WO2014193021A1 - 의료 영상 처리 방법 및 시스템 - Google Patents

의료 영상 처리 방법 및 시스템 Download PDF

Info

Publication number
WO2014193021A1
WO2014193021A1 PCT/KR2013/005167 KR2013005167W WO2014193021A1 WO 2014193021 A1 WO2014193021 A1 WO 2014193021A1 KR 2013005167 W KR2013005167 W KR 2013005167W WO 2014193021 A1 WO2014193021 A1 WO 2014193021A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical image
image
filter
change amount
medical
Prior art date
Application number
PCT/KR2013/005167
Other languages
English (en)
French (fr)
Inventor
김경우
이희신
Original Assignee
주식회사 나노포커스레이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노포커스레이 filed Critical 주식회사 나노포커스레이
Publication of WO2014193021A1 publication Critical patent/WO2014193021A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • the present invention relates to a medical image processing method and system, and more particularly, to a medical image processing method and system configured to remove ring artifacts and noise generated from a CT image of a patient.
  • Ring artifacts and noise cause serious problems when the CT image of an object is acquired in CBCT, which greatly reduces the SNR (Singal to Nosie Ratio) of the image. Therefore, it is essential to reduce ring artifacts and noise in photographing the CT image of the object.
  • CBCT is widely used in the medical field because the Flat-Panel Detector (FPD) has many advantages over other types of detectors. This is because the Flat-Panel Detector has a thin structure, can detect a large area of object, and has no geometric distortion. In addition, the rapid growth due to low cost and mass production is also an advantage.
  • FPD Flat-Panel Detector
  • Ring artifacts can be caused by incomplete pixels of the Flat-Panel Detector, or by defects or impurities in the scintillator (a substance that turns X-rays into visible light).
  • FIG. 1 is a diagram illustrating an abnormal pixel of an X-ray image, which is one of the causes of ring artifacts according to the related art.
  • the ring artifact is shown in the process of reconstruction of pixels whose value is higher or lower than the peripheral values among the pixel values of the X-ray image, or whose value is not measured.
  • These pixels are mainly caused by bad pixels such as pixels that are not operated by the Flat-Panel Detector or pixels that have a severe difference in sensitivity from surrounding pixels, defects in the Scintillator, and foreign substances on the detector.
  • Ring artifacts appear as narrow rings or broad banded rings in CT images.
  • FIG. 2 is a diagram illustrating ring artifacts generated in a process of reconstructing a sinogram image in a conventional technique
  • FIG. 3 is a diagram illustrating ring artifacts generated in a CT image in a conventional technique.
  • a sinogram image is a graphic image of a value of an X-ray image photographed at various angles on one side of an object, and a CT image is generated by reconstructing the sinogram image.
  • the abnormal pixels present in the x-ray image form vertical stripes in the sinogram image.
  • the vertical stripes generate bright or dark circular rings around the center of rotation during the reconstruction process as shown in FIG. 2. .
  • a method of processing before reconstruction is applied by detecting the position of the vertical stripes in the sinogram image and then replacing the values of the corresponding stripes using interpolation.
  • the reconstruction method is a method of detecting a circular ring generated based on the center of rotation in a reconstructed CT image and correcting the value of the detected circular ring position using interpolation. .
  • Both of the above methods apply a method of detecting vertical stripes or circular rings and applying an interpolation algorithm.
  • An object of the present invention is to provide a medical image processing method and system which is designed to solve the above problems, and is capable of efficiently removing ring artifacts and noise of a CT image without loss of an original X-ray image. It is done.
  • the present invention provides a method of processing a three-dimensional medical image consisting of a three-dimensional X-ray image of the patient, using the three-dimensional medical image to calculate a first medical image that is an average image based on the rotation angle; Generating a second medical image by applying a first filter which is a noise removing filter to the first medical image; Calculating a change amount of the first medical image and the second medical image; And correcting the 3D medical image by using the calculated change amount.
  • the step of calculating the amount of change includes an embodiment of calculating a result of subtracting the pixel value of the first medical image from the pixel value of the second medical image as the change amount.
  • the three-dimensional medical image correction step includes an embodiment of adding the calculated change amount to each pixel of the three-dimensional medical image.
  • the second medical image generating step may include generating the second medical image by repeatedly applying the first filter to the first medical image a predetermined number of times.
  • the present invention also includes an embodiment further comprising applying a second filter or a 3D noise reduction algorithm, which is a 3D image noise removing filter, to the corrected 3D medical image.
  • a second filter or a 3D noise reduction algorithm which is a 3D image noise removing filter
  • the present invention is a three-dimensional medical image processing system consisting of a three-dimensional X-ray image of a patient, the filter unit including a first filter which is a noise removing filter; And calculating the first medical image as an average image based on the rotation angle using the 3D medical image, and controlling the filter unit to generate the second medical image by applying the first filter to the first medical image.
  • a medical image processing system including a control unit for calculating the change amount of the first medical image and the second medical image, and correcting the three-dimensional medical image by using the calculated change amount.
  • the present invention also includes an embodiment in which the control unit calculates the resultant value obtained by subtracting the pixel value of the first medical image from the pixel value of the second medical image as the change amount.
  • the present invention also includes an embodiment in which the controller adds the calculated change amount to each pixel of the 3D medical image.
  • the present invention also includes an embodiment in which the control unit controls the filter unit to generate the second medical image by repeatedly applying the first filter to the first medical image a predetermined number of times.
  • the filter unit may further include a second filter, which is a 3D image noise removing filter, wherein the controller is configured to apply the second filter, which is a 3D image noise removing filter, to the corrected 3D medical image.
  • a second filter which is a 3D image noise removing filter
  • the controller is configured to apply the second filter, which is a 3D image noise removing filter, to the corrected 3D medical image.
  • An embodiment of applying the filter unit or applying a 3D noise removing algorithm is included.
  • the medical image processing method and system according to the present invention can remove the ring artifacts and noise of the CT image without losing the original X-ray image, and use only one average image of the sinogram image. Because of this, the processing speed is fast.
  • FIG. 1 is a diagram illustrating an abnormal pixel of an X-ray image, which is one of the causes of ring artifacts according to the related art.
  • FIG. 2 is a diagram illustrating ring artifacts generated in a process of reconstructing a sinogram image according to the related art.
  • FIG. 3 is a diagram illustrating ring artifacts generated in a CT image in the prior art.
  • FIG. 4 is a diagram illustrating a three-dimensional sinogram image that is a three-dimensional medical image according to an exemplary embodiment of the present invention.
  • FIG. 5 is a block diagram of a medical image processing system according to an exemplary embodiment of the present invention.
  • FIG. 6 is a flowchart of a medical image processing method according to a first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an amount of change of the first medical image and the second medical image according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart of a medical image processing method according to a second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a corrected medical image according to a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a three-dimensional sinogram image, which is a three-dimensional medical image 10 according to an exemplary embodiment of the present invention.
  • the sinogram image is a graph visualization of the value of the X-ray image taken at various angles on one side of the object.
  • the sinogram image shows the X-ray image value as Detector Row (X) x rotation angle (Z). 2D medical image.
