WO2014198076A1 - 监护仪上波形失真处理方法及处理系统 - Google Patents

监护仪上波形失真处理方法及处理系统 Download PDF

Info

Publication number
WO2014198076A1
WO2014198076A1 PCT/CN2013/078101 CN2013078101W WO2014198076A1 WO 2014198076 A1 WO2014198076 A1 WO 2014198076A1 CN 2013078101 W CN2013078101 W CN 2013078101W WO 2014198076 A1 WO2014198076 A1 WO 2014198076A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
column
monitor
sampling
pixel coordinates
Prior art date
Application number
PCT/CN2013/078101
Other languages
English (en)
French (fr)
Inventor
王兴红
易明生
Original Assignee
深圳市科曼医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科曼医疗设备有限公司 filed Critical 深圳市科曼医疗设备有限公司
Publication of WO2014198076A1 publication Critical patent/WO2014198076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators

Definitions

  • the invention relates to a monitor waveform display processing technology in the medical technology field, in particular to a method and a processing system for performing a fidelity processing on a monitor waveform.
  • the monitor is widely used in medical technology because of its ability to monitor the patient's physical condition in real time, quickly and accurately through the displayed waveform conditions on the display.
  • the waveform displayed on the traditional monitor is realized by a scanning algorithm, that is, each pixel point sampled on the display screen is drawn by a straight line or a static curve connection in one sampling period, and is a kind of The color of the brightness is indicated.
  • This type of waveform display only expresses the process of changing a certain signal trajectory.
  • the signal is often seen when the waveform is observed.
  • the jagged transition changes without a smooth, delicate visual effect.
  • the monitor is interfered by external signals, it is easy to sample the abnormal signal point on the monitor and display it, so that the actual waveform displayed cannot be too different from the theoretical ideal waveform, thus generating a waveform. Distortion problem.
  • a waveform distortion processing method for a monitor for fidelity processing a waveform displayed on a monitor comprising the following steps:
  • Obtaining M sets of sampling data on a column of pixel coordinates acquiring M sets of sampling data of adjacent time in a column of pixel coordinates, and defining the newly acquired set of sampling data as the current group;
  • Calculating a feature value of the current group of sample data calculating an average value of the selected sample data as a feature value by selecting sample data in the current group;
  • the color is used to display the data on the column of pixel coordinates to corresponding pixels on the display screen of the monitor.
  • the step of calculating the feature value of the current group of sample data comprises:
  • Reading a first maximum value MaxValue of the current group sampling data and a first minimum value MinValue reading a maximum value in the current group sampling data and defining the first maximum value MaxValue, reading the current group sampling data The minimum value in the middle is defined as the first minimum value MinValue;
  • the step of calculating the feature value of the current group of sample data comprises:
  • the method before the step of the data on the column pixel coordinates corresponding to the color on the monitor display screen, the method further includes the following steps:
  • the method before the step of acquiring M sets of sampled data on a column of pixel coordinates, the method further comprises: acquiring a set of sample data on a column of pixel coordinates: by setting a sampling time period for repeatedly sampling a column of pixel coordinates T, thereby indirectly setting data that can be sampled during the sampling period T and defining it as a set of sampled data.
  • the setting step of setting the sampling period T for repeatedly sampling a column of pixel coordinates comprises:
  • Obtaining basic parameters of the monitor comprising: obtaining a sampling frequency F of the monitor, a resolution P of the monitor, a display length W on the monitor display, and a display on the monitor display
  • the length L of the waveform can be displayed in seconds;
  • Calculating the sampling period T for repeatedly sampling a column of pixel coordinates determining a set of sampling data on a column of pixel coordinates within a range of the waveform length L according to the fidelity of the desired waveform and the operation speed of the actual monitor Counting the number of times N, and calculating a sampling period T for repeatedly sampling a column of pixel coordinates according to the determined number of samples N and the number of samples Num. that the signal input unit can receive for one second.
  • a waveform distortion processing system on a monitor for fidelity processing a waveform displayed on the monitor comprising the following modules:
  • a sampling data acquiring module configured to acquire M sets of sampling data on a column of pixel coordinates
  • a sample data operation module configured to calculate a feature value and a deviation value of the current group of sample data
  • the sample data operation module reads the current group sample data of the sample data acquisition module, and performs the feature value Computing, reading the adjacent time M sets of sample data of the sampled data acquisition module, and performing the operation of the deviation value Dy;
  • a color operation module configured to correspond to data on the column of pixel coordinates to a color on the display screen of the monitor, wherein the color operation module reads the feature value and the deviation value Dy of the operation processing module, And setting a color of the feature value to a brightest color, and performing color gradual darkening setting on other data on the column pixel coordinate or the column in the data range with the feature value as a center Other data on the pixel coordinates are gradually darkened by the color setting;
  • a video output module configured to display the data on the column pixel coordinates to the corresponding pixel on the monitor display screen by using the color.
  • the method further includes a human-machine interface module disposed in front of the sampling data acquisition module, where the human-machine interface module is configured to set a sampling time period T for repeatedly sampling a column of pixel coordinates to ensure The sampling data acquisition module can perform sampling data grouping according to the requirements of the user.
  • the processing method and processing system for waveform distortion on the monitor by sampling the M sets of sampled data set in a column of pixel coordinates, calculating the feature value of the current set of sampled data, the feature on the column of pixel coordinates The color of the value is set to the brightest color in the monitor display, and the other data on the column pixel coordinates are gradually darkened by the value of the feature. Finally, the color corresponding to the data on the column pixel coordinates is displayed on the corresponding pixel on the monitor display screen.
