WO2014196473A1 - サーバシステム、その制御方法および制御プログラム - Google Patents
サーバシステム、その制御方法および制御プログラム Download PDFInfo
- Publication number
- WO2014196473A1 WO2014196473A1 PCT/JP2014/064450 JP2014064450W WO2014196473A1 WO 2014196473 A1 WO2014196473 A1 WO 2014196473A1 JP 2014064450 W JP2014064450 W JP 2014064450W WO 2014196473 A1 WO2014196473 A1 WO 2014196473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- servers
- server
- battery
- server system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/263—Arrangements for using multiple switchable power supplies, e.g. battery and AC
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3296—Power saving characterised by the action undertaken by lowering the supply or operating voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
Definitions
- the present invention relates to a technique for managing power supplied to a plurality of servers.
- Patent Document 1 discloses a technique for supplying power supplied from a power supply unit and a secondary battery to a device body.
- the technique described in the above document is for controlling power supply to one device body, and has no idea of supplying power to a plurality of objects. Therefore, in a server system composed of a plurality of servers, maintenance is not easy when power is supplied using a battery.
- An object of the present invention is to provide a technique for solving the above-described problems.
- a server system provides: A server system in which a plurality of servers are divided into a plurality of groups according to a physical arrangement, At least one grid power providing unit that distributes and provides grid power to each of the plurality of groups, A battery providing power storage for at least two of the servers included in the group is provided for each of the plurality of groups, Control means for controlling each of the servers included in one group based on the power that the grid power providing means and the battery can provide; Is provided.
- a control method of a server system includes: A server system control method in which a plurality of servers are divided into a plurality of groups according to a physical arrangement, For each of the plurality of groups, the grid power providing means distributes and provides grid power; Providing power storage for at least two of the servers included in the group from batteries provided for each of the plurality of groups; A control step of controlling each of the servers included in one group based on the power that the grid power providing means and the battery can provide; including.
- a server system control program provides: A server system control program in which a plurality of servers are divided into a plurality of groups according to a physical arrangement, For each of the plurality of groups, the grid power providing means distributes and provides grid power; Providing power storage for at least two of the servers included in the group from batteries provided for each of the plurality of groups; A control step of controlling each of the servers included in one group based on the power that the grid power providing means and the battery can provide; Is executed on the computer.
- Server system 100 includes at least one grid power providing unit 101, a plurality of batteries 102, and a control unit 103.
- a plurality of servers are divided into a plurality of groups 105 according to a physical arrangement.
- the grid power providing unit 101 distributes and provides grid power to each of the plurality of groups 105.
- the battery 102 is provided for each of the plurality of groups 105 and provides power storage to at least two servers included in the group 105.
- the control unit 103 controls each of the servers included in one group 105 based on the power that the system power providing unit 101 and the battery 102 can provide.
- system power and battery power can be independently supplied to a plurality of server groups, and maintenance is facilitated.
- FIG. 2 is a block diagram showing a power-related configuration of the server system according to the present embodiment.
- a power module 220 and a power management apparatus 200 are prepared for each region 251 that is a certain physical area.
- the power module 220 includes a power receiving unit 221 that receives system power from an electric power company and supplies the power to a server in the rack 250, and a battery 222 that accumulates power supplied from the power receiving unit 221.
- the battery 222 has different performance for each region 251, and has a maximum power storage amount corresponding to the power required in each region 251. If there is a surplus portion of the power supplied from the power receiving unit 221 to the region 251, it can be used to store the battery 222.
- Each power module 220 includes a switch 223, which is a combination of a system power wiring 201 supplied from an electric power company and a switch 223, and distributes and provides system power to each of a plurality of regions 251. Functions as a system power supply means.
- the power management apparatus 200 monitors the power receiving unit 221 and the battery 222 for each power module 220, and controls each server according to the suppliable power value.
- the power management apparatus 200 is shown as a plurality of discrete configurations attached to the power module 220, but the present invention is not limited to this.
- FIG. 3 is a diagram illustrating a hardware configuration of the server system according to the present embodiment.
- the server system rack 250 includes a rack manager 301, a plurality of chassis 360, and a plurality of power modules 220.
- the rack manager 301 includes power management apparatuses 200 corresponding to the number of regions 251 and manages the power of the entire rack.
- the power module 220 is prepared for each region 251 and supplies power to a plurality of chassis 360 included in the region 251.