  • the 3D sinogram image shown in the drawing is a set of 2D sinogram images generated from various cross sections of the object (Detector Row (Y)), and the 3D sinogram image is a detector row (X) x rotation angle. It is a 3D medical image 10 in which a 3D X-ray image value is expressed with a size of (Z) x Detector Row (Y).
  • the present invention relates to a medical image processing method and system configured to image-process a three-dimensional sinogram image, which is a three-dimensional medical image 10, to remove ring artifacts and noise.
  • FIG. 5 is a block diagram of a medical image processing system 100 according to an exemplary embodiment of the present invention.
  • the medical image processing system 100 includes a control unit 110, a filter unit 130, a storage unit 150, and a user interface unit 170.
  • the controller 110 controls the filter 130, the storage 150, and the user interface 170 to perform the medical image processing method of the present invention.
  • the controller 110 uses the 3D medical image 10 to calculate the first medical image 20, which is a reference image of the rotation angle Z of the 3D medical image 10, and the first medical image 20. ) Is applied to the first filter 131 to generate a second medical image 21 from which noise is removed.
  • the controller 110 calculates a change amount of the first medical image 20 and the second medical image 21, and corrects the 3D medical image 10 by using the calculated change amount.
  • the controller 110 generates a 3D medical image 12 from which noise is removed by applying a second filter 132 or a noise removing algorithm to the corrected 3D medical image 11.
  • the filter unit 130 includes a first filter 131 and a second filter 132.
  • the first filter 131 is composed of a noise reduction filter of a two-dimensional image such as an average filter or a median filter
  • the second filter 132 is a three-dimensional image noise removing filter, and a low frequency such as an average filter and a median filter. It can be configured as a pass filter.
  • the storage unit 150 is a data storage that stores data, and includes the first medical image 20, the second medical image 21, and the corrected three-dimensional medical image 11 generated by the controller 110.
  • the 3D medical image 12 from which noise is removed may be stored.
  • the user interface unit 170 is implemented as a monitor, a keyboard, a mouse, a speaker, and the like, and various control values of the user (for example, a system driving request signal, a system driving end signal, and a number of times of repeatedly applying the first filter 131). And the like, or an audio visual result of the operation of the system (for example, the corrected 3D medical image 11 and the noise-free 3D medical image 12) may be output to the user.
  • FIG. 6 is a flowchart of a medical image processing method according to a first embodiment of the present invention.
  • the medical image processing method includes the steps of calculating the first medical image 20 which is a reference image of the rotation angle Z of the 3D medical image 10 (S100), Generating the second medical image 21 from which noise is removed by applying the first filter 131 to the first medical image 20 (S200), and the first medical image 20 and the second medical image 21.
  • Computing the amount of change of the step (S300), using the calculated amount of change comprises the step of correcting the three-dimensional medical image (10) (S400).
  • the controller 110 calculates a first medical image 20 (Sa), which is an average image of the rotation angle Z of the 3D medical image 10, using the 3D medical images 10 and I. (S100)
  • the controller 110 generates a first medical image 20 having an average pixel value based on the rotation angle Z in the 3D sinogram image that is the 3D medical image 10.
  • the first medical image 20 is a two-dimensional sinogram image of Detector Row (X) x Detector Col (Y) size composed of average pixel values of the three-dimensional sinogram image based on the rotation angle Z. It is
  • the controller 110 applies the first filter 131 to the first medical image 20 to generate a second medical image 21 (M (Sa)) from which noise is removed (S200).
  • the controller 110 controls the filter 130 to apply a first filter 131 including an average filter, a median filter, or the like, which is a noise removal filter of a 2D image, to the first medical image 20. To generate the second medical image 21 is removed.
  • a first filter 131 including an average filter, a median filter, or the like, which is a noise removal filter of a 2D image
  • the controller 110 may repeatedly apply the first filter 131 to the first medical image 20 a predetermined number of times, thereby generating a second sharper medical image 21 (Mk (Sa)).
  • the controller 110 may set the number of times to apply the first filter repeatedly, received from the user through the user interface 170, and may automatically set the number of times to apply the first filter repeatedly according to the image quality of the first medical image 20. have.
  • the controller 110 calculates a change amount dSa of the first medical image 20 and the second medical image 21 (S300).
  • FIG. 7 is a diagram illustrating a change amount of the first medical image 20 and the second medical image 21 according to the first embodiment of the present invention.
  • FIG. 7 illustrates a profile of the first medical image 20 and the second medical image 21, and is a graph of pixel values of the first medical image 20 and the second medical image 21.
  • the controller 110 calculates a difference between the pixel value of the second medical image 21 and the pixel value of the first medical image 20 as a change amount.
  • the present invention is to remove the ring art fact by correcting the sinogram image value of the position.
  • the controller 110 corrects the 3D medical image 10 by using the calculated change amount (S400).
  • the controller 110 reconstructs the corrected 3D medical image 11, generates a CT image from which the ring art facts are removed, and controls the user interface unit 170 to control the CT image from which the ring art facts are removed. Can be output to
  • FIG. 8 illustrates a sinogram image to which a medical image processing method according to the first exemplary embodiment of the present invention is applied
  • FIG. (A) is an original sinogram image
  • (b) is a corrected sinogram image. to be.
  • the corrected sinogram image compared to the original sinogram image, it can be seen that the vertical streaks causing the ring art is removed.
  • FIG. 9 illustrates a CT image to which a medical image processing method according to the first exemplary embodiment of the present invention is applied, (a) is an original CT image, and (b) is a corrected CT image.
  • the corrected CT image compared to the original CT image, it can be seen that the ring art fact that is a light or dark circular ring based on the rotation center point is removed.
  • FIG. 10 is a flowchart of a medical image processing method according to a second embodiment of the present invention.
  • the medical image processing method includes applying a second filter 132 or a noise removing algorithm to the corrected 3D medical image 11 (S500).
  • the control unit 110 controls the filter unit 130 to control the low-frequency, such as an average filter and a median filter, on the 3D medical image 11 corrected by the medical image processing method according to the first embodiment of the present invention.
  • a second filter 132 which is a pass filter, that is, a three-dimensional image noise removing filter, is applied.
  • the controller 110 may apply a 3D noise removal algorithm to the corrected 3D medical image 11.
  • the three-dimensional noise removal algorithm of the present invention can be applied not only to existing noise removal algorithms such as Diffusion Filter and TV Filter, but also various noise removal algorithms to be announced later.
  • the controller 110 generates the 3D medical image 12 from which the noise is removed by applying the second filter 132 or the noise removing algorithm to the corrected 3D medical image 11.
  • the controller 110 reconstructs the 3D medical image 12 from which noise is removed, generates a CT image from which both ring art and noise are removed, and controls the user interface unit 170 to control ring art and noise.
  • the CT image may be output to the user.
  • FIG. 11 is a diagram illustrating a corrected medical image according to a second embodiment of the present invention.
  • FIG. (A) is an original CT image
  • (b) is a corrected CT image.
  • the corrected CT image can be seen that the noise of the image is removed, compared to the original CT image.
  • the above-described medical image processing method and system can remove ring artifacts and noise of the CT image without losing the original X-ray image, and the processing speed is fast because only the average image of the sinogram image is corrected. Has the advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