  • the waveforms of the plurality of sets of sampling data are first processed, and the processed waveform is displayed on the display screen, thereby effectively overcoming the monitor.
  • 1 is a working flow chart of a waveform distortion processing method on a monitor
  • FIG. 2 is a workflow diagram of setting a sampling period T of repeated sampling on a column of pixel coordinates
  • FIG. 3 is a flow chart showing the operation of setting a diffusion range of decreasing luminance at both ends of the feature value
  • Figure 4 is a block diagram of a waveform distortion processing system on a monitor.
  • a method for processing waveform distortion on a monitor of the present embodiment includes the following steps:
  • Step S110 acquiring M sets of sampling data of adjacent time in a column of pixel coordinates, and defining the newly acquired set of sampling data as the current group.
  • this step first, it is necessary to set a set of sampling data on a column of pixel coordinates, since the number of sets of sampled data on a column of pixel coordinates is mainly by the basic parameters of the monitor and the resampling of a column of pixel coordinates. Determining the sampling period T, since the basic parameters of the monitor are constant, we can indirectly set the data that can be sampled in the sampling period T according to the sampling period T of which the repetitive sampling is performed by determining a column of pixel coordinates. And define it as a set of sampled data.
  • FIG. 2 Please refer to FIG. 2 to set a working flow chart of sampling time period T of repeated sampling on a column of pixel coordinates, which includes the following steps:
  • Step S111 acquiring basic parameters of the monitor. It includes the following parameters:
  • the sampling frequency F of the monitor defines the number of samples extracted from the continuous signal and composed of discrete signals per second.
  • the monitor's sampling frequency F is 250 Hz, which means that the monitor can sample 250 discrete signals from its continuous signal per second.
  • the resolution of the monitor P defines the precision of the image displayed on the display, that is, the number of pixels that the display can display.
  • the definition of resolution P generally includes horizontal and vertical resolution, which can imagine the entire image displayed on the display screen as a large chessboard, and the resolution is expressed as the number of all row and column intersections. , that is, the number of pixels.
  • the higher the resolution P of the display the finer the picture, and the more information that can be displayed in the same screen area.
  • the display has a horizontal resolution Px of 800 pixels and a vertical resolution Py of 600 pixels, that is, 800*600 pixels can be displayed in the entire image of the display screen.
  • the monitor can see the width W on the display; that is, the width of the screen on which the waveform display can be observed on the monitor's display.
  • the visible width W of the screen is 245.8 mm, that is, it is required to uniformly distribute 800 pixels in the width of 245.8 mm.
  • the length L of the waveform can be displayed in one second on the monitor display; due to the difference in the performance of the different monitors and the size of the display screen, the length of the waveform can be displayed on the monitor display within one second.
  • the waveform length L displayed on the monitor display for one second is 25 mm.
  • Step S112 calculating the number of times the monitor is sampled in one second. It includes the following steps:
  • the visual width W on the monitor display screen is 245.8 mm, wherein the visual width W of the display screen is laterally uniform.
  • the sampling frequency of the monitor is 250 Hz
  • the number of times of sampling that can be repeated on the corresponding 81 pixel points in the range of the waveform length of 25 mm displayed on the display screen in one second is 250/81 times. That is, there is at least 3 chances of being sampled in a column of pixel coordinates capable of displaying a waveform in one second.
  • the sampling frequency Num. of one column of pixel coordinates in one second can be accumulated. Up to 4 times, therefore, the number of samples Num. represented here is only a rough data, and the real data needs to be obtained by the actual operation of the internal program).
  • Step S113 calculating a sampling period T for repeatedly sampling a column of pixel coordinates, determining the length of the waveform according to the fidelity of the required waveform and the operation speed of the actual monitor without affecting the real-time display of the waveform.
  • a sampling number N of a set of sampling data on a column of pixel coordinates in the range of L and calculating the pair of pixels according to the determined number of samplings N and the number of sampling times Num. that the one-second signal input unit can receive
  • the sampling period T is set to 1 S, so that both the fidelity of the waveform and the waveform display speed can be achieved.
  • a set of sampling data in the sampling period T of the column pixel coordinates can be obtained, wherein the sampling times are N, storing the set of sample data as a set of array A with the pixel coordinates of the column being Xi, and each sampled data value in the sampling period T is Y1, Y2, ..., Yn. : ⁇ (Xi,Y1)(Xi,Y2)&(Xi,Yn) ⁇ .
  • M sets of sampling data of adjacent time in a column of pixel coordinates are acquired, and the newly obtained set of sampling data is defined as the current group.
  • Step S120 Calculate the feature value of the current group sample data: calculate the average value of the selected sample data as the feature value by selecting the sample data in the current group.
  • the second method is to set the feature value to the average value of all sample data of the current group, and the specific steps are as follows: read all sample data values Y1, Y2, . . . Yn of the current group, and calculate the current group by an algorithm.
  • the plurality of sets of sampled data are subjected to the arithmetic processing, and the processed waveforms are displayed on the display screen, which can effectively overcome the waveform fluctuation distortion caused by the external signal interference of the monitor. So that the actual displayed waveform is closest to the theoretical ideal waveform to achieve the waveform fidelity effect.
  • Step S130 the data on the column pixel coordinates is corresponding to the color on the monitor display screen: in the column pixel coordinates, the color of the feature value is set to the highest brightness value Maxcolor in the monitor display screen, and the feature value is For the center, the two ends of the eigenvalues are diffused to make the brightness gradually darker.
