WO2014194635A1 - 可固化树脂、间隔物组合物、滤光片及制备方法和显示器件 - Google Patents

可固化树脂、间隔物组合物、滤光片及制备方法和显示器件 Download PDF

Info

Publication number
WO2014194635A1
WO2014194635A1 PCT/CN2013/089460 CN2013089460W WO2014194635A1 WO 2014194635 A1 WO2014194635 A1 WO 2014194635A1 CN 2013089460 W CN2013089460 W CN 2013089460W WO 2014194635 A1 WO2014194635 A1 WO 2014194635A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
spacer
weight
parts
filter
Prior art date
Application number
PCT/CN2013/089460
Other languages
English (en)
French (fr)
Inventor
李宏彦
杨久霞
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/389,225 priority Critical patent/US10239999B2/en
Publication of WO2014194635A1 publication Critical patent/WO2014194635A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • Curable resin spacer composition, filter, preparation method and display device
  • the present invention relates to a curable resin, a spacer composition, a filter, a method of producing the same, and a display device. Background technique
  • the liquid crystal display panel is formed by pairing a color filter and an array substrate with a liquid crystal layer interposed therebetween.
  • the color filter is a key device for realizing color display, and is mainly composed of a substrate, a black matrix, a filter layer, a transparent conductive film layer, and a spacer.
  • the spacer is used to control the gap between the two substrates to maintain an optimum thickness of the liquid crystal layer.
  • the spacers which are currently most used are spacers made of a resin composition, and the materials thereof generally include components such as an unsaturated monomer, an alkali-soluble resin, and a high-boiling solvent.
  • this increases the cost of the product and also results in higher energy consumption.
  • the raw materials used need to have high heat resistance under such process conditions. Summary of the invention
  • embodiments of the present invention provide a curable resin, a spacer composition comprising the curable resin, a spacer formed of the spacer composition, a filter including the spacer, and a filter thereof.
  • a preparation method and a display device using the same are provided.
  • dibasic anhydride is selected from the group consisting of pyromellitic dianhydride, trimellitic anhydride, benzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride or hexafluoro dianhydride;
  • the diamine is selected from the group consisting of 3-aminobenzylamine, 2,2'-difluoro-4,4'-(9-fluorenylene)diphenylamine, 2,2-bis(3-amino-4-hydroxybenzene) Hexafluoropropane, hexahydro-m-phenylenediamine diamine, 1,4-bis(aminomethyl)cyclohexane, 2,2-bis[4-(4-aminophenoxy)benzene] Fluoropropane, 2,2-bis(3-amino-4-indolylphenyl)hexafluoropropane, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2-bis(4-aminophenyl) a hexafluoropropane, 2,7-diaminopurine, m-phenylenediamine or 4,4'-fluorenylene bis(2-ethyl-6-
  • the ethylenic monomer is selected from the group consisting of vinyl chloride, styrene, decyl methacrylate, maleimide, butadiene, decyl acrylate, epoxy acrylate or bisphenol A epoxy acrylate.
  • Another embodiment of the present invention provides a method for producing the above curable resin, comprising: reacting a dibasic anhydride with a diamine in the presence of a solvent to obtain a polyimide resin; and the obtained polyimide The resin is subjected to a Michael addition reaction with an ethylenic monomer in the presence of a solvent to obtain a desired curable resin.
  • the reaction of the polyimide-based resin with the ethylenic monomer is carried out at a temperature of from 50 ° C to 300 ° C for 0.5 hours to 5 hours in the presence of a shielding gas.
  • a spacer composition comprising 2 to 30 parts by weight of a solvent, 30 to 90 parts by weight of a solvent, 0.01 to 1 part by weight of an initiator, and 0.05 to 2 parts by weight of an additive.
  • the solvent has a boiling point of 30 at one atmosphere. C ⁇ 90.
  • the solvent may be selected from the group consisting of diethyl ether, pentane, dichlorodecane, carbon disulfide, acetone, 1,1-dichloroethane, chloroform, decyl alcohol, tetrahydrofuran, n-hexane, trifluoroacetic acid, 1,1,1- Trichloroethane, carbon tetrachloride, ethyl acetate, ethanol, butanone, cyclohexane, isopropanol, 1,2-dichloroethane, ethylene glycol dioxime ether, trichloroethylene and triethylamine One or more of them.
  • the initiator is selected from the group consisting of (X-amino ketone photoinitiators, acylphosphine oxide photoinitiators, alpha-hydroxyketone photoinitiators, and benzoyl phthalate photoinitiators) One or more.
  • a further embodiment of the present invention provides a method for preparing the above spacer composition, comprising: uniformly mixing a curable resin, a solvent, an initiator, and an additive;
  • the uniformly mixed raw material is defoamed to obtain a mixture
  • the resulting mixture was subjected to filtration and impurity removal to obtain a spacer composition.
  • Still another embodiment of the present invention provides a filter comprising a substrate and a black matrix, a filter layer, a transparent conductive film layer, and a spacer which are sequentially disposed on the substrate, wherein the spacer is formed.
  • a further embodiment of the present invention provides a method of fabricating the above filter, comprising: sequentially forming a black matrix and a filter layer on a substrate; forming a transparent conductive film layer on the substrate on which the black matrix and the filter layer are formed; A spacer is formed on the substrate on which the transparent conductive film layer is formed to obtain a filter.
  • forming the spacer on the substrate forming the transparent conductive film layer includes a pre-baking operation and a curing operation, wherein the front supply operation is 20.
  • C ⁇ 50 The temperature of C is carried out for a period of 30 seconds to 120 seconds; and the curing operation is at 20.
  • C ⁇ 100 The temperature of C is carried out for 5 minutes to 30 minutes.
  • Yet another embodiment of the present invention provides a display device comprising a filter fabricated as described in the embodiments of the present invention or in accordance with the method of the present invention.
  • the curable resin according to the embodiment of the present invention overcomes the problem of high-temperature curing caused by the resin obtained by the conventional method and the raw material, so that the curing temperature of the finally obtained curable resin is low, and the curing temperature ranges from 20°. Between C ⁇ 100 °C.
  • the use of such a curable resin as a raw material for the spacer composition not only saves the energy required for the spacer composition during curing to form the spacer, but also promotes the use of other materials used in the production process as in the conventional process.
  • the raw materials have the same high heat resistance, which can further reduce the cost.
  • FIG. 3 is a schematic diagram of a method of preparing a filter according to an embodiment of the present invention. detailed description
  • a curable resin comprising 1 part by weight of a dibasic anhydride, 0.6 to 2 parts by weight of a diamine, and 0.8 to 3 parts by weight of an ethylenic monomer
  • the dibasic anhydride is selected from the group consisting of pyromellitic dianhydride, trimellitic anhydride, benzophenone dianhydride, biphenyl dianhydride, diphenyl ether dianhydride or hexafluoro dianhydride
  • the diamine is selected from the group consisting of 3-aminobenzyl Amine, 2,2'-difluoro-4,4'-(9-fluorenylene)diphenylamine, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, hexahydro-m-benzene Dimercaptodiamine, 1,4-bis(aminoguanidino)cyclohexane,
  • the dibasic anhydride and the diamine are first subjected to a condensation reaction to form a polyimide resin, and then a Michael addition reaction with the vinyl monomer is performed to finally obtain a desired curable resin.
  • Resin The structure of the polyimide-based resin is as follows:
  • n 75 - 450, such as 75 ⁇ 375 or 75 ⁇ 300.
  • n 100, 120, 150, 180, 230, 245 or 270.
