC53, HC is oxidized to water and CO 2, CO is oxidized to CO 2. Further, NO of NOx is oxidized to NO 2 by the DOC 53.
  • the DPF 54 collects PM (particulate matter) containing soot made of carbon and organic matter attached thereto.
  • PM partate matter
  • the collected carbon is oxidized by NO 2 flowing into the DPF 54 and changed into CO 2 and NO.
  • the opening degree of the exhaust throttle valve 55 is changed in accordance with an instruction from the electronic control unit 70. As a result, the exhaust pressure is changed (adjusted), so that, for example, the supercharging pressure by the supercharger 44 is changed (controlled). ).
  • the high pressure EGR system 60 includes a high pressure exhaust gas recirculation pipe 61, a high pressure EGR control valve 62, and a high pressure EGR cooler 63.
  • the high-pressure exhaust gas recirculation pipe 61 communicates the exhaust passage (exhaust manifold 51) at a position upstream of the turbine 44b and the intake passage (intake manifold 41) at a position downstream of the throttle valve 46. Yes.
  • the high pressure exhaust gas recirculation pipe 61 constitutes a high pressure EGR gas passage.
  • the high pressure EGR control valve 62 is disposed in the high pressure exhaust gas recirculation pipe 61.
  • the high pressure EGR control valve 62 changes the passage cross-sectional area of the high pressure EGR gas passage in response to an instruction from the electronic control unit 70, thereby recirculating the exhaust gas amount (high pressure EGR gas amount) from the exhaust passage to the intake passage. ) Can be changed.
  • the low pressure EGR system 90 includes a low pressure exhaust gas recirculation pipe 91, a low pressure EGR control valve 92, and a low pressure EGR cooler 93.
  • the low-pressure exhaust gas recirculation pipe 91 has an exhaust passage (exhaust pipe 52) downstream of the DPF 54 and an intake passage (intake pipe 42) upstream of the compressor 44a of the supercharger 44. Communicate.
  • the low pressure exhaust gas recirculation pipe 91 constitutes a low pressure EGR gas passage.
  • the low pressure EGR control valve 92 is disposed in the low pressure exhaust gas recirculation pipe 91.
  • the low-pressure EGR control valve 92 changes the cross-sectional area of the low-pressure EGR gas passage in response to an instruction from the electronic control unit 70, thereby recirculating the exhaust gas amount (low-pressure EGR gas amount) from the exhaust passage to the intake passage. ) Can be changed.
  • the electronic control unit 70 is an electronic circuit including a well-known microcomputer, and includes a CPU, a ROM, a RAM, a backup RAM, an interface, and the like.
  • the electronic control unit 70 is connected to sensors described below, and receives (inputs) signals from these sensors. Furthermore, the electronic control unit 70 is configured to send instruction (drive) signals to various actuators in accordance with instructions from the CPU.
  • the electronic control unit 70 includes an air flow meter 71, a throttle valve opening sensor 72, an intake pipe pressure sensor 73, a fuel pressure sensor 74, an in-cylinder pressure sensor 75, a crank angle sensor 76, a high pressure EGR control valve opening sensor 77, and a water temperature sensor 78.
  • the low-pressure EGR control valve opening sensor 79 and the exhaust throttle valve opening sensor 80 are connected.
  • the air flow meter 71 measures the mass flow rate of intake air (fresh air not including EGR gas) passing through the intake passage, and outputs a signal representing the mass flow rate (hereinafter referred to as “intake air amount Ga”). Further, the air flow meter 71 detects the temperature of the intake air and outputs a signal representing the intake air temperature THA.
  • the throttle valve opening sensor 72 detects the throttle valve opening and outputs a signal representing the throttle valve opening TA.
  • the intake pipe pressure sensor 73 outputs a signal representing the gas pressure (intake pipe pressure) Pim in the intake pipe in the intake passage and downstream of the throttle valve 46. It can also be said that the intake pipe pressure Pim is a supercharging pressure.
  • the fuel pressure sensor 74 detects the fuel pressure (fuel pressure, fuel injection pressure, common rail pressure) in the common rail 33 and outputs a signal representing the fuel injection pressure Pcr.
  • the in-cylinder pressure sensor 75 is disposed so as to correspond to each cylinder (combustion chamber).
  • the in-cylinder pressure sensor 75 detects the pressure in the corresponding cylinder (that is, the in-cylinder pressure) and outputs a signal representing the in-cylinder pressure Pcy.
  • the crank angle sensor 76 outputs a signal corresponding to a rotational position (that is, crank angle) of a crankshaft (not shown) of the engine 10.
  • the electronic control unit 70 acquires the crank angle (absolute crank angle) ⁇ of the engine 10 with reference to the compression top dead center of a predetermined cylinder based on signals from the crank angle sensor 76 and a cam position sensor (not shown). . Further, the electronic control unit 70 acquires the engine rotational speed Ne based on the signal from the crank angle sensor 76.
  • the high pressure EGR control valve opening sensor 77 detects the opening of the high pressure EGR control valve 62 and outputs a signal Vegrh indicating the opening.
  • the low pressure EGR control valve opening sensor 79 detects the opening of the low pressure EGR control valve 92 and outputs a signal Vegrl indicating the opening.
  • the water temperature sensor 78 detects the temperature of the cooling water (cooling water temperature) of the engine 10 and outputs a signal representing the cooling water temperature THW.
  • the electronic control unit 70 is connected to an accelerator opening sensor 83, a vehicle speed sensor 84, and a remaining fuel sensor 85.
  • the accelerator opening sensor 83 detects the opening (accelerator pedal operation amount) of an accelerator pedal (not shown), and outputs a signal representing the accelerator pedal opening Accp.
  • the vehicle speed sensor 84 detects the traveling speed of the vehicle on which the engine 10 is mounted, and outputs a signal representing the traveling speed (vehicle speed) Spd.
  • the remaining fuel sensor 85 detects the amount of fuel stored in a fuel tank (not shown) (that is, the remaining fuel amount) and outputs a signal Fr indicating the remaining amount.
  • the heat generation rate centroid position defined by any one of the definitions 1, 2, 3, 3 ′, 4, and 5 described above is a predetermined target heat generation rate centroid position (hereinafter simply referred to as “target Combustion control is performed (that is, combustion parameters are set) so that the center of gravity position is also called.
  • target Combustion control is performed (that is, combustion parameters are set) so that the center of gravity position is also called.
  • the target heat generation rate gravity center position is also referred to as a target heat generation rate gravity center angle or a target crank angle. Note that the center of gravity of the heat release rate has the same crank angle according to any of the definitions 1, 2, 3, 3 ′, 4 and 5 described above if the combustion waveform is the same.
  • combustion parameters are determined in advance and stored in the ROM with respect to the engine operating state (engine load, engine speed, etc.) so that the heat generation rate gravity center position matches the target gravity center position.
  • the first device reads the combustion parameter from the ROM according to the actual operating state of the engine, and matches the heat generation rate gravity center position to the target gravity center position by control using the combustion parameter (that is, feedforward control). Further, the first device estimates the actual heat generation rate gravity center position based on the in-cylinder pressure Pcy detected by the in-cylinder pressure sensor 75, and sets the combustion parameter so that the estimated heat generation rate gravity center position matches the target gravity center position. Feedback control. However, such feedback control is not necessarily essential. Further, the feedforward control may not be executed, and the heat generation rate gravity center position may be made to coincide with the target gravity center position only by feedback control.
  • the combustion parameters such as the fuel injection timing, the fuel injection pressure, the amount of fuel injected by pilot injection, and the supercharging pressure are used as parameters for controlling the heat release rate gravity center position.
  • the combustion rate of the engine is maintained in a specific state by maintaining the heat generation rate center of gravity position at a predetermined constant value (target center of gravity position) regardless of the engine load and / or the engine rotational speed.
  • the combustion parameter for example, one or more of (1) to (13) described above can be adopted.
  • the setting of these combustion parameters when the heat release rate gravity center position Gc is advanced or retarded is also as described above.
  • injection system parameters parameters related to fuel injection such as fuel injection timing and fuel injection pressure (injection system parameters) have a good response at the time of correction as described above, and the heat release rate gravity center position associated with the correction. It is easy to calculate the deviation (corrected deviation). From this point of view, it is desirable to use an injection system parameter as a parameter for controlling the heat release rate gravity center position.
  • the heat generation rate gravity center position is maintained at a predetermined constant value to improve fuel efficiency.
  • combustion parameters that are less anxious to noise and vibration that increase user discomfort and acceleration performance.
  • combustion parameters include supercharging pressure by a supercharger.
  • combustion parameters include parameters relating to fuel injection (injection system parameters) such as fuel injection timing and fuel injection pressure.
  • the combustion control unit increases the supercharging pressure of the supercharger. And when the rotational speed of the engine is equal to or higher than the first rotational speed or the speed of the vehicle is equal to or higher than the first speed, the combustion control unit determines whether the fuel injection pressure is increased or the fuel injection timing is advanced. Do one or both.
  • the heat generation rate center of gravity is controlled by the supercharging pressure, which is a combustion parameter that is less likely to increase noise and vibration. Thereby, while suppressing the increase in the noise and vibration which give an unpleasant feeling to a user, acceleration performance can also be ensured.
  • the heat generation rate depends on the injection system parameter, which is a combustion parameter that has a good response at the time of correction and is easy to calculate the correction deviation.
  • the center of gravity is controlled.
  • the parameter used for controlling the heat generation rate gravity center position is used according to the operating condition of the engine and the vehicle on which the engine is mounted, thereby giving the user unpleasant feeling. While suppressing an increase in noise and vibration, it is possible to improve fuel efficiency by maintaining the heat generation rate gravity center position at a predetermined constant value regardless of the engine load and / or engine speed.
  • the CPU starts processing from step 400 in FIG. 4 and proceeds to step 410 to acquire various operating state parameters from the above-described sensors and the like.
  • the CPU proceeds to step 420 in FIG. 4 to calculate the actual heat generation rate gravity center position Gc based on the heat generation rate that is the amount of heat generated by the combustion of fuel per unit crank angle.
  • the CPU calculates a heat generation rate dQ ( ⁇ ) [J / degATDC] that is a heat generation amount per unit crank angle with respect to the crank angle ⁇ [degATDC] based on the in-cylinder pressure Pcy based on a known method. (See, for example, JP-A-2005-54753, JP-A-2007-285194, etc.).
  • the CPU acquires / estimates the heat generation rate gravity center position Gc based on any of the definitions 1, 2, 3, 3 ′, 4 and 5 described above.
  • the CPU obtains / estimates the heat generation rate gravity center position Gc by applying the heat generation rate dQ ( ⁇ ) to the following equation (3).
  • the heat release rate gravity center position Gc is calculated based on an expression obtained by converting the expression (3) into a digital calculation expression.
  • CAs is a crank angle at which combustion starts
  • CAe is a crank angle at which combustion ends.
  • step 430 the calculated actual heat generation rate gravity center position Gc is larger than a predetermined target heat generation rate gravity center position Gctgt (first crank angle) (Gc is retarded from Gctgt). Or not).
  • step 430 it is determined that the actual heat generation rate center of gravity position Gc is equal to or less than the target heat generation rate center of gravity position Gctgt (first crank angle) (Gc is equal to Gctgt or on the more advanced side than Gctgt).
  • step 430: No the CPU proceeds to step 480, and retards the actual heat generation rate gravity center position Gc by executing one or both of the decrease in the fuel injection pressure and the delay in the fuel injection timing. Let Thereafter, the CPU proceeds to step 490 to end the present routine tentatively. Note that the retarding of the heat release rate gravity center position Gc in step 480 is not an essential requirement.
  • step 430 when it is determined in step 430 that the actual heat generation rate gravity center position Gc is larger than the target heat generation rate gravity center position Gctgt (first crank angle) (Gc is on the retard side with respect to Gctgt) (step 430). 430: Yes), the CPU proceeds to step 440, and determines whether or not the engine rotational speed Ne is less than a predetermined first rotational speed Ne1.
  • step 440 When it is determined in step 440 that the engine rotational speed Ne is equal to or higher than the first rotational speed Ne1 (step 440: No), the CPU proceeds to step 470, which increases either the fuel injection pressure or the fuel injection timing advance. By executing one or both of them, the actual heat generation rate gravity center position Gc is advanced. At this time, the engine rotational speed Ne is high, and noise and / or vibration generated with the operation of the engine is large. Therefore, as described above, even if the heat generation rate gravity center position Gc is controlled using the injection system parameters as described above, it is difficult for the user to detect changes in noise and vibration due to the combustion of the fuel, and the user is uncomfortable. The fear is reduced. Thereafter, the CPU proceeds to step 490 to end the present routine tentatively.
  • step 440 when it is determined in step 440 that the engine rotational speed Ne is less than the first rotational speed Ne1 (step 440: Yes), the CPU proceeds to step 450 and the traveling speed (vehicle speed) of the vehicle on which the engine is mounted. ) It is determined whether or not Spd is less than a predetermined first speed Spd1.
  • step 450 When it is determined in step 450 that the vehicle speed Spd is equal to or higher than the first speed Spd1 (step 450: No), the CPU proceeds to step 470, and either the increase of the fuel injection pressure and the advance angle of the fuel injection timing or Do both. On the other hand, when it is determined in step 450 that the vehicle speed Spd is less than the first speed Spd1 (step 450: Yes), the CPU proceeds to step 460 and increases the supercharging pressure by the supercharger. In this case, both the engine rotational speed Ne and the vehicle speed Spd are low, and noise and vibration generated with the operation of the engine are small.
  • step 460 the actual heat generation rate gravity center position Gc is advanced by increasing the supercharging pressure by the supercharger. As a result, the actual heat generation rate gravity center position Gc is brought closer to the target heat generation rate gravity center position Gctgt (first crank angle) while suppressing the increase in noise and vibration that give the user discomfort and ensuring acceleration performance. Can be controlled. Thereafter, the CPU proceeds to step 490 to end the present routine tentatively.
  • the first device includes a combustion control unit that sets a combustion parameter that is a combustion state parameter of fuel supplied to a cylinder of an engine including a supercharger.
  • a combustion control unit sets a combustion parameter that is a combustion state parameter of fuel supplied to a cylinder of an engine including a supercharger.
  • the engine control device per unit crank angle of heat generated by the combustion of the fuel
  • the combustion control unit sets the combustion parameter so that the heat generation rate gravity center position determined by the heat generation rate as a quantity becomes equal to the first crank angle.
  • the combustion control unit In the case where the heat release rate gravity center position is on the retard side with respect to the first crank angle, When the rotational speed of the engine is less than the first rotational speed and the speed of the vehicle on which the engine is mounted is less than the first speed, an increase in the supercharging pressure of the supercharger is performed, When the rotational speed of the engine is equal to or higher than the first rotational speed or the speed of the vehicle is equal to or higher than the first speed, either or both of an increase in fuel injection pressure and an advance angle of fuel injection timing are executed. To do.
  • the heat generation rate center of gravity is controlled by the supercharging pressure, which is a combustion parameter with little concern about the increase in noise and vibration, it is possible to suppress the increase in noise and vibration that cause discomfort to the user and to ensure acceleration performance. it can.
  • the heat generation rate depends on the injection system parameter, which is a combustion parameter that has a good response at the time of correction and is easy to calculate the correction deviation.
  • the center of gravity is controlled.
  • the parameter used for controlling the heat generation rate gravity center position is used according to the operating condition of the engine and the vehicle on which the engine is mounted, thereby giving the user unpleasant feeling. While suppressing an increase in noise and vibration, it is possible to improve fuel efficiency by maintaining the heat generation rate gravity center position at a predetermined constant value regardless of the engine load and / or engine speed.
  • an engine control apparatus according to a second embodiment of the present invention (hereinafter also referred to as “second apparatus”) will be described.
  • the second device is different from the first device only in that the CPU of the electronic control unit 70 executes the “routine shown in FIG. 5” instead of the “routine shown in FIG. 4”. Therefore, hereinafter, this difference will be mainly described.
  • step 520 (corresponding to step 430 in FIG. 4) for comparing the heat generation rate gravity center position Gc and the target heat generation rate gravity center position (its upper limit value Gc1) is performed before step 520.
  • the in-cylinder maximum pressure (Pmax) is calculated based on the operating conditions of the engine and vehicle at that time, the set values of various combustion parameters, and the like.
  • step 512 it is determined whether or not Pmax calculated in this way is less than the maximum in-cylinder pressure (upper limit pressure) that is an upper limit design value of the in-cylinder pressure of the engine. If Pmax does not fall below the upper limit pressure (Pmax ⁇ upper limit pressure), the CPU proceeds to step 480 and, like the routine shown in FIG.
  • step 490 the in-cylinder pressure can be controlled so as not to exceed the engine design upper limit.
  • the combustion parameters are set so that the heat generation rate gravity center position Gc approaches the target heat generation rate gravity center position Gctgt.
  • the combustion parameter is set so that the position Gc falls within the allowable range of the target heat generation rate gravity center position. More specifically, in the second device that executes the routine shown in FIG. 5, the heat generation rate gravity center position Gc is calculated in step 420 as in the routine shown in FIG. 4. However, in the next step 520, unlike the routine shown in FIG. 4, it is determined whether or not the heat generation rate gravity center position Gc is larger than the upper limit value Gc1 of the allowable range of the target heat generation rate gravity center position.
  • step 520 When it is determined in step 520 that the heat generation rate gravity center position Gc is larger than the upper limit value Gc1 (first crank angle) of the target heat generation rate gravity center position (Gc is on the more retarded side than Gc1) (step 520). : Yes), similarly to the routine shown in FIG. 4, the CPU proceeds to step 440 to determine whether or not the engine rotational speed Ne is less than a predetermined first rotational speed Ne1.
  • step 440 When it is determined in step 440 that the engine rotational speed Ne is less than the first rotational speed Ne1 (step 440: Yes), the CPU proceeds to step 450, and the traveling speed (vehicle speed) Spd of the vehicle on which the engine is mounted. Is less than a predetermined first speed Spd1.
  • step 450 When it is determined in step 450 that the vehicle speed Spd is less than the first speed Spd1 (step 450: Yes), the CPU proceeds to step 460, as in the routine shown in FIG. Increase. Accordingly, even in the second device that executes the routine shown in FIG. 5, the actual heat generation rate gravity center position Gc is set to the target while suppressing the increase in noise and vibration that give the user unpleasantness and ensuring the acceleration performance. It can be controlled to be less than the upper limit Gc1 (first crank angle) of the heat release rate gravity center position. Thereafter, the CPU proceeds to step 490 to end the present routine tentatively.
  • step 440 when it is determined in step 440 that the engine rotational speed Ne is equal to or higher than the first rotational speed Ne1 (step 440: No) and in step 450 where the vehicle speed Spd is determined to be equal to or higher than the first speed Spd1.
  • step 450: No the heat generation rate gravity center Gc is controlled so as to be within the allowable range of the target heat generation rate gravity center position using the injection system parameters as in the routine shown in FIG.
  • the routine shown in FIG. 5 differs from the routine shown in FIG. 4 in that the fuel injection timing and the fuel injection pressure are used more finely in accordance with the engine speed and vehicle speed. This point will be described in detail later.
  • the heat generation rate gravity center position Gc is not more than the upper limit value Gc1 (first crank angle) of the target heat generation rate gravity center position in step 520 (Gc is equal to Gc1 or Gc1).
  • step 520: No unlike the routine shown in FIG. 4, the CPU proceeds to step 522, where the heat generation rate gravity center position Gc is the target heat generation rate gravity center. It is determined whether or not the upper limit value Gc1 of the allowable position range is larger than the lower limit value Gc2 (whether or not the heat generation rate gravity center position Gc is within the allowable range of the target heat generation rate gravity center position). .
  • step 522 When it is determined in step 522 that the heat generation rate gravity center position Gc is within the allowable range of the target heat generation rate gravity center position (step 522: Yes), as described above, for example, minimization of fuel consumption, etc.
  • the desired control result has been achieved. Therefore, in such a case, the second device does not change the setting of the combustion parameter, proceeds to step 490, and once ends this routine. As a result, the heat generation gravity center position Gc is not changed, and a state where a desired control result is achieved is maintained. In addition, the effect of stabilizing the control by reducing the occurrence of hunting at the heat generation gravity center position Gc is also expected.
  • step 522 the heat generation rate centroid position Gc is not within the allowable range of the target heat generation rate centroid position (that is, whether the heat generation rate centroid position Gc is equal to the lower limit value Gc2 of the target heat generation rate centroid position). Or, it is determined that it is on the advance side with respect to Gc2 (step 522: No), it means that the heat generation rate gravity center position is excessively on the advance side.
  • the CPU proceeds to step 480, and in the same manner as the routine shown in FIG. 4, by executing either one or both of the reduction of the fuel injection pressure and the delay of the fuel injection timing, the actual heat generation rate center of gravity is obtained. The position Gc is retarded. Thereafter, the CPU proceeds to step 490 to end the present routine tentatively. Thereby, since the heat release rate gravity center position is excessively advanced, the exhaust loss can be reduced, and the possibility of reducing the supercharging pressure can be reduced.
  • step 440 when it is determined in step 440 that the engine rotational speed Ne is equal to or higher than the first rotational speed Ne1 (step 440: No) and the above-described step 450.
  • the fuel injection timing and the fuel injection pressure are used more finely according to the engine speed and the vehicle speed.
  • the CPU proceeds to step 530 to increase the fuel injection pressure.
  • the heat generation rate gravity center position Gc is advanced.
  • step 490 the CPU proceeds to step 490 to end the present routine tentatively.
  • the CPU proceeds to step 536, and advances the fuel injection timing. Thereafter, the CPU proceeds to step 490 to end the present routine tentatively.
  • the heat generation rate gravity center position Gc is on the retard side of the upper limit value Gc1 (first crank angle) of the target heat generation rate gravity center position.
  • step 520: Yes even if the speed Spd of the vehicle on which the engine is mounted is equal to or higher than the first speed Spd1, the engine speed Ne is less than the first speed Ne1 (step 440: Yes and In step 450: No), the heat generation rate gravity center is controlled by changing the fuel injection timing which has a relatively small influence on the combustion noise, not the fuel injection pressure which has a relatively large influence on the combustion noise.
  • Step 536 it is possible to improve the fuel efficiency by maintaining the heat generation rate gravity center position at a predetermined constant value while more effectively suppressing the increase in noise and vibration that cause discomfort to the user.
  • the heat generation rate gravity center position Gc is on the retard side of the upper limit value Gc1 (first crank angle) of the target heat generation rate gravity center position (step 520: Yes)
  • the rotational speed of the engine when Ne is equal to or higher than the first rotational speed Ne1 (step 440: No), the heat generation rate gravity center is controlled by changing the fuel injection pressure that has a relatively large influence on the combustion noise (step 530). .
  • the heat generation rate gravity center is controlled by changing the fuel injection pressure that has a relatively large influence on the combustion noise (step 530). .
  • parameters used for controlling the heat generation rate gravity center is not limited to the above.
  • the fuel injection pressure may be set high in an operation region where the engine speed is high.
  • the control of the heat generation rate center of gravity by changing the fuel injection timing may be additionally performed. That is, as described above, the combustion control unit increases the fuel injection pressure when the rotational speed of the engine is equal to or higher than the first rotational speed when the heat generation rate gravity center position is on the retard side with respect to the first crank angle. In this case, when the advanced heat generation rate gravity center position is still behind the first crank angle, the heat generation rate gravity center position may be further advanced by the advance angle of the fuel injection timing.
  • the engine rotational speed is equal to or higher than the first rotational speed
  • the speed of the vehicle (vehicle speed) on which the engine is mounted is equal to or higher than the first speed.
  • noise and vibration generated from the engine are large, for example, wind noise and road noise are also large. That is, in such a case, the user is more likely to detect changes in noise and vibration associated with fuel combustion. Therefore, when the speed of the vehicle on which the engine is mounted is high and the rotational speed of the engine is high, either the fuel injection pressure or the fuel injection timing is selected as an injection system parameter for controlling the heat generation rate center of gravity. Alternatively, both the fuel injection pressure and the fuel injection timing may be selected.
  • the combustion control unit uses the fuel injection timing and the fuel injection pressure as parameters used for controlling the center of gravity of the heat generation rate, for example, the rotational speed of the engine. Depending on the vehicle speed and the like, it can be used in various ways.
  • an engine control device (hereinafter also referred to as “third device”) according to a third embodiment of the present invention will be described.
  • the third device differs from the first device only in that the CPU of the electronic control unit 70 executes the “routine shown in FIG. 6” instead of “step 470 included in the routine shown in FIG. 4”. Yes. Therefore, hereinafter, this difference will be mainly described.
  • step 440 when it is determined in step 440 that the engine rotational speed Ne is equal to or higher than the first rotational speed Ne1 (step 440: No), and in step 450, the vehicle speed Spd is the first.
  • step 450 the CPU proceeds to step 470, and either or both of the increase of the fuel injection pressure and the advance angle of the fuel injection timing are performed. To advance the actual heat generation rate gravity center position Gc.
  • the engine rotation speed Ne is the first rotation.
  • the accelerator opening (Accp) of the engine is larger than the first opening Accp1 and the fuel
  • the absolute value of the torque increase width ( ⁇ TQ2) resulting from the heat generation rate gravity center position Gc approaching the first crank angle Gc1 due to the increase in the injection pressure and / or the advance angle of the fuel injection timing is the increase in the fuel injection pressure and
  • the absolute value of the torque decrease width ( ⁇ TQ1) resulting from the increase in the pump loss of the engine accompanying the decrease in the supercharging pressure due to the advance of the fuel injection timing is smaller than Neither increase of the fuel injection pressure nor advance of the fuel injection timing is executed.
  • step 600 the accelerator opening degree Accp is detected as an index for determining whether or not the vehicle has an acceleration request. Thereafter, the CPU proceeds to step 610 to determine whether or not the accelerator opening degree Accp is larger than the first opening degree Accp1 (whether there is an acceleration request).
  • step 610 When it is determined in step 610 that the accelerator opening degree Accp is not larger than the first opening degree Accp1 (Accp ⁇ Accp1) (step 610: No), it is not necessary to consider the deterioration of the acceleration performance as described above. Therefore, the CPU proceeds to step 660 and executes either one or both of the increase of the fuel injection pressure and the advance of the fuel injection timing in the same manner as in step 470 included in the routine shown in FIG. On the other hand, when it is determined in step 610 that the accelerator opening degree Accp is larger than the first opening degree Accp1 (Accp> Accp1) (step 610: Yes), it is avoided that the acceleration performance is deteriorated as described above.
  • the CPU proceeds to step 620 to calculate the amount of decrease in supercharging pressure ( ⁇ Pim) accompanying the increase in fuel injection pressure and / or the advance angle of fuel injection timing, and thus the calculated ⁇ Pim is calculated.
  • ⁇ Pim supercharging pressure
  • the amount of decrease in supercharging efficiency that occurs when the nozzle vane and / or bypass valve provided in the turbine of the variable displacement turbocharger is reduced to compensate for, for example, supercharging pressure, turbine inlet pressure, nozzle vane And / or based on the opening degree of the bypass valve and the intake air amount.
  • step 630 calculates a torque decrease width ( ⁇ TQ1) based on the calculated supercharging efficiency.
  • ⁇ TQ2 a torque increase width associated with the advancement of the heat generation rate gravity center position Gc
  • new heat generation achieved as a result of an increase in fuel injection pressure and / or advancement of fuel injection timing It is calculated based on the values of various combustion parameters at the center of gravity position Gc, and the operating conditions of the engine and the vehicle on which the engine is mounted (for example, the engine speed Ne, the vehicle speed Spd).
  • step 640 determines the magnitude relationship between the absolute values of the torque decrease width ( ⁇ TQ1) and the increase width ( ⁇ TQ2) calculated as described above. Specifically, at step 640, it is determined whether or not the absolute value (
  • step 660 executes either one or both of the increase of the fuel injection pressure and the advance angle of the fuel injection timing, similarly to step 470 included in the routine shown in FIG.
  • step 640: Yes when it is determined in step 640 that the absolute value of the torque increase width is less than the absolute value of the torque decrease width (
  • the third device when there is an acceleration request, fuel efficiency can be improved while ensuring acceleration performance.
  • SYMBOLS 10 ... Engine, 20 ... Engine main-body part, 21 ... Main body, 22 ... Cylinder, 23 ... Fuel injection valve, 30 ... Fuel supply system, 31 ... Fuel pressurization pump, 32 ... Fuel delivery pipe, 33 ... Common rail, 40 ... Intake System, 41 ... Intake manifold, 42 ... Intake pipe, 43 ... Air cleaner, 44 ... Supercharger, 44a ... Compressor, 44b ... Turbine, 45 ... Intercooler, 46 ... Throttle valve, 47 ... Throttle valve actuator, 50 ... Exhaust system, DESCRIPTION OF SYMBOLS 51 ... Exhaust manifold, 52 ... Exhaust pipe, 53 ...
  • DOC Diesel oxidation catalyst
  • DPF Diesel particulate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 過給機を備える機関の制御装置において、燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まる熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両の運転状況に応じて使い分ける。具体的には、熱発生率重心位置が所定のクランク角度よりも遅角側にある場合において、機関の回転速度及び当該機関が搭載される車両の速度が所定の基準値未満であるときには過給機の過給圧の増大を実行し、機関の回転速度又は当該機関が搭載される車両の速度が所定の基準値以上であるときには燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。これにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。