  • the diffractive diffusion operation to the two ends of the feature value needs to perform the brightness calculation on the color of the entire 600 pixel points on the display screen corresponding to the column pixel coordinates, and in actual use, in order to improve the monitor
  • the diffusion range of the luminance decreases at both ends of the eigenvalue may be limited by an algorithm
  • FIG. 3 is a work of setting the diffusion range of the eigenvalues at both ends of the eigenvalue.
  • Step S131 reading M sets of sampling data of adjacent time, and obtaining a maximum value and a minimum value thereof by an algorithm, wherein the maximum value is defined as a second maximum value All-MaxValue, and the minimum value is defined as a second minimum value All-MaxValue ;
  • Step S133 setting a data range corresponding to the color to be performed on the pixel coordinates of the column: taking the value of the feature value as the center, setting the data corresponding to the color of the column pixel coordinate upward and downward with the distance of the deviation value Dy as the distance range.
  • the operation speed of the monitor can be greatly improved while ensuring smooth restoration of the waveform.
  • Step S140 the setting, by using the set value of the color in the step, all the data or a certain range of data corresponding to the column of pixel coordinates is displayed on the pixel of the corresponding column on the display screen of the monitor through the color setting value.
  • step S130 and step S140 the brightness of the waveform displayed on the pixels of each column of the display screen is the brightest with the characteristic value, and the faded processing is gradually performed on the upper and lower sides, which can satisfy the detection waveform with the fidelity.
  • the zigzag on the waveform is smoothed.
  • the sampling frequency F of the monitor is 250 Hz
  • the resolution of the display screen is 800*600 pixels
  • the visible width W of the screen is 245.8 mm.
  • the length of the waveform that can be displayed in one second on the monitor display is 25mm.
  • the sampling period T for re-sampling a column of pixel coordinates is set to 1S, that is, it can be sampled in the column of pixel coordinates in one second. At least 3 times, the pixel coordinate of the column is selected to be 101, and adjacent sets of sampling data are obtained on the column pixel coordinates in a certain period of time, and the actual obtained:
  • sampling data of the "current group” is:
  • the sample data of the "previous group" located in the “current group” is:
  • sampling data of the "first two groups" located in the "current group” are:
  • the computer reads the three sets of sampled data and obtains by operation:
  • the value of the column pixel coordinate can be corresponding to the brightness change value on the display screen.
  • the color on the column pixel coordinate is output to the display screen, and according to this method, each column can be The color on the pixel coordinates is output to the corresponding corresponding pixel on the display screen, and the waveform is displayed.
  • the three sets of sampled data are first analyzed and processed to obtain a median value, so that the displayed waveform expresses a plurality of sampled data.
  • a uniformly varying waveform trace so there is no waveform distortion caused by the monitor being disturbed by external signals.
  • brightness dimming processing on the remaining sample data at the median point position on each column of pixel coordinates, it is possible to smoothly repair the zigzag pattern on the waveform while satisfying the detection waveform fidelity function.
  • the embodiment further provides a waveform distortion processing system on the monitor for performing fidelity processing on the waveform displayed on the monitor, which includes the following Module:
  • the human-machine interface module 110 inputs a sampling period T of a column of pixel coordinates to the human-machine interface module according to the actual requirements of the user, so as to ensure that the subsequent module can store the sampled data according to the user's needs.
  • the sampling data acquisition module 120 is connected to the signal acquisition end of the monitor and the human-machine interface module 110, and is configured to acquire sampling data input to the monitor, and input the sampling data input to the monitor to the human-machine interface module 110. Based on the sampling period T of the resampling set in the group, the sampling data is group-managed, wherein one set of sampling data has N sampling points. Finally, the sampled data that has been grouped is stored for backup by the sample data acquisition module 120.
  • the last set of sample data in the adjacent time M group of sample data stored by the sample data acquisition module 120 is set as the current group, and the data in the previous group of the current group is set as the previous group, which is located at the current.
  • the data of the first two groups of the group is set to the first two groups, ..., and the data of the M-1 group located before the current group is set to the former M-1 group.
  • the sample data operation module 130 is connected to the sample data acquisition module 120, reads the current group sample data in the sample data acquisition module 120, and performs the operation of the feature value through an internal algorithm. In addition, the sample data operation module 130 can also read the sample data. The M sets of sample data of the adjacent time in the module 120 are obtained, and the operation of the deviation value Dy is performed by an internal algorithm.
  • the color operation module 140 is connected to the sample data operation module 130 for reading the feature value and the deviation value Dy of the sample data operation module 130, and setting the color of the feature value to the brightest color by an internal algorithm, and using the feature value as the feature value. Center, color gradually darkening the other data on the column pixel coordinates or gradually darkening the other data on the column pixel coordinates within the deviation value Dy setting data range.
  • the video output module 150 is connected to the color operation module 140. After the color operation module 140 matches the value of the column of pixel coordinates with the brightness change value on the display screen, the color of the column pixel coordinates can be obtained by the screen output module 150. Output to the pixel corresponding to the display. Then, according to the method, the color on each column of pixel coordinates can be output to the corresponding pixel of the display screen, and the actual waveform is displayed on the display screen.