- the chassis 360 has a plurality of servers 361 built therein. That is, each region 251 can be regarded as a group including a plurality of servers 361.
- FIG. 4A is a diagram showing a hardware configuration and a software configuration inside the chassis according to the present embodiment.
- the power management apparatus 200 is controlled by data center management software 450.
- the chassis 360 includes a network switch 401, a plurality of servers 361, a chassis management module 403, a fan 404, and a power source 405.
- Each server 361 includes a service processor 421 called BMC (Base board Management Controller) and a CPU 423 called SoC (System on Chip).
- BMC Basic board Management Controller
- SoC System on Chip
- the CPU 423 is a CPU LSI, which is not only a CPU core, but also SATA (Serial Advanced Technology Attachment) / SAS (Serial tta Attached Small Computer System Interface), PCIexpress (Peripheral Component Interconnect Express), Ethernet (registered trademark), etc. So, functions that are separate LSIs are also incorporated into the same chip.
- SATA Serial Advanced Technology Attachment
- SAS Serial tta Attached Small Computer System Interface
- PCIexpress Peripheral Component Interconnect Express
- Ethernet registered trademark
- FIG. 4B is a diagram showing the exchange of power-related information according to the present embodiment.
- the power management apparatus 200 receives an input power value (a value of external power used by the power module 220), a maximum input power value (a maximum value of external power that can be provided to the region), and an output power value (a power module) from the power module 220. Power value provided to the region), maximum output power value (total value of external power and battery supply power), and remaining battery power.
- the power management apparatus 200 receives power consumption in the chassis 360 from the chassis 360. Then, an H / L control instruction is sent to each server in the chassis 360.
- FIG. 5 is a block diagram showing a functional configuration of the power management apparatus according to the present embodiment.
- the receiving unit 501 receives, from each of the plurality of servers 361, a demand 511 as power request information regarding the amount of power requested by each of the plurality of servers 361.
- the calculation unit 502 calculates the requested total power amount requested by the plurality of servers 361 based on the demand 511.
- the AC supply power holding unit 503 holds the AC power value supplied from the power receiving unit 221 that can supply power to a plurality of information processing apparatuses.
- the battery remaining amount holding unit 504 holds a battery remaining amount value in the battery 222 that can supply power to the plurality of servers 361.
- the server control unit 505 controls the plurality of servers 361 based on the demand 511, the AC power value, and the battery remaining amount value.
- the server 361 can be driven in at least two drive modes including a high power mode (H mode) in which power consumption is high and a low power mode (L mode) in which power consumption is low, and the server control unit 505. Determines the drive mode (H / L) 512 in each of the plurality of servers.
- the power management apparatus 200 includes a server priority determination unit 506 that determines priorities of the plurality of servers 361.
- the server priority determination unit 506 has a server database 561 that sets each attribute of the server 361 and the priority derived therefrom.
- the server control unit 505 determines whether to use the battery 222.
- a plurality of servers 361 are driven using both the power from the power receiving unit 221 and the power from the battery 222, and it is determined that the battery 222 is not to be used. Controls the drive mode (H / L) 512 of the plurality of servers in accordance with the priority so that the plurality of servers 361 can be driven only by the power from the power receiving unit 221.
- the server control unit 505 determines that the battery 222 is not used, the server with lower priority is compared with the server with higher priority so that the plurality of servers 361 can be driven only by the power from the power receiving unit 221. Control to drive in a mode with low power consumption. That is, a server with high priority is driven in the H mode, and a server with low priority is driven in the L mode. For example, when the remaining amount of the battery 222 is less than or equal to a predetermined value, the server control unit 505 determines that a server with a low priority is a server with a high priority so that a plurality of servers can be driven only with power from the power receiving unit 221. Control is performed so as to drive in a mode with less power consumption.
- FIG. 6 is a graph for explaining the function of the power management apparatus according to the present embodiment. For example, if b, the maximum output power is 25 kw, and the input power is 20 kw, first, if the output power falls below Ckw during a period when the remaining battery capacity is sufficient, charging is performed, and if the output voltage exceeds 20 kw. , Transition to the battery assist mode (a mode in which the battery 222 is used). On the other hand, when the remaining amount of power decreases due to the use of the battery 222 (for example, A% or less), it becomes impossible for a server other than a server with high priority to enter the battery assist mode, and the drive mode of some servers as necessary. Change to power saving mode.