Description

機関制御装置
 本発明は、内燃機関における燃料の燃焼状態を制御する機関制御装置に関する。より具体的には、本発明は、内燃機関における燃料の燃焼状態を制御しつつ、当該制御に伴って発生する騒音及び振動を低減し得る機関制御装置に関する。
 一般に、ディーゼル機関等の内燃機関(以下、単に「機関」とも称呼する)の運転時において燃料の燃焼によって生じるエネルギーの一部はクランクシャフトを回転させる仕事に変換されるが、残りは損失となる。この損失には、機関本体から発生する熱として失われる冷却損失、排ガスによって大気中に放出される排気損失、吸気及び排気に伴って発生するポンプ損失、並びに、機械抵抗損失等が含まれる。このうち、冷却損失及び排気損失は、損失全体に対して大きな割合を占める。従って、内燃機関の燃費を改善させるためには冷却損失及び排気損失を減少させることが有効である。
 しかしながら、一般に、冷却損失と排気損失とはトレードオフの関係にある。即ち、冷却損失を減少させると排気損失が増加し、排気損失を減少させると冷却損失が増加する。従って、冷却損失と排気損失との和が小さくなる燃焼状態を実現することができれば、機関の燃費は改善される。
 ところで、機関における燃料(混合気)の燃焼状態は、燃料噴射時期及び過給圧等の「燃焼状態に影響を及ぼす多くのパラメータ」に応じて変化する。以下、燃焼状態に影響を及ぼすパラメータは、単に「燃焼パラメータ」とも称呼される。ところが、複数の燃焼パラメータについて、様々な運転状態に対して適切な値(組み合わせ)を実験及びシミュレーション等によって予め求めることは容易ではなく、且つ、莫大な適合時間を必要とする。そのため、燃焼パラメータを体系的に決定する手法が開発されてきている。
 例えば、従来の制御装置の一つ(以下、「従来装置」とも称呼する)は、「1回の燃焼行程中に発生する総熱量のうち、その半分の熱量が発生した時点のクランク角度(以下、「燃焼重心角度」と称呼する)」を算出する。更に、従来装置は、その燃焼重心角度と所定の基準値とが乖離している場合、燃料噴射時期を補正することによって、或いは、EGR率を調整して燃焼室(気筒)内の酸素濃度を調節することによって、燃焼重心角度を基準値と一致させている(例えば、特許文献1を参照)。
特開2011-202629号公報
 例えばディーゼル機関においては、1つのサイクルの燃焼に対して燃料を複数回噴射する多段噴射が行われる場合がある。より具体的に述べると、ディーゼル機関においては、主噴射(メイン噴射)に先立ちパイロット噴射が行われ、次いで、主噴射が行われる場合がある。更に、主噴射の後にアフター噴射が行われる場合がある。
 パイロット噴射と主噴射が行われる場合のクランク角度と熱発生率との関係は、例えば、図7の(A)の曲線C1により示された波形によって表される。熱発生率とは、単位クランク角度(クランクシャフトの回転位置の単位変化量)当たりに混合気の燃焼により発生する熱の量、即ち、単位クランク角度当たりの熱発生量である。この波形は、以下「燃焼波形」とも称呼される。図7の(A)に示された波形は、クランク角度θ1にて開始されるパイロット噴射により極大値Lpをとり、クランク角度θ2にて開始される主噴射により極大値Lmをとっている。
 更に、図7の(B)は、クランク角度と、「曲線C1により示される燃焼によって発生した熱量の積算値の、総発生熱量に対する比率(発熱量比率)」と、の関係を示している。図7の(B)に示した例において、前述した燃焼重心角度(発熱量比率が50%となるクランク角度)はクランク角度θ3である。
 これに対し、図8の(A)に実線C2により示したように、パイロット噴射の開始時期のみがクランク角度θ1からクランク角度θ0へとΔθ(=θ1-θ0)だけ進角側に移動された場合、パイロット噴射の燃料の燃焼によって発熱が始まるクランク角度はクランク角度Δθだけ進角側に移動する。しかし、図7の(A)及び図8の(A)に示した燃焼においては、燃焼重心角度は主噴射の燃料の燃焼が開始された後(クランク角度θ2以後)である。従って、曲線C2により示される燃焼についての発熱量比率を示した図8の(B)から理解されるように、燃焼重心角度はクランク角度θ3のままであって変化しない。即ち、パイロット噴射時期が進角側に移動することによって燃焼波形が変化しても、燃焼重心角度が変化しない場合がある。換言すると、燃焼重心角度は必ずしも各サイクルの燃焼状態を正確に反映する指標値ではない。
 実際に、発明者は、「燃焼重心角度と燃費悪化率との関係」を種々の「機関の負荷(要求トルク)及び機関回転速度」の組み合わせについて測定した。その結果を図9に示す。図9の曲線Hb1乃至曲線Hb3は、それぞれ、低回転速度且つ低負荷、中回転速度且つ中負荷、及び、高回転速度且つ高負荷の場合の測定結果である。図9から理解されるように、発明者は、機関の負荷及び/又は機関回転速度が相違すると、燃費悪化率が最小となる燃焼重心角度(燃費が最良となる燃焼重心角度)も相違するとの知見を得た。換言すると、燃焼重心角度が一定の基準値に一致するように燃焼状態が制御されたとしても、機関の負荷及び/又は機関回転速度が相違すれば燃費悪化率が必ずしも小さくならないことが判明した。
 そこで、発明者は、燃焼状態を表す指標値として、従来の燃焼重心角度の代わりに「熱発生率重心位置」に着目した。この熱発生率重心位置は、燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まり、クランクシャフト回転位置(即ち、クランク角度)により表される。熱発生率重心位置の定義については後に詳述するが、熱発生率重心位置は、従来の燃焼状態の指標値である燃焼重心角度に比較して、燃焼状態をより正確に反映する指標値であると言うことができる。即ち、発明者は、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持することにより機関の燃焼状態を特定の状態に維持することができ且つ燃費を改善することができるとの知見を得た。そこで、発明者は、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を一定のクランク角度に維持する機関制御装置を検討している。
 ところで、前述したように、機関における燃料(混合気)の燃焼状態は、燃料噴射時期及び過給圧等の多くの燃焼パラメータに応じて変化する。従って、上述した熱発生率重心位置もまた、例えば、燃料噴射時期、燃料噴射圧、パイロット噴射によって噴射される燃料の量、及び過給圧等の燃焼パラメータに応じて変化する。換言すれば、上述したように機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持することにより機関の燃焼状態を特定の状態に維持して燃費を改善しようとする場合、例えば、燃料噴射時期、燃料噴射圧、パイロット噴射によって噴射される燃料の量、及び過給圧等の燃焼パラメータを、熱発生率重心位置を制御するパラメータとして用いることができる。これらの燃焼パラメータの中で、燃料噴射時期及び燃料噴射圧等の燃料噴射に関するパラメータ(噴射系パラメータ)は、補正時のレスポンスが良好であり、補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易である。かかる観点からは、熱発生率重心位置を制御するパラメータとして噴射系パラメータを用いることが望ましい。
 しかしながら、上記のように噴射系パラメータを用いて熱発生率重心位置を制御する場合、単位クランク角度当たりの燃焼室内の圧力(筒内圧)の変化量が大きくなり、例えば燃焼騒音等、燃焼に伴う騒音及び振動に与える影響が大きくなるため、結果として、例えば、当該機関が動力源として搭載される車両のユーザ(例えば運転者等)に不快感を与える虞がある。従って、機関の燃焼状態を特定の状態に維持して燃費を改善する際には、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持することのみならず、ユーザに不快感を与える騒音及び振動を抑制することにも留意することが望ましい。
 従って、当該技術分野においては、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、熱発生率重心位置を一定のクランク角度に維持することにより燃費を向上させることが可能な機関制御装置に対する要求が存在する。即ち、本発明の1つの目的は、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、熱発生率重心位置を一定のクランク角度に維持することにより燃費を向上させることが可能な機関制御装置を提供することにある。
 本発明の上記目的は、
 過給機を備える内燃機関の気筒に供給される燃料の燃焼状態を制御する燃焼パラメータを設定する燃焼制御部を備える機関制御装置であって、
 少なくとも第1閾値から同第1閾値よりも大きい第2閾値までの特定負荷範囲内に前記機関の負荷があるとき、前記燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まる熱発生率重心位置が第1クランク角度に等しくなるように前記燃焼パラメータを前記燃焼制御部が設定する、
機関制御装置において、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
  前記機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満であるときには、前記燃焼制御部が、前記過給機の過給圧の増大を実行し、
  前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときには、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する、
機関制御装置によって達成される。
 本発明に依れば、熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両等の運転状況に応じて使い分けることにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は、熱発生率重心位置(熱発生率重心クランク角度)を説明するためのグラフであり、(A)は所定のタイミングにてパイロット噴射及び主噴射が行われた場合の燃焼波形を示し、(B)は(A)に比べてパイロット噴射が進角された場合の燃焼波形を示す。 図2は、機関回転速度及び機関の負荷の組合せ毎の、熱発生率重心位置と燃費悪化率との関係を表したグラフである。 図3は、本発明の第1実施形態に係る機関制御装置、及び、その機関制御装置が適用される内燃機関の概略構成図である。 図4は、図3に示した制御装置のCPUが実行するルーチンを示したフローチャートである。 図5は、図3に示した制御装置のCPUが実行するルーチンを示したフローチャートである。 図6は、図3に示した制御装置のCPUが実行するルーチンの一部を示したフローチャートである。 図7は、燃焼重心角度を説明するためのグラフである。 図8は、燃焼重心角度を説明するためのグラフである。 図9は、機関回転速度毎の、燃焼重心角度と燃費悪化率との関係を示したグラフである。
 前述したように、本発明は、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、熱発生率重心位置を一定のクランク角度(第1クランク角度)に維持することにより燃費を向上させることが可能な機関制御装置を提供することを1つの目的としている。
 本発明者は、上記目的を達成すべく鋭意研究の結果、熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両の運転状況に応じて使い分けることにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができることを見出し、本発明を想到するに至ったものである。
 即ち、本発明の第1の実施態様は、
 過給機を備える内燃機関の気筒に供給される燃料の燃焼状態を制御する燃焼パラメータを設定する燃焼制御部を備える機関制御装置であって、
 少なくとも第1閾値から同第1閾値よりも大きい第2閾値までの特定負荷範囲内に前記機関の負荷があるとき、前記燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まる熱発生率重心位置が第1クランク角度に等しくなるように前記燃焼パラメータを前記燃焼制御部が設定する、
機関制御装置において、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
  前記機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満であるときには、前記燃焼制御部が、前記過給機の過給圧の増大を実行し、
  前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときには、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する、
機関制御装置である。
 上記のように、本実施態様に係る機関制御装置は、過給機を備える内燃機関に適用される。更に、本実施態様に係る機関制御装置は、前記内燃機関の気筒に供給される燃料の燃焼状態を制御する燃焼制御部を備える。
 前記燃焼制御部は、少なくとも第1閾値から同第1閾値よりも大きい第2閾値までの特定負荷範囲内に前記機関の負荷があるとき、前記燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まる熱発生率重心位置が第1クランク角度に等しくなるように前記燃焼パラメータを設定する。
 尚、上記第1閾値は、機関がとり得る負荷のうちの最小値であってもよく、その最小値よりも大きい値であってもよい。また、上記第2閾値は、機関がとり得る負荷のうちの最大値であってもよく、その最大値よりも小さい値であってもよい。即ち、本実施態様に係る機関制御装置は、機関がとり得る全負荷範囲において熱発生率重心位置が第1クランク角度に等しくなるように燃焼パラメータを設定してもよく、あるいは特定の負荷範囲においてのみ熱発生率重心位置が第1クランク角度に等しくなるように燃焼パラメータを設定してもよい。更に、燃焼状態を制御することは、燃焼パラメータを設定すること(即ち、燃焼パラメータをフィードフォワード制御及び/又はフィードバック制御により機関の運転状態に応じた適値に設定・変更すること)と実質的に同義である。尚、燃焼パラメータについては後に詳述する。
 本実施態様に係る機関制御装置に依れば、少なくとも機関の負荷が前記特定負荷範囲内であるときには、熱発生率重心位置が第1クランク角度に維持される。よって、その第1クランク角度を、例えば、燃費が最良となるクランク角度に設定することにより、当該機関のランニングコストを効果的に改善することができる。また、例えば、燃費以外のランニングコストも含めたトータル・ランニングコスト(当該機関が搭載される車両の走行に要する実質的費用)が最低となるようなクランク角度等の所定クランク角度に第1クランク角度を設定することにより、当該機関のトータル・ランニングコストを効果的に改善するようにしてもよい。
 尚、機関の燃費、トータル・ランニングコスト等を効果的に改善し得る熱発生率重心位置の制御目標値としての目標重心位置(第1クランク角度)は、例えば、事前の実験等によって予め求めることができる。また、斯くして求められた目標重心位置(第1クランク角度)を達成し得る各種燃焼パラメータの組み合わせにもまた、例えば、事前の実験等によって予め求めることができる。斯くして求められた目標重心位置(第1クランク角度)及び当該目標重心位置(第1クランク角度)に対応する燃焼パラメータの組み合わせは、例えば、後述するエンジンECU(電子制御ユニット)が備えるデータ記憶手段(例えばROM等)に格納しておき、実際の機関の運転状態に応じて読み出し、熱発生率重心位置を目標重心位置(第1クランク角度)と一致させる制御に使用することができる。
 ところで、熱発生率重心位置は、以下に述べるように種々の手法により定義され得る。
《定義1》
 熱発生率重心位置Gcは、図1(A)に示したように、「1つの燃焼行程におけるクランク角度を横軸(一方の軸)に設定し且つ熱発生率(単位クランク角度当たりの熱の発生量)を縦軸(前記一方の軸に直交する他方の軸)に設定した座標系(グラフ)」に描かれる熱発生率の波形と前記横軸(前記一方の軸)とにより囲まれる領域の幾何学的重心Gに対応するクランク角度(図1(A)においてはθ3)である。
《定義2》
 熱発生率重心位置Gcは、「1つの燃焼行程におけるクランク角度を横軸(一方の軸)に設定し且つ熱発生率(単位クランク角度当たりの熱の発生量)を縦軸(前記一方の軸に直交する他方の軸)に設定した座標系(グラフ)」に描かれる熱発生率の波形と前記横軸(前記一方の軸)とにより囲まれる領域を特定クランク角度で分けたときに当該特定クランク角度によって分けられた2つの領域の面積が等しくなるような特定クランク角度である。
《定義3》
 あるいは、熱発生率重心位置Gcは、下記の(1)式を満たすクランク角度Gcである。この(1)式において、CAsは燃料の燃焼が始まるクランク角度であり、CAeは前記燃焼が終わるクランク角度であり、θは任意のクランク角度であり、dQ(θ)はクランク角度θにおける熱発生率である。即ち、熱発生率重心位置Gcは、1つの燃焼行程における燃焼開始から燃焼終了までの間の特定クランク角度であって、「燃焼開始から特定クランク角度まで間の任意の第1クランク角度と特定クランク角度との差の大きさ」と「その任意の第1クランク角度における熱発生率」との積を燃焼開始から特定クランク角度までクランク角度について積分(積算)して得られる値と、「特定クランク角度から燃焼終了までの間の任意の第2クランク角度と特定クランク角度との差の大きさ」と「その任意の第2クランク角度における熱発生率」との積を特定クランク角度から燃焼終了までクランク角度について積分(積算)して得られる値と、が等しくなるような特定クランク角度である。
Figure JPOXMLDOC01-appb-M000002
《定義3’》
 上記(1)式を変形すると下記(2)式が得られる。
Figure JPOXMLDOC01-appb-M000003
 従って、定義3について別の言い方をすると、熱発生率重心位置Gcは、1つの燃焼行程についての燃焼開始から燃焼終了までの特定クランク角度であって、任意のクランク角度から特定クランク角度を減じて得られる値と、前記任意のクランク角度における熱発生率と、の積に対応した値を、燃焼開始から燃焼終了までクランク角度について積分(積算)して得られる値が「0」となるような特定クランク角度である。
《定義4》
 定義1乃至定義3’に基づけば、熱発生率重心位置Gcは、1つの燃焼行程において、任意のクランク角度から燃焼開始クランク角度(CAs)を減じて得られる値と、前記任意のクランク角度における熱発生率と、の積の積分値を、クランク角度に対する熱発生率の波形によって画定される領域の面積で割って得られる値に燃焼開始クランク角度(CAs)を加えた値であると定義される。
《定義5》
 換言すれば、熱発生率重心位置Gcは、下記(3)式に則った演算により求められるクランク角度であると定義される。
Figure JPOXMLDOC01-appb-M000004
 以上のように種々に定義される熱発生率重心位置Gcは、例えば、図1の(A)に示した例においてはクランク角度θ3である。加えて、図1(B)に示したように、パイロット噴射の開始時期がクランク角度θ1からΔθpだけ進角側へ移動されてクランク角度θ0に設定されると、熱発生率重心位置Gcはクランク角度Δθgだけ進角側へと移動してクランク角度θ3’となる。これらから理解されるように、熱発生率重心位置は、従来の燃焼状態の指標値である燃焼重心角度に比較して、燃焼状態をより正確に反映する指標値であると言うことができる。尚、実際の熱発生率重心位置は、例えば、燃焼圧センサ(CPS:Combustion Pressure Sensor)等、筒内の圧力を検出する検出手段によって検出される筒内圧に基づいて推定することができる。