Abstract

一种监护仪上波形失真处理方法及处理系统,通过对设置在一列像素坐标上的M组采样数据进行采样取值,计算当前组采样数据的特征值,将该列像素坐标上所述特征值的颜色设定为监护仪显示屏中的最亮色,并以所述特征值为中心,对该列像素坐标上的其它数据进行颜色逐渐变暗处理,最后将该列像素坐标上数据所对应的颜色显示到监护仪显示屏上对应的像素点上。通过这种波形失真处理方法,在不影响波形实时显示的前提下,有效克服了由于监护仪受到外界信号干扰而导致的波形失真问题,使实际显示的波形最能接近理论上的理想波形,从而达到波形保真的效果。

Description

监护仪上波形失真处理方法及处理系统
【技术领域】
本发明涉及医疗技术领域的监护仪波形显示处理技术,特别是涉及监护仪上将失真波形进行保真处理的方法及处理系统。
【背景技术】
监护仪以其能够通过显示屏上的显示的波形状况对病人的身体情况进行实时、快速、准确监控的优势被广泛用于医疗技术领域。
传统的监护仪上所显示的波形是通过扫描算法实现,即在一个采样周期内将在显示屏上所采样得到的各像素点之间通过直线或静态的曲线连接绘制,并且都是以一种亮度的颜色来表示。这种波形显示的方式只表达了某一个信号轨迹变化的过程,但是由于数字信号的离散特性,以及采用同一种亮度的颜色对波形进行显示,因此在观察波形时往往看到信号会出现明显的锯齿状的转折变化,不会产生平滑、细腻的视觉效果。另外,在监护仪受到外界信号干扰的情况下,监护仪上很容易采样到异常信号点并将其显示出来,导致所显示出来的实际波形无法与理论上的理想波形相差过大,从而产生波形失真问题。
【发明内容】
基于此,有必要针对所述问题,提供一种对监护仪上失真波形进行保真处理的方法及处理系统。
一种监护仪上波形失真处理方法,用于对监护仪上所显示的波形进行保真处理,其包括如下步骤:
获取一列像素坐标上M组采样数据:获取一列像素坐标上相邻时间的M组采样数据,并将将最新获取的一组采样数据定义其为当前组;
计算所述当前组采样数据的特征值:通过选取当前组中的采样数据,计算所选取的采样数据的平均值作为特征值;
将该列像素坐标上的数据与所述监护仪显示屏上的颜色对应:将该列像素坐标上所述特征值的颜色设定为所述监护仪显示屏中的最亮色,以所述特征值为中心,对该列像素坐标上的其它数据进行颜色逐渐变暗对应。
采用所述颜色将该列像素坐标上的数据显示到所述监护仪显示屏上对应的像素点上。
在其中一个实施例中,所述计算所述当前组采样数据的特征值的步骤包括:
读取所述当前组采样数据的第一最大值MaxValue以及第一最小值MinValue:读取所述当前组采样数据中的最大值并定义为第一最大值MaxValue,读取所述当前组采样数据中的最小值并定义为第一最小值MinValue;
计算当前组采样数据的特征值MidValue:根据所述第一最大值MaxValue以及所述第一最小值MinValue计算所述当前组采样数据的特征值MidValue,所述特征值MidValue的定义方法为:MidValue =(MaxValue + MinValue)/2。
在其中一个实施例中,所述计算所述当前组采样数据的特征值的步骤包括:
读取所述当前组采样数据的所有值Y1,Y2,…Yn,并计算当前组采样数据的所述特征值AverageValue,所述特征值AverageValue的定义方法为:AverageValue =(Y1+ Y2+…+Yn)/N,其中,N为所述当前组采样数据的采样个数。
在其中一个实施例中,在所述将该列像素坐标上的数据与所述监护仪显示屏上的颜色对应的步骤之前还包括如下步骤:
读取所述一列像素坐标上所述M组采样数据的第二最大值All-MaxValue以及第二最小值All-MinValue:读取所述M组采样数据中的最大值并定义为第二最大值All-MaxValue,读取所述M组采样数据中的最小值并定义为第二最小值All-MaxValue;
计算所述M组采样数据的所述第二最大值All-MaxValue与所述第二最小值All-MinValue之间的偏差值Dy:所述偏差值Dy的定义方法为:Dy = All-MaxValue – All-MinValue;
设定该列像素坐标上所要进行颜色对应的数据范围:以所述特征值为中心,以所述偏差值Dy的一半为距离向上以及向下设定该列像素坐标上所要进行颜色对应的数据的范围。
在其中一个实施例中,在所述获取一列像素坐标上M组采样数据的步骤之前还包括,获取一列像素坐标上的一组采样数据:通过设定对一列像素坐标进行重复采样的采样时间段T,由此间接设定在所述采样时间段T内能够采样到的数据,并将其定义为一组采样数据。
在其中一个实施例中,所述设定对一列像素坐标进行重复采样的采样时间段T的设定步骤包括:
获取所述监护仪的基本参数:包括,获取所述监护仪的采样频率F、所述监护仪的分辨率P、所述监护仪显示屏上的显示长度W以及所述监护仪显示屏上一秒钟内能够显示波形的长度L;
计算所述监护仪一秒钟内的采样次数:根据所述监护仪的基本参数计算出在所述监护仪显示屏一秒钟内所显示的波形长度L范围内能够采样的像素点数Dot:Dot = L*P/W;并根据所述监护仪的采样频率F确定在该波形长度L范围内一秒钟所述信号输入单元能够接收到的采样次数Num.: Num.= F/Dot;
计算所述对一列像素坐标进行重复采样的采样时间段T:根据所需波形的保真度以及实际监护仪的运算速度,确定在该波形长度L范围内一列像素坐标上的一组采样数据的采样次数N,并根据所确定的采样次数N以及所述一秒钟所述信号输入单元能够接收到的采样次数Num.,计算出所述对一列像素坐标进行重复采样的采样时间段T,其定义方法为:T = N / Num.。
一种监护仪上波形失真处理系统,用于对所述监护仪上所显示的波形进行保真处理,包括如下模块:
采样数据获取模块,用于获取一列像素坐标上M组采样数据;
采样数据运算模块,用于计算所述当前组采样数据的特征值及偏差值,所述采样数据运算模块读取所述采样数据获取模块的所述当前组采样数据,并进行所述特征值的运算,;读取所述采样数据获取模块的所述相邻时间M组采样数据,并进行所述偏差值Dy的运算;
颜色运算模块,用于将该列像素坐标上的数据与所述监护仪显示屏上的颜色对应,所述颜色运算模块读取所述运算处理模块的所述特征值、所述偏差值Dy,并将所述特征值的颜色设定为最亮色,并以所述特征值为中心,对所述列像素坐标上的其它数据进行颜色逐渐变暗设定或在所述数据范围内对该列像素坐标上的其它数据进行颜色逐渐变暗设定;
视屏输出模块,用于采用所述颜色将该列像素坐标上的数据显示到所述监护仪显示屏上对应的像素点上。
在其中一个实施例中,还包括设置在所述采样数据获取模块前的人机界面模块,所述人机界面模块用于设定对一列像素坐标进行重复采样的采样时间段T,以保证所述采样数据获取模块能够按照用户的要求进行采样数据分组。