본 발명은 의료 영상 처리 방법 및 시스템에 관한 것으로, 더욱 상세하게는 환자의 CT 영상에서 생성되는 링 아티팩트(Ring Artifact)와 노이즈(Noise)를 제거하도록 구성된 의료 영상 처리 방법 및 시스템에 관한 것이다.

Description

의료 영상 처리 방법 및 시스템
본 발명은 의료 영상 처리 방법 및 시스템에 관한 것으로, 더욱 상세하게는 환자의 CT 영상에서 생성되는 링 아티팩트(Ring Artifact)와 노이즈(Noise)를 제거하도록 구성된 의료 영상 처리 방법 및 시스템에 관한 것이다.
기존 의료용 CT나 CCD(Charge Coupled Device) 기반의 CBCT(Cone Beam CT)에서는 화이트-필드(White-Field) 보정만으로 링 아티팩트(Ring Artifact)와 노이즈(Noise)를 쉽게 제거할 수 있었다.
그러나, FPD(Flat-Panel Detector) 기반의 CBCT에서는 다른 유형의 디텍서(Detector)에 비해 픽셀 별 감도의 균일성이 많이 떨어지고, 촬영 조건에 따라 감도가 달라져, 단순한 화이트-필드 보정만으로는 링 아티팩트와 노이즈를 제거하기가 어려웠다.
링 아티팩트와 노이즈는 CBCT에서 대상물의 CT 영상을 획득할 때 영상의 SNR(신호대비노이즈비, Singal to Nosie Ratio)을 매우 떨어뜨려 심각한 문제를 일으킨다. 따라서, 대상물의 CT 영상을 촬영하는데 있어서, 링 아티팩트와 노이즈를 감소시키는 작업은 필수적이라 할 수 있다.
링 아티팩트와 노이즈의 문제에도 불구하고, Flat-Panel Detector(FPD)가 다른 종류의 디텍터에 비에 많은 장점이 있기 때문에, 의료 현장에서 CBCT가 많이 사용된다. Flat-Panel Detector는 얇은 구조를 가지고, 대면적의 물체를 감지할수 있다는 점과, 기하학적 왜곡이 없다는 장점을 가지고 있기 때문이다. 그리고, 저렴한 비용과 대량 생산의 요구에 의해 빠른 성장을 보이고 있다는 점도 또한 장점으로 작용하고 있다.
링 아티팩트는 Flat-Panel Detector의 불완전한 픽셀(Pixel)들에 의해 발생하기도 하고, Scintillator(X선을 가시광선으로 바꿔주는 물질)의 결함이나, 불순물에 의해서 발생하기도 한다.
도 1은 종래 기술로 링 아티팩트의 발생 원인 중 하나인 엑스레이 영상의 이상 픽셀을 도시한 도면이다.
링 아티팩트는 도 1에 도시된 바와 같이 엑스레이 영상의 픽셀 값들 중 주변 값들에 비해 값이 높거나 낮게 또는 값이 측정되지 않는 픽셀들의 재구성(Reconstruction) 과정에서 나타나다. 이러한 픽셀들은 주로 Flat-Panel Detector의 동작하지 않는 픽셀 또는 주변 픽셀들과의 감도 차이가 심하게 나는 픽셀 등의 불량 픽셀, Scintillator의 결함, 그리고 디텍터 위에 존재하는 이물질 등의 원인에 인해 발생하는 것이다.
링 아티팩트는 CT 영상에서 좁은 링 또는 넓은 밴드 형태의 링으로 나타난다.
도 2는 종래 기술로 사이노그램(Sinogram) 영상을 재구성하는 과정에서 생성되는 링 아티팩트를 도시한 도면이고, 도 3은 종래 기술로 CT 영상에 생성된 링 아티팩트를 도시한 도면이다.
사이노그램(Sinogram) 영상은 대상물의 일단면을 여러 각도로 촬영한 엑스레이 영상의 값을 그래프로 시각화한 영상으로, 사이노그램 영상을 재구성(Reconstruction)하여 CT 영상이 생성된다.
엑스레이 영상에 존재하는 이상 픽셀들은 사이노그램 영상에서 세로 줄무늬를 형성하게 되며, 이 세로 줄무늬는 도 2와 같이, CT 영상으로 재구성 과정에서 회전 중심점을 기준으로 밝거나 어두운 원형의 링을 생성시키는 것이다.
기존의 링 아티팩트 제거와 관련된 논문들을 살펴보면, 삼차원 영상의 재구성 이전에 처리하는 방법과 재구성 이후에 처리하는 방법 두 가지로 분류될 수 있다.
우선, 재구성 이전에 처리하는 방법은, 사이노그램 영상에서 세로 줄무늬의 위치를 검출한 다음에 보간법을 이용하여 해당 줄무늬 위치의 값을 대체하는 방법을 적용하고 있다.
그리고, 재구성 이후에 처리하는 방법은, 재구성이 완료된 CT 영상에서 회전중심을 기준으로 발생되는 원형의 링을 검출하고, 보간법을 이용하여 검출된 원형의 링 위치의 값을 보정하는 방법을 적용하고 있다.
전술한 두 가지 방법은 모두 세로 줄무늬 또는 원형 링을 검출하는 방법과 보간 알고리즘을 적용하는 것이다.
그러나, 이러한 기존 링 아티팩트 제거 방법은 원본 값을 주변 픽셀 값들의 보간 값으로 대체하기 때문에, 원본 엑스레이 영상에 손실이 발생하게 되는 문제점이 있다.
본 발명은 상기의 문제점을 해결하기 위하여 창작된 것으로, 원본 엑스레이 영상의 손실이 발생하지 않고, 효율적으로 CT 영상의 링 아티팩트와 노이즈를 제거할 수 있도록 구성된 의료 영상 처리 방법 및 시스템을 제공하는 것으로 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 환자의 3차원 엑스레이 영상으로 구성된 3차원 의료 영상의 처리 방법으로, 상기 3차원 의료 영상을 이용하여 회전각도 기준으로 평균 영상인 제 1 의료 영상 산출하는 단계; 상기 제 1 의료 영상에 노이즈 제거 필터인 제 1 필터를 적용하여 제 2 의료 영상을 생성하는 단계; 제 1 의료 영상과 제 2 의료 영상의 변화량을 산출하는 단계; 및 상기 산출된 변화량을 이용하여 상기 3차원 의료 영상을 보정하는 단계를 포함하는 의료 영상 처리 방법을 제공한다.