 更に、発明者は、「熱発生率重心位置と燃費悪化率との関係」を種々の「機関の負荷(要求トルク)及び機関回転速度」の組合せについて測定した。その結果を図2に示す。図2の曲線Gc1乃至曲線Gc3は、それぞれ低回転速度且つ低負荷、中回転速度且つ中負荷、及び、高回転速度且つ高負荷の場合の測定結果である。図2から理解されるように、機関回転速度及び機関の負荷が相違した場合であっても、燃費悪化率が最小となる熱発生率重心位置は特定(一定)のクランク角度θa(図2の例においては圧縮上死点後7°)であった。更に、図9に示した燃焼重心角度に比較して、熱発生率重心位置がクランク角度θaの近傍にある限り、機関の負荷及び/又は機関回転速度が変化しても燃費悪化率は最小値に近い略一定の値となることが判明した。
 これらから、発明者は、熱発生率重心位置は燃焼状態を良好に示す指標値であり、従って、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値(例えば、上記クランク角度θa近傍の値)に維持することにより機関の燃焼状態を特定の状態に維持することができ且つ燃費を改善することができるとの知見を得た。そこで、発明者は、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を一定のクランク角度(第1クランク角度)に維持する機関制御装置を検討している。
 ところで、前述したように、機関における燃料(混合気)の燃焼状態は、燃料噴射時期及び過給圧等の多くの燃焼パラメータに応じて変化する。従って、上述した熱発生率重心位置もまた、例えば、燃料噴射時期、燃料噴射圧、パイロット噴射によって噴射される燃料の量、及び過給圧等の燃焼パラメータに応じて変化する。換言すれば、上述したように機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持することにより機関の燃焼状態を特定の状態に維持して燃費を改善しようとする場合、例えば、燃料噴射時期、燃料噴射圧、パイロット噴射によって噴射される燃料の量、及び過給圧等の燃焼パラメータを、熱発生率重心位置を制御するパラメータとして用いることができる。かかる燃焼パラメータとしては、以下に述べる値の1つ以上を採用することができる。
(1)主噴射の時期
(2)燃料噴射弁が燃料を噴射するときの圧力である燃料噴射圧
(3)主噴射よりも進角側にて行われる燃料噴射であるパイロット噴射の噴射量
(4)パイロット噴射の回数
(5)パイロット噴射の時期
(6)パイロット噴射の燃料噴射量
(7)主噴射よりも遅角側にて行われる燃料噴射であるアフター噴射の噴射量
(8)過給機による過給圧
(9)インタークーラーの冷却効率(冷却能力)
(10)吸入空気に対するEGRガスの比率であるEGR率(又は、EGRガスの量)
(11)低圧EGR装置により還流させられる低圧EGRガスの量に対する、高圧EGR装置により還流させられる高圧EGRガスの量の比(高低圧EGR率)
(12)EGRクーラーの冷却効率(冷却能力)
(13)気筒内のスワール流の強度(例えば、スワールコントロールバルブの開度)
 尚、インタークーラーの冷却効率及びEGRクーラーの冷却効率は、結局のところ機関の吸気温度を制御するものであることから、機関の吸気温度は燃焼パラメータの1つであると言うこともできる。また、これらのクーラーの冷却効率を低下させる(吸気温度を上昇させる)ための具体的な手段としては、例えば、これらのクーラーに流入する冷媒の量を減少させたり、これらのクーラーに搭載されているバイパス通路を通るガスの流量を調整するバイパスバルブの開度を増加させて当該バイパス通路を通るガスの量の当該クーラーを通るガスの量に対する比率を上昇させたりすることができる。逆に、これらのクーラーの冷却効率を上昇させる(吸気温度を低下させる)ための具体的な手段としては、例えば、これらのクーラーに流入する冷媒の量を増加させたり、これらのクーラーに搭載されているバイパス通路を通るガスの流量を調整するバイパスバルブの開度を減少させて当該バイパス通路を通るガスの量の当該クーラーを通るガスの量に対する比率を低下させたりすることができる。
 加えて、上記EGR率は、より具体的には、機関に備えられ且つ機関の排気通路に配設された過給機のタービンよりも下流側の排ガスを機関の吸気通路へと還流させる低圧EGR装置を使用する場合は、当該低圧EGR装置により還流させられる低圧EGRガスの量の吸入空気の量に対する比率を指す。また、上記EGR率は、機関に備えられ且つ過給機のタービンよりも上流側の排ガスを吸気通路へと還流させる高圧EGR装置を使用する場合は、当該高圧EGR装置により還流させられる高圧EGRガスの量の吸入空気の量に対する比率を指す。更に、上記EGR率は、低圧EGR装置及び高圧EGR装置の両方を使用する場合は、これらのEGR装置により還流させられる低圧EGRガス及び高圧EGRガスの合計量の吸入空気の量に対する比率を指す。
 このような燃焼パラメータを用いて熱発生率重心位置Gcを進角させる場合には、機関制御装置は以下の動作を行えばよい。
(1a)機関制御装置は、主噴射の時期を進角側に移動させる。
(2a)機関制御装置は、燃料噴射圧を増加させる。
(3a)機関制御装置は、パイロット噴射の噴射量を増加させる。
(4a)機関制御装置は、パイロット噴射のみに関して決まるパイロット噴射の熱発生率重心位置(以下、「パイロット熱発生率重心位置」と称呼する)が進角側へ移動するようにパイロット噴射の回数を変更する。
(5a)機関制御装置は、パイロット熱発生率重心位置が進角側へ移動するようにパイロット噴射の時期を変更する。
(6a)機関制御装置は、パイロット熱発生率重心位置が進角側へ移動するようにパイロット噴射の燃料噴射量を変更する。
(7a)機関制御装置は、アフター噴射の噴射量を減少する、若しくは、アフター噴射を行わない。
(8a)機関制御装置は、過給圧を増加させる。
(9a)機関制御装置は、インタークーラーの冷却効率を低下させる(吸気温度を上昇させる)。
(10a)機関制御装置は、EGR率を低下させる(EGR量を減少させる)。
(11a)機関制御装置は、高低圧EGR率を低下させる。
(12a)機関制御装置は、EGRクーラーの冷却効率を低下させる(吸気温度を上昇させる)。
(13a)機関制御装置は、スワール流の強度を増大させる。
 逆に、上記燃焼パラメータを用いて熱発生率重心位置Gcを遅角させる場合には、機関制御装置は以下の動作を行えばよい。
(1b)機関制御装置は、主噴射の時期を遅角側に移動させる。
(2b)機関制御装置は、燃料噴射圧を減少させる。
(3b)機関制御装置は、パイロット噴射の噴射量を減少させる。
(4b)機関制御装置は、パイロット熱発生率重心位置が遅角側へ移動するようにパイロット噴射の回数を変更する。
(5b)機関制御装置は、パイロット熱発生率重心位置が遅角側へ移動するようにパイロット噴射の時期を変更する。
(6b)機関制御装置は、パイロット熱発生率重心位置が遅角側へ移動するようにパイロット噴射の燃料噴射量を変更する。
(7b)機関制御装置は、アフター噴射の噴射量を増大する。
(8b)機関制御装置は、過給圧を減少させる。
(9b)機関制御装置は、インタークーラーの冷却効率を上昇させる(吸気温度を低下させる)。
(10b)機関制御装置は、EGR率を上昇させる(EGR量を増大させる)。
(11b)機関制御装置は、高低圧EGR率を上昇させる。
(12b)機関制御装置は、EGRクーラーの冷却効率を上昇させる(吸気温度を低下させる)。
(13b)機関制御装置は、スワール流の強度を低下させる。
 これらの燃焼パラメータの中で、燃料噴射時期及び燃料噴射圧等の燃料噴射に関するパラメータ(噴射系パラメータ)は、前述したように、補正時のレスポンスが良好であり、補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易である。かかる観点からは、熱発生率重心位置を制御するパラメータとして噴射系パラメータを用いることが望ましい。
 しかしながら、前述したように、噴射系パラメータを用いて熱発生率重心位置を制御する場合、単位クランク角度当たりの燃焼室内の圧力(筒内圧)の変化量が大きくなり、例えば燃焼騒音等、燃焼に伴う騒音及び振動に与える影響が大きくなるため、結果として、例えば、当該機関が動力源として搭載される車両のユーザ(例えば運転者等)に不快感を与える虞がある。特に、機関の回転速度及び当該機関が搭載される車両の速度が低い場合においては、当該機関及び車両の作動に伴って発生する騒音及び振動が小さいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易い傾向がある。
 従って、機関の回転速度が第1回転速度未満であり且つ当該機関が動力源として搭載される車両の速度が第1速度未満である場合に熱発生率重心位置を所定の一定値に維持して燃費を改善しようとする際には、ユーザに不快感を与える騒音及び振動の増大の懸念が少ない燃焼パラメータを使用して熱発生率重心を制御することが望ましい。かかる燃焼パラメータの具体例としては、過給機による過給圧を挙げることができる。
 一方、機関の回転速度又は当該機関が搭載される車両の速度が高い場合においては、当該機関及び車両の作動に伴って発生する騒音及び/又は振動が大きいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難い傾向がある。従って、かかる場合においては、前述したように、補正時のレスポンスが良好であり、補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易な燃焼パラメータを使用して熱発生率重心を制御することが望ましい。かかる燃焼パラメータの具体例としては、燃料噴射時期及び燃料噴射圧等の燃料噴射に関するパラメータ(噴射系パラメータ)を挙げることができる。
 従って、本実施態様に係る機関制御装置においては、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
  前記機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満であるときには、前記燃焼制御部が、前記過給機の過給圧の増大を実行し、
  前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときには、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。
 上記において、機関の回転速度(機関回転速度)は、例えば、クランクシャフトの回転位置(即ち、クランク角度)に応じた信号を出力するクランク角度センサ及びカムポジションセンサからの信号に基づいて、後述するエンジンECU(電子制御ユニット)により取得され得る。また、機関が搭載される車両の速度(走行速度、車速)は、車速センサによって検出され得る。
 上記において、第1回転速度と第1速度との組み合わせは、例えば、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方によって熱発生率重心位置を進角させる際にユーザに不快感を与える騒音及び振動の増大を実質的に生じない機関回転速度と車速との最小値の組み合わせとして定義することができる。逆の言い方をすれば、機関回転速度が第1回転速度未満であり且つ車速が第1速度未満であるときに燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方によって熱発生率重心位置を進角させると、ユーザに不快感を与える騒音及び振動が実質的に増大するので望ましくない。尚、かかる第1回転速度と第1速度との組み合わせは、例えば、事前の実験等によって種々の機関回転速度及び車速の組み合わせにおける機関及び車両の作動に伴って発生する騒音及び振動を予め求めることによって特定することができる。また、第1回転速度と第1速度との組み合わせの特定に当たっては、機関及び車両の作動に伴って発生する騒音及び振動に加えて、例えば、風切り音、ロードノイズ等を考慮に入れてもよい。
 本実施態様に係る機関制御装置が適用される機関は、過給機による過給圧を調整し得る機構を備えることが必要である。かかる機構の具体例としては、例えば、ノズルベーン、バイパスバルブ(排圧調整ウェイストゲートバルブ)、排気絞り弁等を挙げることができる。また、本実施態様に係る機関制御装置が適用される機関は、燃料噴射圧及び/又は燃料噴射時期を調整し得る機構を備えることが必要である。例えば、燃料加圧ポンプ(サプライポンプ)、燃料送出管、コモンレール(蓄圧室)、及び燃料噴射弁(インジェクタ)を含む燃料供給系統を機関が備える場合、例えば、後述するエンジンECU(電子制御ユニット)の指示により、燃料加圧ポンプを制御して燃料噴射圧を調整したり、燃料噴射弁(インジェクタ)の開弁動作を制御して燃料噴射時期を調整したりすることができる。
 これに依れば、機関の回転速度及び当該機関が搭載される車両の速度が低い場合においては燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易いものの、ユーザに不快感を与える騒音及び振動の増大の懸念が少ない燃焼パラメータである過給圧によって熱発生率重心が制御される。これにより、ユーザに不快感を与える騒音及び振動の増大を抑制すると共に、加速性能を確保することもできる。一方、機関の回転速度又は当該機関が搭載される車両の速度が高い場合においては、補正時のレスポンスが良好であり、補正偏差の算出も容易な燃焼パラメータである、噴射系パラメータによって熱発生率重心が制御される。このように、本実施態様に係る機関制御装置に依れば、熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両の運転状況に応じて使い分けることにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 ところで、本実施態様に係る機関制御装置においては、上述したように、熱発生率重心位置が第1クランク角度よりも遅角側にある場合に、機関の回転速度が第1回転速度以上であるか又は機関が搭載される車両の速度が第1速度以上であるときには、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を燃焼制御部が実行する。即ち、本実施態様に係る機関制御装置においては、熱発生率重心位置が第1クランク角度よりも遅角側にある場合に、機関の回転速度が第1回転速度以上であるときには、燃料噴射圧の増大又は燃料噴射時期の進角のどちらを実行してもよく、あるいは両方を実行してもよい。同様に、機関が搭載される車両の速度が第1速度以上であるときにも、燃料噴射圧の増大又は燃料噴射時期の進角のどちらを実行してもよく、あるいは両方を実行してもよい。
 ところで、上記のように熱発生率重心位置が第1クランク角度よりも遅角側にあるときに燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を燃焼制御部が実行する場合としては、(a)機関回転速度が第1回転速度以上であり且つ機関が搭載される車両の速度(車速)が第1速度以上である場合、(b)機関回転速度が第1回転速度以上であり且つ車速が第1速度未満である場合、及び(c)機関回転速度が第1回転速度未満であり且つ車速が第1速度以上である場合、の3つの場合が想定される。
 上記3つの場合の中で、(c)においては、車速は第1速度以上であるものの、機関の回転速度は第1回転速度未満である。かかる場合、当該機関から発生する騒音及び振動が小さいため、例えば、風切り音、ロードノイズ等が小さい場合等においては、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易い状況も想定される。従って、機関が搭載される車両の速度が高く且つ機関の回転速度が低い場合に噴射系パラメータを用いて熱発生率重心の制御を行う際には、燃焼騒音に与える影響ができるだけ小さいパラメータを選択することが望ましい。
 本実施態様に係る機関制御装置において、熱発生率重心位置が第1クランク角度よりも遅角側にある場合に、機関の回転速度が第1回転速度以上であるか又は機関が搭載される車両の速度が第1速度以上であるときに、熱発生率重心位置を進角させるために用いられる噴射系パラメータには、燃料噴射圧及び燃料噴射時期が含まれる。これらの中で、燃焼騒音に与える影響は、燃料噴射時期よりも燃料噴射圧の方が大きい。従って、機関が搭載される車両の速度が高く且つ機関の回転速度が低い場合に噴射系パラメータを用いて熱発生率重心の制御を行う際には、燃焼騒音に与える影響が相対的に大きい燃料噴射圧ではなく、燃焼騒音に与える影響が相対的に小さい燃料噴射時期を変更することにより熱発生率重心の制御を行うことが望ましい。
 一方、上記(b)及び(a)においては、機関の回転速度は第1回転速度以上である。かかる場合、当該機関から発生する騒音及び振動が大きいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難い傾向がある。かかる場合には、熱発生率重心の制御を行う際に燃焼騒音に与える影響が相対的に大きい燃料噴射圧を選択しても、ユーザに不快感を与える騒音及び振動の実質的な増大を招く虞は低い。従って、機関の回転速度が高い場合に噴射系パラメータを用いて熱発生率重心の制御を行う際には、燃焼騒音に与える影響が相対的に大きい燃料噴射圧を変更することにより熱発生率重心の制御を行ってもよい。
 即ち、本発明の第2の実施態様は、
 本発明の前記第1の実施態様に係る機関制御装置であって、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
  前記車両の速度が前記第1速度以上であっても、前記機関の回転速度が前記第1回転速度未満であるときには、前記燃焼制御部が燃料噴射時期の進角のみを実行し、
  前記機関の回転速度が前記第1回転速度以上であるときには、前記燃焼制御部が燃料噴射圧の増大を実行する、
機関制御装置である。
 上記のように、本実施態様に係る機関制御装置においても、熱発生率重心位置が第1クランク角度よりも遅角側にある場合において機関の回転速度が第1回転速度以上であるか又は機関が搭載される車両の速度(車速)が第1速度以上であるときに燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。この際、本実施態様に係る機関制御装置においては、燃焼制御部が、上述したように、熱発生率重心の制御に用いるパラメータとしての燃料噴射時期及び燃料噴射圧を、機関の回転速度及び車速の状況に応じて、きめ細かく使い分ける。
 より具体的には、本実施態様に係る機関制御装置においては、前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、前記車両の速度が前記第1速度以上であっても、前記機関の回転速度が前記第1回転速度未満であるときには、前記燃焼制御部が燃料噴射時期の進角を実行する。上述したように、車速が高くても、機関回転速度が低い場合は、機関から発生する騒音及び振動が小さいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易い傾向がある。そこで、本実施態様に係る機関制御装置においては、かかる状況において噴射系パラメータを用いて熱発生率重心の制御を行うに当たり、燃焼騒音に与える影響が相対的に大きい燃料噴射圧ではなく、燃焼騒音に与える影響が相対的に小さい燃料噴射時期を変更することにより熱発生率重心の制御を行う。これにより、ユーザに不快感を与える騒音及び振動の増大をより有効に抑制しつつ、熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 一方、本実施態様に係る機関制御装置においては、前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、前記機関の回転速度が前記第1回転速度以上であるときには、前記燃焼制御部が燃料噴射圧の増大を実行する。上述したように、機関回転速度が高い場合は、機関から発生する騒音及び振動が大きいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難い傾向がある。そこで、本実施態様に係る機関制御装置においては、かかる状況において噴射系パラメータを用いて熱発生率重心の制御を行うに当たり、先ずは、燃焼騒音に与える影響が相対的に大きい燃料噴射圧を変更することにより熱発生率重心の制御を行う。これにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 しかしながら、機関の回転速度が高い運転領域においては燃料噴射圧が高く設定されている場合があり、かかる状況においては燃料噴射圧の上げしろは多くは残っていない虞がある。その結果、燃料噴射圧の増大のみによっては熱発生率重心を十分に進角させることが困難である虞がある。かかる場合においては、燃料噴射時期を変更することによる熱発生率重心の制御を追加的に行ってもよい。即ち、上述したように熱発生率重心位置が第1クランク角度よりも遅角側にある場合において機関の回転速度が第1回転速度以上であるときに燃焼制御部が燃料噴射圧の増大を実行することにより進角された熱発生率重心位置が未だに第1クランク角度よりも遅角側にある場合は、燃料噴射時期の進角により熱発生率重心位置を更に進角させてもよい。