  • the curable resin of the embodiment of the present invention has a curing temperature range of 20 by a condensation reaction of a dibasic anhydride, a diamine, and a vinyl monomer. C ⁇ 100. C.
  • the curable resin overcomes the problem of requiring high temperature curing due to resins made by conventional methods and raw materials, and can be cured at relatively low temperatures.
  • the use of such a curable resin as a raw material for the spacer composition not only saves the energy required for the spacer composition to be cured during the formation of the spacer, but also promotes the use of other materials used in the production process as in the conventional process.
  • the raw material has the same high heat resistance, so that the cost can be further reduced.
  • the curable resin can be prepared by the following method, the method comprising:
  • Step S1 Weighing an appropriate amount of the dibasic anhydride and the diamine, dissolving it in a solvent, thoroughly mixing, and injecting into the reaction vessel;
  • Step S2 Weighing an appropriate amount of the ethylenic monomer, dissolving it in a solvent, fully dissolving, and injecting into the reaction vessel;
  • Step S3 Weighing an appropriate amount of the unit amine and the azo initiator, dissolving it in a solvent, fully dissolving, and then adding it dropwise to the reaction vessel, and introducing a protective gas at a temperature of 50 ° C to 300 ° C Next, a curable resin is obtained after a reaction of 0.5 hours to 5 hours.
  • the dibasic anhydride and the diamine used may be 1 part by weight and 0.6 ⁇ , respectively.
  • the weight ratio of the ethylenic monomer to the dibasic anhydride may be 0.8 to 3:1 and in step S3, the unit amine, the azo initiator and the dibasic anhydride are used.
  • the weight ratio may be 0.6 to 2 parts: 0.06 to 0.3: 1 part, wherein the unit amine may be selected from an alkyl monoamine or an aromatic single Amine.
  • the amount of the solvent to be used is a slight excess as long as the reaction can be sufficiently carried out or the raw material is sufficiently dissolved.
  • the weight ratio of the solvent to the dibasic anhydride may be 50 to 400:1; in step S2, the ratio of the solvent to the required part by weight of the vinyl monomer may be 20 to 35:1;
  • the weight ratio of the solvent to the unit amine and the azo initiator may be from 2 to 5:0.6 to 2:0.06 to 0.3.
  • step S3 an azo-based initiator is used to initiate a reaction between the polyimide-based resin formed by the reaction of the dibasic anhydride and the diamine, and the unit amine is used to regulate the final generation.
  • the molecular weight of the curable resin Therefore, the amount of both is small and is added dropwise in the reaction to control the target molecular weight of the final curable resin.
  • the shielding gas may be nitrogen in order to avoid interference of oxygen in the reaction vessel with the reaction.
  • the preparation method of the curable resin of the embodiment of the present invention has the following advantages: the dibasic anhydride and the diamine raw material used for preparing the polyimide-based resin are widely used in the preparation method, and the synthesis process is simple.
  • the curable resin finally obtained by the addition reaction with the ethylenic monomer overcomes the problem of high-temperature curing caused by the resin obtained by the conventional process, and realizes the low-temperature curing of the curable resin.
  • the curable resin prepared by the preparation method can well reduce the energy consumption required for the filter in the production process, thereby reducing the cost.
  • Another embodiment of the present invention provides a spacer composition
  • a spacer composition comprising 2 to 30 parts by weight of a curable resin as described in the embodiment of the present invention, 30 to 90 parts by weight of a solvent, 0.01 to 1 part by weight.
  • the initiator and 0.05 to 2 parts by weight of the additive are 2 to 30 parts by weight of a curable resin as described in the embodiment of the present invention, 30 to 90 parts by weight of a solvent, 0.01 to 1 part by weight.
  • the initiator and 0.05 to 2 parts by weight of the additive are examples of the additive.
  • the solvent is a low boiling solvent, for example, the boiling point of the solvent is 30 at one atmosphere.
  • the solvent may be selected from the group consisting of diethyl ether, pentane, dichlorodecane, carbon disulfide, acetone, 1,1-dichloroethane, chloroform, decyl alcohol, tetrahydrofuran, n-hexane, trifluoroacetic acid, 1,1.
  • the initiator may be one or more selected from the group consisting of: (X-amino ketone photoinitiator: Irgacure 907, Igracure 369 or Irgacurel 300; or acylphosphine oxide Photoinitiator: Irgacure 819, Irgacure 819 DW, Irgacure 2010, Darocur TPO or Darocur 4265; Alpha-hydroxyketone photoinitiator: Darocur 1173, Irgacurel 84, Irgacure 2959, Irgacure 500 or Irgacurel OOO; or benzoyl phthalate photoinitiator: Darocur mbf or Irgacure 754 .
  • X-amino ketone photoinitiator Irgacure 907, Igracure 369 or Irgacurel 300
  • acylphosphine oxide Photoinitiator Irg
  • the additive may be one or more selected from the group consisting of an adhesion promoter, a leveling agent, and a wetting agent.
  • one or more selected from the group consisting of the following adhesion promoters may be selected: ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane, ⁇ -(3) , 4-epoxycyclohexane) ethyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, long-chain alkyltrimethoxysilane, vinyltriethoxysilane, ethoxylated Alkoxysilane, ⁇ -chloropropyltriethoxysilane, bis-( ⁇ -triethoxysilylpropyl)tetrasulfide, anilinotriethoxysilane, ⁇ - ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -( ⁇ -aminoethyl)- ⁇ -aminopropyltriethoxy
  • a small amount of one or more leveling agents and wetting agents selected from the group consisting of: an organosiloxane wetting agent may be added as needed.
  • leveling agents and wetting agents selected from the group consisting of: an organosiloxane wetting agent.
  • an organosiloxane wetting agent may be added as needed.
  • the spacer composition according to the embodiment of the present invention is added with a curable resin having a low curing temperature, which is combined with other components specified in the formulation, so that in the process of curing the spacer composition to form a spacer, It is possible to reduce the curing temperature to 20. C ⁇ 100. C, which effectively reduces the energy required for the filter in the production process and reduces the cost.
  • the formulation of the spacer composition according to the embodiment of the present invention not only adds the curable resin having a low curing temperature as described in the embodiment of the present invention, but also adds a low boiling point as compared with the formulation of the existing spacer composition. Solvent.
  • the curable resin can be better assisted in meeting the requirements of low temperature curing, so that the spacer composition can be used to cure at low temperatures when cured to form a spacer, thereby saving the production process. Energy consumption.
  • the spacer composition can be prepared by the method described below.
  • the law includes:
  • Step N1 Weigh the raw material curable resin, solvent, initiator and additives, and mix well;
  • Step N2 defoaming the uniformly mixed raw materials to obtain a mixture
  • Step N3 The obtained mixture was filtered to obtain a spacer composition.
  • the weight ratio of the curable resin, the solvent, the initiator and the additive may be 2 - 30:20 - 90:0.01 - 1 :0.05 ⁇ 2 , preferably 5 ⁇ 30:40 - 90:0.01 - 1 : 0.05 - 1.5 , more preferably 5 ⁇ 25:45 ⁇ 90:0.01 ⁇ 1 : 0.1 ⁇ 1.5 parts.
  • the component content in the embodiment of the present invention is a preferred formulation of the spacer composition, but is not limited thereto, and can be determined by those skilled in the art according to the disclosure of the present invention and common knowledge or common technical means in the art. Or adjust the number of parts of the above raw materials.
