WO2018131733A1 - Ct 이미지의 잡음 저감 방법 및 장치 - Google Patents

Ct 이미지의 잡음 저감 방법 및 장치 Download PDF

Info

Publication number
WO2018131733A1
WO2018131733A1 PCT/KR2017/000437 KR2017000437W WO2018131733A1 WO 2018131733 A1 WO2018131733 A1 WO 2018131733A1 KR 2017000437 W KR2017000437 W KR 2017000437W WO 2018131733 A1 WO2018131733 A1 WO 2018131733A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
noise component
noise
sinogram
original
Prior art date
Application number
PCT/KR2017/000437
Other languages
English (en)
French (fr)
Inventor
김종효
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to PCT/KR2017/000437 priority Critical patent/WO2018131733A1/ko
Publication of WO2018131733A1 publication Critical patent/WO2018131733A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/444Low dose acquisition or reduction of radiation dose

Definitions

  • the present invention relates to a method and apparatus for reducing noise of a CT image.
  • Computed tomography can be taken by entering a large, circular machine with an X-ray generator to obtain a cross-sectional view across the human body, and the structure is less overlapping than simple X-rays. It is clearly seen that it is widely used in the examination of most organs and diseases.
  • the present invention is to solve the above-described problems of the prior art, characterized in that for outputting a high-quality noise-reduced CT image from the input of a low-quality (resolution or precision) low-exposure CT image, wherein the noise reduction It is an object of the present invention to provide a method and apparatus for reducing noise in a CT image, which can show a high quality (eg, resolution or precision) that is comparable to that of a high-exposure CT image.
  • the present application is to provide a method and apparatus for reducing noise of the CT image to generate a composite sinogram from the input low-exposure CT image, and obtain a noise component image for the generated synthesized sinogram.
  • the present application obtains a noise component CT image by applying a filtered back projection operation to the noise component image obtained from the synthesized sinogram, and uses the noise of the CT image to generate a noise-reduced CT image using the same. It is intended to provide an abatement method and apparatus.
  • the noise reduction method to generate a synthesized sinogram from the input original CT image, and synthesizes the noise component from the generated synthesized sinogram Obtaining a sinogram, generating a noise component CT image based on the noise component synthesis sinogram, and reducing the noise of the original CT image based on the noise component CT image have.
  • the generating of the synthesized sinogram may include attenuation coefficient for each pixel of the original CT image, distance information between an x-ray tube focus, and a detector based on the medical image information of the original CT image. Determining distance information between the x-ray tube focus and the patient and between the synthesis based on the determined pixel-specific attenuation coefficient, distance information between the x-ray tube focus and the detector and distance information between the x-ray tube focus and the patient. Generating a nogram.
  • the synthesized sinogram is a projection by rotation angle based on the determined per-pixel attenuation coefficient, distance information between x-ray tube focus and detector, and distance information between x-ray tube focus and patient. Can be generated by performing an operation.
  • obtaining a noise component synthesis sinogram in the synthesis sinogram may include obtaining a first noise component synthesis sinogram through noise component extraction in the synthesis sinogram; Extracting structural components in the first noise component synthesis sinogram and generating a second noise component synthesis sinogram from the first noise component synthesis sinogram by suppressing the extracted structural components.
  • obtaining a noise component synthesis sinogram in the synthesis sinogram may include obtaining a first noise component synthesis sinogram through noise component extraction in the synthesis sinogram; Extracting structural components in the first noise component synthesis sinogram and generating a second noise component synthesis sinogram from the first noise component synthesis sinogram by suppressing the extracted structural components.
  • obtaining the noise component synthesis sinogram comprises extracting the noise component using at least one of a plurality of schemes, wherein the plurality of schemes include: The first method of determining the filter kernel according to a predetermined rule in gram and extracting the noise component based on this kernel, the second method of extracting the noise component based on the two-dimensional Fourier transform, based on the two-dimensional wavelet transform And a fourth method of extracting a noise component and a fourth method of extracting a noise component based on eigen decomposition of a Hessian matrix.
  • generating the noise component CT image based on the noise component synthesis sinogram may include generating a noise component CT image by applying a filtered backprojection operation to the noise component synthesis sinogram. It may include a step.
  • generating the noise component CT image may include generating a first noise component CT image by applying a reverse projection operation filtered to the noise component synthesis sinogram, and generating the first noise component. Extracting a structural component from a CT image and generating a second noise component CT image from the first noise component CT image by suppressing the extracted structural component.
  • reducing the noise of the original CT image may include reducing the noise of the original CT image based on the noise component CT image.
  • the reducing of the noise of the original CT image may include extracting tissue information from the noise component CT image and reducing noise of the original CT image based on the extracted tissue information. It may include.
  • the step of reducing the noise of the original CT image, the noise of the original CT image by adaptively subtracting the noise component CT image from the original CT image based on the extracted tissue information It may include reducing the.
  • extracting a structural component from the noise component sinogram and the noise component CT image extracts the structural direction and the signal coherence for each pixel of the noise component sinogram and the noise component CT image. It may include a step.
  • the structure direction of each pixel is a vertical direction of the normalized gradient vector in each pixel
  • the signal coherence is the absolute value of the gradient value of the normalized gradient vector and the normalized gradient vector. It may be determined based on the absolute value of the inclination value of the vertical direction vector.
  • the pixel-by-pixel structure direction is the direction of the second eigenvector of the Hessian matrix in each pixel
  • the signal coherence is the two intrinsic of the Hessian matrix in each pixel. It can be determined based on the absolute values of the value.
  • the structural direction and the signal coherence are determined based on a ratio between the absolute value of the slope of each pixel and the absolute value of the first eigenvalue of the Hessian matrix at each pixel, wherein the ratio
  • the structure direction is a vertical direction of the normalized gradient vector in each pixel
  • the signal coherence is an absolute value of the gradient value of the normalized gradient vector and the slope of the vertical direction vector of the normalized gradient vector.
  • the structure direction is the direction of the second eigenvector of the Hessian matrix in each pixel
  • the signal coherency is determined based on the absolute value of the value. It can be determined based on the absolute values of the two eigenvalues of the Hessian matrix at.
  • the extracting of the structural components from the noise component synthesis sinogram and the noise component CT image based on the structural direction and the signal coherence may include a two-dimensional ratio reflecting the structural direction and the signal coherence.
  • the method may include determining a kernel corresponding to an isotropic Gaussian function and convolving the anisotropic kernel to each pixel of the noise component synthesis sinogram and the noise component CT image.
  • the magnitude of the long axis among the parameters of the two-dimensional anisotropic Gaussian function is a predetermined value
  • the magnitude of the short axis among the parameters is the magnitude of the long axis and the signal coherence and the predetermined proportionality constant.
  • the rotation angle of the parameter may be the structural direction.
  • the noise reduction device for generating a synthesized sinogram from the input original CT image, and the generated synthesized sino
  • a noise component acquisition unit for obtaining a noise component synthesis sinogram from a gram
  • a noise component CT image generator for generating a noise component CT image based on the noise component synthesis sinogram
  • the noise component CT image based on the noise component CT image It may include a noise reduction unit for reducing the noise of the original CT image.
  • the noise component synthesis sinogram acquisition unit may obtain the noise component synthesis sinogram through noise component extraction from the synthesis sinogram.
  • the noise component CT image generator may generate the noise component CT image by applying a filtered backprojection operation to the noise component synthesis sinogram.
  • the noise reduction unit may extract tissue information from the original CT image and reduce noise of the original CT image based on the extracted tissue information.
  • the noise reduction unit may reduce the noise of the original CT image by adaptively subtracting the noise component CT image from the original CT image based on the extracted tissue information.
  • the present application may generate a synthesized sinogram from the input low-exposure CT image, and obtain a noise component synthesized sinogram from the generated synthesized sinogram.
  • the present application can generate noise component CT images through filtered backprojection on noise component synthesis sinograms.
  • the present application can output a high quality noise reduced CT image by reducing noise based on the original CT image and the noise component CT image.
  • FIG. 1 is an overall conceptual diagram of a noise reduction apparatus according to an embodiment of the present application.
  • FIG. 2 is a view showing the configuration of a noise reduction device according to an embodiment of the present application.
  • 3A to 3C are diagrams illustrating a method of extracting a structure direction and signal coherence for each pixel according to an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart illustrating a noise reduction method according to an exemplary embodiment of the present application.
  • FIG. 6 is a diagram illustrating a process of obtaining a noise component synthesis sinogram according to an embodiment of the present application.
  • FIG. 7 is a diagram illustrating a process of extracting structural components from a noise component CT image according to an embodiment of the present disclosure.
  • the term 'unit' includes a unit realized by hardware, a unit realized by software, and a unit realized by both.
  • one unit may be realized using two or more pieces of hardware, or two or more units may be realized by one piece of hardware.
  • Each configuration of FIG. 1 may be connected via a network.
  • the network refers to a connection structure capable of exchanging information between respective nodes such as a plurality of terminals and servers, and examples of such a network include a 3rd Generation Partnership Project (3GPP) network and a Long Term Evolution (LTE).
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • Network World Interoperability for Microwave Access (WIMAX) Network, Internet, Local Area Network (LAN), Wireless Local Area Network (WLAN), Wide Area Network (WAN), Personal Area Network (PAN), Bluetooth (Bluetooth) ) Networks, satellite broadcasting networks, analog broadcasting networks, DMB (Digital Multimedia Broadcasting) networks, and the like.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • FIG. 1 is an overall conceptual diagram of a noise reduction apparatus according to an embodiment of the present application.
  • the noise reduction apparatus 100 receives a low dose CT image from the CT system 50 and generates a composite sinogram through projection based on the received CT image.
  • the noise reduction apparatus 100 extracts a noise component from the generated synthesized sinogram, and performs noise reduction using the extracted noise component. Therefore, the noise reduction apparatus 100 may output the noise reduced image.
  • the noise reduction device 100 outputs a high quality noise reduced CT image from the input of the low exposure CT image, wherein the noise reduced CT image is compared with that of the high exposure CT image.
  • High quality e.g., resolution or precision.
  • the noise reduction apparatus 100 includes a synthesis sinogram generator 110, a noise component acquirer 120, a noise component CT image generator 130, and a noise reducer 140. .
  • the noise reduction apparatus 100 of FIG. 1 is only an example of the present disclosure, according to various embodiments of the present disclosure, the noise reduction apparatus 100 may be configured differently from FIG. 1.
  • the synthesized sinogram generator 110 may generate a synthesized sinogram from the input original CT image.
  • the synthesized sinogram generating unit 110 is based on the medical image information of the original CT image, the attenuation coefficient for each pixel of the original CT image, the distance information between the x-ray tube focus and the detector and the distance between the x-ray tube focus and the patient Information can be determined.
  • the synthesized sinogram generation unit 110 obtains the tube voltage information corresponding to the imaging of the original CT image based on the medical image information of the original CT image, the synthesized sinogram generation unit 110 for each pixel based on the tube voltage information and the attenuation coefficient table for each human tissue. Attenuation coefficients may be determined, and distance information between the x-ray tube focus and the detector and distance information between the x-ray tube focus and the patient may be determined based on the medical image information of the original CT image.
  • the synthesized sinogram generator 110 may generate a synthesized sinogram based on the determined attenuation coefficient for each pixel, distance information between the x-ray tube focus and the detector, and distance information between the x-ray tube focus and the patient. have.
  • the synthesized sinogram may be generated by performing projection operation for each rotation angle based on the determined pixel-specific attenuation coefficient, distance information between the x-ray tube focus and the detector, and distance information between the x-ray tube focus and the patient. .
  • the noise component acquirer 120 may obtain a noise component synthesized sinogram by extracting a noise component from the synthesized sinogram generated by the synthesized sinogram generator 110.
  • the noise component obtaining unit 120 determines the noise size of each pixel of the virtual sinogram, extracts the structure direction and the signal coherence of each pixel of the virtual sinogram, and extracts the structure direction, the signal coherence and the noise size.
  • Anisotropic bilateral filtering may be performed on the virtual sinogram based on the method, and the noise reduction filtered virtual sinogram may be generated by subtracting the anisotropic bilaterally filtered virtual sinogram from the virtual sinogram.
  • the noise component acquirer 120 may determine a filter kernel according to a rule specified in advance in the synthesized sinogram generated by the synthesized sinogram generator 110, and extract the noise component based on this.
  • the noise component acquirer 120 may extract a noise component based on a two-dimensional Fourier transform, and may extract a noise component based on a two-dimensional wavelet transform.
  • the noise component acquirer 120 may extract the noise component based on the eigen component decomposition of the Hessian matrix.
  • the noise component acquirer 120 uses the feature that the local change of the noise component is larger than the local change of the structural component, so that the filter kernel is set according to a predetermined rule to facilitate separation of the noise component and the structural component.
  • the kernel can then filter the synthesized sinogram to extract noise components from the synthesized sinogram.