- the battery assist mode is not permitted, and the server 361 is actively set in the low power mode to charge the battery 222.
- These threshold values A, B, and C can be set by the system operator.
- FIG. 7 is a table for explaining the contents of the server database 561 of the power management apparatus according to the present embodiment.
- the server database 561 stores the maximum used power amount, the minimum used power amount, the requested power amount, the priority of the application being executed, etc. received as the demand 511 from each server 361.
- the server priority determination unit 506 determines the server priority according to the amount of power or the application, and sets it in the server database 561.
- an ID may be physically attached to the hardware of the server 361 and the server cluster may be divided into No. 1, No. 2, and No. 3.
- the priority may be determined according to a fee (SLA: Service-level agreement) paid by the user of the server 361.
- SLA Service-level agreement
- the priority may be logically determined by the type of OS (Operation System) or the type of executable application.
- the priority may be determined by self-reporting from the server 361.
- FIG. 8 is a diagram showing a table showing detailed contents of priorities determined in the power management apparatus according to the present embodiment.
- the table 801 it is determined how each server 361 should be driven according to the situation (S1 to Sn) such as a time zone.
- the server A is always driven in the H mode, and the server E is always driven in the L mode.
- Server B to server D transition from the H mode to the L mode in the order of server B, server D, and server C in accordance with the supplied power value.
- the servers A to D are driven in the L mode, and the server E is set to Off (sleep).
- FIG. 9 is a diagram for explaining functions of the power management apparatus according to the present embodiment.
- FIG. 9 shows a table 900 showing an example of server drive control in each situation.
- the table 900 shows a server control method in ten situations S1 to S10 as an example.
- the vertical column 901 indicates the respective situation numbers, and the vertical column 902 schematically indicates the power that can be supplied (upper bar) and the drive mode (lower bar) of each server in each situation. Yes.
- the upper bar in the column 902 indicates the amount of system power (AC) and battery power (BATT) that can be output to the region 251 in each situation.
- the upper bar in the column 902 indicates the power consumption of the server 361 (in this example, only four), and the characters in the bar indicate the drive mode of each server 361. .
- a vertical column 903 indicates each situation by a mathematical expression, and a vertical column 904 indicates a state of the battery or the like.
- the situation S1 shows a situation where the total power consumption (required power) when all servers are driven in the H mode does not exceed the supply power value (AC) of the system power. In this case, it is not necessary to use the battery 222, and conversely, a part of the remaining system power is used for charging the battery 222.
- the total power consumption when all servers are driven in the H mode exceeds the supply power value (AC) of the system power, but the maximum suppliable power value (AC + BATT) including the power of the battery 222 is set.
- the situation is not exceeded.
- the battery 222 may be discharged and fully assisted to drive all servers in the H mode.
- the process may move to the situation S3.
- Status S3 is a status where the battery 222 cannot be used or is not used. In this situation, until the power consumption of all the servers becomes equal to or less than the power supply value (AC) of the system power, the servers with lower priority are sequentially shifted to the L mode (pushing into AC). When the system power is left, the battery 222 is charged.
- AC power supply value
- the situation S4 shows a situation where the total power consumption when all servers are driven in the H mode exceeds the maximum suppliable power value (AC + BATT) obtained by adding the power of the battery 222 to the supply power value (AC) of the system power. Yes. In this case, even if the battery 222 is discharged and full assist is performed, all servers cannot be driven in the H mode.
- the servers with the lower priority are sequentially shifted to the L mode (pushing into AC + BATT) until the power consumption of all the servers becomes equal to or less than the maximum suppliable power value (AC + BATT).
- the process proceeds to situation S6.
- Status S6 is a status where the battery 222 cannot be used or is not used. In this situation, until the power consumption of all the servers becomes equal to or less than the power supply value (AC) of the system power, the servers with lower priority are sequentially shifted to the L mode (pushing into AC). When the system power is left, the battery 222 is charged.
- AC power supply value
- the total power consumption when all servers are driven in the L mode exceeds the supply power value (AC) of the grid power, but does not exceed the maximum suppliable power value (AC + BATT) including the power of the battery 222.
- AC supply power value
- AC + BATT maximum suppliable power value
- the battery 222 may be discharged and fully assisted to drive all servers in the L mode.
- the process may proceed to the situation S8.