 また、上述した(a)の場合においては、機関回転速度が第1回転速度以上であり且つ機関が搭載される車両の速度(車速)が第1速度以上である。かかる場合、当該機関から発生する騒音及び振動が大きく、例えば、風切り音、ロードノイズ等も大きい状況が想定される。即ち、かかる場合においては、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難い傾向がより強い。従って、機関が搭載される車両の速度が高く且つ機関の回転速度が高い場合には、熱発生率重心の制御を行うための噴射系パラメータとして燃料噴射圧及び燃料噴射時期の何れを選択してもよく、燃料噴射圧及び燃料噴射時期の両方を選択してもよい。
 しかしながら、補正時のレスポンスが良好であり且つ補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易であるという観点からは、機関が搭載される車両の速度が高く且つ機関の回転速度が高い場合において熱発生率重心位置を制御する噴射系パラメータとして燃料噴射時期を選択することがより望ましい。このように、本発明の変形例に係る機関制御装置においては、燃焼制御部が、熱発生率重心の制御に用いるパラメータとしての燃料噴射時期及び燃料噴射圧を、例えば、機関の回転速度及び車速の状況等に応じて、更にきめ細かく使い分けるようにしてもよい。
 ところで、車両の速度を今後高める(即ち加速する)ことが想定される状況において良好なドライバビリティを維持するためには、加速性能の確保が重要である。しかしながら、燃料噴射圧の増大及び/又は燃料噴射時期の進角により熱発生率重心位置を進角させようとすると、燃料噴射圧の増大及び/又は燃料噴射時期の進角により排気損が低減し、過給圧の低下を招く虞がある。かかる場合、例えば可変容量型過給機のタービンが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して過給圧を補填しようとするとポンプ損失が悪化(増大)し、結果として燃費及び加速性能の両方を悪化させてしまう虞がある。
 従って、例えば車両の加速が求められる局面等において加速性能を確保しつつ燃費を改善するためには、燃料噴射圧の増大及び/又は燃料噴射時期の進角に伴う過給圧の低下を補填する際に生ずるポンプ損失の増大に起因するトルクの低下幅が、熱発生率重心位置の進角化に伴うトルクの上昇幅を超えないように制御することが重要である。
 従って、本発明の第3の実施態様は、
 本発明の前記第1又は前記第2の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときであっても、
  前記機関のアクセル開度が第1開度より大きく、且つ、燃料噴射圧の増大及び/又は燃料噴射時期の進角により前記熱発生率重心位置が前記第1クランク角度に近付くことに起因するトルクの上昇幅の絶対値が、燃料噴射圧の増大及び/又は燃料噴射時期の進角による過給圧の低下を補填することに伴う前記機関のポンプ損失の増大に起因するトルクの低下幅の絶対値よりも小さいと判定されるときは、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れも実行しない、
機関制御装置である。
 上記のように熱発生率重心位置が第1クランク角度よりも遅角側にある場合において機関の回転速度が第1回転速度以上であるか又は機関が搭載される車両の速度が第1速度以上であるとき、本発明の前述した各種実施態様に係る機関制御装置においては、燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行することにより、熱発生率重心位置が第1クランク角度に等しくなるように制御する。しかしながら、上述したように、燃料噴射圧の増大及び/又は燃料噴射時期の進角により熱発生率重心位置を進角させようとすると、燃料噴射圧の増大及び/又は燃料噴射時期の進角により排気損が低減し、過給圧の低下を招く虞がある。かかる場合、例えば可変容量型過給機のタービンが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して過給圧を補填しようとするとポンプ損失が悪化(増大)し、結果として燃費及び加速性能の両方を悪化させてしまう虞がある。
 そこで、本実施態様に係る機関制御装置においては、上記のように、前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときであっても、前記機関のアクセル開度が第1開度より大きく、且つ、燃料噴射圧の増大及び/又は燃料噴射時期の進角により前記熱発生率重心位置が前記第1クランク角度に近付くことに起因するトルクの上昇幅の絶対値が、燃料噴射圧の増大及び/又は燃料噴射時期の進角による過給圧の低下を補填することに伴う前記機関のポンプ損失の増大に起因するトルクの低下幅の絶対値よりも小さいと判定されるときは、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れも実行しない。
 これにより、本実施態様に係る機関制御装置に依れば、燃料噴射圧の増大及び/又は燃料噴射時期の進角に伴う過給圧の低下を補填する際に生ずるポンプ損失の増大に起因するトルクの低下幅の方が熱発生率重心位置の進角化に伴うトルクの上昇幅よりも大きいと判定される場合には燃料噴射圧の増大及び燃料噴射時期の進角の何れも実行されないので、結果として、加速性能を確保しつつ燃費を改善することができる。
 尚、上記において、機関のアクセル開度は、例えば、スロットル弁開度を検出するスロットル弁開度センサからの信号に基づいて検出することができる。また、第1開度は、例えば車両の加速が求められる局面等において想定されるアクセル開度の最低値等に設定することができる。
 更に、燃料噴射圧の増大及び/又は燃料噴射時期の進角に伴うトルクの低下幅については、例えば、以下のようにして算出することができる。例えば、燃料噴射圧の増大及び/又は燃料噴射時期の進角に伴う過給圧の低下量(ΔPim)を算出する。次いで、斯くして算出されたΔPimを例えば可変容量型過給機のタービンが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して補填する際に生ずる過給効率の低下量を、例えば、過給圧、タービン入圧、ノズルベーン及び/又はバイパスバルブの開度、並びに吸気量等に基づいて算出する。そして、斯くして算出された過給効率に基づいてトルクの低下幅を算出することができる。また、熱発生率重心位置の進角化に伴うトルクの上昇幅については、例えば、燃料噴射圧の増大及び/又は燃料噴射時期の進角の結果として達成される新たな熱発生率重心位置における各種燃焼パラメータの値、並びに機関及び当該機関が搭載される車両の運転状況(例えば、機関回転数、車速等)等に基づいて算出することができる。
 ところで、本発明の前述した各種実施態様に係る機関制御装置においては、熱発生率重心位置が第1クランク角度よりも遅角側にある場合において、過給圧の増大、燃料噴射圧の増大、及び燃料噴射時期の進角の何れか1つ以上を燃焼制御部が実行して、熱発生率重心位置が第1クランク角度に等しくなるように制御する。即ち、第1クランク角度は、許容可能な熱発生率重心位置の上限値として設定することができる。
 一方、図2を参照しながら前述したように、機関回転速度及び機関の負荷が相違した場合であっても、燃費悪化率が最小となる熱発生率重心位置は特定(一定)のクランク角度θa(図2の例においては圧縮上死点後7°)であり、熱発生率重心位置がクランク角度θaの近傍にある限り、機関の負荷及び/又は機関回転速度が変化しても燃費悪化率は最小値に近い略一定の値となることが判明した。即ち、目標熱発生率重心位置(目標重心位置)を、特定の1点ではなく、上限値及び下限値を有する許容可能な範囲として規定し、実際の熱発生率重心位置がかかる許容範囲に入るように、燃焼パラメータを燃焼制御部が設定してもよい。
 上記において、実際の熱発生重心位置が上限値よりも大きいクランク角度である場合(熱発生率重心位置が第1クランク角度よりも遅角側にある場合)は、これまで説明してきたように、各種燃焼パラメータの何れか1つ以上の設定を燃焼制御部が変更して、熱発生率重心位置が第1クランク角度以下となるように制御することが望ましい。また、実際の熱発生重心位置が上限値と下限値との間の許容可能な範囲に入る場合は、例えば燃費の最小化等、所望の制御結果が達成されているので、実際の熱発生重心位置を敢えて変更する必要は無い。更に、実際の熱発生重心位置が下限値よりも小さいクランク角度である場合(熱発生率重心位置が下限値として設定されるクランク角度(後述する第2クランク角度に相当)よりも進角側にある場合)は、各種燃焼パラメータの何れか1つ以上の設定を燃焼制御部が変更して、熱発生率重心位置が下限値以上のクランク角度となるように制御することが望ましい。
 即ち、本発明の第4の実施態様は、
 本発明の前記第1乃至前記第3の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が前記第1クランク角度よりも進角側に設定された第2クランク角度よりも進角側にある場合においては、前記燃焼制御部が、燃料噴射圧の減少及び燃料噴射時期の遅角の何れか一方又は両方を実行し、
 前記熱発生率重心位置が前記第1クランク角度以下であり且つ前記第2クランク角度以上である場合においては、前記燃焼制御部が、前記過給機の過給圧、燃料噴射圧、及び燃料噴射時期の何れをも変更しない、
機関制御装置である。
 上述したように、上記において、第1クランク角度は、許容可能な熱発生率重心位置の上限値として設定することができる。一方、第2クランク角度は、許容可能な熱発生率重心位置の下限値として設定することができる。即ち、熱発生率重心位置が第1クランク角度以下であり且つ第2クランク角度以上である場合(つまり、熱発生率重心位置が許容範囲内にある場合)、例えば燃費の最小化等、所望の制御結果が達成されている。従って、本実施態様に係る機関制御装置においては、実際の熱発生重心位置が許容範囲内にある場合、燃焼制御部は、過給機の過給圧、燃料噴射圧、及び燃料噴射時期の何れも変更しない。その結果、熱発生重心位置は変更されず、所望の制御結果が達成された状態が維持される。また、目標熱発生率重心位置(目標重心位置)として特定の1点の値を設定する場合は、例えば、特定の1点の値の上限において、熱発生重心位置のハンチングが生ずる虞が高いが、目標熱発生率重心位置(目標重心位置)にかかる許容範囲を設けることにより、かかるハンチングの発生等を低減して、制御を安定させる効果も得られる。
 一方、熱発生率重心位置が過度に進角側にある場合は、前述したように、排気損が低減し、過給圧の低下を招く虞がある。かかる場合、例えば可変容量型過給機のタービンが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して過給圧を補填しようとするとポンプ損失が悪化(増大)し、結果として燃費及び加速性能の両方を悪化させてしまう虞がある。従って、本実施態様に係る機関制御装置においては、熱発生率重心位置が第1クランク角度よりも進角側に設定された第2クランク角度よりも進角側にある場合は、燃焼制御部が熱発生率重心位置を遅角させる。この際、燃焼制御部は燃料噴射圧の減少及び燃料噴射時期の遅角の何れか一方又は両方を実行する。前述したように、燃料噴射時期及び燃料噴射圧等の噴射系パラメータは、補正時のレスポンスが良好であり、補正偏差の算出も容易である。従って、過度に進角側にある熱発生率重心位置を迅速に遅角させて許容範囲内に収める観点からは、熱発生率重心位置を制御するパラメータとして噴射系パラメータを用いることが望ましい。
 上記により、本実施態様に係る機関制御装置に依れば、ハンチングの発生等を低減しつつ、熱発生率重心位置を迅速に遅角させて許容範囲内に収め、例えば燃費の最小化等、所望の制御結果を達成することができる。
 ところで、前述したように、熱発生率重心位置は種々の手法により定義され得る。具体的には、熱発生率重心位置は、前述した定義1、2、3、3’、4、及び5等の何れかによって規定することができる。当然のことながら、これら種々の定義によって規定される熱発生率重心位置に基づく熱発生率重心位置の制御を行う機関制御装置もまた、本発明の実施態様に含まれる。そこで、前述した定義1、2、3、3’、4、及び5によって規定される熱発生率重心位置を用いる本発明の各種実施態様を以下に列挙する。但し、熱発生率重心位置の定義の各々については既に詳しく述べたので、ここでの説明は割愛する。
 先ず、本発明の第5の実施態様は、
 本発明の前記第1乃至前記第4の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が、1つの燃焼行程におけるクランク角度を一方の軸に設定し且つ熱発生率を前記一方の軸に直交する他方の軸に設定したグラフに描かれる熱発生率の波形と前記一方の軸とにより囲まれる領域の幾何学的重心に対応するクランク角度である、
機関制御装置である。
 次に、本発明の第6の実施態様は、
 本発明の前記第1乃至前記第4の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が、1つの燃焼行程におけるクランク角度を一方の軸に設定し且つ熱発生率を前記一方の軸に直交する他方の軸に設定したグラフに描かれる熱発生率の波形と前記一方の軸とにより囲まれる領域を特定クランク角度で分けたときに当該特定クランク角度によって分けられた2つの領域の面積が等しくなるような特定クランク角度である、
機関制御装置である。
 また、本発明の第7の実施態様は、
 本発明の前記第1乃至前記第4の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が、1つの燃焼行程における燃焼開始から燃焼終了までの間の特定クランク角度であって、「燃焼開始から特定クランク角度まで間の任意の第1クランク角度と特定クランク角度との差の大きさ」と「その任意の第1クランク角度における熱発生率」との積を燃焼開始から特定クランク角度までクランク角度について積分して得られる値と、「特定クランク角度から燃焼終了までの間の任意の第2クランク角度と特定クランク角度との差の大きさ」と「その任意の第2クランク角度における熱発生率」との積を特定クランク角度から燃焼終了までクランク角度について積分して得られる値と、が等しくなるような特定クランク角度である、
機関制御装置である。
 更に、本発明の第8の実施態様は、
 本発明の前記第1乃至前記第4の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が、1つの燃焼行程についての燃焼開始から燃焼終了までの特定クランク角度であって、任意のクランク角度から特定クランク角度を減じて得られる値と、前記任意のクランク角度における熱発生率と、の積に対応した値を、燃焼開始から燃焼終了までクランク角度について積分して得られる値が「0」となるような特定クランク角度である、
機関制御装置である。
 また更に、本発明の第9の実施態様は、
 本発明の前記第1乃至前記第4の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置が、1つの燃焼行程において、任意のクランク角度から燃焼開始クランク角度を減じて得られる値と、前記任意のクランク角度における熱発生率と、の積の積分値を、クランク角度に対する熱発生率の波形によって画定される領域の面積で割って得られる値に燃焼開始クランク角度を加えた値である、
機関制御装置である。
 加えて、本発明の第10の実施態様は、
 本発明の前記第1乃至前記第4の実施態様の何れか1つに係る機関制御装置であって、
 前記熱発生率重心位置は、下記(3)式に則った演算により求められるクランク角度であり、
Figure JPOXMLDOC01-appb-M000005
 上式中、Gcは熱発生率重心位置を表し、CAsは燃料の燃焼が始まるクランク角度である燃焼開始クランク角度であり、CAeは前記燃焼が終わるクランク角度である燃焼終了クランク角度であり、θは任意のクランク角度であり、dQ(θ)はクランク角度θにおける熱発生率である、
機関制御装置である。
 これらの何れの実施態様に係る機関制御装置においても、熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両の運転状況に応じて使い分けることにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 以下、本発明の幾つかの実施態様に係る機関制御装置につき更に詳しく説明する。但し、以下に述べる説明はあくまでも例示を目的とするものであり、本発明の範囲が以下の説明に限定されるものと解釈されるべきではない。
<第1実施形態>
 以下、図面を参照しながら本発明の第1実施形態に係る機関制御装置(以下、「第1装置」とも称呼する)について説明する。
(構成)
 第1装置は、図3に示した内燃機関(機関)10に適用される。機関10は、多気筒(本例では直列4気筒)・4サイクル・ピストン往復動型・ディーゼル機関である。機関10は、機関本体部20、燃料供給系統30、吸気系統40、排気系統50、高圧EGRシステム60、及び低圧EGRシステム90を含んでいる。
 機関本体部20は、シリンダブロック、シリンダヘッド及びクランクケース等を含む本体21を備える。本体21には、4つの気筒(燃焼室)22が形成されている。各気筒22の上部には燃料噴射弁(インジェクタ)23が配設されている。燃料噴射弁23は、後述するエンジンECU(電子制御ユニット)70の指示に応答して開弁し、気筒内に燃料を直接噴射するようになっている。
 燃料供給系統30は、燃料加圧ポンプ(サプライポンプ)31と、燃料送出管32と、コモンレール(蓄圧室)33と、を含む。燃料加圧ポンプ31の吐出口は燃料送出管32に接続されている。燃料送出管32はコモンレール33に接続されている。コモンレール33は燃料噴射弁23に接続されている。
 燃料加圧ポンプ31は、図示しない燃料タンクに貯留されている燃料を汲み上げた後に加圧し、その加圧された高圧燃料を、燃料送出管32を通してコモンレール33へ供給するようになっている。燃料加圧ポンプ31は、機関10のクランクシャフトに連動する駆動軸により作動する。燃料加圧ポンプ31は、電子制御ユニット70の指示に応答し、コモンレール33内の燃料の圧力(即ち、燃料噴射圧、コモンレール圧)を調整することができるようになっている。
 吸気系統40は、インテークマニホールド41、吸気管42、エアクリーナ43、過給機44のコンプレッサ44a、インタークーラー45、スロットル弁46、スロットル弁アクチュエータ47を含んでいる。