  • the noise component obtaining unit 120 uses a feature in which the noise component is located in the high frequency band in comparison to the structural component in the two-dimensional Fourier transform region of the synthesized sinogram, thereby converting the synthesized sinogram to the two-dimensional Fourier transform and
  • the noise component may be extracted from the synthesized sinogram by multiplying the band by a predetermined weight and then inverting the two-dimensional Fourier transform.
  • the noise component acquisition unit 120 uses a feature that the noise component is located in the high frequency band compared to the structural component in the two-dimensional wavelet transform region of the synthesized sinogram, and converts the synthesized sinogram to the two-dimensional wavelet beforehand. After multiplying the weights by, the noise component can be extracted from the synthesized sinogram by inverse transforming the 2D wavelet.
  • the Hessian matrix is a matrix of second-order partial derivatives in the vertical and horizontal directions in each pixel, and can be expressed as Equation (5), and the Hessian matrix H in the pixel (x, y). Since the first eigen component obtained when the eigen component is decomposed in [x, y] is a structural component, and the second eigen component represents a noise component, the noise component acquisition unit 120 is a In each pixel, the noise component may be extracted from the synthesized sinogram including the second eigen component of the Hessian matrix.
  • the noise component acquisition unit 120 obtains the first noise component synthesis sinogram through noise component extraction from the synthesis sinogram generated by the synthesis sinogram generator 110.
  • the structural component in the first noise component synthesis sinogram may be extracted.
  • the noise component obtaining unit 120 may generate a second noise component synthesis sinogram from the first noise component synthesis sinogram by suppressing the extracted structural components.
  • the noise component CT image generator 130 may generate a noise component CT image based on the noise component synthesis sinogram obtained by the noise component acquirer 120.
  • the noise component CT image generator 130 may generate a noise component CT image by applying a filtered back projection operation to the noise component synthesis sinogram.
  • the noise component CT image generator 130 may generate a first noise component CT image by applying a reverse projection operation filtered to the noise component synthesis sinogram.
  • a second noise component CT image may be generated from the first noise component CT image by extracting a structural component from the first noise component CT image and suppressing the extracted structural component.
  • the noise component acquirer 120 and the noise component CT image generator 130 may extract the structure direction and the signal coherence for each pixel from the sinogram and the original CT image, respectively.
  • the structural direction may indicate a driving direction of the structure
  • the signal coherence may be an indicator indicating how clear the direction of the signal structure is.
  • the structural direction may be the vertical direction of the normalized gradient vector in each pixel
  • the signal coherence is the absolute value of the gradient value of the normalized gradient vector and the slope of the vertical direction vector of the normalized gradient vector It can be determined based on the absolute value of the value.
  • the driving direction vector Dg [x, y] of the structure having the inclined plane is obtained by obtaining the inclination vector G [x, y] as in Equation (1) at the given pixel position [x, y].
  • the vertical direction can be obtained as Equation (3).
  • the coherence Cg [x, y] of the signal structure can be obtained from the signal inclination value ⁇ 1 according to the normalized inclination vector and the signal inclination value ⁇ 2 in the vertical direction thereof.
  • the preferred embodiment is shown in Equation (4). . (See step S30 to step S33 of FIG. 3A)
  • the structural direction is one of the directions of the eigenvectors of the Hessian matrix in each pixel
  • the signal coherence is based on the absolute values of the two eigenvalues of the Hessian matrix in each pixel. It may be determined by.
  • the structure direction may determine the second eigenvector V2 as the structure direction Dh [x, y] from the Hessian matrix H [x, y] as shown in Equation (5), and the signal coherence Ch [x, y]. ] Is determined as a result of dividing the difference between the absolute value of the first eigenvector and the absolute value of the second eigenvector by the sum of the absolute value of the first eigenvector and the absolute value of the second eigenvector. Can be. (See step S10 to step S14 of FIG. 3B)
  • the structural direction and signal coherence are based on the ratio between the absolute value of the slope of each pixel and the absolute value of the first eigenvalue of the Hessian matrix at each pixel. It may be determined (S313).
  • the structure direction is determined in the vertical direction of the normalized gradient vector in each pixel, and the signal coherence of the absolute value of the gradient value of the normalized gradient vector and the normalized gradient vector is determined.
  • the determination can be made based on the absolute value of the inclination value of the vertical direction vector (see steps S30 to S33 in FIG. 3C).
  • the structure direction is determined in the direction of the second eigenvector of the Hessian matrix in each pixel, and the signal coherence is two intrinsic of the Hessian matrix in each pixel.
  • the determination may be made based on the absolute values of the value (see steps S11 to S14 of FIG. 3C).
  • Equation (7) when the ratio between the absolute value of the inclination in each pixel and the absolute value of the first eigenvalue of the Hessian matrix in each pixel is larger than the reference value T, the structure direction is determined in each pixel. If the ratio between the absolute value of the slope at each pixel and the absolute value of the first eigenvalue of the Hessian matrix at each pixel is less than or equal to the reference value T, the structure direction is determined for each pixel. It can be determined by the direction of the second eigenvector of the Hessian matrix at.
  • Equation (8) when the ratio between the absolute value of the inclination in each pixel and the absolute value of the first eigenvalue of the Hessian matrix in each pixel is larger than the reference value T, the gradient of the signal is normalized. Is determined based on the absolute value of the absolute value of the inclination value of and the absolute value of the inclination value of the normalized vertical vector of the inclination vector, and the ratio between the absolute value of the inclination in each pixel and the absolute value of the first eigenvalue of the Hessian matrix in each pixel If less than or equal to the reference value T, it may be determined based on the absolute values of two eigenvalues of the Hessian matrix in each pixel.
  • the noise component acquisition unit 120 has a structure direction and signal coherence according to equations (3) to (4) for an image having no or no linear structure according to the type of image.
  • the structure direction and signal coherence are obtained according to equations (5) to (6), and for the intermediate image, the pixel is obtained according to equation (7) and equation (8).
  • the structural direction and signal coherence can be determined selectively.
  • the noise component acquirer 120 and the noise component CT image generator 130 may perform anisotropic filtering on the noise component synthesized sinogram and the noise component CT image based on the structural direction and the signal coherence, respectively.
  • anisotropic kernels corresponding to the two-dimensional anisotropic Gaussian function reflecting the structure direction and signal coherence for each pixel may be determined, and filtering may be performed to reflect the anisotropic kernel.
  • the magnitude of the long axis among the parameters of the two-dimensional anisotropic Gaussian function reflecting the structural direction and the signal coherence is a predetermined value
  • the magnitude of the short axis among the parameters is the product of the magnitude of the long axis, the signal coherence and the predetermined proportionality constant.
  • the rotation angle of the parameter may be a structural direction.
  • the result of the anisotropic filtering may be a structural component of the noise component synthesis sinogram and the noise component CT image.
  • an anisotropic two-dimensional Gaussian function having long and short axis lengths of ⁇ x and ⁇ y, respectively, and an angle ⁇ may be expressed as anisotropic by varying the length of the long and short axes.
  • the anisotropic two-dimensional Gaussian function can express the degree of anisotropy by varying the ratio of the long axis and the short axis length, and may be suitable for generating an angled kernel kernel.
  • the angle it is possible to generate a kernel in the form of an anisotropic two-dimensional Gaussian function using the direction and cohesion of the signal structure.
  • the noise component obtaining unit 120 and the noise component CT image generating unit 130 perform anisotropic filtering based on the structural direction and the signal coherence of each pixel, respectively, to synthesize the noise component synthesized sinogram and the noise component, respectively.
  • Structural components can be extracted from CT images.
  • a kernel may be generated by calculation for each pixel, and kernels corresponding to various signal direction and coherence of various signals are generated in advance in order to reduce the amount of calculation, and the signal structure direction and coherence obtained for each signal may be referred to as necessary. It can also be used by invoking the kernel.
  • the noise reduction unit 140 may reduce the noise of the original CT image based on the noise component CT image generated by the noise component CT image generator 130. In this case, the noise reduction unit 140 may reduce noise of the original CT image in various ways.
  • the noise reduction unit 140 reduces noise of the original CT image by subtracting each pixel value of the noise component CT image corresponding to each pixel value of the original CT image from each pixel value of the original CT image. can do.
  • the noise reduction unit 140 extracts tissue information (a range of previously known attenuation values for active ingredients, tissues, or organs) from the original CT image and based on the extracted tissue information, based on the extracted tissue information. Noise in the image can be reduced.
  • the noise reduction unit 140 may reduce the noise of the original CT image by adaptively subtracting the noise component CT image from the original CT image based on the extracted tissue information. For example, the noise reduction unit 140 may reduce the degree of noise reduction in the region corresponding to the specific organization information.
  • the noise reduction unit 140 may select a pixel whose pixel value is out of a predetermined range in the noise component CT image, and reduce the pixel value according to a predetermined rule, thereby avoiding damage to image quality.
  • the noise reduction unit 140 selects only pixels having a pixel value equal to or greater than a predetermined multiple of the standard deviation calculated with respect to pixel values of all noise component pixels, or only pixels having pixel values of the upper 5% size. You can choose.
  • the noise reduction unit 140 extracts the structural direction and signal coherence for each pixel of the original CT image, and determines a rule based on the structural direction, signal coherence and pixel values of the noise component CT image. Accordingly, the noise of the original CT image can be reduced.
  • the process of extracting the structure direction and the signal coherence for each pixel of the original CT image may include the structural components of the noise component acquirer 120 and the noise component CT image generator 130.
  • the same procedure as that used for extracting the ingredients is used, and thus the description thereof is omitted.
  • FIG. 5 is a flowchart illustrating a noise reduction method according to an exemplary embodiment of the present application.
  • the noise reduction method according to the embodiment shown in FIG. 5 includes steps processed in time series in the noise reduction device shown in FIG. 2. Therefore, although omitted below, the above description of the noise reduction apparatus shown in FIG. 1 may be applied to the noise reduction method according to the embodiment shown in FIG. 3.
  • the synthesized sinogram generator 110 of the noise reduction apparatus 100 may generate a synthesized sinogram from the input original CT image.
  • step S100 the pixel-specific attenuation coefficient of the original CT image, the tube voltage of the x-ray tube, the distance information between the x-ray tube focus and the detector, and the distance information between the x-ray tube focus and the patient based on the medical image information of the original CT image. Determining may be further included.
  • the step S100 may further include generating a synthetic sinogram based on the determined attenuation coefficient for each pixel, distance information between the x-ray tube focus and the detector, and distance information between the x-ray tube focus and the patient.
  • the synthesized sinogram may be generated by performing projection operation for each rotation angle based on the determined pixel-specific attenuation coefficient, distance information between the x-ray tube focus and the detector, and distance information between the x-ray tube focus and the patient. have.
  • the noise component acquirer 20 of the noise reduction apparatus 100 may obtain the noise component synthesized sinogram from the generated synthesized sinogram ( S120).
  • FIG. 6 is a diagram illustrating a process of obtaining a noise component synthesis sinogram according to an embodiment of the present application.
  • a filter kernel is determined according to a predetermined rule in the synthesized sinogram, and the noise component is extracted based on the extracted filter kernel (S200).
  • the noise component is extracted based on a two-dimensional Fourier transform (S210). And extracting the noise component based on the two-dimensional wavelet transform (S220) and extracting the noise component based on the eigen component decomposition of the Hessian matrix (S230).
  • the image generator 30 of the noise reduction apparatus 100 when the noise component synthesis sinogram is obtained from the synthesized sinogram in step S110, the image generator 30 of the noise reduction apparatus 100 generates a noise component CT image based on the noise component synthesis sinogram. It may be generated (S130).
  • the noise component CT image may be generated by applying a filtered backprojection operation to the noise component synthesis sinogram.
  • step S130 generating a first noise component CT image by applying a reverse projection operation filtered to the noise component synthesis sinogram, extracting a structural component from the first noise component CT image, and extracting the extracted noise component.
  • the noise of the original CT image may be reduced based on the captured component CT image (S140).
  • Step S140 may include extracting tissue information from the original CT image and reducing noise of the original CT image based on the extracted tissue information and the noise component CT image.
  • the noise of the original CT image may be reduced by adaptively subtracting the noise component CT image from the original CT image based on the extracted tissue information.
  • the pixel value of the noise component CT image may be reduced according to a predetermined rule based on the distribution order of the pixel values of the noise component CT image pixels.
  • FIG. 7 is a view showing a process of extracting a structural component according to an embodiment of the present application.
  • Extracting the structural component may extract the noise component using at least one of a plurality of methods.
  • the plurality of methods perform a method of extracting the structural direction and signal coherence for each pixel of the original image (S300), a method of determining anisotropic kernel 310 based on the structural direction and signal coherence, and filtering the reflection of the anisotropic kernel.
  • Method 320 may be included. Extracting these structural components may include extracting noise components using at least one of a plurality of methods. All methods can be used to extract noise components.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