- Status S8 is a status where the battery 222 cannot be used or is not used. In this situation, until the power consumption of all the servers becomes equal to or less than the power supply value (AC) of the system power, the servers with lower priority are sequentially shifted to the sleep mode (pushing into AC). At the same time, an alert indicating that the amount of power is insufficient is sent.
- AC power supply value
- Status S9 is a status where the grid power is down due to a power failure or maintenance. In this situation, if the total power consumption when all the servers are driven in the L mode does not exceed the suppliable power value of the battery 222, all the servers 361 are driven in the power saving mode to earn time, and an alert is issued. Call and wait for recovery from power outage.
- Status S10 is another status in which the grid power is down due to a power failure or maintenance.
- the server 361 having the lower priority is sequentially shifted to the sleep mode.
- an alert is sent to wait for recovery from a power outage.
- system power is shown on the left side and battery is shown on the right side, but the order may be reversed. . That is, the control using the grid power may be performed only when the battery is actively used and the supplied power value of the battery is lower than a certain value. In this case, the server drive mode is controlled to be pushed into the battery power value.
- FIG. 10 is a flowchart for explaining the flow of processing according to FIG. 9 in the power management apparatus according to the present embodiment.
- step S1001 it is determined whether or not the total required power value when all servers in the region are driven in the H mode is equal to or less than the supply power value AC of the system power. If the total required power value when all the servers are driven in the H mode is equal to or less than the supply power value AC of the system power, the process proceeds to step S1003, and all the servers are driven in the high output mode (H mode), and further step S1005. The battery is charged at.
- step S1001 If it is determined in step S1001 that the total required power value when all servers in the region are driven in the H mode is larger than the supply power value AC of the system power (situation S2 in FIG. 9), the process proceeds to step S1007.
- step S1007 if the total value of the power supply value AC of the system power and the power supply value BATT of the battery 222 is smaller than the total value of the required power values when all the servers in the region are driven in the L mode (situation) S8), the process proceeds to step S1009. In step S1009, an alert is transmitted, and the process further proceeds to step S1011.
- step S101 sleep is sequentially started from servers with lower priority until the total value of required power of all servers in the region becomes smaller than the total value of the supply power value AC of the system power and the supply power value BATT of the battery 222.
- the process proceeds to step S1025.
- step S1007 if the total value of the grid power supply power value AC and the battery 222 supply power value BATT is greater than or equal to the total power value required when all servers in the region are driven in the L mode (situation) S5) Proceed to step S1013.
- step S1013 when the required power value when all the servers in the region are driven in the L mode is larger than the supply power value AC of the system power (situation S7), the process proceeds to step S1015.
- step S1015 an alert that “use of battery 222 is necessary to drive all servers” is alerted, and the flow advances to step S1017.
- step S1017 all servers are driven in the L mode using the power of the battery 222 until it is determined in step S1007 that the power of the battery 222 is insufficient.
- step S1019 it is determined whether the required power value when all servers are driven in the H mode is smaller than the total value of the supply power value AC of the system power and the supply power value BATT of the battery 222.
- step S4 When the required power value when all the servers are driven in the H mode is equal to or greater than the total value of the supply power value AC of the system power and the supply power value BATT of the battery 222 (situation S4), the process proceeds to step S1021, and the battery 222 is Determine whether to use. In the case of using the battery, the process proceeds to step S1023, and the necessary power values of all the servers are sequentially started from the server with the lower priority until the required power value of all the servers becomes less than the total value of the supply power value AC of the system power and the supply power value BATT of the battery 222 , Switch from H mode to L mode.
- step S1021 If it is determined in step S1021 that the battery 222 is not used, the process proceeds to step S1029, and driving is performed from a server with lower priority until the total required power value of all servers is equal to or less than the supply power value AC of the system power. The mode is switched in the order of H ⁇ L ⁇ sleep. Further, the process proceeds to step S1031, and charging is performed when the supply power value AC of the grid power remains.
- FIG. 11 is a diagram for explaining a functional configuration of the power management apparatus according to the present embodiment.
- the power management apparatus according to the present embodiment is different in that, instead of specifying the drive mode of the server, a budget related to power is notified to the server. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 11 is a block diagram showing a functional configuration of the power management apparatus according to the present embodiment.
- the power management apparatus 1100 includes a server control unit 1105 that determines and notifies a budget (maximum usable power amount) 1112 of each server.
- Each server 1161 determines its own drive mode according to the budget 1112 received from the server control unit 1105.