또한, 본 발명은 상기 변화량 산출 단계는, 상기 제 2 의료 영상의 픽셀 값에서 상기 제 1 의료 영상의 픽셀 값을 뺀 결과 값을 상기 변화량으로 산출하는 실시예를 포함한다.
또한, 본 발명은 상기 3차원 의료 영상 보정 단계는, 상기 산출된 변화량을 상기 3차원 의료 영상의 각 픽셀(Pixel)에 추가하는 실시예를 포함한다.
또한, 본 발명은 상기 제 2 의료 영상 생성 단계는, 상기 제 1 의료 영상에 상기 제 1 필터를 기설정된 횟수 반복 적용하여, 상기 제 2 의료 영상을 생성하는 실시예를 포함한다.
또한, 본 발명은 상기 보정된 3차원 의료 영상에 3차원 영상 노이즈 제거 필터인 제 2 필터 또는 3차원 노이즈 제거 알고리즘 적용하는 단계를 더 포함하는 실시예를 포함한다.
또한, 본 발명은 환자의 3차원 엑스레이 영상으로 구성된 3차원 의료 영상의 처리 시스템으로, 노이즈 제거 필터인 제 1 필터를 포함하는 필터부; 및 상기 3차원 의료 영상을 이용하여 회전각도 기준으로 평균 영상인 제 1 의료 영상 산출하고, 상기 제 1 의료 영상에 상기 제 1 필터를 적용하여 제 2 의료 영상을 생성하도록 상기 필터부를 제어하고, 제 1 의료 영상과 제 2 의료 영상의 변화량을 산출하고, 상기 산출된 변화량을 이용하여 상기 3차원 의료 영상을 보정하는 제어부를 포함하는 의료 영상 처리 시스템을 제공한다.
또한, 본 발명은 상기 제어부는, 상기 제 2 의료 영상의 픽셀 값에서 상기 제 1 의료 영상의 픽셀 값을 뺀 결과 값을 상기 변화량으로 산출하는 실시예를 포함한다.
또한, 본 발명은 상기 제어부는, 상기 산출된 변화량을 상기 3차원 의료 영상의 각 픽셀(Pixel)에 추가하는 실시예를 포함한다.
또한, 본 발명은 상기 제어부는, 상기 제 1 의료 영상에 상기 제 1 필터를 기설정된 횟수 반복 적용하여, 상기 제 2 의료 영상을 생성하도록 상기 필터부를 제어하는 실시예를 포함한다.
또한, 본 발명은 상기 필터부는, 3차원 영상 노이즈 제거 필터인 제 2 필터를 더 포함하고, 상기 제어부는, 상기 보정된 3차원 의료 영상에, 3차원 영상 노이즈 제거 필터인 제 2 필터를 적용하도록 상기 필터부를 적용하거나, 3차원 노이즈 제거 알고리즘 적용하는 실시예를 포함한다.
본 발명은 상술한 실시예에 한정되지 않으며, 첨부된 청구범위에서 알 수 있는 바와 같이 본 발명이 속한 분야의 통상의 지식을 가진 자에 의해 변형이 가능하고 이러한 변형은 본 발명의 범위에 속함을 밝혀둔다.
상기와 같은 구성을 통하여, 본 발명에 따른 의료 영상 처리 방법 및 시스템은 원본 엑스레이 영상의 손실 없이 CT 영상의 링 아티팩트와 노이즈를 제거할 수 있으며, 사이노그램 영상의 평균 영상 한 장만을 이용하여 영상을 보정하기 때문에 처리 속도가 빠르다는 장점이 있다.
도 1은 종래 기술로 링 아티팩트의 발생 원인 중 하나인 엑스레이 영상의 이상 픽셀을 도시한 도면이다.
도 2는 종래 기술로 사이노그램 영상을 재구성하는 과정에서 생성되는 링 아티팩트를 도시한 도면이다.
도 3은 종래 기술로 CT 영상에 생성된 링 아티팩트를 도시한 도면이다.
도 4는 본 발명의 실시예에 따른 3차원 의료 영상인 3차원 사이노그램 영상을 도시한 도면이다.
도 5는 본 발명의 실시예에 따른 의료 영상 처리 시스템의 구성도이다.
도 6은 본 발명의 제 1 실시예에 따른 의료 영상 처리 방법의 순서도이다.
도 7은 본 발명의 제 1 실시예에 따른 제 1 의료 영상과 제 2 의료 영상의 변화량을 도시한 도면이다.
도 8과 9는 본 발명의 제 1 실시예에 따른 보정된 의료 영상을 도시한 도면이다.
도 10는 본 발명의 제 2 실시예에 따른 의료 영상 처리 방법의 순서도이다
도 11은 본 발명의 제 2 실시예에 따른 보정된 의료 영상을 도시한 도면이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세하게 설명한다. 이하 설명에서 동일한 구성 요소에는 설명의 편의상 동일 명칭 및 동일 부호를 부여한다.
본 발명에서 사용되는 용어는 가능한 한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우는 해당되는 발명의 설명부분에서 상세히 그 의미를 기재하였으므로, 단순한 용어의 명칭이 아닌 용어가 가지는 의미로서 본 발명을 파악하여야 한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
도 4는 본 발명의 실시예에 따른 3차원 의료 영상(10)인 3차원 사이노그램(Sinogram) 영상을 도시한 도면이다.
사이노그램 영상은 대상물의 일단면을 여러 각도로 촬영한 엑스레이 영상의 값을 그래프로 시각화한 영상으로, 사이노그램 영상은 Detector Row(X) x 회전각도(Z) 크기로 엑스레이 영상 값이 표현된 2차원 의료 영상이다.