잡음 저감 방법은, 입력된 원본 CT이미지로부터 합성 사이노그램을 생성하는 단계와, 생성된 상기 합성 사이노그램으로부터 잡음 성분을 획득하는 단계와, 상기 잡음 성분에 기초하여 잡음 성분 CT 이미지를 생성하는 단계 및 상기 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 단계를 포함할 수 있다.

Description

CT 이미지의 잡음 저감 방법 및 장치
본원은 CT 이미지의 잡음 저감 방법 및 장치에 관한 것이다.
컴퓨터단층촬영(CT)은 X선 발생장치가 있는 원형의 큰 기계에 들어가서 촬영하여 인체를 가로지르는 횡단면상을 획득할 수 있으며, 단순 X선 촬영에 비해 구조물이 겹쳐지는 것이 적어 구조물 및 병변을 좀더 명확히 볼 수 있는 장점이 있어 대부분의 장기 및 질환에 대한 정밀검사에 폭넓게 활용되고 있다.
CT 이미지의 품질(해상도 또는 정밀도)은 병변에 대한 정확한 진단에 매우 중요한 요소이며, CT 시스템의 발전과 함께 CT 이미지의 품질을 향상시키기 위한 노력이 계속되고 있다. 다채널 검출기 기술 및 고속 고해상도 영상 재구성 기술 역시 이러한 노력에 해당한다고 할 것이다. 그러나, CT 이미지의 품질을 향상시키기 위한 노력은 대부분 고선량의 방사선 피폭을 야기할 수 있어 피해가 우려된다. 특히, 최근 방사선 피폭에 대한 사회 인식을 감안하면, 고품질의 진단 이미지를 획득하기 위한 노력은 방사선량을 최소화하기 위한 노력을 수반해야 할 것이다.
이러한 노력의 일환으로 CT 제조사들은 저피폭 고품질 CT 시스템을 출시하고 있다. 다만, 저피폭 고품질 CT 시스템은 기존 제품대비 높은 가격 및 기존 제품에 대한 처리 곤란으로 인하여, 쉬운 접근을 허락하지 않는다. 노력의 다른 방안으로, CT 제조사들 각각은 자사의 기존 제품에 대한 하드웨어/소프트웨어적 업그레이드를 통해 저피폭 고품질의 CT 영상 획득을 가능하도록 하고 있다. 하지만 이 역시 상당한 수준의 업그레이드 비용을 감안하면, 진정한 해결책이 될 수는 없어, 이에 대한 해결방안으로서, 기술개발을 시도하고자 하였다. 본원의 배경이 되는 기술은 한국공개특허공보 10-2014-0130784호에 개시되어 있다.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 낮은 품질(해상도 또는 정밀도)의 저피폭 CT 이미지의 입력으로부터 높은 품질의 잡음 저감된 CT 이미지를 출력하는 것을 특징으로 하며, 이 때, 잡음 저감된 CT 이미지는 고피폭 CT 이미지의 그것과 비교될 정도의 높은 품질(예를 들어, 해상도 또는 정밀도)을 보여줄 수 있는 CT 이미지의 잡음 저감 방법 및 장치를 제공하고자 한다.
또한, 본원은 입력된 저피폭 CT 이미지로부터 합성 사이노그램을 생성하고, 생성한 합성 사이노그램에 대한 잡음성분 이미지를 획득하는 CT이미지의 잡음 저감 방법 및 장치를 제공하고자 한다.
또한, 본원은 합성 사이노그램에서 획득한 잡음 성분 이미지에 필터된 역투영 (Filtered Back Projection) 연산을 적용하여 잡음 성분 CT 이미지를 얻고, 이를 이용하여 잡음 저감된 CT 이미지를 생성하는 CT이미지의 잡음 저감 방법 및 장치를 제공하고자 한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 실시예에 따른 잡음 저감 방법은 입력된 원본 CT이미지로부터 합성 사이노그램을 생성하는 단계와, 생성된 상기 합성 사이노그램으로부터 잡음 성분 합성 사이노그램을 획득하는 단계와, 상기 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성하는 단계 및 상기 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 합성 사이노그램을 생성하는 단계는, 상기 원본 CT 이미지의 의료 이미지 정보에 기초하여 상기 원본 CT 이미지의 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보를 결정하는 단계 및 상기 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 상기 합성 사이노그램을 생성하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 합성 사이노그램은, 상기 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 회전각도별 투영연산을 수행함으로써 생성될 수 있다.
본 실시예의 일 예에 따르면, 상기 합성 사이노그램에서 잡음 성분 합성 사이노그램을 획득하는 단계는, 상기 합성 사이노그램에서 잡음 성분 추출을 통해 제 1 잡음 성분 합성 사이노그램을 획득하는 단계, 상기 제 1 잡음 성분 합성 사이노그램 내의 구조적 성분을 추출하는 단계 및 상기 추출된 구조적 성분을 억제함으로써 상기 제 1 잡음 성분 합성 사이노그램으로부터 제 2 잡음 성분 합성 사이노그램을 생성하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 성분 합성 사이노그램을 획득하는 단계는, 복수의 방식 중 적어도 하나를 이용하여 잡음 성분을 추출하는 단계를 포함하되, 상기 복수의 방식은, 상기 합성 사이노그램에서 사전에 지정된 규칙에 따라 필터커널을 결정하고, 이 커널을 기초로 잡음 성분을 추출하는 제 1 방식, 2차원 푸리에 변환에 기초하여 잡음 성분을 추출하는 제 2 방식, 2차원 Wavelet 변환에 기초하여 잡음 성분을 추출하는 제 3 방식 및 헤시안 (Hessian) 행렬의 고유성분 분해에 기초하여 잡음 성분을 추출하는 제 4 방식을 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성하는 단계는 상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용하여 잡음 성분 CT 이미지를 생성하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 성분 CT 이미지를 생성하는 단계는 상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용하여 제1잡음 성분 CT 이미지를 생성하는 단계, 상기 제1 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 단계 및 상기 추출된 구조적 성분을 억제함으로써 상기 제1잡음 성분 CT 이미지로부터 제2 잡음 성분 CT 이미지를 생성하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 원본 CT 이미지의 잡음을 저감하는 단계는, 상기 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 원본 CT 이미지의 잡음을 저감하는 단계는, 상기 잡음 성분 CT 이미지로부터 조직정보를 추출하고, 상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 원본 CT 이미지의 잡음을 저감하는 단계는, 상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지에서 상기 잡음 성분 CT 이미지를 적응적으로 감산함으로써 상기 원본 CT 이미지의 잡음을 저감하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 성분 사이노그램 및 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 단계는 상기 잡음 성분 사이노그램 및 잡음 성분 CT 이미지의 각 화소별 구조방향 및 신호 응집성을 추출하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 각 화소별 구조방향은 상기 각 화소에서의 정규화된 경사벡터의 수직방향이고, 상기 신호 응집성은 상기 정규화된 경사벡터의 경사값의 절대치와 상기 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정될 수 있다.
본 실시예의 일 예에 따르면, 상기 각 화소별 구조방향은 상기 각 화소에서의 헤시안(Hessian) 행렬의 두 번째 고유벡터의 방향이고, 상기 신호 응집성은 상기 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정될 수 있다.
본 실시예의 일 예에 따르면, 상기 구조방향 및 상기 신호 응집성은 상기 각 화소에서의 경사의 절대치와 상기 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율에 기초하여 결정되되, 상기 비율이 기준값보다 큰 경우, 상기 구조방향은 상기 각 화소에서의 정규화된 경사벡터의 수직방향이고, 상기 신호 응집성은 상기 정규화된 경사벡터의 경사값의 절대치와 상기 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정되는 것이되, 상기 비율이 기준값보다 작은 경우, 상기 구조방향은 상기 각 화소에서의 헤시안(Hessian) 행렬의 두 번째 고유벡터의 방향이고, 상기 신호 응집성은 상기 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정될 수 있다.