- the server control unit 1105 calculates an upper limit value of the amount of power that can be used by each server in accordance with the priority for each server determined by the server priority determination unit 506. Then, the server control unit 1105 notifies the plurality of servers 1161 of the upper limit value of the electric energy that each of the plurality of servers 1161 can use.
- the server 1161 operates with an electric energy that is equal to or less than the notified upper limit value.
- FIG. 12 is a diagram showing exchange of power-related information according to the present embodiment.
- the power management apparatus 1100 notifies the chassis 360 of the budget 1112.
- the server control unit 1105 determines the budget of each server, but may determine the budget of a plurality of servers (for example, servers in the chassis 360). In that case, a plurality of servers share the budget.
- the method of sharing may be, for example, a method in which a plurality of servers share a budget equally, or a method in which a high priority server secures a budget first and returns it when it is no longer needed.
- FIG. 13 is a diagram for explaining a functional configuration of the power management apparatus according to the present embodiment.
- the power management apparatus according to this embodiment is different from the second embodiment in that it has a power distribution unit 1301 that distributes system power to each region 251. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
- the power distribution unit 1301 functions as a system power providing unit that distributes and provides system power to each of the plurality of regions 251.
- the rack manager 1302 determines a power value to be distributed to each region 251 based on the power consumption, required power, and the like of each region 251 (or each server included therein), and controls the power distribution unit 1301.
- the rack manager 1302 includes a table 1401 shown in FIG.
- the table 1401 is used for managing the maximum power consumption, the minimum power consumption, the required power amount, the region priority, and the state of the provided battery (battery presence / absence, real-time power storage amount and maximum power storage amount) for each region. It is done.
- power supply for each region can be controlled more flexibly, and maintenance power control, power control during power saving, and the like can be performed easily and effectively.
- a server has been described as an example of an information processing apparatus as a power supply target.
- the present invention is not limited to this, and a PC (Personal Computer), storage Other devices such as devices and network devices may be used.
- the system power source and the battery have been described as the power supply source.
- the present invention is not limited to this, and there may be two power sources.
- the information processing apparatus may be controlled based on power from two power sources, a fossil fuel system power source and a renewable energy system power source.
- the drive mode of the information processing apparatus may be controlled in accordance with the power values from three or more types of power sources.
- the H mode, the L mode, and the sleep have been described as examples of the server drive mode, other modes (for example, an M mode with power consumption between the H mode and the L mode) may be included.