所述监护仪上波形失真的处理方法及处理系统,通过对设置在一列像素坐标上的M组采样数据进行采样取值,计算当前组采样数据的特征值,将该列像素坐标上所述特征值的颜色设定为监护仪显示屏中的最亮色,并以所述特征值为中心,对该列像素坐标上的其它数据进行颜色逐渐变暗处理。最后将该列像素坐标上数据所对应的颜色显示到监护仪显示屏上对应的像素点上。通过这种监护仪上波形失真处理方法,在不影响波形实时显示的前提下,首先对多组采样数据进行运算处理后将处理完成的波形显示在显示屏上,从而有效地克服了由于监护仪受到外界信号干扰而导致的波形失真问题,使实际显示的波形最能接近理论上的理想波形,从而达到波形保真的效果。另外,由于显示屏在各列像素点上所显示的波形亮度以其特征值为最亮,逐步向上下两边淡化,能够在满足检测波形保真的情况下,对其波形上的锯齿纹进行平滑修复。
【附图说明】
图1为监护仪上波形失真处理方法的工作流程图;
图2为设定一列像素坐标上重复采样的采样时间段T的工作流程图;
图3为设定特征值两端亮度递减的扩散范围的工作流程图;
图4为监护仪上波形失真处理系统的模块图。
【具体实施方式】
如图1所示,本实施方式的监护仪上波形失真的处理方法,其包括如下步骤:
步骤S110,获取一列像素坐标上相邻时间的M组采样数据,并将最新获取的一组采样数据定义其为当前组。
在此步骤中,首先,需要设定一列像素坐标上的一组采样数据,由于一列像素坐标上的一组采样数据的个数主要是由监护仪的基本参数以及对一列像素坐标进行重复采样的采样时间段T来确定的,由于监护仪的基本参数一定,因此,我们可以根据确定一列像素坐标进行重复采样的采样时间段T来间接设定在所述采样时间段T内能够采样到的数据,并将其定义为一组采样数据。
请参图2设定一列像素坐标上重复采样的采样时间段T的工作流程图,其包括如下步骤:
步骤S111,获取监护仪的基本参数。其包括如下参数:
1)监护仪的采样频率F;监护仪的采样频率F定义了每秒从连续信号中提取并组成离散信号的采样个数。本实例中,监护仪的采样频率F为250Hz,即该监护仪每秒钟能够从其监测到的连续信号中采样出250个离散信号。
2)监护仪的分辨率P;监护仪的分辨率P定义了显示屏中所显示的图像的精密度,即是指显示屏所能显示的像素的多少。分辨率P的定义一般包括有横向及纵向的分辨率,可以把显示屏中所显示的整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有行向和列向交叉点的数目,即像素点数。一般而言,显示屏的分辨率P越高,画面就越精细,同样的屏幕区域内能显示的信息也越多。本实例中,该显示屏的横向分辨率Px为800像素,而纵向分辨率Py为600像素,即在显示屏的整个图像中,能够显示800*600个像素点。
3)监护仪在显示屏上可视宽度W;即为监护仪的显示屏上可以观察到波形显示的屏幕的宽度。在本实施例中,该屏幕的可视宽度W为245.8mm,即需要在245.8mm的宽度范围内能够横向均匀分布800个像素点。
4)监护仪显示屏上一秒钟内能够显示波形的长度L;由于不同监护仪的运算性能以及其显示屏幕大小的差异,监护仪显示屏上一秒钟内能够显示波形的长度不同。本实例中,监护仪显示屏上一秒钟显示的波形长度L为25mm。
步骤S112,计算监护仪在一秒钟内的采样次数。其包括如下步骤:
1)首先根据步骤S111中监护仪的基本参数计算出在监护仪显示屏在一秒钟内所显示的波形长度L范围内能够采样的像素点数Dot,其计算公式为:Dot = L*P/W;
本实施例中,由于监护仪显示屏上一秒钟能够显示的波形长度L为25mm,监护仪显示屏上的可视宽度W为245.8mm,其中在显示屏的可视宽度W范围内横向均匀分布有800个像素点。那么在一秒钟内,针对该25mm的波形长度L范围内,能够采样的像素点数Dot = 25*800/245.8, 约为 81个像素点。
2)根据所述所得到的像素点数Dot,确认在监护仪的采样频率F内,一秒钟内在该波形长度L范围内能够被采样的采样次数Num.:Num.= F/Dot;
本实施例中,监护仪的采样频率为250Hz,一秒钟内能够在显示屏上显示的25mm的波形长度范围内所对应的81个像素点数上重复进行采样的次数Num.为250/81次,即在一秒钟内在能够显示波形的一列像素坐标上有至少3次被采样的机会。(由于采样次数Num.的在实际的运算过程中还包含有小数部分,监护仪实际在各列像素坐标范围内进行采样时,其中某一列像素坐标在一秒钟内的采样次数Num.可以累积达到4次,因此,这里所表示的采样次数Num.也只是一个粗略的数据,真实数据需要内部程序经过的实际运算得到)。
步骤S113,计算所述对一列像素坐标进行重复采样的采样时间段T,根据所需波形的保真度以及实际监护仪的运算速度,在不影响波形实时显示的前提下,确定在该波形长度L范围内一列像素坐标上的一组采样数据的采样次数N,并根据所确定的采样次数N以及所述一秒钟信号输入单元能够接收到的采样次数Num.,计算出所述对一列像素坐标进行重复采样的采样时间段T,其定义方法为:T = N / Num.。
比如,对于一些对波形的保真度要求较高的检测仪器,我们可以在一列像素坐标上取约9个采样点(采样次数N为9),即在该列像素坐标上需要重复采样的时间段T为9/3,即为3S。也就是说,在显示屏在该列像素坐标上需要重复采样3S后,就能够采样到9个采样数据,但是,由此带来的问题是,监护仪会因为采样数据的增大而导致波形显示速度的下降。本实施例中,将该采样时间段T定为1S,从而,能够兼顾波形的保真度以及波形显示速度两方面的要求。
通过所述步骤的实施,通过对一列像素坐标进行重复采样的采样时间段T的设定,就能够获得在该列像素坐标上该采样时间段T内的一组采样数据,其中,采样次数为N,将该组采样数据存储为一个以该列像素坐标为Xi,该采样时间段T内各采样数据值为Y1,Y2,…Yn,的一组数组A :{(Xi,Y1)(Xi,Y2)……(Xi,Yn)}。
下一步,就可以根据所述一组采样数据的获得方法,获取一列像素坐标上相邻时间的M组采样数据,并将最新获取的一组采样数据定义其为当前组。
步骤S120,计算所述当前组采样数据的特征值:通过选取当前组中的采样数据,计算所选取的采样数据的平均值作为特征值。
其中,具体计算当前组采样数据的特征值的方法有两种:
第一种方法是将所述特征值设定为当前组所有采样数据的中值,其具体步骤如下:通过算法获取当前组中所有采样数据中的最大值,并设定为第一最大值MaxValue;通过算法获取当前组中所有采样数据中的最小值,并设定为第一最小值MinValue。再根据所获取的第一最大值MaxValue以及第一最小值MinValue的值,计算当前组采样数据的中值MidValue,其中,中值MidValue的定义方法为:MidValue =(MaxValue + MinValue)/2;