본 실시예의 일 예에 따르면, 상기 구조방향, 신호 응집성에 기초하여 잡음 성분 합성 사이노그램 및 잡음 성분 CT 이미지에서 구조적 성분을 추출하는 단계는, 상기 구조방향 및 상기 신호 응집성을 반영하는 2차원 비등방성 가우시안 함수에 대응하는 커널을 결정하는 단계와 상기 잡음 성분 합성 사이노그램 및 잡음 성분 CT 이미지의 각 화소에 상기 비등방성 커널을 컨벌루션하는 단계를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 2차원 비등방성 가우시안 함수의 매개변수 중 장축의 크기는 기 결정된 값이고, 상기 매개변수 중 단축의 크기는 상기 장축의 크기와 상기 신호 응집성 및 기 결정된 비례상수의 곱에 의해 결정되며, 상기 매개변수 중 회전각도는 상기 구조방향일 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 실시예에 따른 잡음 저감 장치는 입력된 원본 CT이미지로부터 합성 사이노그램을 생성하는 합성 사이노그램 생성부와, 생성된 상기 합성 사이노그램으로부터 잡음 성분 합성 사이노그램을 획득하는 잡음 성분 획득부와, 상기 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성하는 잡음 성분 CT 이미지 생성부 및 상기 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 잡음 저감부를 포함할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 성분 합성 사이노그램 획득부는, 상기 합성 사이노그램에서 잡음 성분 추출을 통해 상기 잡음 성분 합성 사이노그램을 획득할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 성분 CT 이미지 생성부는 상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용함으로써 상기 잡음 성분 CT 이미지를 생성할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 저감부는, 상기 원본 CT 이미지로부터 조직정보를 추출하고, 상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지의 잡음을 저감할 수 있다.
본 실시예의 일 예에 따르면, 상기 잡음 저감부는, 상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지에서 상기 잡음 성분 CT 이미지를 적응적으로 감산함으로써 상기 원본 CT 이미지의 잡음을 저감할 수 있다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 실시예가 존재할 수 있다.
전술한 본원의 과제 해결 수단에 의하면, 낮은 품질(해상도 또는 정밀도)의 저피폭 CT 이미지의 입력으로부터 높은 품질의 잡음저감된 CT 이미지를 출력하는 것을 특징으로 하며, 이 때, 잡음저감된 CT 이미지는 고피폭 CT 이미지의 그것과 비교될 정도의 높은 품질(예를 들어, 해상도 또는 정밀도)을 보여줄 수 있다.
또한, 본원은 입력된 저피폭 CT 이미지로부터 합성 사이노그램을 생성하고, 생성한 합성 사이노그램으로부터 잡음 성분 합성 사이노그램을 획득할 수 있다.
또한, 본원은 잡음 성분 합성 사이노그램에 대한 필터된 역투영을 통하여 잡음 성분 CT 이미지를 생성할 수 있다.
또한, 본원은 원본 CT 이미지와 잡음 성분 CT 이미지에 기초하여 잡음을 저감시킴으로써 높은 품질의 잡음저감된 CT 이미지를 출력할 수 있다.
또한 본원에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본원의 일실시예에 따른 잡음 저감 장치의 전체개념도이다.
도 2는 본원의 일 실시예에 따른 잡음 저감 장치의 구성도를 나타낸 도면이다.
도 3a 내지 도 3c 는 본원의 일실시예에 따른 화소별 구조방향 및 신호응집성을 추출하는 방법을 나타낸 도면이다.
도 4는 비등방성 가우시안 커널을 나타낸 도면이다.
도 5는 본원의 일 실시예에 따른 잡음 저감 방법을 나타낸 흐름도이다.
도 6은 본원의 일 실시예에 따른 잡음성분 합성 사이노그램을 획득하는 과정을 나타낸 도면이다.
도 7은 본원의 일 실시예에 따른 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 과정을 나타낸 도면이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본 명세서에 있어서 '부(部)'란, 하드웨어에 의해 실현되는 유닛(unit), 소프트웨어에 의해 실현되는 유닛, 양방을 이용하여 실현되는 유닛을 포함한다. 또한, 1개의 유닛이 2개 이상의 하드웨어를 이용하여 실현되어도 되고, 2개 이상의 유닛이 1개의 하드웨어에 의해 실현되어도 된다.
본 명세서 있어서 단말, 장치 또는 디바이스가 수행하는 것으로 기술된 동작이나 기능 중 일부는 해당 단말, 장치 또는 디바이스와 연결된 서버에서 대신 수행될 수도 있다. 이와 마찬가지로, 서버가 수행하는 것으로 기술된 동작이나 기능 중 일부도 해당 서버와 연결된 단말, 장치 또는 디바이스에서 수행될 수도 있다. 이하 첨부된 도면을 참고하여 본원의 일 실시예를 상세히 설명하기로 한다.
도 1의 각 구성은 네트워크를 통해 연결될 수 있다. 이 때, 네트워크는 복수의 단말 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조를 의미하는 것으로, 이러한 네트워크의 일 예에는 3GPP(3rd Generation Partnership Project) 네트워크, LTE(Long Term Evolution) 네트워크, WIMAX(World Interoperability for Microwave Access) 네트워크, 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 블루투스(Bluetooth) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크 등이 포함되나 이에 한정되지는 않는다.
도 1은 본원의 일실시예에 따른 잡음 저감 장치의 전체개념도이다.
도 1에 도시된 바와 같이 잡음 저감 장치(100)는 CT시스템(50)으로부터 저선량 CT이미지를 수신하고, 수신된 CT이미지에 기초하여 투영을 통한 합성 사이노그램을 생성한다. 그리고 잡음 저감 장치(100)는 생성된 합성 사이노그램으로부터 잡음 성분을 추출하고, 추출된 잡음 성분을 이용하여 잡음 저감을 수행한다. 따라서 잡음 저감 장치(100)는 잡음 저감된 이미지를 출력할 수 있다.
이러한 잡음 저감 장치(100)는 저피폭 CT 이미지의 입력으로부터 높은 품질의 잡음저감된 CT 이미지를 출력하는 것을 특징으로 하며, 이 때, 잡음저감된 CT 이미지는 고피폭 CT 이미지의 그것과 비교될 정도의 높은 품질(예를 들어, 해상도 또는 정밀도)을 보여줄 수 있다.
도 2는 본원의 일 실시예에 따른 잡음 저감 장치의 구성도를 나타낸 도면이다. 도 2를 참조하면, 잡음 저감 장치(100)는 합성 사이노그램 생성부(110), 잡음 성분 획득부(120), 잡음 성분 CT 이미지 생성부(130) 및 잡음 저감부(140)를 포함한다. 다만, 도 1의 잡음 저감 장치 (100)는 본원의 일 예에 불과하므로, 본원의 다양한 실시예들에 따르면, 잡음 저감 장치 (100)는 도 1과 다르게 구성될 수도 있다.
이하에서는 도2를 참조하여 잡음 저감 장치(100)의 각 구성에 대해 구체적으로 설명하도록 한다.
합성 사이노그램 생성부(110)는 입력된 원본 CT이미지로부터 합성 사이노그램을 생성할 수 있다.
또한 합성 사이노그램 생성부(110)는 원본 CT 이미지의 의료 이미지 정보에 기초하여 원본 CT 이미지의 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보를 결정할 수 있다.
이 때 합성 사이노그램 생성부(110)는 원본 CT 이미지의 의료 이미지 정보에 기초하여 원본 CT 이미지의 촬영에 대응하는 관전압 정보를 획득하면, 관전압 정보와 인체 조직별 감쇠계수 테이블에 기초하여 화소별 감쇠계수를 결정하고, 원본 CT 이미지의 의료 이미지 정보에 기초하여 x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보를 결정할 수 있다
관련하여 합성 사이노그램 생성부(110)는 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 합성 사이노그램을 생성할 수 있다. 이 때 합성 사이노그램은, 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 회전각도별 투영연산을 수행함으로써 생성될 수 있다.
잡음 성분 획득부(120)는 합성 사이노그램 생성부(110)에서 생성된 합성 사이노그램으로부터 잡음 성분을 추출함으로써 잡음 성분 합성 사이노그램을 획득할 수 있다.
구체적으로, 잡음성분 획득부(120)는 가상 사이노그램의 각 화소별 잡음 크기를 결정하고, 가상 사이노그램의 각 화소별 구조방향 및 신호 응집성을 추출하고, 구조방향, 신호 응집성 및 잡음 크기에 기초하여 가상 사이노그램에 비등방성 양측성 필터링을 수행하고, 가상 사이노그램에서 비등방성 양측성 필터링된 가상 사이노그램을 감산하여 잡음저감 필터링된 가상 사이노그램을 생성할 수 있다.
잡음 성분 획득부(120)는 합성 사이노그램 생성부(110)에서 생성된 합성 사이노그램에 사전에 지정된 규칙에 따라 필터커널을 결정하고 이를 기초로하여 잡음 성분을 추출할 수 있다. 또한 잡음 성분 획득부(120)는 2차원 푸리에 변환(Fourier Transform)에 기초하여 잡음 성분을 추출하고, 2차원 Wavelet 변환에 기초하여 잡음 성분을 추출할 수 있다. 그리고 잡음 성분 획득부(120)는 헤시안 (Hessian) 행렬의 고유성분 분해에 기초하여 잡음 성분을 추출할 수 있다.