  • the raw material mixed in the step N1 can be placed in a defoaming tank for defoaming to remove the bubbles in the raw material, so that the raw materials are uniformly mixed and dispersed.
  • the number of defoaming can be 1 to 2 times, and the defoaming time can be 10 to 30 minutes each time. It will be appreciated that the present invention may be practiced or otherwise employed to determine or adjust the number and timing of defoaming described above.
  • the mixture is filtered to remove the insoluble matter therein to make the mixture smooth and fine from the whole.
  • the preparation method of the spacer composition according to the embodiment of the invention has the following advantages: the method step is simple and easy to operate, and the spacer composition prepared by the method can reduce the temperature at the time of curing when the spacer is cured to form a spacer.
  • the low temperature curing is realized, which saves the energy consumption of the filter in the production process and reduces the cost.
  • Still another embodiment of the present invention provides a filter comprising a substrate and a black matrix, a filter layer, a transparent conductive film layer, and a spacer which are sequentially disposed on the substrate, wherein the spacer is formed .
  • the filter may be prepared by the following method, the method comprising: Step Q1: sequentially forming a black matrix and a filter layer on the substrate; Step Q2: forming a transparent conductive film layer on the substrate on which the black matrix and the filter layer are formed; Step Q3: forming a spacer on the substrate on which the transparent conductive film layer is formed, thereby obtaining a filter.
  • step Q3 forming a spacer on the substrate on which the transparent conductive film layer is formed may include a pre-baking operation and a curing operation.
  • the pre-bake can be between 20 ° C and 50 °.
  • the temperature of C is 30 seconds to 120 seconds.
  • the curing may be carried out at a temperature of from 20 ° C to 100 ° C for a period of from 5 minutes to 30 minutes, preferably at 20. C ⁇ 80.
  • the temperature of C is carried out for 5 minutes to 20 minutes, more preferably at a temperature of 20 ° C to 60 ° C for 5 minutes to 15 minutes.
  • the process of preparing the spacer in the filter is added with a curable resin having a low curing temperature, thereby achieving low-temperature curing of the spacer, thereby reducing the energy required for the filter in the production process and reducing the cost of manufacturing the display device. .
  • Yet another embodiment of the present invention also provides a display device comprising a filter as described in an embodiment of the present invention.
  • Example 1 In order to better illustrate the invention, the following detailed description is by way of specific examples. Unless otherwise indicated, the parts mentioned in the examples are parts by weight. Example 1
  • the curable resin was analyzed by gel permeation chromatography to obtain a test value of the molecular weight of the curable resin of 67,750.72; the calculated value was 67,750.20.
  • a black matrix and a filter layer are separately formed on the substrate; thereafter, a transparent conductive film layer is formed on the substrate on which the black matrix and the filter layer are formed; and finally, the substrate is formed on the substrate on which the transparent conductive film layer is formed.
  • the resulting spacer composition was applied to a thickness of 3.15 microns at 40.
  • the temperature of C is pre-baked for 70 seconds and then at 90. Curing is carried out at a temperature of C to form a spacer, and a filter is obtained.
  • the curable resin was analyzed by gel permeation chromatography to obtain a test value of the molecular weight of the curable resin of 68872.44; the calculated value was 68872.08.
  • a black matrix and a filter layer are separately formed on the substrate. Thereafter, a transparent conductive film layer is formed on the substrate on which the black matrix and the filter layer are formed. Finally, a spacer composition prepared as above was applied on the substrate on which the transparent conductive film layer was formed, and the coating thickness was 3.15 ⁇ m at 40. The temperature of C is pre-baked for 85 seconds and then at 80. Curing is carried out at a temperature of C to form a spacer, and a filter is obtained.
  • the curable resin was analyzed by gel permeation chromatography to obtain a test value of 65151.32 for the molecular weight of the curable resin; the calculated value was 65151.14.
  • the raw materials were weighed by weight: 20 parts of a curable resin, 82 parts of a solvent, 0.07 parts of an initiator, and 0.8 parts of an additive, stirred and uniformly mixed. After that, the mixed raw materials are taken off. The mixture was soaked twice for 15 minutes each time to obtain a mixture. The resulting mixture was filtered to remove impurities to obtain a spacer composition. Filter preparation
  • a black matrix and a filter layer are separately formed on the substrate. Thereafter, a transparent conductive film layer is formed on the substrate on which the black matrix and the filter layer are formed. Finally, a spacer composition prepared as above was applied on the substrate on which the transparent conductive film layer was formed, and the coating thickness was 3.15 ⁇ m at 40. B temperature is pre-baked for 90 seconds and then at 55. Curing is carried out at a temperature of C to form a spacer, and a filter is obtained. Performance Testing
  • the filters in Examples 1 to 3 were respectively subjected to chemical resistance tests, and the test procedure was as follows: The filters were drawn to obtain two test pieces having an area of 10 x 10 cm 2 , which were respectively recorded as A and B. .
  • Test piece A and test piece B were placed in a 5% NaOH solution (or 5% isopropyl alcohol solution) at room temperature for 20 minutes, then taken out, washed, and completely dried at 50 °C. Each of the processed test pieces A and each test piece B was placed under a spectrophotometer, and the focus was aligned, and the transmittances of the test pieces A and the test pieces B were measured. The data results are shown in Table 1.
  • the filters in Examples 1 to 3 were subjected to heat resistance tests, respectively.
  • the test procedure was as follows: The filters were drawn to obtain two test pieces having an area of 10 x 10 cm 2 , which were respectively recorded as C and D. .
  • Test piece C and test piece D were placed at 100 ° C for 30 minutes, and then taken out. Each of the heat-treated test pieces C and each test piece D was placed under a scanning electron microscope to observe the surface morphology of the test piece. The data results are shown in Table 2.
  • Heat resistance the ability of the filter to withstand high temperatures at high temperatures, is one of the reliability requirements of the filter in later processes.
  • the evaluation criteria for the excellent heat resistance of the spacers depend on the change in the surface morphology of the spacers before and after the treatment, that is, the comparison of the surface morphology of the spacers after the treatment with the morphology of the surface before the treatment. It is generally considered that there is no change in surface morphology before and after heat treatment, and the surface is flat and conforms to the standard.
  • the filter described in the embodiment of the present invention shows good effects in both the transmittance test and the heat resistance test, and exhibits stable performance. Since the curable resin having a low curing temperature is added to the spacer composition for preparing the filter, it is better to save the filter production process with the filter stability performance. The energy consumption is not only environmentally friendly, but also reduces the cost of display device fabrication.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明实施例提供了一种可固化树脂、间隔物组合物、滤光片及其制备方法和显示器件。所述可固化树脂包括1重量份的二元酐、0.6~2重量份的二元胺和0.8~3重量份的乙烯基单体。