而第二种方法是将所述特征值设定为当前组所有采样数据的平均值,其具体步骤如下:读取当前组所有采样数据值Y1,Y2,…Yn,并通过算法计算出当前组所有采样数据的平均值AverageValue:平均值AverageValue的定义方法为:AverageValue =(Y1+ Y2+…+Yn)/N,N为当前组采样数据的采样个数,即为对该列像素坐标进行重复采样的采样时间段T内的采样个数N。
通过对采样像素点进行所述特征值的运算,多组采样数据进行运算处理后将处理完的波形显示在显示屏上,能够有效地克服由于监护仪受到外界信号干扰而导致的波形波动失真问题,从而使实际显示的波形最能更接近理论上的理想波形,从而达到波形保真的效果。
步骤S130,将该列像素坐标上的数据与监护仪显示屏上的颜色对应:在该列像素坐标上,将特征值的颜色设置为监护仪显示屏中最高亮度值Maxcolor,并且,以特征值为中心,向特征值的两端扩散使其亮度逐渐变暗对应。
所述步骤中,向特征值的两端亮度递减扩散运算需要对该列像素坐标所对应的显示屏上整个600个像素点的颜色都要进行亮度运算,而在实际使用中,为了提高监护仪的运算速度,优选实施例中,可以将所述步骤中将向特征值的两端亮度递减的扩散范围做了一个算法的限定,图3为设定特征值两端亮度递减的扩散范围的工作流程图;其包括如下步骤:
步骤S131,读取相邻时间的M组采样数据,通过算法获取其中的最大值以及最小值,其中将最大值定义为第二最大值All-MaxValue,最小值定义为第二最小值All-MaxValue;
步骤S132,通过第二最大值All-MaxValue以及第二最小值All-MaxValue的获取,计算出M组采样数据的第二最大值All-MaxValue与第二最小值All-MinValue之间的偏差值Dy,其中,该偏差值Dy的定义方法为:Dy = All-MaxValue – All-MinValue;
步骤S133,设定该列像素坐标上所要进行颜色对应的数据范围:以特征值为中心,以偏差值Dy的一半为距离向上以及向下设定该列像素坐标上所要进行颜色对应的数据的范围。
通过所述扩散范围的限定,在保证波形平滑修复的情况下,还能够大大提高监护仪的运算速度。
步骤S140,所述采用所述步骤中颜色的设定值将该列像素坐标上所对应的所有数据或一定范围的数据通过该颜色设定值显示到监护仪显示屏上对应列的像素点上。
通过步骤S130以及步骤S140,将显示屏在各列像素点上所显示的波形亮度以其特征值为最亮,逐步向上下两边进行淡化处理,能够在满足检测波形保真的情况下,对其波形上的锯齿纹进行平滑修复。
检测仪最初在对相邻时间的M组采样数据进行采样时,当一列像素点上的采样数据不足M组时,由于所述运算过程无法进行,因此监护仪显示屏上暂不输出对应列的颜色值。
下面,再通过一个实施例详细说明以上各步骤的运行状况,该实例中,监护仪的采样频率F为250Hz,显示屏分辨率为800*600个像素点,屏幕的可视宽度W为245.8mm,监护仪显示屏上一秒钟内能够显示波形的长度L为25mm,设定对一列像素坐标进行重复采样的采样时间段T为1S,即在一秒钟内在该列像素坐标上能够被采样至少3次,选定该列像素坐标为101,在某一时间段内在该列像素坐标上获得相邻3组采样数据,实际得到的:
“当前组”的采样数据依次为:
{101,84},{101,92},{101,82};
位于“当前组“的“前一组”的采样数据依次为:
{101,89},{101,83},{101,94};
位于“当前组“的“前两组”的采样数据依次为:
{101,76},{101,88},{101,85};
计算机读取该3组采样数据,并通过运算得到:
“第一最大值” MaxValue = 92;
“第一最小值”MinValue = 82;
“第二最大值” All-MaxValue = 94;
“第二最小值” All-MinValue = 76;
“采样数据的中值” MidValue = 87。
“采样数据偏差” Dy = 18。
将采样数据中值点位置{101,87}的亮度值设置为最高亮度值Maxcolor;并通过程序以中值为中心,,以偏差值Dy的一半为距离向上以及向下设定颜色渐变,其算法如下:
if (Dy >= 1)
{
SetPixel(x,MidValue ,MAXCOLOR);
Index = Dy/2;
for ( i = 1; i <= Dy/2 + 1 ; i++ )
{
COLOR = MAXCOLOR - index-i; //颜色变化
if ( ( MidValue + i ) <= AllMaxValue )
SetPixel(x,MidValue+i ,COLOR );
if ( ( MidValue – i ) >= AllMinValue )
SetPixel(x,MidValue-i COLOR );
}
}
通过所述算法,即可将该列像素坐标的数值与显示屏上的亮度变化数值进行对应,最后,将该列像素坐标上的颜色输出到显示屏上,依照此方法,就能够将各列像素坐标上的颜色输出到显示屏上对应的对应像素点上,并显示出波形。
通过本实施例的监护仪上波形失真处理的方法,在不影响波形实时显示的前提下,首先对3组采样数据进行分析处理得到中值,从而使所显示的波形表达了多个采样数据的一个均匀变化的波形轨迹,因此不会产生由于监护仪受到外界信号干扰的情况下而产生的波形失真问题。另外,通过对各列像素坐标上中值点位置的其余采样数据进行亮度淡化处理,能够在满足检测波形保真功能的同时,对其波形上的锯齿纹进行平滑修复。
请参图4,基于所述监护仪上波形失真处理方法,本实施例还提出了一种监护仪上波形失真处理系统,用于对监护仪上所显示的波形进行保真处理,其包括如下模块:
人机界面模块110,用户根据自己的实际要求将一列像素坐标进行重复采样的采样时间段T输入至人机界面模块内,以保证后续的模块能够按照用户的需求进行采样数据的分组存储。
采样数据获取模块120,其与监护仪的信号采集端以及人机界面模块110连接,用于获取输入至监护仪上的采样数据,并且将输入至监护仪上的采样数据以人机界面模块110中设定的重复采样的采样时间段T为基础,对采样数据进行分组管理,其中,一组采样数据具有N个采样点。最后,通过采样数据获取模块120将已经分组的采样数据进行存储备用。其中,采样数据获取模块120所存储的相邻时间M组采样数据中,最后存储的一组采样数据被设定为当前组,位于当前组前一组的数据设定为前一组,位于当前组前两组的数据设定为前两组,……,位于当前组前M-1组的数据设定为前M-1组。
采样数据运算模块130,与采样数据获取模块120连接,读取采样数据获取模块120中当前组采样数据,并通过内部算法进行特征值的运算;另外,采样数据运算模块130还能够读取采样数据获取模块120中相邻时间M组采样数据,并通过内部算法进行偏差值Dy的运算。
颜色运算模块140,与采样数据运算模块130连接,用于读取采样数据运算模块130的特征值、偏差值Dy,并通过内部算法将特征值的颜色设定为最亮色,并以特征值为中心,对列像素坐标上的其它数据进行颜色逐渐变暗设定或在偏差值Dy设定数据范围内对该列像素坐标上的其它数据进行颜色逐渐变暗对应。