구체적으로, 잡음 성분 획득부(120)는 잡음 성분의 국소적 변화가 구조적 성분의 국소적 변화보다 큰 특징을 이용하여, 잡음 성분과 구조적 성분의 분리가 용이하도록 사전에 지정된 규칙에 따라 필터커널을 결정하고, 이 커널로 합성 사이노그램을 필터링하여 합성 사이노그램에서 잡음 성분을 추출할 수 있다.
구체적으로, 잡음 성분 획득부(120)는 잡음 성분이 합성 사이노그램의 2차원 푸리에 변환영역에서 구조적 성분에 비해 고주파 대역에 위치하는 특징을 이용하여, 합성 사이노그램을 2차원 푸리에 변환하고 고주파 대역에 사전에 결정된 가중치를 곱한뒤, 이를 다시 2차원 푸리에 역변환 하는 단계를 포함하여 합성 사이노그램에서 잡음 성분을 추출할 수 있다.
구체적으로, 잡음 성분 획득부(120)는 잡음 성분이 합성 사이노그램의 2차원 Wavelet 변환영역에서 구조적 성분에 비해 고주파 대역에 위치하는 특징을 이용하여, 합성 사이노그램을 2차원 Wavelet 변환하고 사전에 결정된 가중치를 곱한뒤, 이를 다시 2차원 Wavelet 역변환 하여 합성 사이노그램에서 잡음 성분을 추출할 수 있다.
구체적으로, 헤시안(Hessian) 행렬은 각 화소에서 수직 및 수평 방향에 대한 2차 편미분을 행렬화 한 것으로서 수학식 (5)와 같이 나타낼 수 있으며, 화소 (x,y)에서 의 헤시안 행렬 H[x,y]에서 고유성분을 분해하였을때 얻을 수 있는 첫 번째 고유성분은 구조적 성분을, 두 번째 고유성분은 잡음 성분을 나타내는 특징이 있으므로, 잡음 성분 획득부(120)는 합성 사이노그램의 각 화소에서 헤시안 행렬의 두 번째 고유성분을 포함하여 합성 사이노그램에서 잡음 성분을 추출할 수 있다.
본 발명의 일 실시예에 따르면, 잡음 성분 획득부(120)는 합성 사이노그램 생성부(110)에서 생성된 합성 사이노그램에서 잡음 성분 추출을 통해 제 1 잡음 성분 합성 사이노그램을 획득하고, 상기 제 1 잡음 성분 합성 사이노그램 내의 구조적 성분을 추출할 수 있다. 또한 잡음 성분 획득부(120)는 상기 추출된 구조적 성분을 억제함으로써 상기 제 1 잡음 성분 합성 사이노그램으로부터 제 2 잡음 성분 합성 사이노그램을 생성할 수 있다.
잡음 성분 CT 이미지 생성부(130)는 잡음 성분 획득부(120)에서 획득된 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성할 수 있다.
구체적으로, 잡음 성분 CT 이미지 생성부(130)는 잡음 성분 합성 사이노그램에 필터된 역투영 (Filtered Back Projection) 연산을 적용하여 잡음 성분 CT 이미지를 생성할 수 있다.
본 발명의 일 실시예에 따르면, 잡음 성분 CT 이미지 생성부(130)는 상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용하여 제1잡음 성분 CT 이미지를 생성할 수 있다. 또한 상기 제1 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 단계 및 상기 추출된 구조적 성분을 억제함으로써 상기 제1잡음 성분 CT 이미지로부터 제2 잡음 성분 CT 이미지를 생성할 수 있다.
이하에서는 잡음 성분 획득부(120)와 잡음 성분 CT 이미지 생성부(130)에서 각각 잡음 성분 사이노그램과 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 과정을 설명한다.
구조적 성분을 추출하기 위하여 잡음 성분 획득부(120)와 잡음 성분 CT 이미지 생성부(130)는 각각 사이노그램과 원본 CT 이미지로부터 각 화소별 구조방향 및 신호 응집성을 추출할 수 있다. 이 때, 구조방향은 구조물의 주행방향을 가르키는 것일 수 있고, 신호 응집성은 신호구조의 방향이 얼마나 뚜렷한지를 나타내는 지표일 수 있다.
본 발명의 일 실시예에 따르면, 구조방향은 각 화소에서의 정규화된 경사벡터의 수직방향일 수 있고, 신호 응집성은 정규화된 경사벡터의 경사값의 절대치와 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정될 수 있다.
도 3a 내지 도 3c를 참조하여 화소별 구조방향 및 신호응집성을 추출하는 방법에 대하여 설명하도록 한다.
구체적으로, 경사면을 갖는 구조물의 주행 방향벡터 Dg[x,y]는 주어진 화소위치 [x,y]에서 수학식(1)과 같은 경사벡터 G[x,y]를 구하여 수학식(2)과 같이 정규화 한 뒤, 그 수직방향을 구한 벡터로서 수학식(3)과 같이 구할 수 있다. 이 때 신호구조의 응집성 Cg[x,y]는 정규화된 경사벡터에 따른 신호경사값 μ1 과 그 수직방향에 따른 신호경사값 μ2 로부터 구할 수 있는데, 그 바람직한 실시 예는 수학식(4)과 같다. (도3 a의 단계 S30 내지 단계S33참조)
[수학식1]
Figure PCTKR2017000437-appb-I000001
[수학식 2]
Figure PCTKR2017000437-appb-I000002
[수학식3]
Figure PCTKR2017000437-appb-I000003
Figure PCTKR2017000437-appb-I000004
Figure PCTKR2017000437-appb-I000005
[수학식4]
Figure PCTKR2017000437-appb-I000006
본 발명의 다른 실시예에 따르면, 구조방향은 각 화소에서의 헤시안(Hessian) 행렬의 고유벡터의 방향중 하나이고, 신호 응집성은 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정될 수도 있다.
구체적으로, 구조방향은 수학식 (5)와 같은 헤시안 행렬 H[x,y]로부터 두 번째 고유벡터 V2을 구조방향 Dh[x,y]으로 결정할 수 있고, 신호 응집성인 Ch[x,y]은 수학식 6에 나타난 바와 같이, 첫 번째 고유벡터의 절대값과 두 번째 고유벡터의 절대값의 차이를 첫 번째 고유벡터의 절대값과 두 번째 고유벡터의 절대값의 합으로 나눈 결과로서 결정될 수 있다. (도 3b 의 단계S10 내지 단계S14참조)
[수학식 5]
Figure PCTKR2017000437-appb-I000007
[수학식 6]
Figure PCTKR2017000437-appb-I000008
본 발명의 또 다른 일 실시예에 따르면, 도 3c에 도시된 바와 같이 구조방향 및 신호 응집성은 각 화소에서의 경사의 절대치와 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율에 기초하여 결정될 수 있다(S313).
이 때, 상기 비율이 기준값보다 큰 경우(S314), 구조방향을 각 화소에서의 정규화된 경사벡터의 수직방향으로 결정하고, 신호 응집성을 정규화된 경사벡터의 경사값의 절대치와 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정할 수 있다(도 3c 의 단계 S30내지 S33참조)
또한, 상기 비율이 기준값보다 작은 경우(S314), 구조방향을 각 화소에서의 헤시안(Hessian) 행렬의 두 번째 고유벡터의 방향으로 결정하고, 신호 응집성을 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정할 수 있다(도 3c의 단계S11 내지 단계S14참조).
다시 말하면, 수학식 (7)에 나타난 바와 같이, 각 화소에서의 경사의 절대치와 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율이 기준값인 T보다 큰 경우 구조방향을 각 화소에서의 정규화된 경사벡터의 수직방향으로 결정하고, 각 화소에서의 경사의 절대치와 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율이 기준값인 T보다 작거나 같은 경우 구조방향을 각 화소에서의 헤시안(Hessian) 행렬의 두 번째 고유벡터의 방향으로 결정할 수 있다.
[수학식 7]
Figure PCTKR2017000437-appb-I000009
또한, 수학식 (8)에 나타난 바와 같이, 각 화소에서의 경사의 절대치와 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율이 기준값인 T보다 큰 경우 신호 응집성을 정규화된 경사벡터의 경사값의 절대치와 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정하고, 각 화소에서의 경사의 절대치와 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율이 기준값인 T보다 작거나 같은 경우 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정할 수 있다.
[수학식 8]
Figure PCTKR2017000437-appb-I000010
또한, 본 발명의 일 실시예에 따르면, 잡음성분 획득부(120)는 영상의 종류에 따라 선형 구조가 없거나 중요하지 않은 영상에 대해서는 수학식 (3) 내지 (4)에 따라 구조방향과 신호 응집성을 구하고, 선형구조가 많은 영상에 대해서는 수학식 (5) 내지 (6)에 따라 구조방향과 신호 응집성을 구하고, 그 중간 정도의 영상에 대해서는 수학식(7)및 수학식(8)에 따라 화소별로 선택적으로 구조방향과 신호 응집성을 구할 수도 있다.
