WO2014192185A1 - 照明制御システム及び照明制御方法 - Google Patents

照明制御システム及び照明制御方法 Download PDF

Info

Publication number
WO2014192185A1
WO2014192185A1 PCT/JP2013/081900 JP2013081900W WO2014192185A1 WO 2014192185 A1 WO2014192185 A1 WO 2014192185A1 JP 2013081900 W JP2013081900 W JP 2013081900W WO 2014192185 A1 WO2014192185 A1 WO 2014192185A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification information
master unit
slave units
unit
lighting
Prior art date
Application number
PCT/JP2013/081900
Other languages
English (en)
French (fr)
Inventor
隆之 堀邉
井上 智博
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014192185A1 publication Critical patent/WO2014192185A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control

Definitions

  • the present invention relates to an illumination control system and an illumination control method for controlling lighting / extinguishing of illumination installed in, for example, a detached house, an apartment house, and the like.
  • FIG. 10 is an explanatory diagram showing an outline of wireless communication using radio waves or infrared rays performed between a parent device and a child device in a conventional lighting control system.
  • base station 1 can confirm that the subunit
  • the base unit 1 can determine that the handset 2 that has not been received has not received the control command, and performs processing such as resending the control command to the handset 2 It becomes possible to do.
  • the parent device 1 controls the timing at which the confirmation command is transmitted to the child device 2, so that the child device 2 transmits the confirmation command.
  • the reply commands from each slave unit 2 to the master unit 1 collide, and the master unit 1 cannot receive the reply command from the slave unit 2. It was preventing that.
  • Patent Document 1 a plurality of lighting controllers are grouped in order to reduce the possibility of a collision of reply signals from the slave units, and one of the plurality of lighting controllers for each group is set as the master unit and others. Is a lighting device control device in which the parent device controls the dimming rate of each child device.
  • Patent Document 2 discloses a lighting communication system that transmits a reply signal at a reply timing set by the contents of a control command received by each slave unit and an individual order. In Patent Document 2, it is possible to prevent a reply signal from each slave unit from colliding with the base unit, and to shorten the communication occupation time required for a series of responses by each slave unit.
  • an illuminance monitor request is output from a parent device (lighting controller) to an individual child device (lighting controller), and the parent device receives each illuminance monitor response from the child device and then each child device. Outputs a dimming command for the dimming rate.
  • the operation of the slave unit is controlled based on the dimming command output from the master unit. Therefore, in a large-scale system having a large number of slave units, since the operations of the slave units are sequentially controlled one by one, there is a problem that it takes a considerable time to complete the control for all the slave units.
  • each of a plurality of slave units returns a response to the master unit according to an individual order that does not cause a blank time at the reply timing.
  • it is difficult to shorten the processing time as a whole because a response timing is calculated in each slave unit and is not returned while the calculation process is being executed.
  • the waiting time for each slave unit is set according to the contents of the received control command and the individual order, there is a possibility that a reply signal may collide when the control program of the master unit is changed.
  • the present invention has been made in view of such circumstances, and an illumination control system capable of avoiding a collision of reply signals from each slave unit to the master unit and reducing the processing time as a whole.
  • An object is to provide a lighting control method.
  • a lighting control system is a lighting control system including a parent device and a plurality of child devices capable of data communication with each other, wherein the parent device includes all the child devices.
  • a transmission signal is broadcasted to each of the slave units, and each of the slave units is given a continuous numerical value as identification information, and returns to the master unit with a delay calculated by multiplying the identification information by a conversion coefficient.
  • a signal is transmitted.
  • each slave unit transmits a reply signal to the master unit with a delay calculated by multiplying the identification information (ID) of its own unit by an arbitrary conversion coefficient.
  • ID identification information
  • the master unit includes an updating unit that receives the update of the conversion coefficient.
  • the parent device can accept the update of the conversion coefficient, the delay time until each child device transmits a reply signal can be freely changed. Therefore, even if the system configuration or processing software version is different, the reply signal from one slave unit does not collide with the reply signal from another slave unit, reducing the overall processing time. It becomes possible to do.