도면에 도시된 3차원 사이노그램 영상은 대상물의 여러 단면(Detector Row(Y))에서 생성된 2차원 사이노그램 영상들의 집합으로, 3차원 사이노그램 영상은 Detector Row(X) x 회전각도(Z) x Detector Row(Y) 크기로 3차원 엑스레이 영상 값이 표현된 3차원 의료 영상(10)이다.
본 발명은 3차원 의료 영상(10)인 3차원 사이노그램 영상을 영상 처리하여, 링 아트팩트와 노이즈를 제거하도록 구성된 의료 영상 처리 방법 및 시스템에 관한 것이다.
도 5는 본 발명의 실시예에 따른 의료 영상 처리 시스템(100)의 구성도이다.
도면과 같이, 의료 영상 처리 시스템(100)은 제어부(110), 필터부(130), 저장부(150), 사용자 인터페이스부(170)을 포함하여 구성된다.
제어부(110)는 필터부(130), 저장부(150), 사용자 인터페이스부(170)를 제어하여, 본 발명의 의료 영상 처리 방법을 수행한다.
제어부(110)는 3차원 의료 영상(10)을 이용하여, 3차원 의료 영상(10)의 회전각도(Z) 기준 평균 영상인 제 1 의료 영상(20)을 산출하고, 제 1 의료 영상(20)에 제 1 필터(131)를 적용하여, 노이즈가 제거된 제 2 의료 영상(21)을 생성한다.
그리고, 제어부(110)는 제 1 의료 영상(20)과 제 2 의료 영상(21)의 변화량을 산출하여, 산출된 변화량을 이용하여 3차원 의료 영상(10)을 보정한다.
그리고, 제어부(110)는 보정된 3차원 의료 영상(11)에 제 2 필터(132) 또는 노이즈 제거 알고리즘 적용하여, 노이즈가 제거된 3차원 의료 영상(12)을 생성한다.
제어부(110)에 의해 구현되는 본 발명의 의료 영상 처리 방법은 도 6 이하에서 자세히 후술하도록 한다.
필터부(130)는 제 1 필터(131)와 제 2 필터(132)를 포함한다. 제 1 필터(131)는 평균 필터 또는 중간값 필터와 같은 2차원 영상의 노이즈 제거 필터로 구성되며, 제 2 필터(132)는 3차원 영상 노이즈 제거 필터로, 평균 필터, 중간값 필터와 같은 저주파패스 필터로 구성될 수 있다.
저장부(150)는 데이터를 저장하는 데이터 저장소(Data Storage)로, 제어부(110)에서 생성된 제 1 의료 영상(20), 제 2 의료 영상(21), 보정된 3차원 의료 영상(11), 노이즈가 제거된 3차원 의료 영상(12)을 저장할 수 있다.
사용자 인터페이스부(170)는 모니터, 키보드, 마우스, 스피커 등으로 구현되어, 사용자의 각종 제어값(예를 들어, 시스템 구동 요청 신호, 시스템 구동 종료 신호, 제 1 필터(131)의 반복 적용 횟수 값 등)을 입력받거나, 시스템의 동작 결과(예를 들어, 보정된 3차원 의료 영상(11), 노이즈가 제거된 3차원 의료 영상(12) 등)를 사용자에 시청각적으로 출력할 수 있다.
도 6은 본 발명의 제 1 실시예에 따른 의료 영상 처리 방법의 순서도이다.
도면과 같이, 본 발명의 제 1 실시예에 따른 의료 영상 처리 방법은 3차원 의료 영상(10)의 회전각도(Z) 기준 평균 영상인 제 1 의료 영상(20)을 산출하는 단계(S100), 제 1 의료 영상(20)에 제 1 필터(131)를 적용하여 노이즈이 제거된 제 2 의료 영상(21)을 생성하는 단계(S200), 제 1 의료 영상(20)과 제 2 의료 영상(21)의 변화량을 산출하는 단계(S300), 산출된 변화량을 이용하여 3차원 의료 영상(10)을 보정하는 단계(S400)을 포함한다.
우선, 제어부(110)는 3차원 의료 영상(10, I)을 이용하여, 3차원 의료 영상(10)의 회전각도(Z) 기준 평균 영상인 제 1 의료 영상(20, Sa)을 산출한다.(S100)
제어부(110)는 3차원 의료 영상(10)인 3차원 사이노그램 영상에서, 회전각도(Z)를 기준으로 평균 픽셀 값을 가지는 제 1 의료 영상(20)을 생성한다.
즉, 제 1 의료 영상(20)은 회전각도(Z)를 기준으로 3차원 사이노그램 영상의 평균 픽셀 값들로 구성된, Detector Row(X) x Detector Col(Y) 크기의 2차원 사이노그램 영상인 것이다.
그리고, 제어부(110)는 제 1 의료 영상(20)에 제 1 필터(131)를 적용하여, 노이즈가 제거된 제 2 의료 영상(21, M(Sa))을 생성한다.(S200)
제어부(110)는 필터부(130)를 제어하여, 2차원 영상의 노이즈 제거 필터인 평균 필터 또는 중간값 필터 등으로 구성된 제 1 필터(131)를 제 1 의료 영상(20)에 적용하여, 노이즈가 제거된 제 2 의료 영상(21)을 생성하는 것이다.
제어부(110)는 제 1 의료 영상(20)에 기 설정된 횟수 만큼 제 1 필터(131)를 반복 적용하여, 더욱 선명한 제 2 의료 영상(21, Mk(Sa))을 생성할 수 있다.
제어부(110)는 사용자 인터페이스부(170)를 통해 사용자로부터 입력받아 제 1 필터 반복 적용 횟수를 설정할 수 있으며, 제 1 의료 영상(20)의 화질에 따라 자동으로 제 1 필터 반복 적용 횟수를 설정할 수도 있다.