잡음 성분 획득부(120)와 잡음 성분 CT 이미지 생성부(130)는 구조방향 및 신호 응집성에 기초하여 각각 잡음 성분 합성 사이노그램과 잡음 성분 CT 이미지에 비등방성 필터링을 수행할 수 있다. 구체적으로, 각 화소별 구조방향 및 신호 응집성을 반영하는 2차원 비등방성 가우시안 함수에 대응하는 비등방성 커널을 결정하고, 비등방성 커널을 반영한 필터링을 수행할 수 있다. 이 때, 구조방향과 신호 응집성을 반영한2차원 비등방성 가우시안 함수의 매개변수 중 장축의 크기는 사전에 결정된 값이고, 매개변수 중 단축의 크기는 장축의 크기, 신호 응집성 및 기 결정된 비례상수의 곱으로 결정되며, 매개변수 중 회전각도는 구조방향일 수 있다. 또한, 비등방성 필터링이 수행된 결과가 잡음 성분 합성 사이노그램과 잡음 성분 CT 이미지의 구조적 성분일 수 있다.
도 4는 비등방성 가우시안 커널을 나타낸 도면이다.
수학식(9)를 참조하면, 장축과 단축의 길이가 각각 σx, σy 이고 각도가 θ 인 비등방성 2차원 가우시안 함수는 장축과 단축의 길이를 달리함으로써 비등방성으로 표현될 수 있다. 또한, 비등방성 2차원 가우시안 함수는 장축과 단축 길이의 비율을 달리함으로써 비등방성의 정도를 표현할 수 있으며, 각도를 가진 필터커널을 생성하는 데 적합할 수 있다.
비등방성 필터커널의 크기를 N 이라 정하면, 2차원 비등방성 가우시안 함수의 장축길이는 σx =N, 단축길이는 σx=(1 - C(x,y)) N, 그리고 각도
Figure PCTKR2017000437-appb-I000011
와 같이 상기 신호구조의 방향과 응집성을 이용하여 비등방성 2차원 가우시안 함수 형태의 커널을 생성하는 것이 가능하다.
[수학식9]
Figure PCTKR2017000437-appb-I000012
이 때,
Figure PCTKR2017000437-appb-I000013
Figure PCTKR2017000437-appb-I000014
Figure PCTKR2017000437-appb-I000015
상기 설명한 바와 같이, 잡음 성분 획득부(120)와 잡음 성분 CT 이미지 생성부(130)는 각 화소의 구조방향및 신호 응집성에 기초하여 비등방성 필터링을 수행하여 각각 잡음성분 합성 사이노그램과 잡음 성분 CT이미지에서 구조적 성분을 추출할 수 있다.
이때, 매 화소별로 계산에 의해 커널을 생성할 수도 있고, 계산량을 줄이기 위하여 미리 다양한 신호의 구조 방향과 응집성에 대응하는 커널들을 생성해두고, 매 신호마다 얻은 신호구조 방향과 응집성을 참조하여, 필요한 커널을 호출하여 사용할 수도 있다.
잡음 저감부(140)는 잡음 성분 CT 이미지 생성부(130)에서 생성된 잡음 성분 CT 이미지에 기초하여 원본 CT 이미지의 잡음을 저감할 수 있다. 이 때 잡음 저감부(140)는 다양한 방식으로, 원본 CT 이미지의 잡음을 저감할 수 있다.
일 예에 따르면, 잡음 저감부(140)는 원본 CT 이미지의 각 화소값에서, 원본 CT 이미지의 각 화소값에 대응하는 잡음 성분 CT 이미지의 각 화소값을 빼줌으로써, 원본 CT 이미지의 잡음을 저감할 수 있다.
또 다른 예에 따르면, 잡음 저감부(140)는 원본 CT 이미지로부터 조직정보(CT 이미지의 유효 성분, 조직 또는 장기별로 사전에 알려진 감쇠수치의 범위)를 추출하고 추출된 조직정보에 기초하여 원본 CT 이미지의 잡음을 저감할 수 있다. 이 때, 잡음 저감부(140)는 추출된 조직정보 기초하여 원본 CT 이미지에서 잡음 성분 CT 이미지를 적응적으로 감산함으로써 원본 CT 이미지의 잡음을 저감할 수 있다. 예를 들어, 잡음 저감부(140)는 특정 조직정보에 대응하는 영역에서는 잡음 저감의 정도를 감소시킬 수 있다.
다른 예에 따르면, 잡음 저감부(140)는 잡음 성분 CT 이미지에서 화소의 픽셀 값이 일정범위를 벗어나는 화소를 선택하고 그 픽셀 값을 사전에 정한 규칙에 따라 저감함으로써, 화질의 손상을 피할 수 있다. 예를 들면, 잡음 저감부(140)는 전체 잡음 성분 화소의 픽셀 값에 대해 계산한 표준편차의 일정배수 이상의 픽셀 값을 갖는 화소만을 선택하거나, 또는 상위 5%의 크기의 픽셀 값을 갖는 화소만을 선택할 수 있다.
또 다른 예에 의하면, 잡음 저감부(140)는 상기 원본 CT 이미지의 각 화소별 구조방향 및 신호 응집성을 추출하고, 구조방향, 신호 응집성 및 상기 잡음성분 CT 이미지의 픽셀값에 기초하여 기 결정된 규칙에 따라 상기 원본 CT 이미지의 잡음을 저감할 수 있다.
잡음 저감부(140)의 동작과 관련하여, 원본 CT 이미지의 각 화소별 구조방향, 신호 응집성을 추출하는 과정은, 앞서 잡음 성분 획득부(120)및 잡음 성분 CT 이미지 생성부(130)의 구조적 성분 추출에 대한 설명과 동일한 과정을 사용하며, 따라서 이에 대한 설명은 생략한다.
도 5는 본원의 일 실시예에 따른 잡음 저감 방법을 나타낸 흐름도이다. 도 5에 도시된 실시예에 따른 잡음 저감 방법은 도 2에 도시된 잡음 저감 장치에서 시계열적으로 처리되는 단계들을 포함한다. 따라서 이하에서 생략된 내용이라고 하더라도 도 1에 도시된 잡음 저감 장치에 관하여 이상에서 기술한 내용은 도 3에 도시된 실시예에 따른 잡음 저감 방법에도 적용될 수 있다.
단계S100에서 잡음 저감 장치(100)의 합성 사이노그램 생성부(110)는 입력된 원본 CT이미지로부터 합성 사이노그램을 생성할 수 있다.
더불어 단계S100는 원본 CT 이미지의 의료 이미지 정보에 기초하여 원본 CT 이미지의 화소별 감쇠계수, x-선관의 관전압, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보를 결정하는 단계를 더 포함할 수 있다.
그리고, 단계S100는 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 합성 사이노그램을 생성하는 단계를 더 포함할 수 있다.
단계S100에서 합성 사이노그램은, 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 회전각도별 투영연산을 수행함으로써 생성될 수 있다.
한편 상술한 바와 같이 단계S100에서 합성 사이노그램이 생성되면, 잡음 저감 장치(100)의 잡음 성분 획득부(20)는 생성된 합성 사이노그램으로부터 잡음 성분 합성 사이노그램을 획득할 수 있다(S120).
도 6은 본원의 일 실시예에 따른 잡음성분 합성 사이노그램을 획득하는 과정을 나타낸 도면이다
그리고, 단계 S100 는 상기 합성 사이노그램에서 사전에 지정된 규칙에 따라 필터커널을 결정하며 이를 기초로 잡음 성분을 추출하는 단계(S200), 2차원 푸리에 변환에 기초하여 잡음 성분을 추출하는 단계(S210)와, 2차원 Wavelet 변환에 기초하여 잡음 성분을 추출하는 단계(S220) 및 헤시안 (Hessian) 행렬의 고유성분 분해에 기초하여 잡음 성분을 추출하는 단계(S230)를 포함할 수 있다.
한편 상술한 바와 같이 단계S110에서 합성 사이노그램으로부터 잡음 성분 합성 사이노그램이 획득되면, 잡음 저감 장치(100)의 이미지 생성부(30)는 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성할 수 있다(S130).
S130 단계는 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용함으로써 잡음성분 CT이미지를 생성할 수 있다.
더불어 S130단계는 상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용하여 제1잡음 성분 CT 이미지를 생성하는 단계와, 상기 제1 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 단계 및 상기 추출된 구조적 성분을 억제함으로써 상기 제1잡음 성분 CT 이미지로부터 제2 잡음 성분 CT 이미지를 생성하는 단계를 포함할 수 있다.
S130 단계에서 잡음성분 CT이미지가 생성되면, 잡은 성분 CT이미지에 기초하여 원본 CT이미지의 잡음을 저감할 수 있다(S140).
S140단계는 원본 CT이미지로부터 조직정보에를 추출하는 단계와 추출된 조직정보와 잡음성분 CT이미지에 기초하여 원본 CT이미지의 잡음을 저감하는 단계를 포함할 수있다.
또한 S140단계는 추출된 조직정보에 기초하여 원본 CT이미지에서 잡음성분 CT이미지를 적응적으로 감산함으로써 원본CT이미지의 잡음을 저감할 수 있다.
그리고 S140단계는 잡음성분 CT이미지 화소의 픽셀 값의 분포 순위를 기초로 사전에 정한 규칙에 따라 잡음성분 CT이미지의 픽셀값을 저감할 수 있다.
도 7은 본원의 일 실시예에 따른 구조적 성분을 추출하는 과정을 나타낸 도면이다.
구조적 성분을 추출하는 단계는 복수의 방식 중 적어도 하나를 이용하여 잡음 성분을 추출할 수 있다. 복수의 방식은 원본 이미지의 각 화소별 구조방향 및 신호 응집성을 추출하는 방식(S300)과 구조방향 및 신호 응집성을 기초로 비등방성 커널을 결정하는 방식310) 및 상기 비등방성 커널을 반영한 필터링을 수행하는 방식320)을 포함할 수 있다. 이러한 구조적 성분을 추출하는 단계는 복수의 방식 중 적어도 하나를 이용하여 잡음 성분을 추출하거나. 모든 방식을 이용하여 잡음 성분을 추출할 수 있다.
앞서 설명된 각각의 방법(예를 들어, CT 이미지의 잡음 저감 방법)은 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 겹합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (21)