 インテークマニホールド41は各気筒に接続された枝部と、枝部が集合した集合部と、を含む。吸気管42はインテークマニホールド41の集合部に接続されている。インテークマニホールド41及び吸気管42は吸気通路を構成している。吸気管42には、吸入空気の流れの上流から下流に向け、エアクリーナ43、過給機44のコンプレッサ44a、インタークーラー45、及びスロットル弁46が順に配設されている。スロットル弁アクチュエータ47は、電子制御ユニット70の指示に応じてスロットル弁46の開度を変更するようになっている。
 排気系統50は、エキゾーストマニホールド51、排気管52、過給機44のタービン44b、ディーゼル酸化触媒(DOC)53、ディーゼルパティキュレートフィルタ(DPF)54、及び排気絞り弁55を含んでいる。
 エキゾーストマニホールド51は各気筒に接続された枝部と、枝部が集合した集合部と、を含む。排気管52はエキゾーストマニホールド51の集合部に接続されている。エキゾーストマニホールド51及び排気管52は排気通路を構成している。排気管52には、排ガスの流れの上流から下流に向け、過給機44のタービン44b、DOC53、DPF54、及び排気絞り弁55が配設されている。
 過給機44は周知の可変容量型過給機であり、そのタービン44bには図示しない複数のノズルベーン(可変ノズル)が設けられている。更に、タービン44bは、図示しない「タービン44bのバイパス通路、及び、そのバイパス通路に設けられたバイパスバルブ」を備えている。ノズルベーン及びバイパスバルブは、電子制御ユニット70の指示に応じて開度が変更され、その結果、過給圧が変更(制御)されるようになっている。即ち、本明細書において「過給機44を制御する」とは、ノズルベーンの角度及び/又はバイパスバルブの開度を変更することによって過給圧を変更することを意味する。
 DOC53は、排ガス中の未燃ガス(HC、CO)を酸化する。即ち、DOC53により、HCは水とCOに酸化され、COはCOに酸化される。更に、DOC53により、NOxのうちのNOがNOに酸化される。
 DPF54は、炭素からなる煤及びこれに付着した有機物を含むPM(パティキュレートマター)を捕集する。捕集された炭素はDPF54に流入するNOによって酸化されてCOとNOとに変化する。
 排気絞り弁55は、電子制御ユニット70の指示に応じて開度が変更され、その結果、排気圧力が変更(調整)されることにより、例えば、過給機44による過給圧が変更(制御)されるようになっている。
 高圧EGRシステム60は、高圧排気還流管61、高圧EGR制御弁62、及び高圧EGRクーラー63を含んでいる。高圧排気還流管61は、排気通路(エキゾーストマニホールド51)であってタービン44bよりも上流の位置と、吸気通路(インテークマニホールド41)であってスロットル弁46よりも下流の位置と、を連通している。高圧排気還流管61は高圧EGRガス通路を構成している。高圧EGR制御弁62は高圧排気還流管61に配設されている。高圧EGR制御弁62は、電子制御ユニット70からの指示に応答して高圧EGRガス通路の通路断面積を変更することにより、排気通路から吸気通路へと再循環される排ガス量(高圧EGRガス量)を変更し得るようになっている。
 一方、低圧EGRシステム90は、低圧排気還流管91、低圧EGR制御弁92、及び低圧EGRクーラー93を含んでいる。低圧排気還流管91は、排気通路(排気管52)であってDPF54よりも下流の位置と、吸気通路(吸気管42)であって過給機44のコンプレッサ44aよりも上流の位置と、を連通している。低圧排気還流管91は低圧EGRガス通路を構成している。低圧EGR制御弁92は低圧排気還流管91に配設されている。低圧EGR制御弁92は、電子制御ユニット70からの指示に応答して低圧EGRガス通路の通路断面積を変更することにより、排気通路から吸気通路へと再循環される排ガス量(低圧EGRガス量)を変更し得るようになっている。
 電子制御ユニット70は、周知のマイクロコンピュータを含む電子回路であり、CPU、ROM、RAM、バックアップRAM、及びインターフェース等を含む。電子制御ユニット70は、以下に述べるセンサ類と接続されていて、これらのセンサからの信号を受信(入力)するようになっている。更に、電子制御ユニット70は、CPUからの指示に応じて、各種アクチュエータに指示(駆動)信号を送出するようになっている。
 電子制御ユニット70は、エアフローメータ71、スロットル弁開度センサ72、吸気管圧力センサ73、燃料圧力センサ74、筒内圧センサ75、クランク角度センサ76、高圧EGR制御弁開度センサ77、水温センサ78、低圧EGR制御弁開度センサ79、及び排気絞り弁開度センサ80と接続されている。
 エアフローメータ71は吸気通路内を通過する吸入空気(EGRガスを含まない新気)の質量流量を測定し、質量流量(以下、「吸入空気量Ga」と称呼する)を表す信号を出力する。更に、エアフローメータ71は吸入空気の温度を検出し、その吸気温THAを表す信号を出力する。
 スロットル弁開度センサ72はスロットル弁開度を検出し、スロットル弁開度TAを表す信号を出力する。
 吸気管圧力センサ73は、吸気通路内であってスロットル弁46よりも下流の吸気管内のガスの圧力(吸気管圧力)Pimを表す信号を出力する。吸気管圧力Pimは過給圧であると言うこともできる。
 燃料圧力センサ74は、コモンレール33内の燃料の圧力(燃料圧力、燃料噴射圧、コモンレール圧)を検出し、燃料噴射圧Pcrを表す信号を出力する。
 筒内圧センサ75は、各気筒(燃焼室)に対応するように配設されている。筒内圧センサ75は、対応する気筒内の圧力(即ち、筒内圧)を検出し、筒内圧Pcyを表す信号を出力する。
 クランク角度センサ76は、機関10の図示しないクランクシャフトの回転位置(即ち、クランク角度)に応じた信号を出力する。電子制御ユニット70は、このクランク角度センサ76及び図示しないカムポジションセンサからの信号に基づいて、所定の気筒の圧縮上死点を基準とした機関10のクランク角度(絶対クランク角度)θを取得する。更に、電子制御ユニット70は、クランク角度センサ76からの信号に基づいて、機関回転速度Neを取得する。
 高圧EGR制御弁開度センサ77は、高圧EGR制御弁62の開度を検出し、その開度を表す信号Vegrhを出力する。
 低圧EGR制御弁開度センサ79は、低圧EGR制御弁92の開度を検出し、その開度を表す信号Vegrlを出力する。
 水温センサ78は、機関10の冷却水の温度(冷却水温)を検出し、冷却水温THWを表す信号を出力する。
 加えて、電子制御ユニット70は、アクセル開度センサ83、車速センサ84、及び燃料残量センサ85と接続されている。
 アクセル開度センサ83は、図示しないアクセルペダルの開度(アクセルペダル操作量)を検出し、アクセルペダル開度Accpを表す信号を出力する。
 車速センサ84は、機関10が搭載された車両の走行速度を検出し、その走行速度(車速)Spdを表す信号を出力する。
 燃料残量センサ85は、図示しない燃料タンクに貯留されている燃料の量(即ち、燃料残量)を検出し、その残量を表す信号Frを出力する。
(制御の概要)
 次に、第1装置の作動の概要について説明する。第1装置は、前述した定義1、2、3、3’、4、及び5等の何れかによって規定される熱発生率重心位置が所定の目標熱発生率重心位置(以下、単に、「目標重心位置」とも称呼する)となるように燃焼制御を行う(即ち、燃焼パラメータを設定する)。目標熱発生率重心位置は、目標熱発生率重心角度又は目標クランク角度とも称呼される。尚、熱発生率重心位置は、燃焼波形が同じであれば、前述した定義1、2、3、3’、4、及び5の何れによっても同じクランク角度になる。
 第1装置においては、熱発生率重心位置が目標重心位置と一致するように機関の運転状態(機関の負荷及び機関回転速度等)に対して燃焼パラメータが予め定められ且つROMに記憶されている。第1装置は、実際の機関の運転状態に応じてROMから燃焼パラメータを読み出し、その燃焼パラメータを使用する制御(即ち、フィードフォワード制御)によって熱発生率重心位置を目標重心位置に一致させる。更に、第1装置は、実際の熱発生率重心位置を筒内圧センサ75が検出する筒内圧Pcyに基づいて推定し、その推定した熱発生率重心位置が目標重心位置と一致するように燃焼パラメータをフィードバック制御する。但し、係るフィードバック制御は必ずしも必須ではない。更に、フィードフォワード制御は実行せず、フィードバック制御のみにより熱発生率重心位置を目標重心位置と一致させてもよい。
 上記制御においては、前述したように、例えば、燃料噴射時期、燃料噴射圧、パイロット噴射によって噴射される燃料の量、及び過給圧等の燃焼パラメータを、熱発生率重心位置を制御するパラメータとして用いることにより、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値(目標重心位置)に維持することにより機関の燃焼状態を特定の状態に維持して燃費を改善することができる。かかる燃焼パラメータとしては、例えば、前述した(1)乃至(13)の1つ以上を採用することができる。また、熱発生率重心位置Gcを進角又は遅角させる場合における、これらの燃焼パラメータの設定についても前述した通りである。
 これらの燃焼パラメータの中で、燃料噴射時期及び燃料噴射圧等の燃料噴射に関するパラメータ(噴射系パラメータ)は、前述したように、補正時のレスポンスが良好であり、補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易である。かかる観点からは、熱発生率重心位置を制御するパラメータとして噴射系パラメータを用いることが望ましい。
 しかしながら、前述したように、噴射系パラメータを用いて熱発生率重心位置を制御する場合、単位クランク角度当たりの燃焼室内の圧力(筒内圧)の変化量が大きくなり、例えば燃焼騒音等、燃焼に伴う騒音及び振動に与える影響が大きくなるため、結果として、例えば、当該機関が動力源として搭載される車両のユーザ(例えば運転者等)に不快感を与える虞がある。特に、機関の回転速度及び当該機関が搭載される車両の速度が低い場合においては、当該機関及び車両の作動に伴って発生する騒音及び振動が小さいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易い傾向がある。
 また、前述したように、例えば、機関の回転速度及び当該機関が搭載される車両の速度が低い場合等、車両の速度を今後高める(即ち加速する)ことが想定される状況において良好なドライバビリティを維持するためには、加速性能の確保が重要である。しかしながら、例えば、燃料噴射圧の増大及び/又は燃料噴射時期の進角により熱発生率重心位置を進角させようとする場合、燃料噴射圧の増大及び/又は燃料噴射時期の進角により排気損が低減し、過給圧の低下を招く虞がある。かかる場合、例えば可変容量型過給機44のタービン44bが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して過給圧を補填しようとするとポンプ損失が悪化(増大)し、結果として燃費及び加速性能の両方を悪化させてしまう虞がある。
 従って、機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満である場合に熱発生率重心位置を所定の一定値に維持して燃費を改善しようとする際には、ユーザに不快感を与える騒音及び振動の増大及び加速性能の悪化の懸念が少ない燃焼パラメータを使用して熱発生率重心を制御することが望ましい。かかる燃焼パラメータの具体例としては、過給機による過給圧を挙げることができる。
 一方、機関の回転速度又は当該機関が搭載される車両の速度が高い場合においては、当該機関及び車両の作動に伴って発生する騒音及び/又は振動が大きいため、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難い傾向がある。従って、かかる場合においては、前述したように、補正時のレスポンスが良好であり、補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易な燃焼パラメータを使用して熱発生率重心を制御することが望ましい。かかる燃焼パラメータの具体例としては、燃料噴射時期及び燃料噴射圧等の燃料噴射に関するパラメータ(噴射系パラメータ)を挙げることができる。
 そこで、第1装置においては、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
  前記機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満であるときには、前記燃焼制御部が、前記過給機の過給圧の増大を実行し、
  前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときには、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。
 これに依れば、機関の回転速度及び当該機関が搭載される車両の速度が低い場合においては、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易いものの、ユーザに不快感を与える騒音及び振動の増大の懸念が少ない燃焼パラメータである過給圧によって熱発生率重心が制御される。これにより、ユーザに不快感を与える騒音及び振動の増大を抑制すると共に、加速性能を確保することもできる。一方、機関の回転速度又は当該機関が搭載される車両の速度が高い場合においては、補正時のレスポンスが良好であり、補正偏差の算出も容易な燃焼パラメータである、噴射系パラメータによって熱発生率重心が制御される。このように、第1装置に依れば、熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両の運転状況に応じて使い分けることにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
(実際の作動)
 次に、電子制御ユニット70のCPU(以下、単に「CPU」と表記する)が実際に行う処理について説明する。尚、ここでは、熱発生率重心位置のフィードバック制御について説明する。CPUは、所定時間が経過する毎に図4にフローチャートにより示したルーチンを実行するようになっている。このルーチンにより、実際の熱発生率重心位置Gcが目標重心位置Gctgtと等しくなるように、燃焼パラメータがフィードバック制御により調整される。この際、熱発生率重心位置を制御するために用いるパラメータが、機関及び当該機関が搭載される車両の運転状況に応じて使い分けられる。また、本ルーチンは機関10の気筒毎に実行される。
 適当なタイミングになると、CPUは図4のステップ400から処理を開始し、ステップ410に進んで種々の運転状態パラメータを上述したセンサ等から取得する。CPUは図4のステップ420に進み、燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率に基づいて、実際の熱発生率重心位置Gcを算出する。
 具体的には、CPUは、筒内圧Pcyに基づいてクランク角度θ[degATDC]に対する単位クランク角度当たりの発熱量である熱発生率dQ(θ)[J/degATDC]を周知の手法に基づいて算出する(例えば、特開2005-54753号公報、特開2007-285194号公報等を参照)。
 次いで、CPUは、前述した定義1、2、3、3’、4、及び5の何れかに基づいて、熱発生率重心位置Gcを取得・推定する。ここでは、CPUは、熱発生率dQ(θ)を下記(3)式に適用することにより、熱発生率重心位置Gcを取得・推定する。尚、実際には、熱発生率重心位置Gcは、(3)式をデジタル演算式に変換した式に基づいて計算される。(3)式において、CAsは燃焼が開始するクランク角度であり、CAeは燃焼が終了するクランク角度である。
Figure JPOXMLDOC01-appb-M000006
 次に、CPUはステップ430に進み、算出された実際の熱発生率重心位置Gcが予め定められた目標熱発生率重心位置Gctgt(第1クランク角度)よりも大きい(GcがGctgtよりも遅角側にある)か否かを判定する。
 上記ステップ430において実際の熱発生率重心位置Gcが目標熱発生率重心位置Gctgt(第1クランク角度)以下である(GcがGctgtと等しいか又はGctgtよりも進角側にある)と判定される場合(ステップ430:No)、CPUはステップ480に進み、燃料噴射圧の減少及び燃料噴射時期の遅角の何れか一方又は両方を実行することにより、実際の熱発生率重心位置Gcを遅角させる。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。尚、ステップ480における熱発生率重心位置Gcの遅角化は必須の要件ではない。一方、上記ステップ430において実際の熱発生率重心位置Gcが目標熱発生率重心位置Gctgt(第1クランク角度)よりも大きい(GcがGctgtよりも遅角側にある)と判定される場合(ステップ430:Yes)、CPUはステップ440に進み、機関回転速度Neが予め定められた第1回転速度Ne1未満であるか否かを判定する。
 上記ステップ440において機関回転速度Neが第1回転速度Ne1以上であると判定された場合(ステップ440:No)、CPUはステップ470に進み、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行することにより、実際の熱発生率重心位置Gcを進角させる。この際、機関回転速度Neが高く、当該機関の作動に伴って発生する騒音及び/又は振動が大きい。従って、前述したように、このように噴射系パラメータを用いて熱発生率重心位置Gcを制御しても燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難く、ユーザに不快感を与える虞が低減される。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。一方、上記ステップ440において機関回転速度Neが第1回転速度Ne1未満であると判定された場合(ステップ440:Yes)、CPUはステップ450に進み、当該機関が搭載された車両の走行速度(車速)Spdが予め定められた第1速度Spd1未満であるか否かを判定する。
 上記ステップ450において車速Spdが第1速度Spd1以上であると判定された場合(ステップ450:No)、CPUはステップ470に進み、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。一方、上記ステップ450において車速Spdが第1速度Spd1未満であると判定された場合(ステップ450:Yes)、CPUはステップ460に進み、過給機による過給圧を増大させる。この場合、機関回転速度Ne及び車速Spdが共に低く、当該機関の作動に伴って発生する騒音及び振動が小さい。従って、前述したように、かかる場合に噴射系パラメータを用いて熱発生率重心位置Gcを制御すると燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易く、ユーザに不快感を与える虞が高まる。しかしながら、ステップ460においては、過給機による過給圧を増大させることにより、実際の熱発生率重心位置Gcを進角させる。その結果、ユーザに不快感を与える騒音及び振動の増大を抑制すると共に加速性能を確保しつつ、実際の熱発生率重心位置Gcを目標熱発生率重心位置Gctgt(第1クランク角度)に近付けるように制御することができる。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。
 以上、説明したように、第1装置は、過給機を備える機関の気筒に供給される燃料の燃焼状態パラメータである燃焼パラメータを設定する燃焼制御部を備える。当該機関制御装置は、少なくとも第1閾値から同第1閾値よりも大きい第2閾値までの特定負荷範囲内に前記機関の負荷があるとき、前記燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まる熱発生率重心位置が第1クランク角度に等しくなるように前記燃焼パラメータを前記燃焼制御部が設定する。