  • the master unit includes a memory that temporarily stores a reply signal received from the slave unit in association with the identification information, and a reply corresponding to one identification information from the memory. It is preferable to read out a reply signal corresponding to the next identification information from the memory each time the signal is read and the processing on the read reply signal is completed.
  • the reply signal from the slave unit can be temporarily stored in the memory of the master unit, and the reply signal can be read at an appropriate timing according to the processing status in the master unit. Therefore, even if the system configuration or processing software version is different, the reply signal from one slave unit does not collide with the reply signal from another slave unit, reducing the overall processing time. It becomes possible to do.
  • a lighting control system is a lighting control system including a parent device and a plurality of child devices capable of data communication with each other.
  • a transmission signal is broadcasted to the slave unit, and each slave unit is given a continuous numerical value as identification information, and a reply signal is broadcast to the master unit and all other slave units.
  • the reply signal is broadcasted.
  • the parent device broadcasts transmission signals to all of the plurality of child devices, the plurality of child devices can start processing on the transmission signals almost simultaneously.
  • the slave unit broadcasts a reply signal to the master unit and all other slave units, respectively, and receives a reply signal from the slave unit of the identification information immediately preceding its own identification information. Since only the reply signal is broadcasted, the reply signal from one slave unit does not collide with the reply signal from another slave unit, and the processing time as a whole can be shortened.
  • a lighting control system is a transmission transmitted from the master unit in a lighting control system including a master unit and a plurality of slave units capable of data communication with each other.
  • the signal includes identification information of all the child devices given as continuous numerical values, the parent device broadcasts the transmission signal to all the child devices, and the child device
  • the identification information included in the transmission signal is sequentially read, and a reply signal is transmitted to the parent device when the read identification information matches the identification information of the own device.
  • the master unit since the master unit is configured to include the identification information of all the slave units given as continuous numerical values in the transmission signal broadcasted to all the plurality of slave units, The identification information contained in the transmission signal is sequentially read out, and the timing at which each slave unit transmits a reply signal can be shifted depending on the time difference until the identification information of the own device and the read identification information match. Therefore, a reply signal from one slave unit does not collide with a reply signal from another slave unit, and the processing time as a whole can be shortened.
  • a lighting control method is a lighting control method that can be executed in a system composed of a master unit capable of data communication with each other and a plurality of slave units.
  • the master unit broadcasts transmission signals to all the slave units, and each slave unit is given a continuous numerical value as identification information, and is calculated by multiplying the identification information by a conversion coefficient.
  • a reply signal is transmitted to the base unit with a delay of the set time.
  • each slave unit transmits a reply signal to the master unit with a delay calculated by multiplying the identification information (ID) of its own unit by an arbitrary conversion coefficient.
  • ID identification information
  • the master unit accepts the update of the conversion coefficient.
  • the parent device can accept the update of the conversion coefficient, the delay time until each child device transmits a reply signal can be freely changed. Therefore, even if the system configuration or processing software version is different, the reply signal from one slave unit does not collide with the reply signal from another slave unit, reducing the overall processing time. It becomes possible to do.
  • the master unit temporarily stores a reply signal received from the slave unit in association with the identification information, and reads and reads a reply signal corresponding to one piece of identification information. It is preferable to read out a reply signal corresponding to the next identification information every time processing on the reply signal is completed.
  • the master unit can temporarily store the reply signal from the slave unit and read the reply signal at an appropriate timing according to the processing status of the master unit. Therefore, even if the system configuration or processing software version is different, the reply signal from one slave unit does not collide with the reply signal from another slave unit, reducing the overall processing time. It becomes possible to do.
  • a lighting control method is a lighting control method that can be executed in a system composed of a master unit capable of data communication with each other and a plurality of slave units.
  • the master unit broadcasts transmission signals to all the slave units, and each of the slave units is assigned a continuous numerical value as identification information, and is sent to the master unit and all other slave units.