  1. CT 이미지의 잡음을 저감하는 방법에 있어서
    입력된 원본 CT이미지로부터 합성 사이노그램을 생성하는 단계;
    생성된 상기 합성 사이노그램으로부터 잡음 성분 합성 사이노그램을 획득하는 단계;
    상기 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성하는 단계; 및
    상기 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 단계;
    를 포함하는, CT 이미지의 잡음 저감 방법.
  2. 제 1 항에 있어서,
    상기 합성 사이노그램을 생성하는 단계는,
    상기 원본 CT 이미지의 의료 이미지 정보에 기초하여 상기 원본 CT 이미지의 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보를 결정하는 단계; 및
    상기 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 상기 합성 사이노그램을 생성하는 단계;
    를 포함하는, CT 이미지의 잡음 저감 방법.
  3. 제 2 항에 있어서,
    상기 합성 사이노그램은,
    상기 결정된 화소별 감쇠계수, x-선관 초점과 검출기 사이의 거리 정보 및 x-선관 초점과 환자 사이의 거리 정보에 기초하여 회전각도별 투영연산을 수행함으로써 생성되는 것을 특징으로 하는, CT 이미지의 잡음 저감 방법.
  4. 제 1 항에 있어서,
    상기 잡음 성분 합성 사이노그램을 획득하는 단계는,
    합성 사이노그램으로부터 잡음 성분 추출을 통해 제 1 잡음 성분 합성 사이노그램을 획득하는 단계;
    상기 제 1 잡음 성분 합성 사이노그램 내의 구조적 성분을 추출하는 단계; 및
    상기 추출된 구조적 성분을 억제함으로써 상기 제 1 잡음 성분 합성 사이노그램으로부터 제 2 잡음 성분 합성 사이노그램을 생성하는 단계;
    를 포함하는, CT 이미지의 잡음 저감 방법.
  5. 제 1 항에 있어서,
    상기 잡음 성분 합성 사이노그램을 획득하는 단계는,
    복수의 방식 중 적어도 하나를 이용하여 잡음 성분을 추출하는 단계를 포함하되,
    상기 복수의 방식은,
    상기 합성 사이노그램에서 사전에 지정된 규칙에 따라 필터커널을 결정하고, 이 커널을 기초로 잡음 성분을 추출하는 제 1 방식,
    2차원 푸리에 변환에 기초하여 잡음 성분을 추출하는 제 2 방식,
    2차원 Wavelet 변환에 기초하여 잡음 성분을 추출하는 제 3 방식, 및
    헤시안 (Hessian) 행렬의 고유성분 분해에 기초하여 잡음 성분을 추출하는 제 4 방식;
    을 포함하는, CT 이미지의 잡음 저감 방법.
  6. 제 1 항에 있어서,
    상기 잡음 성분 CT 이미지를 생성하는 단계는,
    상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용함으로써 잡음 성분 CT 이미지를 생성하는 것을 특징으로하는, CT 이미지의 잡음 저감 방법.
  7. 제 1 항에 있어서,
    상기 잡음 성분 CT 이미지를 생성하는 단계는,
    상기 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용하여 제1잡음 성분 CT 이미지를 생성하는 단계;
    상기 제1 잡음 성분 CT 이미지로부터 구조적 성분을 추출하는 단계; 및
    상기 추출된 구조적 성분을 억제함으로써 상기 제1잡음 성분 CT 이미지로부터 제2 잡음 성분 CT 이미지를 생성하는 단계;
    를 포함하는 CT 이미지의 잡음 저감 방법.
  8. 제1항에 있어서,
    상기 원본 CT 이미지의 잡음을 저감하는 단계는,
    상기 원본 CT 이미지로부터 조직정보를 추출하는 단계; 및
    상기 추출된 조직정보와 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 단계;
    를 포함하는 CT 이미지의 잡음 저감 방법.
  9. 제 8 항에 있어서,
    상기 원본 CT 이미지의 잡음을 저감하는 단계는,
    상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지에서 상기 잡음 성분 CT 이미지를 적응적으로 감산함으로써 상기 원본 CT 이미지의 잡음을 저감하는 단계;
    를 포함하는 CT 이미지의 잡음 저감 방법.
  10. 제 1 항에 있어서,
    상기 원본 CT 이미지의 잡음을 저감하는 단계는,
    잡음 성분 CT 이미지 화소의 픽셀 값의 분포 순위를 기초로 사전에 정한 규칙에 따라 잡음성분 CT 이미지의 픽셀 값을 저감하는 단계
    를 포함하는 CT 이미지의 잡음 저감 방법.
  11. 제 4 항 또는 제 7 항에 있어서,
    구조적 성분을 추출하는 단계는,
    원본 이미지의 각 화소별 구조방향 및 신호 응집성을 추출하는 단계;
    구조방향 및 신호 응집성을 기초로 비등방성 커널을 결정하는 단계; 및
    상기 비등방성 커널을 반영한 필터링을 수행하는 단계;
    를 포함하는 CT 이미지의 잡음 저감 방법.
  12. 제 11 항에 있어서,
    상기 구조 방향은 상기 각 화소에서의 정규화된 경사벡터의 수직방향이고,
    상기 신호 응집성은 상기 정규화된 경사벡터의 경사값의 절대치와 상기 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정되는 것인, CT 이미지의 잡음 저감 방법.
  13. 제 11 항에 있어서,
    상기 구조방향은 상기 각 화소에서의 헤시안(Hessian) 행렬의 두 번째 고유벡터의 방향이고,
    상기 신호 응집성은 상기 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정되는 것인, CT 이미지의 잡음 저감 방법.
  14. 제 11 항에 있어서,
    상기 구조방향 및 상기 신호 응집성은 상기 각 화소에서의 경사의 절대치와 상기 각 화소에서의 헤시안 행렬의 첫 번째 고유값의 절대치간의 비율에 기초하여 결정되되,
    상기 비율이 기준값보다 큰 경우, 상기 구조방향은 상기 각 화소에서의 정규화된 경사벡터의 수직방향이고, 상기 신호 응집성은 상기 정규화된 경사벡터의 경사값의 절대치와 상기 정규화된 경사벡터의 수직방향벡터의 경사값의 절대치에 기초하여 결정되는 것이되,
    상기 비율이 기준값보다 작은 경우, 상기 구조방향은 상기 각 화소에서의 헤시안(Hessian) 행렬의 두 번째 고유벡터의 방향이고, 상기 신호 응집성은 상기 각 화소에서의 헤시안 행렬의 두 고유값의 절대치들에 기초하여 결정되는 것을 특징으로 하는, CT 이미지의 잡음 저감 방법.
  15. 제 13 항에 있어서,
    구조방향 및 신호 응집성을 기초로 비등방성 커널을 결정하는 단계는 2차원 비등방성 가우시안 함수를 기초로 커널을 결정하되, 상기 2차원 비등방성 가우시안 함수의 매개변수 중 장축의 크기는 기 결정된 값이고, 상기 매개변수 중 단축의 크기는 상기 장축의 크기에 상기 신호 응집성 및 기 결정된 비례상수를 곱하여 결정하며, 상기 매개변수 중 회전각도는 상기 구조방향인 것을 특징으로 하는, CT 이미지의 잡음 저감 방법.
  16. CT 이미지의 잡음을 저감하는 장치에 있어서
    입력된 원본 CT이미지로부터 합성 사이노그램을 생성하는 합성 사이노그램 생성부;
    생성된 상기 합성 사이노그램으로부터 잡음 성분 합성 사이노그램을 획득하는 잡음 성분 획득부;
    상기 잡음 성분 합성 사이노그램에 기초하여 잡음 성분 CT 이미지를 생성하는 잡음 성분 CT 이미지 생성부; 및
    상기 잡음 성분 CT 이미지에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는 잡음 저감부를 포함하는, CT 이미지의 잡음 저감 장치.
  17. 제 16 항에 있어서,
    상기 잡음 성분 획득부는,
    상기 합성 사이노그램에서 잡음 성분을 추출하여 상기 잡음 성분 합성 사이노그램을 획득하는, CT 이미지의 잡음 저감 장치.
  18. 제 16 항에 있어서,
    상기 잡음 성분 CT 이미지 생성부는,
    상기 잡음 성분 획득부에서 생성된 잡음 성분 합성 사이노그램에 필터된 역투영 연산을 적용하여 상기 잡음 성분 CT 이미지를 생성하는, CT 이미지의 잡음 저감 장치.
  19. 제 16 항에 있어서,
    상기 잡음 성분 획득부와 상기 잡음 성분 CT 이미지 생성부는,
    각기 상기 잡음 성분 사이노그램과 잡음 성분 CT 이미지에서 구조적 성분을 추출하여 상기 추출된 구조적 성분을 억제하는 것을 특징으로 하는, CT 이미지의 잡음 저감 장치.
  20. 제 16 항에 있어서,
    상기 잡음 저감부는,
    상기 원본 CT 이미지로부터 조직정보를 추출하고, 상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지의 잡음을 저감하는, CT 이미지의 잡음 저감 장치.
  21. 제 20 항에 있어서,
    상기 잡음 저감부는,
    상기 추출된 조직정보에 기초하여 상기 원본 CT 이미지에서 상기 잡음 성분 CT 이미지를 적응적으로 감산함으로써 상기 원본 CT 이미지의 잡음을 저감하는, CT 이미지의 잡음 저감 장치.
PCT/KR2017/000437 2017-01-13 2017-01-13 Ct 이미지의 잡음 저감 방법 및 장치 WO2018131733A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000437 WO2018131733A1 (ko) 2017-01-13 2017-01-13 Ct 이미지의 잡음 저감 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000437 WO2018131733A1 (ko) 2017-01-13 2017-01-13 Ct 이미지의 잡음 저감 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2018131733A1 true WO2018131733A1 (ko) 2018-07-19