그리고, 제어부(110)는 제 1 의료 영상(20)과 제 2 의료 영상(21)의 변화량(dSa)을 산출한다.(S300)
제어부(110)는 제 2 의료 영상(21)의 픽셀 값에서 제 1 의료 영상(20)의 픽셀 값을 뺀 결과 값을 제 1 의료 영상(20)과 제 2 의료 영상(21)의 변화량으로 산출할 수 있다. (dSa = Mk(Sa) - Sa)
도 7은 본 발명의 제 1 실시예에 따른 제 1 의료 영상(20)과 제 2 의료 영상(21)의 변화량을 도시한 도면이다.
도 7은 제 1 의료 영상(20)과 제 2 의료 영상(21)의 프로파일(Profile)을 도시한 것으로, 제 1 의료 영상(20)과 제 2 의료 영상(21)의 픽셀 값들의 그래프이다.
제어부(110)는 제 2 의료 영상(21)의 픽셀 값과 제 1 의료 영상(20)의 픽셀 값의 차이를 변화량으로 산출하는 것이다.
도면의 화살표 표시와 같이, 제 1 의료 영상(20)과 제 2 의료 영상(21)의 값의 차이가 일정 범위 이상 발생한 부분이, 재구성된 CT 영상에서 링 아트팩트가 발생시키는 위치이다. 따라서, 본 발명은 해당 위치의 사이노그램 영상 값을 보정하여, 링 아트팩트를 제거하는 것이다.
그리고, 제어부(110)는 산출된 변화량을 이용하여 3차원 의료 영상(10)을 보정한다.(S400)
제어부(110)는 산출된 변화량 값을 3차원 의료 영상(10)에 추가하여 보정된 3차원 의료 영상(11, I')을 생성한다. 즉, 제어부(110)는 산출된 3차원 의료 영상(10)의 해당 픽셀 값에 산출된 변화량을 더하여 보정된 3차원 의료 영상(11)을 생성하는 것이다. (I' = I + dSa)
제어부(110)는 보정된 3차원 의료 영상(11)을 재구성하여, 링 아트팩트가 제거된 CT 영상을 생성하고, 사용자 인터페이스부(170)를 제어하여, 링 아트팩트가 제거된 CT 영상을 사용자에게 출력할 수 있다.
도 8과 9는 본 발명의 제 1 실시예에 따른 보정된 의료 영상을 도시한 도면이다.
도 8은 본 발명의 제 1 실시예에 따른 의료 영상 처리 방법이 적용된 사이노그램 영상을 도시하고 있으며, 도 (a)는 원본 사이노그램 영상이고, 도 (b)는 보정된 사이노그램 영상이다. 도면에서 보는 바와 같이, 보정된 사이노그램 영상은 원본 사이노그램 영상에 비해, 링 아트팩트를 유발하는 세로 줄무늬가 제거된 것을 볼 수 있다.
도 9는 본 발명의 제 1 실시예에 따른 의료 영상 처리 방법이 적용된 CT 영상을 도시하고 있으며, 도 (a)는 원본 CT 영상이고, 도 (b)는 보정된 CT 영상이다. 도면에서 보는 바와 같이, 보정된 CT 영상은 원본 CT 영상에 비해, 회전 중심점을 기준으로 밝거나 어두운 원형의 링인 링 아트팩트가 제거된 것을 볼 수 있다.
도 10은 본 발명의 제 2 실시예에 따른 의료 영상 처리 방법의 순서도이다
본 발명의 제 2 실시예에 따른 의료 영상 처리 방법은 보정된 3차원 의료 영상(11)에 제 2 필터(132) 또는 노이즈 제거 알고리즘 적용하는 단계(S500)를 포함한다.
제어부(110)는 필터부(130)를 제어하여, 전술한 본 발명의 제 1 실시예에 따른 의료 영상 처리 방법에 의해 보정된 3차원 의료 영상(11)에 평균 필터, 중간값 필터와 같은 저주파패스 필터, 즉 3차원 영상 노이즈 제거 필터인 제 2 필터(132)를 적용한다.
또는, 제어부(110)는 보정된 3차원 의료 영상(11)에 3차원 노이즈 제거 알고리즘을 적용할 수 있다. 본 발명의 3차원 노이즈 제거 알고리즘은 Diffusion Filter, TV Filter와 같이 현존하는 노이즈 제거 알고리즘 뿐만 아니라, 추후 발표될 다양한 노이즈 제거 알고리즘이 모두 적용될 수 있음은 자명하다 할 것이다.
따라서, 제어부(110)는 보정된 3차원 의료 영상(11)에 제 2 필터(132) 또는 노이즈 제거 알고리즘 적용하여, 노이즈가 제거된 3차원 의료 영상(12)을 생성하는 것이다.
제어부(110)는 노이즈가 제거된 3차원 의료 영상(12)을 재구성하여, 링 아트팩트와 노이즈가 모두 제거된 CT 영상을 생성하고, 사용자 인터페이스부(170)를 제어하여, 링 아트팩트와 노이즈가 모두 제거된 CT 영상을 사용자에게 출력할 수 있다.
도 11은 본 발명의 제 2 실시예에 따른 보정된 의료 영상을 도시한 도면이다.
도면은 본 발명의 제 2 실시예에 따른 의료 영상 처리 방법이 적용된 CT 영상을 도시하고 있으며, 도 (a)는 원본 CT 영상이고, 도 (b)는 보정된 CT 영상이다. 도면에서 보는 바와 같이, 보정된 CT 영상은 원본 CT 영상에 비해, 영상의 노이즈가 제거된 것을 볼 수 있다.
이상 전술한 의료 영상 처리 방법 및 시스템은 원본 엑스레이 영상의 손실 없이 CT 영상의 링 아티팩트와 노이즈를 제거할 수 있으며, 사이노그램 영상의 평균 영상 한 장만을 이용하여 영상을 보정하기 때문에 처리 속도가 빠르다는 장점이 있다.
상기에서 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (10)