 更に、前記燃焼制御部は、
 前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
  前記機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満であるときには、前記過給機の過給圧の増大を実行し、
  前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときには、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。
 これに依れば、機関の回転速度及び当該機関が搭載される車両の速度が低い場合においては、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され易いものの、ユーザに不快感を与える騒音及び振動の増大の懸念が少ない燃焼パラメータである過給圧によって熱発生率重心が制御されるので、ユーザに不快感を与える騒音及び振動の増大を抑制すると共に、加速性能を確保することもできる。一方、機関の回転速度又は当該機関が搭載される車両の速度が高い場合においては、補正時のレスポンスが良好であり、補正偏差の算出も容易な燃焼パラメータである、噴射系パラメータによって熱発生率重心が制御される。このように、第1装置に依れば、熱発生率重心位置を制御するために用いるパラメータを機関及び当該機関が搭載される車両の運転状況に応じて使い分けることにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、機関の負荷及び/又は機関回転速度に依らず熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
<第2実施形態>
 次に、本発明の第2実施形態に係る機関制御装置(以下、「第2装置」とも称呼する)について説明する。第2装置は、電子制御ユニット70のCPUが「図4に示したルーチン」に代えて「図5に示したルーチン」を実行する点のみにおいて第1装置と相違している。従って、以下、この相違点を中心として説明する。
 先ず、図5に示したルーチンにおいては、熱発生率重心位置Gcと目標熱発生率重心位置(の上限値Gc1)とを対比するステップ520(図4におけるステップ430に該当)の前に、ステップ510において、その時点における機関及び車両の運転状況並びに各種燃焼パラメータの設定値等に基づいて筒内最高圧(Pmax)が算出される。その後、ステップ512において、斯くして算出されたPmaxが機関の筒内圧の設計上の上限値である最大筒内圧(上限圧)未満に収まっているか否かが判定される。Pmaxが上限圧未満に収まっていない(Pmax≧上限圧)場合は、CPUはステップ480に進み、図4に示したルーチンと同様に、燃料噴射圧の減少及び燃料噴射時期の遅角の何れか一方又は両方を実行することにより、実際の熱発生率重心位置Gcを遅角させる。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。これにより、第2装置においては、筒内圧が機関の設計上の上限値を超えないように制御することができる。
 また、図4に示したルーチンにおいては、熱発生率重心位置Gcを目標熱発生率重心位置Gctgtに近付けるように燃焼パラメータが設定されたが、図5に示したルーチンにおいては、熱発生率重心位置Gcを目標熱発生率重心位置の許容範囲内に収めるように燃焼パラメータが設定される。より具体的には、図5に示したルーチンを実行する第2装置においては、図4に示したルーチンと同様に、ステップ420において熱発生率重心位置Gcが算出される。しかしながら、次のステップ520においては、図4に示したルーチンとは異なり、熱発生率重心位置Gcが目標熱発生率重心位置の許容範囲の上限値Gc1よりも大きいか否かが判定される。
 上記ステップ520において熱発生率重心位置Gcが目標熱発生率重心位置の上限値Gc1(第1クランク角度)よりも大きい(GcがGc1よりも遅角側にある)と判定される場合(ステップ520:Yes)は、図4に示したルーチンと同様に、CPUはステップ440に進み、機関回転速度Neが予め定められた第1回転速度Ne1未満であるか否かを判定する。
 上記ステップ440において機関回転速度Neが第1回転速度Ne1未満であると判定された場合(ステップ440:Yes)、CPUはステップ450に進み、当該機関が搭載された車両の走行速度(車速)Spdが予め定められた第1速度Spd1未満であるか否かを判定する。
 上記ステップ450において車速Spdが第1速度Spd1未満であると判定された場合(ステップ450:Yes)、図4に示したルーチンと同様に、CPUはステップ460に進み、過給機による過給圧を増大させる。これにより、図5に示したルーチンを実行する第2装置においても、ユーザに不快感を与える騒音及び振動の増大を抑制すると共に加速性能を確保しつつ、実際の熱発生率重心位置Gcが目標熱発生率重心位置の上限値Gc1(第1クランク角度)未満となるように制御することができる。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。
 一方、上記ステップ440において機関回転速度Neが第1回転速度Ne1以上であると判定された場合(ステップ440:No)及び上記ステップ450において車速Spdが第1速度Spd1以上であると判定された場合(ステップ450:No)は、図4に示したルーチンと同様に噴射系パラメータを用いて、目標熱発生率重心位置の許容範囲内に収まるように熱発生率重心Gcが制御される。しかしながら、図5に示したルーチンにおいては、機関の回転速度及び車速の状況に応じて、燃料噴射時期及び燃料噴射圧をよりきめ細かく使い分ける点において、図4に示したルーチンと異なる。この点については後に詳述する。
 ところで、図5に示したルーチンにおいては、上記ステップ520において熱発生率重心位置Gcが目標熱発生率重心位置の上限値Gc1(第1クランク角度)以下である(GcがGc1と等しいか又はGc1よりも進角側にある)と判定される場合(ステップ520:No)は、図4に示したルーチンとは異なり、CPUはステップ522に進み、熱発生率重心位置Gcが目標熱発生率重心位置の許容範囲の上限値Gc1よりも小さく且つ下限値Gc2よりも大きいか否か(熱発生率重心位置Gcが目標熱発生率重心位置の許容範囲内に収まっているか否か)が判定される。
 上記ステップ522において熱発生率重心位置Gcが目標熱発生率重心位置の許容範囲内に収まっていると判定された場合(ステップ522:Yes)は、前述したように、例えば燃費の最小化等、所望の制御結果が達成されている。従って、かかる場合、第2装置においては、燃焼パラメータの設定を変更せずに、ステップ490に進み、本ルーチンを一旦終了する。その結果、熱発生重心位置Gcは変更されず、所望の制御結果が達成された状態が維持される。また、熱発生重心位置Gcのハンチングの発生等を低減して、制御を安定させる効果も期待される。
 一方、上記ステップ522において熱発生率重心位置Gcが目標熱発生率重心位置の許容範囲内に収まっていない(即ち、熱発生率重心位置Gcが目標熱発生率重心位置の下限値Gc2と等しいか又はGc2よりも進角側にある)と判定された場合(ステップ522:No)は、熱発生率重心位置が過度に進角側にあることを意味する。この場合、CPUはステップ480に進み、図4に示したルーチンと同様に、燃料噴射圧の減少及び燃料噴射時期の遅角の何れか一方又は両方を実行することにより、実際の熱発生率重心位置Gcを遅角させる。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。これにより、熱発生率重心位置が過度に進角側にあるために排気損が低減して過給圧の低下を招く虞を低減することができる。
 ところで、上述したように、図5に示したルーチンにおいては、上述したステップ440において機関回転速度Neが第1回転速度Ne1以上であると判定された場合(ステップ440:No)及び上述したステップ450において車速Spdが第1速度Spd1以上であると判定された場合(ステップ450:No)、機関の回転速度及び車速の状況に応じて、燃料噴射時期と燃料噴射圧とがよりきめ細かく使い分けられる。具体的には、上述したステップ440において機関回転速度Neが第1回転速度Ne1以上であると判定された場合(ステップ440:No)、CPUはステップ530に進み、燃料噴射圧の増大を実行することにより、熱発生率重心位置Gcを進角させる。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。一方、上述したステップ450において車速Spdが第1速度Spd1以上であると判定された場合(ステップ450:No)は、CPUはステップ536に進み、燃料噴射時期の進角を実行する。その後、CPUはステップ490に進み、本ルーチンを一旦終了する。
 以上説明してきたように、図5に示したルーチンを実行する第2装置においては、熱発生率重心位置Gcが目標熱発生率重心位置の上限値Gc1(第1クランク角度)より遅角側にある場合(ステップ520:Yes)において、機関が搭載される車両の速度Spdが第1速度Spd1以上であっても機関の回転速度Neが第1回転速度Ne1未満であるとき(ステップ440:Yes且つステップ450:No)には、燃焼騒音に与える影響が相対的に大きい燃料噴射圧ではなく、燃焼騒音に与える影響が相対的に小さい燃料噴射時期を変更することにより熱発生率重心の制御を行う(ステップ536)。これにより、ユーザに不快感を与える騒音及び振動の増大をより有効に抑制しつつ、熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 一方、第2装置においては、熱発生率重心位置Gcが目標熱発生率重心位置の上限値Gc1(第1クランク角度)より遅角側にある場合(ステップ520:Yes)において、機関の回転速度Neが第1回転速度Ne1以上であるとき(ステップ440:No)には、燃焼騒音に与える影響が相対的に大きい燃料噴射圧を変更することにより熱発生率重心の制御を行う(ステップ530)。これにより、ユーザに不快感を与える騒音及び振動の増大を抑制しつつ、熱発生率重心位置を所定の一定値に維持して、燃費を改善することができる。
 但し、本発明に係る機関制御装置において、熱発生率重心位置が目標熱発生率重心位置の上限値(第1クランク角度)より遅角側にある場合において、熱発生率重心の制御に用いるパラメータとしての燃料噴射時期及び燃料噴射圧を使い分けるパターンは、上記に限定されるものではない。
 例えば、前述したように、機関の回転速度が高い運転領域においては燃料噴射圧が高く設定されている場合があり、かかる状況においては燃料噴射圧の上げしろは多くは残っていない虞がある。その結果、燃料噴射圧の増大のみによっては熱発生率重心を十分に進角させることが困難である虞がある。かかる場合においては、燃料噴射時期を変更することによる熱発生率重心の制御を追加的に行ってもよい。即ち、上述したように熱発生率重心位置が第1クランク角度よりも遅角側にある場合において機関の回転速度が第1回転速度以上であるときに燃焼制御部が燃料噴射圧の増大を実行することにより進角された熱発生率重心位置が未だに第1クランク角度よりも遅角側にある場合は、燃料噴射時期の進角により熱発生率重心位置を更に進角させてもよい。
 また、前述した(a)の場合においては、機関回転速度が第1回転速度以上であり且つ機関が搭載される車両の速度(車速)が第1速度以上である。かかる場合、当該機関から発生する騒音及び振動が大きく、例えば、風切り音、ロードノイズ等も大きい状況が想定される。即ち、かかる場合においては、燃料の燃焼に伴う騒音及び振動の変化がユーザに検知され難い傾向がより強い。従って、機関が搭載される車両の速度が高く且つ機関の回転速度が高い場合には、熱発生率重心の制御を行うための噴射系パラメータとして燃料噴射圧及び燃料噴射時期の何れを選択してもよく、燃料噴射圧及び燃料噴射時期の両方を選択してもよい。
 更に、補正時のレスポンスが良好であり且つ補正に伴う熱発生率重心位置の偏差(補正偏差)の算出も容易であるという観点からは、機関が搭載される車両の速度が高く且つ機関の回転速度が高い場合において熱発生率重心位置を制御する噴射系パラメータとして燃料噴射時期を選択することがより望ましい。このように、本発明の種々の実施態様に係る機関制御装置においては、燃焼制御部が、熱発生率重心の制御に用いるパラメータとしての燃料噴射時期及び燃料噴射圧を、例えば、機関の回転速度及び車速の状況等に応じて、様々にきめ細かく使い分けることができる。
<第3実施形態>
 次に、本発明の第3実施形態に係る機関制御装置(以下、「第3装置」とも称呼する)について説明する。第3装置は、電子制御ユニット70のCPUが、「図4に示したルーチンに含まれるステップ470」に代えて「図6に示したルーチン」を実行する点のみにおいて第1装置と相違している。従って、以下、この相違点を中心として説明する。
 前述したように、図4に示したルーチンにおいては、ステップ440において機関回転速度Neが第1回転速度Ne1以上であると判定された場合(ステップ440:No)、及びステップ450において車速Spdが第1速度Spd1以上であると判定された場合(ステップ450:No)、の何れの場合においても、CPUはステップ470に進み、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行することにより、実際の熱発生率重心位置Gcを進角させる。
 しかしながら、前述したように、燃料噴射圧の増大及び/又は燃料噴射時期の進角により熱発生率重心位置を進角させようとすると、燃料噴射圧の増大及び/又は燃料噴射時期の進角により排気損が低減し、過給圧の低下を招く虞がある。かかる場合、例えば可変容量型過給機のタービンが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して過給圧を補填しようとするとポンプ損失が悪化(増大)し、結果として燃費及び加速性能の両方を悪化させてしまう虞がある。
 そこで、第3装置においては、熱発生率重心位置Gcが目標熱発生率重心位置の上限値Gc1(第1クランク角度)よりも遅角側にある場合において、機関の回転速度Neが第1回転速度Ne1以上であるか又は機関が搭載される車両の速度Spdが第1速度Spd1以上であるときであっても、機関のアクセル開度(Accp)が第1開度Accp1より大きく、且つ、燃料噴射圧の増大及び/又は燃料噴射時期の進角により熱発生率重心位置Gcが第1クランク角度Gc1に近付くことに起因するトルクの上昇幅(ΔTQ2)の絶対値が、燃料噴射圧の増大及び/又は燃料噴射時期の進角による過給圧の低下を補填することに伴う機関のポンプ損失の増大に起因するトルクの低下幅(ΔTQ1)の絶対値よりも小さいと判定されるときは、燃料噴射圧の増大及び燃料噴射時期の進角の何れも実行しない。
 具体的には、第3装置においては、図4に示したルーチンに含まれるステップ470にCPUが進む局面においても、「図4に示したルーチンに含まれるステップ470」に代えて「図6に示したルーチン」を実行する。詳しくは、ステップ600において、当該車両において加速要求があるか否かを判断するための指標として、アクセル開度Accpを検出する。その後、CPUはステップ610に進み、アクセル開度Accpが第1開度Accp1よりも大きいか否か(加速要求があるか否か)が判定される。
 上記ステップ610においてアクセル開度Accpが第1開度Accp1よりも大きくない(Accp≦Accp1)と判定された場合(ステップ610:No)は、上述したような加速性能の悪化を考慮する必要は無いので、CPUはステップ660に進み、図4に示したルーチンに含まれるステップ470と同様に、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。一方、上記ステップ610においてアクセル開度Accpが第1開度Accp1よりも大きい(Accp>Accp1)と判定された場合(ステップ610:Yes)は、上述したような加速性能の悪化を招くことは回避すべきであるので、CPUはステップ620に進み、燃料噴射圧の増大及び/又は燃料噴射時期の進角に伴う過給圧の低下量(ΔPim)を算出し、斯くして算出されたΔPimを例えば可変容量型過給機のタービンが備えるノズルベーン及び/又はバイパスバルブの開度を小さくする等して補填する際に生ずる過給効率の低下量を、例えば、過給圧、タービン入圧、ノズルベーン及び/又はバイパスバルブの開度、並びに吸気量等に基づいて算出する。
 その後、CPUはステップ630に進み、算出された過給効率に基づいてトルクの低下幅(ΔTQ1)を算出する。また、熱発生率重心位置Gcの進角化に伴うトルクの上昇幅(ΔTQ2)については、例えば、燃料噴射圧の増大及び/又は燃料噴射時期の進角の結果として達成される新たな熱発生率重心位置Gcにおける各種燃焼パラメータの値、並びに機関及び当該機関が搭載される車両の運転状況(例えば、機関回転数Ne、車速Spd等)等に基づいて算出する。
 更に、CPUはステップ640に進み、上記のようにして算出されたトルクの低下幅(ΔTQ1)及び上昇幅(ΔTQ2)の絶対値の大小関係を判定する。具体的には、ステップ640において、トルクの低下幅(ΔTQ1)の絶対値(|ΔTQ1|)がトルクの上昇幅(ΔTQ2)の絶対値(|ΔTQ2|)よりも大きいか否かが判定される。ステップ640においてトルクの上昇幅の絶対値がトルクの低下幅の絶対値以上である(|ΔTQ1|≦|ΔTQ2|)と判定された場合(ステップ640:No)は、上述したような加速性能の悪化を招く虞が低い。従って、CPUはステップ660に進み、図4に示したルーチンに含まれるステップ470と同様に、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する。一方、ステップ640においてトルクの上昇幅の絶対値がトルクの低下幅の絶対値未満である(|ΔTQ1|>|ΔTQ2|)と判定された場合(ステップ640:Yes)は、上述したような加速性能の悪化を招く虞が高い。従って、CPUは燃料噴射圧の増大及び燃料噴射時期の進角を禁止する(ステップ650)。このように、第3装置に依れば、加速要求がある場合には加速性能を確保しつつ燃費を改善することができる。
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施態様につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施態様に限定されるものと解釈されるべきではなく、請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。
 10…機関、20…機関本体部、21…本体、22…気筒、23…燃料噴射弁、30…燃料供給系統、31…燃料加圧ポンプ、32…燃料送出管、33…コモンレール、40…吸気系統、41…インテークマニホールド、42…吸気管、43…エアクリーナ、44…過給機、44a…コンプレッサ、44b…タービン、45…インタークーラー、46…スロットル弁、47…スロットル弁アクチュエータ、50…排気系統、51…エキゾーストマニホールド、52…排気管、53…ディーゼル酸化触媒(DOC)、54…ディーゼルパティキュレートフィルタ(DPF)、55…排気絞り弁、60…高圧EGRシステム、61…高圧排気還流管、62…高圧EGR制御弁、63…高圧EGRクーラー、70…ECU(電子制御ユニット)、71…エアフローメータ、72…スロットル弁開度センサ、73…吸気管圧力センサ、74…燃料圧力センサ、75…筒内圧センサ、76…クランク角度センサ、77…高圧EGR制御弁開度センサ、78…水温センサ、79…低圧EGR制御弁開度センサ、80…排気絞り弁開度センサ、90…低圧EGRシステム、91…低圧排気還流管、92…低圧EGR制御弁、及び93…低圧EGRクーラー。