Family

ID=62840613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000437 WO2018131733A1 (ko) 2017-01-13 2017-01-13 Ct 이미지의 잡음 저감 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2018131733A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785243A (zh) * 2018-11-28 2019-05-21 西安电子科技大学 基于对抗生成网络未配准低剂量ct的去噪方法、计算机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120011694A (ko) * 2010-07-29 2012-02-08 삼성전자주식회사 영상 처리 방법 및 장치와 이를 채용한 의료영상시스템
KR101245536B1 (ko) * 2011-10-25 2013-03-21 한국전기연구원 저밀도 촬영상 ct 영상 재구성에서 줄 인공물 억제 방법
KR20140141159A (ko) * 2013-05-31 2014-12-10 주식회사 나노포커스레이 의료 영상 처리 방법 및 시스템
US20140369581A1 (en) * 2013-06-14 2014-12-18 The Regents Of The University Of Michigan Iterative reconstruction in image formation
KR101591381B1 (ko) * 2014-10-30 2016-02-04 기초과학연구원 Ct 촬영에서의 금속에 의한 잡음 및 오류 감쇄방법
KR101697501B1 (ko) * 2015-07-23 2017-01-18 서울대학교산학협력단 Ct 이미지의 잡음 저감 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120011694A (ko) * 2010-07-29 2012-02-08 삼성전자주식회사 영상 처리 방법 및 장치와 이를 채용한 의료영상시스템
KR101245536B1 (ko) * 2011-10-25 2013-03-21 한국전기연구원 저밀도 촬영상 ct 영상 재구성에서 줄 인공물 억제 방법
KR20140141159A (ko) * 2013-05-31 2014-12-10 주식회사 나노포커스레이 의료 영상 처리 방법 및 시스템
US20140369581A1 (en) * 2013-06-14 2014-12-18 The Regents Of The University Of Michigan Iterative reconstruction in image formation
KR101591381B1 (ko) * 2014-10-30 2016-02-04 기초과학연구원 Ct 촬영에서의 금속에 의한 잡음 및 오류 감쇄방법
KR101697501B1 (ko) * 2015-07-23 2017-01-18 서울대학교산학협력단 Ct 이미지의 잡음 저감 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785243A (zh) * 2018-11-28 2019-05-21 西安电子科技大学 基于对抗生成网络未配准低剂量ct的去噪方法、计算机
CN109785243B (zh) * 2018-11-28 2023-06-23 西安电子科技大学 基于对抗生成网络未配准低剂量ct的去噪方法、计算机

Similar Documents

Publication Publication Date Title
CN110889005B (zh) 搜索医学参考图像
WO2020080604A1 (ko) 딥러닝 기반 ct 이미지 잡음 저감 장치 및 방법
KR101697501B1 (ko) Ct 이미지의 잡음 저감 방법 및 장치
WO2015122698A1 (en) Computed tomography apparatus and method of reconstructing a computed tomography image by the computed tomography apparatus
JP6214226B2 (ja) 画像処理装置、断層撮影装置、画像処理方法およびプログラム
US6751284B1 (en) Method and system for tomosynthesis image enhancement using transverse filtering
CN106963409A (zh) 一种ct系统及其使用方法
Meng et al. Semi-supervised learned sinogram restoration network for low-dose CT image reconstruction
EP3247275A1 (en) Tomography imaging apparatus and method
WO2017126772A1 (en) Tomography apparatus and method for reconstructing tomography image thereof
Hadziabdic et al. Comparison of deghosting algorithms for multi-exposure high dynamic range imaging
EP3280331A1 (en) Tomography apparatus and method of reconstructing tomography image by using the tomography apparatus
CN111065335A (zh) 医用图像处理装置和医用图像处理方法
US20030123719A1 (en) Medical image processing apparatus, medical image processing method, program and a recording medium thereof
EP4190243A1 (en) Image processing device, image processing method, learning device, learning method, and program
WO2018131733A1 (ko) Ct 이미지의 잡음 저감 방법 및 장치
EP3349655A1 (en) Tomography apparatus and controlling method for the same
US9978132B2 (en) Radiation image processing device, method, and program
WO2015026164A1 (ko) 스캔 영상의 복원 방법, 장치 및 이를 저장하는 기록매체
Mol et al. Application of digital image analysis in dental radiography for the description of periapical bone lesions: a preliminary study
JP2009285145A (ja) 放射線画像補正装置および方法ならびにプログラム
WO2018186578A1 (ko) 자기공명영상장치 및 그 제어방법
US20210282733A1 (en) Edge noise reduction
WO2022039313A1 (ko) Ct영상의 금속 아티팩트 보정 방법 및 장치
WO2019240444A1 (ko) 단층 영상의 생성 방법 및 그에 따른 엑스선 영상 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891319

Country of ref document: EP

Kind code of ref document: A1