- the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device.
- the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed in the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. .
- a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Power Sources (AREA)
- Direct Current Feeding And Distribution (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
複数のサーバが物理的な配置に応じて複数のグループに分かれているサーバシステムであって、
前記複数のグループのそれぞれに対して、系統電力を分配して提供する系統電力提供手段を少なくとも1つ備え、
前記グループに含まれる少なくとも2つの前記サーバに対して蓄電力を提供するバッテリを、前記複数のグループのそれぞれについて備え、
前記系統電力提供手段および前記バッテリが提供できる電力に基づいて、一つのグループに含まれるサーバの各々を制御する制御手段と、
を備える。
複数のサーバが物理的な配置に応じて複数のグループに分かれているサーバシステムの制御方法であって、
前記複数のグループのそれぞれに対して、系統電力提供手段が系統電力を分配して提供するステップと、
前記複数のグループのそれぞれについて設けられたバッテリから、前記グループに含まれる少なくとも2つの前記サーバに対して蓄電力を提供するステップと、
前記系統電力提供手段および前記バッテリが提供できる電力に基づいて、一つのグループに含まれるサーバの各々を制御する制御ステップと、
を含む。
複数のサーバが物理的な配置に応じて複数のグループに分かれているサーバシステムの制御プログラムであって、
前記複数のグループのそれぞれに対して、系統電力提供手段が系統電力を分配して提供するステップと、
前記複数のグループのそれぞれについて設けられたバッテリから、前記グループに含まれる少なくとも2つの前記サーバに対して蓄電力を提供するステップと、
前記系統電力提供手段および前記バッテリが提供できる電力に基づいて、一つのグループに含まれるサーバの各々を制御する制御ステップと、
をコンピュータに実行させる。
本発明の第1実施形態としてのサーバシステム100について、図1を用いて説明する。サーバシステム100は、少なくとも1つの系統電力提供部101、複数のバッテリ102、および制御部103を含む。
次に本発明の第2実施形態に係る電力管理装置について、図2~図10を用いて説明する。図2は本実施形態に係るサーバシステムの電力関連構成を示すブロック図である。
次に本発明の第3実施形態に係る電力管理装置について、図11および図12を用いて説明する。図11は、本実施形態に係る電力管理装置の機能構成を説明するための図である。本実施形態に係る電力管理装置は、上記第2実施形態と比べると、サーバの駆動モードを指定する代わりに、電力に関するバジェットをサーバに通知する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
次に本発明の第4実施形態に係る電力管理装置について、図13および図14を用いて説明する。図13は、本実施形態に係る電力管理装置の機能構成を説明するための図である。本実施形態に係る電力管理装置は、上記第2実施形態と比べると、各リージョン251に対して、系統電力を分配する配電部1301を有する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
なお、上記第2乃至第4実施形態では、電力を供給する対象としての情報処理装置の一例としてサーバについて説明したが、本発明はこれに限定されるものではなく、PC(Personal Computer)、ストレージ機器、ネットワーク機器、など他の機器でもよい。また、本実施形態では、電力供給源として系統電力源とバッテリについて説明したが、本発明はこれに限定されるものではなく、2つの電力源があればよい。例えば、化石燃料系の系統電力源と再生可能エネルギー系の系統電力源の2つの電力源からの電力に基づいて、情報処理装置を制御してもよい。また、例えば、三種類以上の電力源からの電力値に応じて情報処理装置の駆動モードを制御してもよい。サーバの駆動モードとしてHモード、Lモード、スリープを例に挙げて説明したが、その他のモード(例えばHモードとLモードの中間の電力消費量のMモード)を有してもよい。
この出願は、2013年6月4日に出願された日本出願特願2013-118362を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Claims (10)
- 複数のサーバが物理的な配置に応じて複数のグループに分かれているサーバシステムであって、
前記複数のグループのそれぞれに対して、系統電力を分配して提供する系統電力提供手段を少なくとも1つ備え、
前記グループに含まれる少なくとも2つの前記サーバに対して蓄電力を提供するバッテリを、前記複数のグループのそれぞれについて備え、
前記系統電力提供手段および前記バッテリが提供できる電力に基づいて、一つのグループに含まれるサーバの各々を制御する制御手段と、
を備えたサーバシステム。 - 前記制御手段は、前記複数のグループそれぞれに対応するバッテリの状態を示すテーブルを備えた請求項1に記載のサーバシステム。
- 前記複数のサーバは、それぞれ、電力消費量の多い高電力モードと電力消費量の少ない低電力モードを含む少なくとも2つの駆動モードで駆動可能であり、
前記制御手段は、前記複数のサーバのそれぞれにおける前記駆動モードを決定する請求項1または2に記載のサーバシステム。 - 前記制御手段は、前記複数のサーバが要求する電力量に関する電力要求情報に基づいて、一つの前記グループに含まれる前記サーバを制御する請求項1、2または3に記載のサーバシステム。
- 前記制御手段は、前記複数のサーバのそれぞれが使用可能な電力量の上限値を、前記複数のサーバに対して通知し、前記上限値以下の電力量で制御させる請求項1乃至4のいずれか1項に記載のサーバシステム。
- 前記複数のサーバの優先度を設定する設定手段をさらに備え、
前記制御手段は、
前記系統電力提供手段からの電力のみで前記複数のサーバを駆動できるように、前記優先度に応じて、前記複数のサーバを制御する請求項1乃至5のいずれか1項に記載のサーバシステム。 - 前記制御手段は、前記系統電力提供手段からの電力のみで前記複数のサーバを駆動できるように、前記優先度の低いサーバを、前記優先度の高いサーバに比べて電力消費量の少ないモードで駆動させる請求項6に記載のサーバシステム。
- 前記制御手段は、前記バッテリの残電力値が所定値以下の場合に、前記系統電力提供手段からの電力のみで前記複数のサーバを駆動できるように、前記優先度の低いサーバを前記優先度の高いサーバに比べて電力消費量の少ないモードで駆動させる請求項7に記載のサーバシステム。
- 複数のサーバが物理的な配置に応じて複数のグループに分かれているサーバシステムの制御方法であって、
前記複数のグループのそれぞれに対して、系統電力提供手段が系統電力を分配して提供するステップと、
前記複数のグループのそれぞれについて設けられたバッテリから、前記グループに含まれる少なくとも2つの前記サーバに対して蓄電力を提供するステップと、
前記系統電力提供手段および前記バッテリが提供できる電力に基づいて、一つのグループに含まれるサーバの各々を制御する制御ステップと、