Description

可固化树脂、 间隔物组合物、 滤光片及制备方法和显示器件 技术领域
本发明涉及一种可固化树脂、 间隔物组合物、 滤光片及其制备方法和 显示器件。 背景技术
薄膜显示器件 (Thin Film Transistor-Liquid Crystal Display, TFT-LCD) 凭借其低功耗、高画质和携带方便等诸多优势, 已经成为显示器件的主流。 在 TFT-LCD 中, 液晶显示面板由彩色滤光片和阵列基板对盒而成, 并在 二者之间夹有液晶层。其中,彩色滤光片是用来实现彩色显示的关键器件, 主要由基板、 黑矩阵、 滤光层、 透明导电膜层以及间隔物组成。 其中, 间 隔物用来控制两块基板之间的间隙, 以保持最佳的液晶层厚度。
目前使用最多的间隔物是由树脂组合物制得的间隔物, 其材料通常包 括不饱和单体、 碱可溶性树脂以及高沸点溶剂等成份。 这就要求在制作间 隔物时需要较高的固化温度 (高达 200 °C以上), 一方面用于反应过程中溶剂 的挥发, 另一方面用于树脂的良好固化和残余不饱和键的完全反应。 但是 这样就增加了产品的成本, 同时还产生了较高的能耗。 此外, 为了保证产 品的可靠性, 在这样的工艺条件下, 所用原料还需具有高的耐热性。 发明内容
为解决上述问题, 本发明实施例提供了一种可固化树脂、 包含该可固 化树脂的间隔物组合物、 由该间隔物组合物形成的间隔物、 包含该间隔物 的滤光片、 它们的制备方法以及使用该滤光片的显示器件。
本发明实施例提供了一种可固化树脂, 其包括:
1重量份的二元酐;
0.6 ~ 2重量份的二元胺; 和 0.8 ~ 3重量份的乙烯基单体,
其中, 所述二元酐选自均苯四曱酸二酐、 偏苯三酸酐、 二苯酮二酐、 联苯二酐、 二苯醚二酐或六氟二酐;
所述二元胺选自 3-氨基苄胺、 2,2'-二氟 -4,4'-(9-亚苐基)二苯胺、 2,2-双 (3-氨基 -4-羟苯基)六氟丙烷、六氢-间苯二曱基二胺、 1,4-二 (氨曱基)环己烷、 2,2-双 [4-(4-氨基苯氧基)苯]六氟丙烷、 2,2-双 (3 -氨基 -4-曱苯基)六氟丙烷、 2,2-双 (3-氨基苯基)六氟丙烷、 2,2-双 (4-氨基苯基)六氟丙烷、 2,7-二氨基芴、 间苯二曱胺或 4,4'-亚曱基双 (2-乙基 -6-曱基苯胺); 且
所述乙婦基单体选自氯乙烯、 苯乙烯、 曱基丙烯酸曱酯、 马来酰亚胺、 丁二烯、 丙烯酸曱酯、 环氧丙烯酸酯或双酚 A型环氧丙烯酸曱酯。
本发明的另一实施例提供了上述可固化树脂的制备方法, 包括: 将二元酐与二元胺在溶剂存在下反应, 得到聚酰亚胺类树脂; 和 将所得的聚酰亚胺类树脂与乙婦基单体在溶剂存在下进行迈克尔加成 反应, 得到所需的可固化树脂。
在一个方面,所述聚酰亚胺类树脂与乙婦基单体的反应在保护气存在 下在 50 °C ~ 300 °C的温度进行 0.5小时〜 5小时。
本发明的又一实施例提供了一种间隔物组合物, 其包含 2 ~ 30重量份 月旨、 30 - 90重量份的溶剂、 0.01 ~ 1重量份的引发剂和 0.05 ~ 2重量份的添 加剂。
在一个方面, 所述溶剂在一个大气压下的沸点为 30。C ~ 90。C。 所述 溶剂可为选自乙醚、 戊烷、 二氯曱烷、 二硫化碳、 丙酮、 1 , 1-二氯乙烷、 氯仿、 曱醇、 四氢呋喃、 正己烷、 三氟乙酸、 1,1,1-三氯乙烷、 四氯化碳、 乙酸乙酯、 乙醇、 丁酮、 环己烷、 异丙醇、 1,2-二氯乙烷、 乙二醇二曱醚、 三氯乙烯和三乙胺中的一种或多种。
在另一方面,所述引发剂是选自(X -胺基酮类光引发剂、酰基膦氧化物 光引发剂、 α -羟基酮类光引发剂和苯酰曱酸酯类光引发剂中的一种或多 种。 本发明的又一实施例提供了上述间隔物组合物的制备方法, 包括: 将可固化树脂、 溶剂、 引发剂和添加剂混合均匀;
将混合均匀后的原料进行脱泡, 得到混合物; 和
将得到的混合物进行过滤除杂, 得到间隔物组合物。
本发明的又一实施例提供了一种滤光片,其包括基板和依次设置在所 述基板上的黑矩阵、 滤光层、 透明导电膜层以及间隔物, 其中所述间隔物 物形成。
本发明的又一实施例提供了上述滤光片的制备方法, 包括: 在基板上 依次形成黑矩阵和滤光层; 在形成有黑矩阵和滤光层的基板上形成透明导 电膜层; 和在形成透明导电膜层的基板上形成间隔物, 得到滤光片。
在一个方面, 所述在形成透明导电膜层的基板上形成间隔物包括前烘 操作和固化操作,其中所述前供操作在 20。C ~ 50。C的温度进行 30秒 ~ 120 秒的时间; 且所述固化操作在 20。C ~ 100。C的温度进行 5分钟 ~ 30分钟的 时间。
本发明的又一实施例提供了一种显示器件,包括如本发明实施例所述 的或者根据本发明实施例所述方法制成的滤光片。
本发明实施例所述的可固化树脂克服了用传统方法和原料制得的树 脂所带来的需要高温固化的问题,使得反应最终得到的可固化树脂的固化 温度低, 固化温度范围在 20°C ~ 100°C之间。将这种可固化树脂用做间隔 物组合物的原料,不但能够节省间隔物组合物在固化形成间隔物期间所需 的能耗,还能促使生产过程中所用的其它原料不需像传统工艺中的原料一 样具有较高的耐热性, 可以进一步地降低成本。 附图说明 施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下 面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来 讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明实施例所述的可固化树脂的制备方法;
图 2为本发明实施例所述的间隔物组合物的制备方法;
图 3为本发明实施例所述的滤光片的制备方法。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
下面结合附图对本发明实施例所述的可固化树脂、 间隔物组合物、 滤 光片、 其制备方法以及显示器件进行详细描述。
在本发明的一个实施例中,提供了一种可固化树脂,其包括 1重量份的 二元酐、 0.6 ~ 2重量份的二元胺和 0.8 ~ 3重量份的乙婦基单体,其中所述二 元酐选自均苯四曱酸二酐、 偏苯三酸酐、 二苯酮二酐、 联苯二酐、 二苯醚 二酐或六氟二酐; 所述二元胺选自 3-氨基苄胺、 2,2'-二氟 -4,4'-(9-亚苐基)二 苯胺、 2,2-双 (3-氨基 -4-羟苯基)六氟丙烷、 六氢-间苯二曱基二胺、 1,4-二 (氨 曱基)环己烷、 2,2-双 [4-(4-氨基苯氧基)苯]六氟丙烷、 2,2-双 (3-氨基 -4-曱苯基) 六氟丙烷、 2,2-双 (3-氨基苯基)六氟丙烷、 2,2-双 (4-氨基苯基)六氟丙烷、 2,7- 二氨基芴、 间苯二曱胺或 4,4'-亚曱基双 (2-乙基 -6-曱基苯胺); 且所述乙婦基 单体选自氯乙烯、 苯乙烯、 曱基丙烯酸曱酯、 马来酰亚胺、 丁二烯、 丙烯酸 曱酯、 环氧丙烯酸酯或双酚 A型环氧丙烯酸曱酯。
在所述可固化树脂的制备过程中, 二元酐和二元胺先发生缩合反应生 成聚酰亚胺类树脂, 然后再与乙烯基单体发生迈克尔加成反应, 最终得到 所需的可固化树脂。 所述聚酰亚胺类树脂的结构如下式所示:
Figure imgf000007_0001
其中, n为 75 - 450, 例如 75 ~ 375或 75 ~ 300。 例如, n = 100、 120、 150、 180、 230、 245或 270。
本发明实施例所述的可固化树脂通过二元酐、二元胺及乙烯基单体的 缩合反应, 其固化温度范围为 20。C ~ 100。C。 与传统可固化树脂相比, 该 可固化树脂克服了用传统方法和原料制得的树脂所带来的需要高温固化 的问题, 并且可在相对低温下固化。将这种可固化树脂用做间隔物组合物 的原料, 不但能够节省间隔物组合物在固化形成间隔物期间所需的能耗, 还能促使生产过程中所用的其它原料不需像传统工艺中的原料一样具有 较高的耐热性, 从而可以进一步地降低成本。
如图 1所示, 例如, 所述可固化树脂可通过如下方法制备, 所述方法 包括:
步骤 S1 : 称取适量的二元酐和二元胺, 将其溶解在溶剂中, 充分混 匀, 注入到反应容器中;
步骤 S2: 称取适量的乙婦基单体, 将其溶解在溶剂中, 充分溶解, 注入到反应容器中; 和
步骤 S3: 称取适量的单元胺和偶氮类引发剂, 将其溶解在溶剂中, 充分溶解, 然后逐滴加入到反应容器中, 通入保护气, 在 50°C ~ 300°C的 温度下, 经 0.5小时〜 5小时反应后制得可固化树脂。
其中,在步骤 S1中,所用的二元酐和二元胺可分别为 1重量份和 0.6 ~
2重量份; 在步骤 S2中, 所用的乙婦基单体与二元酐的重量比可为 0.8 ~ 3: 1且在步骤 S3 中, 所用的单元胺、 偶氮类引发剂与二元酐的重量比可 为 0.6 ~ 2份:0.06 ~ 0.3: 1份, 其中所述单元胺可以选自烷基单胺或芳香单 胺。
在上述步骤 SI、 S2和 S3 中, 所使用的溶剂量都是稍过量的, 只要 能够保证反应充分进行或原料充分溶解即可。 例如, 在步骤 S1中, 溶剂 与二元酐重量比可为 50 ~ 400: 1; 在步骤 S2 中, 溶剂与乙烯基单体所需 的重量份的之比可为 20 ~ 35: 1 ; 且在步骤 S3中, 溶剂与单元胺和偶氮类 引发剂的重量比可为 2 ~ 5:0.6 ~ 2:0.06 ~ 0.3。
另外, 在步骤 S3中, 偶氮类引发剂用于引发二元酐与二元胺反应生 成的聚酰亚胺类树脂与乙婦基单体之间的反应,且单元胺用于调控最终生 成的可固化树脂的分子量。 因此, 二者的用量较小, 并且在反应中是逐滴 加入的,从而控制最终的可固化树脂的目标分子量。所述保护气可为氮气, 以便避免反应容器中的氧气对反应的干扰。
本发明实施例的可固化树脂的制备方法具有以下优点:该制备方法中 用于制备聚酰亚胺类树脂的二元酐和二元胺原料来源广、 合成工艺筒单。 其与乙婦基单体进行加成反应最终得到的可固化树脂,克服了用传统工艺 制得的树脂所带来的需要高温固化的问题, 实现了可固化树脂的低温固 化。该制备方法制备得到的可固化树脂,可以很好地降低滤光片在生产过 程中所需的能耗, 从而降低成本。
本发明的另一实施例还提供了一种间隔物组合物, 其包含 2 ~ 30重量 份的如本发明实施例所述的可固化树脂、 30 ~ 90 重量份的溶剂、 0.01 ~ 1 重量份的引发剂和 0.05 ~ 2重量份的添加剂。
在一个方面, 所述溶剂为低沸点溶剂, 例如, 在一个大气压下, 所述 溶剂的沸点为 30。C ~ 90。C。 例如, 所述溶剂可为选自乙醚、 戊烷、 二氯 曱烷、 二硫化碳、 丙酮、 1,1-二氯乙烷、 氯仿、 曱醇、 四氢呋喃、 正己烷、 三氟乙酸、 1,1,1-三氯乙烷, 四氯化碳、 乙酸乙酯、 乙醇、 丁酮、 环己烷、 异丙醇、 1,2-二氯乙烷、 乙二醇二曱醚、 三氯乙烯和三乙胺中的一种或多 种。
在另一方面, 所述引发剂可为选自以下中的一种或多种: (X -胺基酮 类光引发剂: Irgacure 907、 Igracure369或 Irgacurel300; 或酰基膦氧化物 光引发剂: Irgacure819、 Irgacure819DW, Irgacure2010、 Darocur TPO或 Darocur4265; α-羟基酮类光引发剂: Darocur 1173 、 Irgacurel84、 Irgacure2959、 Irgacure500或 IrgacurelOOO; 或者苯酰曱酸酯类光引发剂: Darocur mbf或 Irgacure754。
在又一方面,所述添加剂可为选自附着促进剂、流平剂和润湿剂中的 一种或多种。
例如,为增加与玻璃表面的固着性可以选用选自以下附着促进剂中的 一种或多种: γ -(2,3-环氧丙氧)丙基三曱氧基硅烷、 β -(3,4-环氧环己烷) 乙基三曱氧基硅烷、 γ -氨丙基三乙氧基硅烷、 长链烷基三曱氧基硅烷、 乙烯基三乙氧基硅烷、 乙婦基三曱氧基硅烷、 γ -氯丙基三乙氧基硅烷、 双 -( γ -三乙氧基硅基丙基)四硫化物、 苯胺曱基三乙氧基硅烷、 Ν-β (氨乙 基) -γ-氨丙基三曱氧基硅烷、 Ν- (β- 氨乙基) -γ-氨丙基三乙氧基硅烷、 Ν-β (氨乙基) -γ-氨丙基曱基二曱氧基硅烷、 γ -(2, 3-环氧丙氧)丙基三曱氧 基硅烷、 Υ - (曱基丙烯酰氧)丙基三曱基硅烷、 γ -巯基丙基三曱氧基硅烷 或 γ -巯基丙基三乙氧基硅烷中。
或者可选地, 例如, 为改善颜料光阻成膜时的薄膜表面性能, 可以根 据需要添加少量选自以下的一种或多种流平剂和润湿剂:有机硅氧烷润湿 剂, 氟碳改性聚丙烯酸酯流平剂或丙烯酸类流平剂。
本发明实施例所述的间隔物组合物中加入了固化温度低的可固化树 脂, 其与配方中指定含量的其他组分相配合,使得在固化间隔物组合物以 形成间隔物的工艺中, 能够将固化温度降低到 20。C ~ 100。C, 从而有效地 减少了滤光片在生产过程中所需的能耗, 降低了成本。本发明实施例所述 的间隔物组合物的配方, 与现有的间隔物组合物的配方相比, 不仅添加了 本发明实施例所述的固化温度低的可固化树脂, 还添加了低沸点的溶剂。 由于这种低沸点溶剂的存在,可更好地协助可固化树脂满足低温固化的需 求, 使得用该间隔物组合物在固化形成间隔物时能够实现低温固化, 从而 节省了生产过程中所需的能耗。
如图 2所示, 例如, 所述间隔物组合物可通过如下方法制备, 所述方 法包括:
步骤 N1 : 将原料可固化树脂、 溶剂、 引发剂和添加剂进行称重, 并 混合均匀;
步骤 N2: 将混合均匀后的原料进行脱泡, 得到混合物; 和
步骤 N3: 将得到的混合物进行过滤, 得到间隔物组合物。
其中, 在步骤 N1中, 可固化树脂、 溶剂、 引发剂和添加剂的重量比 可为 2 - 30:20 - 90:0.01 - 1 :0.05 ~ 2 , 优选 5 ~ 30:40 ~ 90:0.01 - 1 :0.05 - 1.5 , 更优选 5 ~ 25:45 ~ 90:0.01 ~ 1 :0.1 ~ 1.5份。 可以理解的是, 本发明实 施例中的组分含量为间隔物组合物的优选配方,但并不限于此,本领域技 术人员可根据本发明公开的内容及本领域公知常识或常用技术手段确定 或调整上述原料的份数。
在步骤 N2中, 可将在步骤 N1中混匀的原料放入脱泡箱进行脱泡, 以脱去原料中的气泡, 使原料得到均匀的混合和分散。 例如, 脱泡次数可 为 1 ~ 2次, 脱泡时间可为每次 10 ~ 30分钟。 可以理解的是, 本发明实施 识或常用技术手段来确定或调整上述的脱泡的次数和时间。
在步骤 N3中, 将混合物过滤以去除其中的不溶物, 以使混合物从整 体上平滑细腻。
本发明实施例所述的间隔物组合物的制备方法具有以下优点:该方法 步骤筒单, 易操作,且利用该方法制备得到的间隔物组合物在固化形成间 隔物时能够降低固化时的温度, 实现了低温固化,较好地节省了滤光片在 生产过程中所需的能耗, 降低成本。
本发明的又一实施例还提供了一种滤光片,其包括基板和依次设置在 所述基板上的黑矩阵、 滤光层、 透明导电膜层以及间隔物, 其中所述间隔 合物形成。
例如,如图 3所示,所述滤光片可通过以下方法制备,所述方法包括, 步骤 Q1 : 在基板上依次形成黑矩阵和滤光层; 步骤 Q2: 在形成有黑矩阵和滤光层的基板上形成透明导电膜层; 步骤 Q3: 在形成透明导电膜层的基板上形成间隔物, 得到滤光片。 在步骤 Q3 中, 在形成透明导电膜层的基板上形成间隔物可包括前烘 操作和固化操作。例如,前烘可以是在 20°C ~ 50。C的温度进行 30秒 ~ 120 秒的时间。 例如, 固化可在 20°C ~ 100°C的温度进行 5分钟〜 30分钟的时 间, 优选在 20。C ~ 80。C 的温度进行 5 分钟〜 20 分钟的时间, 更优选在 20°C ~ 60°C的温度进行 5分钟 ~ 15分钟的时间。
可以理解的是, 本发明实施例并不限于此, 本领域技术人员可根据本 发明公开的内容及本领域公知常识或常用技术手段选择各步骤的反应条 件。 制备滤光片中的间隔物的工艺中加入固化温度低的可固化树脂,实现了间 隔物的低温固化,从而减少了滤光片在生产过程所需的能耗, 降低了显示 器件制作的成本。