视屏输出模块150,与颜色运算模块140连接,通过颜色运算模块140将一列像素坐标的数值与显示屏上的亮度变化数值进行对应后,即可通过视屏输出模块150将该列像素坐标上的颜色输出到与显示屏对应的像素点上。然后,依照所述方法,就能够将各列像素坐标上的颜色输出到显示屏的对应像素点上,并在显示屏上显示出实际波形。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种监护仪上波形失真处理方法,用于对监护仪上所显示的波形进行保真处理,其特征在于,其包括如下步骤:
    获取一列像素坐标上M组采样数据:获取一列像素坐标上相邻时间的M组采样数据,并将将最新获取的一组采样数据定义其为当前组;
    计算所述当前组采样数据的特征值:通过选取当前组中的采样数据,计算所选取的采样数据的平均值作为特征值;
    将该列像素坐标上的数据与所述监护仪显示屏上的颜色对应:将该列像素坐标上所述特征值的颜色设定为所述监护仪显示屏中的最亮色,以所述特征值为中心,对该列像素坐标上的其它数据进行颜色逐渐变暗对应;
    采用所述颜色将该列像素坐标上的数据显示到所述监护仪显示屏上对应的像素点上。
  2. 根据权利要求1所述的监护仪上波形失真处理方法,其特征在于,所述计算所述当前组采样数据的特征值的步骤包括:
    读取所述当前组采样数据的第一最大值MaxValue以及第一最小值MinValue:读取所述当前组采样数据中的最大值并定义为第一最大值MaxValue,读取所述当前组采样数据中的最小值并定义为第一最小值MinValue;
    计算当前组采样数据的特征值MidValue:根据所述第一最大值MaxValue以及所述第一最小值MinValue计算所述当前组采样数据的特征值MidValue,所述特征值MidValue的定义方法为:MidValue =(MaxValue + MinValue)/2。
  3. 根据权利要求1所述的监护仪上波形失真处理方法,其特征在于,所述计算所述当前组采样数据的特征值的步骤包括:
    读取所述当前组采样数据的所有值Y1,Y2,…Yn,并计算当前组采样数据的所述特征值AverageValue,所述特征值AverageValue的定义方法为:AverageValue =(Y1+ Y2+…+Yn)/N,其中,N为所述当前组采样数据的采样个数。
  4. 根据权利要求1所述的监护仪上波形失真处理方法,其特征在于,在所述将该列像素坐标上的数据与所述监护仪显示屏上的颜色对应的步骤之前还包括如下步骤:
    读取所述一列像素坐标上所述M组采样数据的第二最大值All-MaxValue以及第二最小值All-MinValue:读取所述M组采样数据中的最大值并定义为第二最大值All-MaxValue,读取所述M组采样数据中的最小值并定义为第二最小值All-MaxValue;
    计算所述M组采样数据的所述第二最大值All-MaxValue与所述第二最小值All-MinValue之间的偏差值Dy:所述偏差值Dy的定义方法为:Dy = All-MaxValue – All-MinValue;
    设定该列像素坐标上所要进行颜色对应的数据范围:以所述特征值为中心,以所述偏差值Dy的一半为距离向上以及向下设定该列像素坐标上所要进行颜色对应的数据的范围。
  5. 根据权利要求1所述的监护仪上波形失真处理方法,其特征在于,在所述获取一列像素坐标上M组采样数据的步骤之前还包括,获取一列像素坐标上的一组采样数据:通过设定对一列像素坐标进行重复采样的采样时间段T,由此间接设定在所述采样时间段T内能够采样到的数据,并将其定义为一组采样数据。
  6. 根据权利要求5所述的监护仪上波形失真处理方法,其特征在于,所述设定对一列像素坐标进行重复采样的采样时间段T的设定步骤包括:
    获取所述监护仪的基本参数:包括,获取所述监护仪的采样频率F、所述监护仪的分辨率P、所述监护仪显示屏上的显示长度W以及所述监护仪显示屏上一秒钟内能够显示波形的长度L;
    计算所述监护仪一秒钟内的采样次数:根据所述监护仪的基本参数计算出在所述监护仪显示屏一秒钟内所显示的波形长度L范围内能够采样的像素点数Dot:Dot = L*P/W;并根据所述监护仪的采样频率F确定在该波形长度L范围内一秒钟所述信号输入单元能够接收到的采样次数Num.: Num.= F/Dot;
    计算所述对一列像素坐标进行重复采样的采样时间段T:根据所需波形的保真度以及实际监护仪的运算速度,确定在该波形长度L范围内一列像素坐标上的一组采样数据的采样次数N,并根据所确定的采样次数N以及所述一秒钟所述信号输入单元能够接收到的采样次数Num.,计算出所述对一列像素坐标进行重复采样的采样时间段T,其定义方法为:T = N / Num.。
  7. 一种监护仪上波形失真处理系统,用于对所述监护仪上所显示的波形进行保真处理,其特征在于,包括如下模块:
    采样数据获取模块,用于获取一列像素坐标上M组采样数据;
    采样数据运算模块,用于计算所述当前组采样数据的特征值及偏差值,所述采样数据运算模块读取所述采样数据获取模块的所述当前组采样数据,并进行所述特征值的运算,;读取所述采样数据获取模块的所述相邻时间M组采样数据,并进行所述偏差值Dy的运算;
    颜色运算模块,用于将该列像素坐标上的数据与所述监护仪显示屏上的颜色对应,所述颜色运算模块读取所述运算处理模块的所述特征值、所述偏差值Dy,并将所述特征值的颜色设定为最亮色,并以所述特征值为中心,对所述列像素坐标上的其它数据进行颜色逐渐变暗设定或在所述数据范围内对该列像素坐标上的其它数据进行颜色逐渐变暗设定;
    视屏输出模块,用于采用所述颜色将该列像素坐标上的数据显示到所述监护仪显示屏上对应的像素点上。
  8. 根据权利要求7所述的一种监护仪上波形失真处理系统,其特征在于,还包括设置在所述采样数据获取模块前的人机界面模块,所述人机界面模块用于设定对一列像素坐标进行重复采样的采样时间段T,以保证所述采样数据获取模块能够按照用户的要求进行采样数据分组。
PCT/CN2013/078101 2013-06-13 2013-06-27 监护仪上波形失真处理方法及处理系统 WO2014198076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310233854.XA CN103340600B (zh) 2013-06-13 2013-06-13 监护仪上波形失真处理方法及处理系统
CN201310233854.X 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014198076A1 true WO2014198076A1 (zh) 2014-12-18