Claims (10)

  1.  過給機を備える内燃機関の気筒に供給される燃料の燃焼状態を制御する燃焼パラメータを設定する燃焼制御部を備える機関制御装置であって、
     少なくとも第1閾値から同第1閾値よりも大きい第2閾値までの特定負荷範囲内に前記機関の負荷があるとき、前記燃料の燃焼により発生する熱の単位クランク角度当たりの量である熱発生率により定まる熱発生率重心位置が第1クランク角度に等しくなるように前記燃焼パラメータを前記燃焼制御部が設定する、
    機関制御装置において、
     前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
      前記機関の回転速度が第1回転速度未満であり且つ前記機関が搭載される車両の速度が第1速度未満であるときには、前記燃焼制御部が、前記過給機の過給圧の増大を実行し、
      前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときには、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れか一方又は両方を実行する、
    機関制御装置。
  2.  請求項1に記載の機関制御装置であって、
     前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、
      前記車両の速度が前記第1速度以上であっても、前記機関の回転速度が前記第1回転速度未満であるときには、前記燃焼制御部が燃料噴射時期の進角のみを実行し、
      前記機関の回転速度が前記第1回転速度以上であるときには、前記燃焼制御部が燃料噴射圧の増大を実行する、
    機関制御装置。
  3.  請求項1又は2の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が前記第1クランク角度よりも遅角側にある場合において、前記機関の回転速度が前記第1回転速度以上であるか又は前記車両の速度が前記第1速度以上であるときであっても、
      前記機関のアクセル開度が第1開度より大きく、且つ、燃料噴射圧の増大及び/又は燃料噴射時期の進角により前記熱発生率重心位置が前記第1クランク角度に近付くことに起因するトルクの上昇幅の絶対値が、燃料噴射圧の増大及び/又は燃料噴射時期の進角による過給圧の低下を補填することに伴う前記機関のポンプ損失の増大に起因するトルクの低下幅の絶対値よりも小さいと判定されるときは、前記燃焼制御部が、燃料噴射圧の増大及び燃料噴射時期の進角の何れも実行しない、
    機関制御装置。
  4.  請求項1乃至3の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が前記第1クランク角度よりも進角側に設定された第2クランク角度よりも進角側にある場合においては、前記燃焼制御部が、燃料噴射圧の減少及び燃料噴射時期の遅角の何れか一方又は両方を実行し、
     前記熱発生率重心位置が前記第1クランク角度以下であり且つ前記第2クランク角度以上である場合においては、前記燃焼制御部が、前記過給機の過給圧、燃料噴射圧、及び燃料噴射時期の何れをも変更しない、
    機関制御装置。
  5.  請求項1乃至4の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が、1つの燃焼行程におけるクランク角度を一方の軸に設定し且つ熱発生率を前記一方の軸に直交する他方の軸に設定したグラフに描かれる熱発生率の波形と前記一方の軸とにより囲まれる領域の幾何学的重心に対応するクランク角度である、
    機関制御装置。
  6.  請求項1乃至4の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が、1つの燃焼行程におけるクランク角度を一方の軸に設定し且つ熱発生率を前記一方の軸に直交する他方の軸に設定したグラフに描かれる熱発生率の波形と前記一方の軸とにより囲まれる領域を特定クランク角度で分けたときに当該特定クランク角度によって分けられた2つの領域の面積が等しくなるような特定クランク角度である、
    機関制御装置。
  7.  請求項1乃至4の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が、1つの燃焼行程における燃焼開始から燃焼終了までの間の特定クランク角度であって、「燃焼開始から特定クランク角度まで間の任意の第1クランク角度と特定クランク角度との差の大きさ」と「その任意の第1クランク角度における熱発生率」との積を燃焼開始から特定クランク角度までクランク角度について積分して得られる値と、「特定クランク角度から燃焼終了までの間の任意の第2クランク角度と特定クランク角度との差の大きさ」と「その任意の第2クランク角度における熱発生率」との積を特定クランク角度から燃焼終了までクランク角度について積分して得られる値と、が等しくなるような特定クランク角度である、
    機関制御装置。
  8.  請求項1乃至4の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が、1つの燃焼行程についての燃焼開始から燃焼終了までの特定クランク角度であって、任意のクランク角度から特定クランク角度を減じて得られる値と、前記任意のクランク角度における熱発生率と、の積に対応した値を、燃焼開始から燃焼終了までクランク角度について積分して得られる値が「0」となるような特定クランク角度である、
    機関制御装置。
  9.  請求項1乃至4の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置が、1つの燃焼行程において、任意のクランク角度から燃焼開始クランク角度を減じて得られる値と、前記任意のクランク角度における熱発生率と、の積の積分値を、クランク角度に対する熱発生率の波形によって画定される領域の面積で割って得られる値に燃焼開始クランク角度を加えた値である、
    機関制御装置。
  10.  請求項1乃至4の何れか1項に記載の機関制御装置であって、
     前記熱発生率重心位置は、下記(3)式に則った演算により求められるクランク角度であり、
    Figure JPOXMLDOC01-appb-M000001
     上式中、Gcは熱発生率重心位置を表し、CAsは燃料の燃焼が始まるクランク角度である燃焼開始クランク角度であり、CAeは前記燃焼が終わるクランク角度である燃焼終了クランク角度であり、θは任意のクランク角度であり、dQ(θ)はクランク角度θにおける熱発生率である、
    機関制御装置。
PCT/JP2013/065925 2013-06-10 2013-06-10 機関制御装置 WO2014199425A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2013/065925 WO2014199425A1 (ja) 2013-06-10 2013-06-10 機関制御装置
CN201380077253.2A CN105308295B (zh) 2013-06-10 2013-06-10 内燃机控制装置
EP13886750.2A EP3009643B1 (en) 2013-06-10 2013-06-10 Engine control device
RU2015152152A RU2628019C2 (ru) 2013-06-10 2013-06-10 Устройство управления двигателем
BR112015030775-2A BR112015030775B1 (pt) 2013-06-10 2013-06-10 Dispositivo de controle para um motor a combustão interna
JP2015522274A JP5950041B2 (ja) 2013-06-10 2013-06-10 機関制御装置
US14/896,772 US9657681B2 (en) 2013-06-10 2013-06-10 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065925 WO2014199425A1 (ja) 2013-06-10 2013-06-10 機関制御装置