を含むサーバシステムの制御方法。 - 複数のサーバが物理的な配置に応じて複数のグループに分かれているサーバシステムの制御プログラムであって、
前記複数のグループのそれぞれに対して、系統電力提供手段が系統電力を分配して提供するステップと、
前記複数のグループのそれぞれについて設けられたバッテリから、前記グループに含まれる少なくとも2つの前記サーバに対して蓄電力を提供するステップと、
前記系統電力提供手段および前記バッテリが提供できる電力に基づいて、一つのグループに含まれるサーバの各々を制御する制御ステップと、
をコンピュータに実行させるサーバシステムの制御プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480032128.4A CN105264740A (zh) | 2013-06-04 | 2014-05-30 | 服务器系统、服务器系统的控制方法和控制程序 |
DE112014002274.8T DE112014002274T5 (de) | 2013-06-04 | 2014-05-30 | Serversystem, Steuerverfahren dafür und Steuerprogramm |
US14/895,333 US9910486B2 (en) | 2013-06-04 | 2014-05-30 | Controlling power allocation in a server system that utilizes supplemental batteries |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-118362 | 2013-06-04 | ||
JP2013118362A JP6474091B2 (ja) | 2013-06-04 | 2013-06-04 | サーバシステム、その制御方法および制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196473A1 true WO2014196473A1 (ja) | 2014-12-11 |
Family
ID=52008118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064450 WO2014196473A1 (ja) | 2013-06-04 | 2014-05-30 | サーバシステム、その制御方法および制御プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9910486B2 (ja) |
JP (1) | JP6474091B2 (ja) |
CN (1) | CN105264740A (ja) |
DE (1) | DE112014002274T5 (ja) |
WO (1) | WO2014196473A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104317378B (zh) * | 2014-09-30 | 2017-04-26 | 英业达科技有限公司 | 机架式服务器系统 |
DE102016120575A1 (de) * | 2016-10-27 | 2018-05-03 | Tobias Mader | Speichereinheit für einen Verbraucher sowie Speichersystem |
US10423217B1 (en) * | 2017-07-14 | 2019-09-24 | Cisco Technology, Inc. | Dynamic power capping of multi-server nodes in a chassis based on real-time resource utilization |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006011793A (ja) * | 2004-06-25 | 2006-01-12 | Nec Corp | 電力管理システム及びプログラム |
JP2010066850A (ja) * | 2008-09-09 | 2010-03-25 | Fujitsu Ltd | 電力供給管理装置、電力制御装置、および電力供給管理方法 |
WO2012014731A1 (ja) * | 2010-07-30 | 2012-02-02 | 三洋電機株式会社 | デマンド制御装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7634667B2 (en) * | 2002-07-12 | 2009-12-15 | Hewlett-Packard Development Company, L.P. | User-configurable power architecture with hot-pluggable power modules |
US7131019B2 (en) * | 2003-09-08 | 2006-10-31 | Inventec Corporation | Method of managing power of control box |
JP2007213167A (ja) * | 2006-02-07 | 2007-08-23 | Fujitsu Ltd | 電力制御プログラム、サーバシステム、および電力制御方法 |
JP2008083841A (ja) * | 2006-09-26 | 2008-04-10 | Nec Computertechno Ltd | ブレードサーバ、ブレード装置、及びブレードサーバの電力管理方法 |
US8006108B2 (en) | 2007-11-08 | 2011-08-23 | International Business Machines Corporation | Dynamic selection of group and device power limits |
JP5169186B2 (ja) * | 2007-12-05 | 2013-03-27 | 日本電気株式会社 | 電源装置 |
JP5324666B2 (ja) * | 2009-07-15 | 2013-10-23 | 株式会社日立製作所 | ストレージシステム |
US8723362B2 (en) * | 2009-07-24 | 2014-05-13 | Facebook, Inc. | Direct tie-in of a backup power source to motherboards in a server system |
US8478451B2 (en) | 2009-12-14 | 2013-07-02 | Intel Corporation | Method and apparatus for dynamically allocating power in a data center |
JP5187776B2 (ja) * | 2010-04-13 | 2013-04-24 | 日本電気株式会社 | 電気機器 |
US8838286B2 (en) * | 2010-11-04 | 2014-09-16 | Dell Products L.P. | Rack-level modular server and storage framework |
JP5309200B2 (ja) * | 2011-10-26 | 2013-10-09 | 株式会社野村総合研究所 | 運用管理装置および情報処理システム |
US9201486B2 (en) * | 2012-02-23 | 2015-12-01 | Cisco Technology, Inc. | Large scale dynamic power budget adjustments for optimizing power utilization in a data center |