Family

ID=49275467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078101 WO2014198076A1 (zh) 2013-06-13 2013-06-27 监护仪上波形失真处理方法及处理系统

Country Status (2)

Country Link
CN (1) CN103340600B (zh)
WO (1) WO2014198076A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345807A (zh) * 2018-12-21 2020-06-30 四川锦江电子科技有限公司 一种心电波形绘制方法、模块及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914284B (zh) * 2015-05-21 2017-11-21 深圳市鼎阳科技有限公司 一种示波器灰度强度调节方法及装置
CN107049257A (zh) * 2017-04-21 2017-08-18 成都心吉康科技有限公司 显示波形的方法、装置和可穿戴设备
CN109491628A (zh) * 2018-10-16 2019-03-19 广东宝莱特医用科技股份有限公司 一种快速反锯齿波形的绘制方法及系统
CN113723393B (zh) * 2021-11-03 2022-03-18 浙江宇视科技有限公司 图像采集方法、装置、电子设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291233A1 (en) * 2006-06-16 2007-12-20 Culbertson W Bruce Mesh for rendering an image frame
CN101334985A (zh) * 2007-06-27 2008-12-31 深圳迈瑞生物医疗电子股份有限公司 一种波形数据的显示装置及方法
JP2010213965A (ja) * 2009-03-18 2010-09-30 Konica Minolta Medical & Graphic Inc 超音波画像診断装置
CN202058210U (zh) * 2011-01-31 2011-11-30 格科微电子(上海)有限公司 亮度提升装置
CN103106876A (zh) * 2013-01-14 2013-05-15 合肥工业大学 一种基于图像分类的液晶显示背光全局调光方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632272A (en) * 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
EP0528524A2 (en) * 1991-08-16 1993-02-24 International Business Machines Corporation Method and apparatus for scaling line patterns
CN2223971Y (zh) * 1995-01-25 1996-04-10 石家庄开发区春立仪器公司 带感热点阵式记录器的生物电记录仪
US5830150A (en) * 1996-09-18 1998-11-03 Marquette Electronics, Inc. Method and apparatus for displaying data
US5953009A (en) * 1997-05-27 1999-09-14 Hewlett-Packard Company Graphical system and method for invoking measurements in a signal measurement system
CN202267846U (zh) * 2011-10-28 2012-06-06 李军科 高精度数据采集存储回显装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291233A1 (en) * 2006-06-16 2007-12-20 Culbertson W Bruce Mesh for rendering an image frame
CN101334985A (zh) * 2007-06-27 2008-12-31 深圳迈瑞生物医疗电子股份有限公司 一种波形数据的显示装置及方法
JP2010213965A (ja) * 2009-03-18 2010-09-30 Konica Minolta Medical & Graphic Inc 超音波画像診断装置
CN202058210U (zh) * 2011-01-31 2011-11-30 格科微电子(上海)有限公司 亮度提升装置
CN103106876A (zh) * 2013-01-14 2013-05-15 合肥工业大学 一种基于图像分类的液晶显示背光全局调光方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345807A (zh) * 2018-12-21 2020-06-30 四川锦江电子科技有限公司 一种心电波形绘制方法、模块及装置
CN111345807B (zh) * 2018-12-21 2022-08-09 四川锦江电子科技有限公司 一种心电波形绘制方法、模块及装置

Also Published As

Publication number Publication date
CN103340600B (zh) 2016-03-30
CN103340600A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
WO2014198076A1 (zh) 监护仪上波形失真处理方法及处理系统
CN101576771B (zh) 基于非均匀样本插值的眼动仪定标方法
TWI576743B (zh) 多點觸控敏感顯示裝置及其中之觸控識別之指定方法
CN103135840B (zh) 触摸屏感测装置以及用于感测触摸屏的方法
WO2019001439A1 (zh) 显示面板的灰阶调整方法及装置
US10635210B2 (en) Touch screen display device and driving circuit thereof with different display period time lengths within a single frame
EP0108121A1 (en) Microcomputer-based system and method for the on-line analysis and topographic display of human brain electrical activity
CA2119886A1 (en) Automatic precision video monitor alignment system
WO2013127092A1 (zh) 一种斜视角图像的模拟方法及装置
WO2018120315A1 (zh) 一种触控显示面板的驱动方法、驱动装置以及触控显示器
CN106500969B (zh) 显示屏均匀性测试方法及显示屏均匀性测试系统
TW200826017A (en) Method and device of rapidly building a gray-level and brightness curve of displayer
WO2011081362A2 (ko) 멀티터치가 가능한 터치스크린을 이용한 화상의 색 보정 방법
WO2015043333A1 (zh) 一种基于散点图的数据质量检测方法
WO2019045499A1 (en) IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND COMPUTER-READABLE RECORDING MEDIUM
JP2011039451A (ja) 表示装置、輝度ムラ補正方法、補正データ作成装置、および補正データ作成方法
WO2013127093A1 (zh) 一种斜视角图像的模拟方法及装置
CN101458916B (zh) 波形抗锯齿方法及波形抗锯齿处理装置
US9520076B2 (en) Method and system for adjusting white balance, method for making liquid crystal display
WO2015196878A1 (zh) 一种电视虚拟触控方法及系统
CN101071474A (zh) 人体影像异常区域统计检测方法
WO2016114574A2 (ko) 패치 쉬프트를 이용한 텍스처 필터링 방법 및 장치
WO2021060748A1 (ko) 연결성 학습 장치 및 연결성 학습 방법
CN101345033A (zh) 一种光学数据的处理方法、系统及液晶显示装置
CN110113590A (zh) 一种图像色彩空间的转换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13886951

Country of ref document: EP

Kind code of ref document: A1