  1. 환자의 3차원 엑스레이 영상으로 구성된 3차원 의료 영상의 처리 방법으로,
    상기 3차원 의료 영상을 이용하여 회전각도 기준으로 평균 영상인 제 1 의료 영상 산출하는 단계;
    상기 제 1 의료 영상에 노이즈 제거 필터인 제 1 필터를 적용하여 제 2 의료 영상을 생성하는 단계;
    제 1 의료 영상과 제 2 의료 영상의 변화량을 산출하는 단계; 및
    상기 산출된 변화량을 이용하여 상기 3차원 의료 영상을 보정하는 단계를 포함하는 의료 영상 처리 방법.
  2. 제 1 항에 있어서,
    상기 변화량 산출 단계는,
    상기 제 2 의료 영상의 픽셀 값에서 상기 제 1 의료 영상의 픽셀 값을 뺀 결과 값을 상기 변화량으로 산출하는 의료 영상 처리 방법.
  3. 제 2 항에 있어서,
    상기 3차원 의료 영상 보정 단계는,
    상기 산출된 변화량을 상기 3차원 의료 영상의 각 픽셀(Pixel)에 추가하는 의료 영상 처리 방법.
  4. 제 1 항에 있어서,
    상기 제 2 의료 영상 생성 단계는,
    상기 제 1 의료 영상에 상기 제 1 필터를 기설정된 횟수 반복 적용하여, 상기 제 2 의료 영상을 생성하는 의료 영상 처리 방법.
  5. 제 1 항에 있어서,
    상기 보정된 3차원 의료 영상에 3차원 영상 노이즈 제거 필터인 제 2 필터 또는 3차원 노이즈 제거 알고리즘 적용하는 단계를 더 포함하는 의료 영상 처리 방법.
  6. 환자의 3차원 엑스레이 영상으로 구성된 3차원 의료 영상의 처리 시스템으로,
    노이즈 제거 필터인 제 1 필터를 포함하는 필터부; 및
    상기 3차원 의료 영상을 이용하여 회전각도 기준으로 평균 영상인 제 1 의료 영상 산출하고, 상기 제 1 의료 영상에 상기 제 1 필터를 적용하여 제 2 의료 영상을 생성하도록 상기 필터부를 제어하고, 제 1 의료 영상과 제 2 의료 영상의 변화량을 산출하고, 상기 산출된 변화량을 이용하여 상기 3차원 의료 영상을 보정하는 제어부를 포함하는 의료 영상 처리 시스템.
  7. 제 6 항에 있어서,
    상기 제어부는,
    상기 제 2 의료 영상의 픽셀 값에서 상기 제 1 의료 영상의 픽셀 값을 뺀 결과 값을 상기 변화량으로 산출하는 의료 영상 처리 시스템.
  8. 제 7 항에 있어서,
    상기 제어부는,
    상기 산출된 변화량을 상기 3차원 의료 영상의 각 픽셀(Pixel)에 추가하는 의료 영상 처리 시스템.
  9. 제 6 항에 있어서,
    상기 제어부는,
    상기 제 1 의료 영상에 상기 제 1 필터를 기설정된 횟수 반복 적용하여, 상기 제 2 의료 영상을 생성하도록 상기 필터부를 제어하는 의료 영상 처리 시스템.
  10. 제 6 항에 있어서,
    상기 필터부는,
    3차원 영상 노이즈 제거 필터인 제 2 필터를 더 포함하고,
    상기 제어부는,
    상기 보정된 3차원 의료 영상에, 3차원 영상 노이즈 제거 필터인 제 2 필터를 적용하도록 상기 필터부를 적용하거나, 3차원 노이즈 제거 알고리즘 적용하는 의료 영상 처리 시스템.
PCT/KR2013/005167 2013-05-31 2013-06-12 의료 영상 처리 방법 및 시스템 WO2014193021A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0062580 2013-05-31
KR20130062580A KR20140141159A (ko) 2013-05-31 2013-05-31 의료 영상 처리 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2014193021A1 true WO2014193021A1 (ko) 2014-12-04