Publications (1)

Publication Number Publication Date
WO2014199425A1 true WO2014199425A1 (ja) 2014-12-18

Family

ID=52021761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065925 WO2014199425A1 (ja) 2013-06-10 2013-06-10 機関制御装置

Country Status (7)

Country Link
US (1) US9657681B2 (ja)
EP (1) EP3009643B1 (ja)
JP (1) JP5950041B2 (ja)
CN (1) CN105308295B (ja)
BR (1) BR112015030775B1 (ja)
RU (1) RU2628019C2 (ja)
WO (1) WO2014199425A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113789A (ja) * 2013-12-12 2015-06-22 トヨタ自動車株式会社 機関制御装置
WO2020179500A1 (ja) * 2019-03-07 2020-09-10 株式会社豊田自動織機 内燃機関の制御装置
US11536216B2 (en) * 2020-10-13 2022-12-27 Transportation Ip Holdings, Llc Systems and methods for an engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196036A1 (ja) * 2013-06-05 2014-12-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2015113790A (ja) * 2013-12-12 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置
CN107559108B (zh) * 2016-06-30 2020-01-03 上海汽车集团股份有限公司 一种废气再循环系统旁通阀的控制方法及装置
JP6555323B2 (ja) * 2017-11-10 2019-08-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2019124140A (ja) * 2018-01-12 2019-07-25 日本碍子株式会社 車両用エンジンにおける燃焼制御方法および車両用エンジンシステム
JP2019124141A (ja) * 2018-01-12 2019-07-25 日本碍子株式会社 車両用エンジンにおける燃焼制御方法および車両用エンジンシステム
JP6984544B2 (ja) * 2018-05-29 2021-12-22 トヨタ自動車株式会社 ハイブリッド車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216073A (ja) * 1988-02-22 1989-08-30 Mazda Motor Corp エンジンの燃焼制御装置
JP2005054753A (ja) 2003-08-07 2005-03-03 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2007285194A (ja) 2006-04-17 2007-11-01 Toyota Motor Corp 内燃機関の制御装置
JP2011202629A (ja) 2010-03-26 2011-10-13 Toyota Motor Corp 内燃機関の燃焼重心判定方法及び燃焼制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025710A (ja) 1988-02-24 1990-01-10 Mazda Motor Corp 直噴ディーゼルエンジンの燃料噴射装置
JPH01216055A (ja) 1988-02-24 1989-08-30 Mazda Motor Corp ディーゼルエンジンの燃料制御装置
JPH0610673A (ja) 1992-06-30 1994-01-18 Shinnenshiyou Syst Kenkyusho:Kk 直接噴射式ディーゼル機関
JPH08232820A (ja) 1995-02-22 1996-09-10 Unisia Jecs Corp 内燃機関の燃焼状態検出装置及びその装置を利用した内燃機関の制御装置
EP0983433B1 (en) * 1998-02-23 2007-05-16 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
DE19923299A1 (de) 1999-05-21 2000-11-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP2003239795A (ja) 2002-02-14 2003-08-27 Mitsubishi Heavy Ind Ltd 予混合圧縮自着火エンジン及びその制御方法
JP4341240B2 (ja) 2002-12-20 2009-10-07 トヨタ自動車株式会社 内燃機関の制御装置
CN100338346C (zh) * 2003-07-08 2007-09-19 日产自动车株式会社 内燃发动机的燃烧控制设备和燃烧控制的方法
EP1607609B1 (en) 2004-06-15 2009-03-25 C.R.F. Società Consortile per Azioni A closed-loop electronic control system for controlling combustion in a diesel engine operating with premixed combustion
JP4314585B2 (ja) * 2006-06-16 2009-08-19 株式会社デンソー 内燃機関の制御装置
JP2008025406A (ja) 2006-07-19 2008-02-07 Toyota Motor Corp 内燃機関の制御装置
JP4525698B2 (ja) * 2007-04-11 2010-08-18 トヨタ自動車株式会社 可変バルブタイミング機構の制御装置および制御方法
JP4793488B2 (ja) 2009-03-11 2011-10-12 トヨタ自動車株式会社 内燃機関の制御装置
JP5110208B2 (ja) * 2010-03-11 2012-12-26 トヨタ自動車株式会社 内燃機関の燃焼制御装置
JP2011220186A (ja) * 2010-04-08 2011-11-04 Toyota Motor Corp 内燃機関の燃焼制御装置
US8831856B2 (en) * 2010-04-19 2014-09-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine using estimated quantity of heat generated
JP5589941B2 (ja) * 2010-08-20 2014-09-17 マツダ株式会社 過給機付ディーゼルエンジンの制御装置及び制御方法
BR112015030654A2 (pt) * 2013-06-05 2017-07-25 Toyota Motor Co Ltd dispositivo de controle para motor de combustão interna
EP3273039A1 (en) * 2013-06-05 2018-01-24 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2014196036A1 (ja) * 2013-06-05 2014-12-11 トヨタ自動車株式会社 内燃機関の制御装置
JP2015113790A (ja) 2013-12-12 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216073A (ja) * 1988-02-22 1989-08-30 Mazda Motor Corp エンジンの燃焼制御装置
JP2005054753A (ja) 2003-08-07 2005-03-03 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2007285194A (ja) 2006-04-17 2007-11-01 Toyota Motor Corp 内燃機関の制御装置
JP2011202629A (ja) 2010-03-26 2011-10-13 Toyota Motor Corp 内燃機関の燃焼重心判定方法及び燃焼制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113789A (ja) * 2013-12-12 2015-06-22 トヨタ自動車株式会社 機関制御装置
WO2020179500A1 (ja) * 2019-03-07 2020-09-10 株式会社豊田自動織機 内燃機関の制御装置
JP2020143645A (ja) * 2019-03-07 2020-09-10 株式会社豊田自動織機 内燃機関の制御装置
JP7107254B2 (ja) 2019-03-07 2022-07-27 株式会社豊田自動織機 内燃機関の制御装置
AU2020231886B2 (en) * 2019-03-07 2023-07-20 Kabushiki Kaisha Toyota Jidoshokki Control device for internal combustion engine
US11536216B2 (en) * 2020-10-13 2022-12-27 Transportation Ip Holdings, Llc Systems and methods for an engine

Also Published As

Publication number Publication date
BR112015030775B1 (pt) 2021-08-31
EP3009643B1 (en) 2018-07-18
BR112015030775A2 (pt) 2017-07-25
CN105308295A (zh) 2016-02-03
JP5950041B2 (ja) 2016-07-13
RU2628019C2 (ru) 2017-08-14
US20160123269A1 (en) 2016-05-05
RU2015152152A (ru) 2017-07-13
EP3009643A1 (en) 2016-04-20
CN105308295B (zh) 2018-07-24
US9657681B2 (en) 2017-05-23
EP3009643A4 (en) 2016-07-06
JPWO2014199425A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5950041B2 (ja) 機関制御装置
WO2014196035A1 (ja) 内燃機関の制御装置
KR101781720B1 (ko) 내연 기관의 제어 장치
US20160305356A1 (en) Control apparatus of internal combustion engine
KR101787228B1 (ko) 내연 기관의 제어 장치
JP5979126B2 (ja) 機関制御装置
JP2014169644A (ja) 内燃機関の制御装置
KR20080026659A (ko) 과급압 제어
JP2016011600A (ja) 内燃機関の制御装置
JP2015042855A (ja) 内燃機関の制御装置
JP2012246797A (ja) 内燃機関の制御装置
JP6137472B2 (ja) エンジンの制御装置
JP6070438B2 (ja) 機関制御装置
JP6406153B2 (ja) エンジンの制御装置
JP2012122387A (ja) 内燃機関
JP2009209780A (ja) 内燃機関の制御装置
JP2016037898A (ja) 内燃機関の制御装置
JP2016023618A (ja) 内燃機関の制御装置
JP2018076838A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077253.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522274

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14896772

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013886750

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015030775

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015152152

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015030775

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151209