本发明的又一实施例还提供了一种显示器件,所述显示器件包括如本 发明实施例所述的滤光片。
为更好地说明本发明, 下面通过具体实施例进行详细说明。如果没有 另外指明, 实施例中提到的份数均为重量份。 实施例 1
可固化树脂的制备
首先,按重量称取均苯四曱酸二酐 1份、 2,2-双 (3-氨基 -4-曱苯基)六氟 丙烷 4,4'-亚曱基双 (2-乙基 -6-曱基苯胺) 0.8份。将二者溶解在 52份乙二醇 二曱醚中, 充分混勾, 注入到带有加热装置、 回流装置、 搅拌装置和滴加 装置的四口瓶中。 之后, 按重量称取马来酰亚胺 0.8份, 将其溶解在 20 份环己烷中, 充分溶解, 也注入到反应容器中。 最后, 按重量称取十八烷 基胺 0.6份、偶氮二异戊腈 0.06份,将二者溶解在 2.5份乙二醇二曱醚中, 充分溶解, 逐滴加入到四口瓶中, 通入氮气保护, 在 80°C的温度经 2.5 'J、时反应后制得可固化树脂。
通过凝胶渗透色谱仪对可固化树脂进行分析得到:可固化树脂分子量 的测试值为 67750.72; 计算值为 67750.20。 间隔物组合物的制备
首先, 按重量称取原料: 可固化树脂 8份、 溶剂 50份、 引发剂 0.02 份和添加剂 0.3份, 搅拌并混合均勾。 之后, 将混合均勾后的原料进行脱 泡 2次, 每次 15分钟, 得到混合物。 将得到的混合物过滤除杂, 得到间 隔物组合物。 滤光片的制备
首先, 在基板上先分别形成黑矩阵和滤光层; 之后, 在形成有黑矩阵 和滤光层的基板上形成透明导电膜层; 最后,在形成透明导电膜层的基板 上涂覆如上制得的间隔物组合物, 涂覆厚度为 3.15微米, 在 40。C的温度 下前烘 70秒,然后在 90。C的温度下进行固化以形成间隔物,得到滤光片。 实施例
可固化树脂的制备
首先, 按重量称取二苯酮二酐 1 份、 4,4'-亚曱基双 (2-乙基 -6-曱基苯 胺) 1.2份, 将二者溶解在 80份 1,1,1-三氯乙烷中, 充分混匀, 注入到带有 加热装置、 回流装置、 搅拌装置和滴加装置的四口瓶中。 之后, 按重量称 取曱基丙烯酸酯 1.2份, 将其溶解在 25份环己烷中, 充分溶解, 也注入 到反应容器中。 最后, 按重量称取十八烷基胺 0.8份、 偶氮二异戊腈 0.12 份, 将二者溶解在 3.2份 1,1,1-三氯乙烷中, 充分溶解, 逐滴加入到四口 瓶中, 通入氮气保护, 在 120°C的温度下, 经 2小时反应后制得可固化树 脂。
通过凝胶渗透色谱仪对可固化树脂进行分析得到:可固化树脂分子量 的测试值为 68872.44; 计算值为 68872.08。 间隔物组合物的制备
首先, 按重量称取原料: 可固化树脂 12份、 溶剂 72份、 引发剂 0.05 份和添加剂 0.5份, 搅拌并混合均勾。 之后, 将混合均勾后的原料进行脱 泡 2次, 每次 15分钟, 得到混合物。 将得到的混合物过滤除杂, 得到间 隔物组合物。 滤光片的制备
首先, 在基板上先分别形成黑矩阵和滤光层。之后, 在形成有黑矩阵 和滤光层的基板上形成透明导电膜层。最后,在形成透明导电膜层的基板 上涂覆如上制得的间隔物组合物, 涂覆厚度为 3.15微米, 在 40。C的温度 下前烘 85秒,然后在 80。C的温度下进行固化以形成间隔物,得到滤光片。 实施例 3
可固化树脂的制备
首先, 按重量称取偏苯三酸酐 1份、 2,2-双 (3-氨基苯基)六氟丙烷 1.5 份, 将二者溶解在 120份二氯曱烷中, 充分混勾, 注入到带有加热装置、 回流装置、 搅拌装置和滴加装置的四口瓶中。 之后, 按重量称取马来酰亚 胺 1.5份,将其溶解在 27.5份环己烷中,充分溶解,也注入到反应容器中。 最后, 按重量称取十八烷基胺 1.0份、 偶氮二异戊腈 0.15份, 将二者溶解 在 4份二氯曱烷中, 充分溶解, 逐滴加入到四口瓶中, 通入氮气保护, 在 150°C的温度下, 经 2小时反应后制得可固化树脂。
通过凝胶渗透色谱仪对可固化树脂进行分析得到:可固化树脂分子量 的测试值为 65151.32; 计算值为 65151.14。 间隔物组合物的制备
首先, 按重量称取原料: 可固化树脂 20份、 溶剂 82份、 引发剂 0.07 份和添加剂 0. 8份, 搅拌并混合均匀。之后, 将混合均匀后的原料进行脱 泡 2次, 每次 15分钟, 得到混合物。 将得到的混合物过滤除杂, 得到间 隔物组合物。 滤光片的制备
首先, 在基板上先分别形成黑矩阵和滤光层。之后, 在形成有黑矩阵 和滤光层的基板上形成透明导电膜层。最后,在形成透明导电膜层的基板 上涂覆如上制得的间隔物组合物, 涂覆厚度为 3.15微米, 在 40。C的温度 下前烘 90秒,然后在 55。C的温度下进行固化以形成间隔物,得到滤光片。 性能测试
1)耐化学性测试
将实施例 1 ~ 3中的滤光片分别进行耐化学性测试, 测试步骤如下: 对滤光片进行划取, 获得面积为 10 x 10 cm2的两个测试片, 分别记 为 A和 B。
将测试片 A和测试片 B在室温下放置在 5%的 NaOH溶液 (或 5%异丙 醇溶液)中 20分钟, 之后取出, 洗净, 50°C下使之完全干燥。 将经处理后 的各测试片 A和各测试片 B放置在分光光度计下, 调焦对准, 测量各测 试片 A和各测试片 B的透过率, 数据结果见表 1。
表 1 实施例 1 ~ 3中各滤光片的测试片的透过率
Figure imgf000014_0001
耐化学性, 即滤光片在酸性、碱性或作用溶剂的条件下抵抗腐蚀的能 力, 是滤光片在后期制程中的可靠性要求之一。 透过率, 即在入射光通量 自被照面或介质入射面至另外一面离开的过程中,投射并透过物体的辐射 能与投射到物体上的总辐射能之比。透过率值越高,即滤光片的亮度越高。 通常认为, 透过率值> 85%, 滤光片的亮度达到标准。 通过对上述各实施 例中的间隔物进行检测得出,各实施例中的间隔物的色彩对比度均达到了 标准, 且均在标准之上, 效果较好, 将其用于制作滤光片, 也使得制备得 到的滤光片的亮度较好。
2)耐热性测试
将实施例 1 ~ 3中的滤光片分别进行耐热性测试, 测试步骤如下: 对滤光片进行划取, 获得面积为 10 x 10 cm2的两个测试片, 分别记 为 C和 D。
将测试片 C和测试片 D放置在 100 °C的条件下 30分钟, 之后取出。 将经加热处理后的各测试片 C和各测试片 D放置在扫描电镜下观察测试 片的表面形态, 数据结果见表 2。
表 2 实施例 1 ~ 3中各滤光片的测试片的耐热性结果
Figure imgf000015_0001
耐热性, 即滤光片在高温条件下抵御高温的能力,也是滤光片在后期 制程中的可靠性要求之一。间隔物耐热性性能优良的评判标准取决于处理 5 前后间隔物的表面形态的变化,即经处理后的各滤光片的间隔物表面形态 与处理前表面形态的比较。 通常认为, 耐热性处理前后表面形态无变化、 表面平整则符合标准。通过对上述各实施例中的间隔物进行检测得出,各 实施例中的间隔物的耐热性性能均达到了标准,耐热性效果较好, 因而制 备得到的滤光片的耐热性效果也较好。
0 综上所述, 由本发明实施例所述的滤光片,在透过率测试和耐热性测 试中都显示了较好的效果,体现了稳定的性能。 由于在用于制备滤光片的 间隔物组合物中添加了固化温度低的可固化树脂,使得在拥有滤光片稳定 性能的前提下,较好地节约了在制备滤光片生产过程所需的能耗,不但环 保, 还很好地降低了显示器件制作的成本。
5 显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方 式的限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可 以做出其它不同形式的变化或变动。 这里无需也无法对所有的实施方式予 以穷举。 而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保 护范围。