Family

ID=51989024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005167 WO2014193021A1 (ko) 2013-05-31 2013-06-12 의료 영상 처리 방법 및 시스템

Country Status (2)

Country Link
KR (1) KR20140141159A (ko)
WO (1) WO2014193021A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558393B1 (ko) 2014-10-17 2015-10-07 현대자동차 주식회사 마이크로폰 및 그 제조 방법
KR101697501B1 (ko) * 2015-07-23 2017-01-18 서울대학교산학협력단 Ct 이미지의 잡음 저감 방법 및 장치
WO2018131733A1 (ko) * 2017-01-13 2018-07-19 서울대학교산학협력단 Ct 이미지의 잡음 저감 방법 및 장치
EP4099042A4 (en) * 2020-01-28 2024-02-28 Claripi Inc. DEVICE AND METHOD FOR IMAGE QUALITY RESTORATION OF ACCELERATED MAGNETIC RESONANCE IMAGING (MRI) BASED ON DEEP LEARNING
KR102343363B1 (ko) 2020-03-06 2021-12-24 경북대학교 산학협력단 2차원 손뼈 투영 이미지로부터 회전된 2차원 손뼈 투영 이미지 생성 방법, 이를 수행하기 위한 기록 매체 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697663B1 (en) * 2000-11-09 2004-02-24 Koninklijke Philips Electronics N.V. Method and apparatus for reducing noise artifacts in a diagnostic image
KR20080081565A (ko) * 2007-03-06 2008-09-10 연세대학교 산학협력단 휴대용 피부 검사용 편광 민감 광 간섭 영상 시스템
KR20110020969A (ko) * 2009-08-25 2011-03-04 경희대학교 산학협력단 단층촬영 시스템과 토모신세시스 시스템에서 평판형 엑스선 감지기의 불량화소로 인한 영상 아티팩트 제거 방법 및 장치
KR20110090068A (ko) * 2010-02-02 2011-08-10 삼성테크윈 주식회사 영상의 움직임 보상 노이즈 제거 장치 및 방법
KR20130008238A (ko) * 2011-07-12 2013-01-22 (주)쓰리디아이티 치아교정 모의치료 및 악교정수술을 위한 영상 매칭정보 생성 방법과 이를 이용한 수술용장치 제작정보 제공 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697663B1 (en) * 2000-11-09 2004-02-24 Koninklijke Philips Electronics N.V. Method and apparatus for reducing noise artifacts in a diagnostic image
KR20080081565A (ko) * 2007-03-06 2008-09-10 연세대학교 산학협력단 휴대용 피부 검사용 편광 민감 광 간섭 영상 시스템
KR20110020969A (ko) * 2009-08-25 2011-03-04 경희대학교 산학협력단 단층촬영 시스템과 토모신세시스 시스템에서 평판형 엑스선 감지기의 불량화소로 인한 영상 아티팩트 제거 방법 및 장치
KR20110090068A (ko) * 2010-02-02 2011-08-10 삼성테크윈 주식회사 영상의 움직임 보상 노이즈 제거 장치 및 방법
KR20130008238A (ko) * 2011-07-12 2013-01-22 (주)쓰리디아이티 치아교정 모의치료 및 악교정수술을 위한 영상 매칭정보 생성 방법과 이를 이용한 수술용장치 제작정보 제공 방법

Also Published As

Publication number Publication date
KR20140141159A (ko) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2014193021A1 (ko) 의료 영상 처리 방법 및 시스템
WO2013172676A1 (ko) 파노라마 영상 데이터 제공 방법 및 장치
JP6643525B2 (ja) 画像パープルフリンジ除去システム、方法、コンピュータ読み取り可能な記録媒体及び撮像装置
WO2014051304A1 (en) Method and apparatus for generating photograph image
Ohki et al. A contrast‐correction method for digital subtraction radiography
WO2015002423A1 (en) Image processing method and apparatus for curved display device
WO2009091200A2 (ko) 엑스 레이 씨티 촬영 영상의 메탈 아티팩트를 제거하는 방법
JPH02237277A (ja) X線診断装置
WO2015137759A1 (ko) 디지털 엑스레이 영상 시스템, 엑스레이 조사 조절 장치 및 그 방법
WO2011087306A2 (ko) X선 단층 촬영 장치 및 그 방법
WO2013176310A1 (ko) 의료영상의 잡음 저감 방법
CN116523836A (zh) X射线探测器质量检测方法、系统、存储介质和电子设备
WO2014010817A1 (ko) 디지털 영상을 위한 적응적 잡음 저감 시스템 및 그 잡음 제거 방법
CN105631819A (zh) 一种ccd dr探测器的平场矫正方法及系统
WO2009091202A2 (ko) 트렁케이션 아티팩트를 보정하는 방법
JP6478774B2 (ja) 撮像装置、撮像方法及びプログラム
WO2013162172A1 (en) Method for acquiring pet image with ultra high resolution using movement of pet device
US8867699B2 (en) Radiographic device
JPH0584237A (ja) X線画像処理装置
WO2014030919A1 (ko) 플라즈마 쉬스 내의 이온 분포 모니터링 방법 및 장치
WO2018131733A1 (ko) Ct 이미지의 잡음 저감 방법 및 장치
JPH0549631A (ja) X線画像撮影装置
JP4133303B2 (ja) ディスプレイ画質測定システム
JP2004081330A (ja) 放射線画像撮影装置およびステレオ撮影装置
WO2023096337A1 (ko) 인공지능 기반의 영상 화질 평가장치, 방법 및 이를 위한 컴퓨터 판독가능 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885675

Country of ref document: EP

Kind code of ref document: A1