US9502893B2 (en) * | 2012-09-20 | 2016-11-22 | Nova Greentech, Inc. | Distributed power supply system and method |
CN102842936B (zh) | 2012-09-20 | 2014-11-19 | 慈松 | 分布式电池供电装置及方法 |
US9348390B2 (en) * | 2013-05-03 | 2016-05-24 | International Business Machines Corporation | Dynamically adjusting power disturbance hold up times |
-
2013
- 2013-06-04 JP JP2013118362A patent/JP6474091B2/ja active Active
-
2014
- 2014-05-30 CN CN201480032128.4A patent/CN105264740A/zh active Pending
- 2014-05-30 US US14/895,333 patent/US9910486B2/en active Active
- 2014-05-30 WO PCT/JP2014/064450 patent/WO2014196473A1/ja active Application Filing
- 2014-05-30 DE DE112014002274.8T patent/DE112014002274T5/de not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006011793A (ja) * | 2004-06-25 | 2006-01-12 | Nec Corp | 電力管理システム及びプログラム |
JP2010066850A (ja) * | 2008-09-09 | 2010-03-25 | Fujitsu Ltd | 電力供給管理装置、電力制御装置、および電力供給管理方法 |
WO2012014731A1 (ja) * | 2010-07-30 | 2012-02-02 | 三洋電機株式会社 | デマンド制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160116975A1 (en) | 2016-04-28 |
US9910486B2 (en) | 2018-03-06 |
JP2014236637A (ja) | 2014-12-15 |
DE112014002274T5 (de) | 2016-01-21 |
CN105264740A (zh) | 2016-01-20 |
JP6474091B2 (ja) | 2019-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835304B2 (ja) | 電力供給システム、電力管理装置、電力管理方法および電力管理プログラム | |
US11126242B2 (en) | Time varying power management within datacenters | |
US11455021B2 (en) | Datacenter power management using AC and DC power sources | |
TWI360741B (en) | Information handling system and method of controll | |
US10014717B2 (en) | Power supply device and power supply method in data center | |
CN103838351B (zh) | 用于功率管理的方法和装置 | |
US11216059B2 (en) | Dynamic tiering of datacenter power for workloads | |
US8390148B2 (en) | Systems and methods for power supply wear leveling in a blade server chassis | |
JP3453451B2 (ja) | データ処理システムにおける電力管理装置 | |
US20130318371A1 (en) | Systems and methods for dynamic power allocation in an information handling system environment | |
TW201211749A (en) | System and method for providing energy efficient cloud computing | |
TWI468924B (zh) | 峰值電流需求之減少 | |
CN102918747A (zh) | 基于机架的无间断电源 | |
CN104641313A (zh) | 管理和撤销通过总线接口分配的功率 | |
WO2014208565A1 (ja) | 充電電力制御方法、充電電力制御システムおよびプログラム | |
WO2017149618A1 (ja) | 制御装置、発電制御装置、制御方法、システム、及び、プログラム | |
JP6474091B2 (ja) | サーバシステム、その制御方法および制御プログラム | |
US9733686B1 (en) | Systems and methods for management controller enhanced power supply unit current sharing | |
CN106919240B (zh) | 用于向处理器供电的方法和设备 | |
WO2019213466A1 (en) | Time varying power management within datacenters | |
JP6253111B2 (ja) | 電力管理装置、電力管理方法および電力管理プログラム | |
TW201546605A (zh) | 整合型不斷電供電系統與方法 | |
Kim et al. | Offline guarantee and online management of power demand and supply in cyber-physical systems | |
US20200371574A1 (en) | Datacenter power manipulation using power caches | |
TW201640275A (zh) | 深度斷電電源狀態 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480032128.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14806989 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120140022748 Country of ref document: DE Ref document number: 112014002274 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14895333 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14806989 Country of ref document: EP Kind code of ref document: A1 |