Claims

权利要求书
1、 一种可固化树脂, 包含:
1重量份的二元酐;
0.6 ~ 2重量份的二元胺; 和
0.8 ~ 3重量份的乙婦基单体,
其中:
所述二元酐选自均苯四曱酸二酐、偏苯三酸酐、二苯酮二酐、联苯二 酐、 二苯醚二酐或六氟二酐;
所述二元胺选自 3-氨基苄胺、 2,2'-二氟 -4,4'-(9-亚苐基)二苯胺、 2,2- 双 (3-氨基 -4-羟苯基)六氟丙烷、 六氢 -间苯二曱基二胺、 1,4-二 (氨曱基)环 己烷、 2,2-双 [4-(4-氨基苯氧基)苯]六氟丙烷、 2,2-双 (3-氨基 -4-曱苯基)六氟 丙烷、 2,2-双 (3-氨基苯基)六氟丙烷、 2,2-双 (4-氨基苯基)六氟丙烷、 2,7- 二氨基芴、 间苯二曱胺或 4,4'-亚曱基双 (2-乙基 -6-曱基苯胺); 且
所述乙婦基单体选自氯乙烯、苯乙烯、 曱基丙烯酸曱酯、马来酰亚胺、 丁二烯、 丙烯酸曱酯、 环氧丙烯酸酯或双酚 A型环氧丙烯酸曱酯。
2、 根据权利要求 1所述的可固化树脂的制备方法, 包括:
将二元酐与二元胺在溶剂存在下反应, 得到聚酰亚胺类树脂; 和 将所得的聚酰亚胺类树脂与乙婦基单体在溶剂存在下进行迈克尔加成 反应, 得到所需的可固化树脂。
3、根据权利要求 2所述的可固化树脂的制备方法,其中所述聚酰亚胺 类树脂与乙烯基单体的反应在保护气存在下在 50°C ~ 300°C的温度进行 0.5小时〜 5小时。
4、 一种间隔物组合物, 其包含:
2 ~ 30重量份的如权利要求 1所述或者根据权利要求 2或 3所述方法 制成的可固化树脂;
20 - 90重量份的溶剂;
0.01 ~ 1重量份的引发剂; 和
0.05 ~ 2重量份的添加剂。
5、 根据权利要求 4所述的间隔物组合物, 其中所述溶剂在一个大气 压下的沸点为 30。C ~ 90。C。
6、 根据权利要求 4或 5所述的间隔物组合物, 其中所述溶剂是选自 乙醚、 戊烷、 二氯曱烷、 二硫化碳、 丙酮、 1,1-二氯乙烷、 氯仿、 曱醇、 四氢呋喃、 正己烷、 三氟乙酸、 1,1,1-三氯乙烷、 四氯化碳、 乙酸乙酯、 乙 醇、 丁酮、 环己烷、 异丙醇、 1,2-二氯乙烷、 乙二醇二曱醚、 三氯乙烯和 三乙胺中的一种或多种。
7、根据权利要求 4 ~ 6中任一项所述的间隔物组合物, 其中所述引发 剂是选自 α-胺基酮类光引发剂、 酰基膦氧化物光引发剂、 α-羟基酮类光引 发剂和苯酰曱酸酯类光引发剂中的一种或多种。
8、 根据权利要求 4 ~ 7中任一项所述的间隔物组合物的制备方法, 其 中所述方法包括,
将可固化树脂、 溶剂、 引发剂和添加剂混合均匀;
将混合均匀后的原料进行脱泡, 得到混合物; 和
将得到的混合物进行过滤除杂, 得到间隔物组合物。
9、 一种滤光片, 包括:
基板; 和
依次设置在所述基板上的黑矩阵、滤光层、透明导电膜层以及间隔物, 其中所述间隔物由如权利要求 4 ~ 7中任一项所述的或根据权利要求 8所述方法制成的间隔物组合物形成。
10、 根据权利要求 9所述的滤光片的制备方法, 包括,
在基板上依次形成黑矩阵和滤光层;
在形成有黑矩阵和滤光层的基板上形成透明导电膜层; 和
在形成透明导电膜层的基板上形成间隔物, 得到滤光片。
11、根据权利要求 10所述的滤光片的制备方法,其中所述在形成透明 导电膜层的基板上形成间隔物包括前烘操作和固化操作, 其中所述前烘操 作在 20。C ~ 50。C 的温度进行 30 秒〜 120 秒的时间; 且所述固化操作在 °C ~ 100°C的温度进行 5分钟 ~ 30分钟的时间。
12、 一种显示器件, 包括如权利要求 9 所述的或者根据权利要求 10 1所述方法制成的滤光片。
PCT/CN2013/089460 2013-06-06 2013-12-14 可固化树脂、间隔物组合物、滤光片及制备方法和显示器件 WO2014194635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/389,225 US10239999B2 (en) 2013-06-06 2013-12-14 Curable resin, spacer composition, filter, methods of preparing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310224773.3A CN103304813B (zh) 2013-06-06 2013-06-06 一种固化树脂、间隔物剂、滤光片及它们的制备方法、显示器件
CN201310224773.3 2013-06-06

Publications (1)

Publication Number Publication Date
WO2014194635A1 true WO2014194635A1 (zh) 2014-12-11

Family

ID=49130561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089460 WO2014194635A1 (zh) 2013-06-06 2013-12-14 可固化树脂、间隔物组合物、滤光片及制备方法和显示器件

Country Status (3)

Country Link
US (1) US10239999B2 (zh)
CN (1) CN103304813B (zh)
WO (1) WO2014194635A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304810B (zh) * 2013-06-06 2016-02-10 北京京东方光电科技有限公司 一种固化树脂、绿色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103319713B (zh) * 2013-06-06 2015-11-25 北京京东方光电科技有限公司 一种固化树脂、黑色光阻剂、滤光片及它们的制备方法、显示器件
CN103304812B (zh) * 2013-06-06 2015-11-25 北京京东方光电科技有限公司 一种固化树脂、红色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103304813B (zh) * 2013-06-06 2015-09-23 北京京东方光电科技有限公司 一种固化树脂、间隔物剂、滤光片及它们的制备方法、显示器件
CN103304811B (zh) * 2013-06-06 2015-12-02 北京京东方光电科技有限公司 一种固化树脂、蓝色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN113009731A (zh) * 2021-02-23 2021-06-22 北京京东方传感技术有限公司 柔性显示模组及其制作方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041129A1 (en) * 2000-09-12 2004-03-04 Hiroshi Itatani Negative photosensitive polymide composition and method for forming image the same
CN1547683A (zh) * 2001-07-26 2004-11-17 �������⻯ѧƷ�ع����޹�˾ 光敏性树脂组合物
CN1846164A (zh) * 2003-09-04 2006-10-11 皇家飞利浦电子股份有限公司 具有间隔物和密封物的显示设备及其制造方法
CN103304813A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、间隔物剂、滤光片及它们的制备方法、显示器件
CN103304812A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、红色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103304810A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、绿色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103304811A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、蓝色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103319713A (zh) * 2013-06-06 2013-09-25 北京京东方光电科技有限公司 一种固化树脂、黑色光阻剂、滤光片及它们的制备方法、显示器件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430418A (en) * 1982-09-30 1984-02-07 E. I. Du Pont De Nemours And Company Radiation-sensitive polyimide precursor composition derived from a diaryl fluoronated diamine compound
DE3485048D1 (de) 1983-11-01 1991-10-17 Hoechst Celanese Corp Tief uv-empfindliche positive photolackzusammensetzung, lichtempfindliches element und dasselbe enthaltendes gegen hitze widerstandsfaehiges photochemisches bild.
FR2653130B1 (fr) 1989-10-16 1992-01-03 Rhone Poulenc Chimie Polymeres a groupements imides faits a partir de diamines encombrees.
US8362151B2 (en) * 2002-05-31 2013-01-29 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
KR101179815B1 (ko) * 2003-05-05 2012-09-04 디자이너 몰레큘스 인코퍼레이티드 이미드-연결된 말레이미드 및 폴리말레이미드 화합물
CN100487024C (zh) * 2003-05-07 2009-05-13 上海金山前峰绝缘材料有限公司 覆铜用聚酰亚胺薄膜的制备方法
JP5092399B2 (ja) * 2005-03-15 2012-12-05 東レ株式会社 感光性樹脂組成物
KR101357333B1 (ko) 2006-11-29 2014-02-04 코오롱인더스트리 주식회사 감광성 수지 조성물 및 이를 이용한 블랙매트릭스
JP2010072521A (ja) * 2008-09-22 2010-04-02 Hitachi Displays Ltd 偏光子、および液晶表示装置
US20120133061A1 (en) * 2009-06-30 2012-05-31 Kazuyuki Mitsukura Photosensitive adhesive, and film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, and semiconductor device, which are made using same
KR20120021488A (ko) * 2010-08-03 2012-03-09 주식회사 동진쎄미켐 네가티브 감광성 수지 조성물
CN102645689B (zh) * 2011-03-22 2014-09-10 京东方科技集团股份有限公司 彩色滤光片及其制造方法
CN102492320B (zh) 2011-12-05 2014-01-15 中昊北方涂料工业研究设计院有限公司 耐高温光纤用快速固化聚酰亚胺涂料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041129A1 (en) * 2000-09-12 2004-03-04 Hiroshi Itatani Negative photosensitive polymide composition and method for forming image the same
CN1547683A (zh) * 2001-07-26 2004-11-17 �������⻯ѧƷ�ع����޹�˾ 光敏性树脂组合物
CN1846164A (zh) * 2003-09-04 2006-10-11 皇家飞利浦电子股份有限公司 具有间隔物和密封物的显示设备及其制造方法
CN103304813A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、间隔物剂、滤光片及它们的制备方法、显示器件
CN103304812A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、红色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103304810A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、绿色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103304811A (zh) * 2013-06-06 2013-09-18 北京京东方光电科技有限公司 一种固化树脂、蓝色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
CN103319713A (zh) * 2013-06-06 2013-09-25 北京京东方光电科技有限公司 一种固化树脂、黑色光阻剂、滤光片及它们的制备方法、显示器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAPOZHNIKOV, D.A. ET AL.: "Photopolymerization of (Meth)Acrylates in the Presence of Polyheteroarylenes", POLYMER SCIENCE, SER. B, vol. 51, no. 1-2, 2009, pages 1 - 12 *

Also Published As

Publication number Publication date
US10239999B2 (en) 2019-03-26
CN103304813B (zh) 2015-09-23
CN103304813A (zh) 2013-09-18
US20160208049A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2014194635A1 (zh) 可固化树脂、间隔物组合物、滤光片及制备方法和显示器件
JP7563509B2 (ja) 硬化塗膜の製造方法
JP6255006B2 (ja) ブロックイソシアナト基含有ポリマー、該ポリマーを含む組成物及びその用途
WO2014194660A1 (zh) 可固化树脂、蓝色光阻剂、彩色滤光片及其制备方法、彩色显示器件
WO2014194631A1 (zh) 可固化树脂组合物、黑色光阻剂、滤光片及它们的制备方法、显示器件
WO2014194630A1 (zh) 绿色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
JP2016084464A (ja) 硬化性樹脂組成物、カラーフィルター、画像表示素子及びカラーフィルターの製造方法
KR102146622B1 (ko) 블랙 칼럼 스페이서 형성용 감광성 수지 조성물, 블랙 칼럼 스페이서 및 화상 표시 장치
TWI627498B (zh) 彩色光阻組成物、彩色濾光片、液晶顯示裝置及有機el顯示裝置
WO2017094490A1 (ja) 液晶表示装置および液晶表示装置の製造方法
TWI709818B (zh) 具有間隔件功能的遮光膜用的感光性樹脂組成物、遮光膜、液晶顯示裝置、具有間隔件功能的遮光膜用的感光性樹脂組成物的製造方法、遮光膜的製造方法以及液晶顯示裝置的製造方法
WO2014194632A1 (zh) 红色光阻剂、彩色滤光片及它们的制备方法、彩色显示器件
KR20100033603A (ko) 현상 가능한 초소수성 감광성조성물
KR102489436B1 (ko) 공중합체 및 컬러 필터용 감광성 수지 조성물
JP2007277512A (ja) カラムスペーサ用光熱硬化性樹脂組成物、カラムスペーサ、及び、液晶表示素子
JP2009258353A (ja) 感光性樹脂組成物及びフォトスペーサー
JPWO2016203905A1 (ja) カラーフィルター用着色組成物、カラーフィルターおよび画像表示素子
TWI483071B (zh) 彩色濾光片用感光性樹脂組成物及其應用
JP2015069181A (ja) 感放射線性樹脂組成物、硬化膜、その形成方法、及び表示素子
TWI807010B (zh) 感光性樹脂組成物、光間隔物及液晶顯示裝置
WO2023063022A1 (ja) 樹脂前駆体、樹脂、樹脂組成物及び樹脂硬化膜
CN111399339B (zh) 寡聚物及包含其的感光性树脂组合物、感光性间隙物与涂料
KR20160002158A (ko) 감광성 수지 조성물, 수지 블랙 매트릭스 및 터치패널
TW202406946A (zh) 感光性樹脂組成物、樹脂硬化膜及影像顯示元件
TW202233698A (zh) 共聚物之製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14389225

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13886433

Country of ref document: EP

Kind code of ref document: A1