  • a reply signal is broadcasted to each other, and when a reply signal is received from a slave unit having identification information immediately preceding its own identification information, the reply signal is broadcasted.
  • the parent device broadcasts transmission signals to all of the plurality of child devices, the plurality of child devices can start processing on the transmission signals almost simultaneously.
  • the slave unit broadcasts a reply signal to the master unit and all other slave units, respectively, and receives a reply signal from the slave unit of the identification information immediately preceding its own identification information. Since only the reply signal is broadcasted, the reply signal from one slave unit does not collide with the reply signal from another slave unit, and the processing time as a whole can be shortened.
  • a lighting control method is a lighting control method that can be executed in a system composed of a master unit capable of data communication with each other and a plurality of slave units.
  • the transmission signal transmitted from the master unit includes the identification information of all the slave units given as continuous numerical values, and the master unit broadcasts the transmission signal to all the slave units.
  • the slave unit sequentially reads the identification information included in the transmission signal, and transmits a reply signal to the master unit when the read identification information matches the identification information of the own unit.
  • the master unit since the master unit is configured to include the identification information of all the slave units given as continuous numerical values in the transmission signal broadcasted to all the plurality of slave units, The identification information contained in the transmission signal is sequentially read out, and the timing at which each slave unit transmits a reply signal can be shifted depending on the time difference until the identification information of the own device and the read identification information match. Therefore, a reply signal from one slave unit does not collide with a reply signal from another slave unit, and the processing time as a whole can be shortened.
  • each slave unit transmits a reply signal to the master unit with a delay calculated by multiplying the identification information (ID) of its own unit by an arbitrary conversion coefficient.
  • ID identification information
  • FIG. 1 is a schematic diagram showing a configuration of a lighting control system according to Embodiment 1 of the present invention.
  • the illumination control system according to the first embodiment performs data communication with n (n is a natural number) slave units 2 and n slave units 2 by wireless communication. It is comprised with the main
  • the master unit 1 includes a microcomputer 11 for arithmetic processing and a wireless communication unit 12 that is a wireless communication module.
  • a microcomputer 11 for arithmetic processing
  • a wireless communication unit 12 that is a wireless communication module.
  • the configuration of the parent device 1 is not limited to this, and the microcomputer 11 and the wireless communication unit 12 may be integrated, or provided with a memory 13 for temporarily storing a reply signal from the child device 2. May be.
  • mobile_unit 2 is comprised by the microcomputer 21 for arithmetic processing, and the radio
  • mobile_unit 2 is not limited to this, The microcomputer 21 and the radio
  • Each of the n slave units 2 is assigned a continuous numerical value as identification information, for example, IDs from “1” to “n”.
  • the master unit 1 and the plurality of slave units 2 may be connected via a wireless LAN, or connected so that data communication is possible by a communication method such as Bluetooth (registered trademark) communication or ZigBee communication. May be.
  • a communication method such as Bluetooth (registered trademark) communication or ZigBee communication. May be.
  • FIG. 2 is a flowchart showing signal transmission timing of the illumination control system according to Embodiment 1 of the present invention.
  • FIG. 2 shows that time elapses from top to bottom.
  • the base unit 1 that is a control device broadcasts an ON command that is a command to turn on the illumination as a transmission signal to all the plurality of slave units 2 (step S101).
  • Each cordless handset 2 (lighting (1), lighting (2),..., Lighting (n)) receives the ON command and turns on the lighting (step S201, step S204, step S207).
  • mobile_unit 2 (illumination (1)) whose ID is' 1 'judges whether the time which multiplied ID'1' by the conversion coefficient A, ie, (1xA) second, passed (step S202). .
  • step S202 When it is determined that the child device 2 (lighting (1)) has not elapsed (step S202: NO), the child device 2 (lighting (1)) is in a waiting state. When it is determined that the handset 2 (lighting (1)) has passed (step S202: YES), the handset 2 (lighting (1)) receives a reply command (reply signal) indicating that the light has been turned on. It transmits to the machine 1 (step S203).
  • a reply command reply command
  • the parent device 1 receives the reply command and updates the lighting status of the child device 2 whose ID is “1” to “lighted” (step S102). Specifically, the lighting status indicating the lighting state is stored in the parent device 1 as a lighting flag, and the lighting flag of the child device 2 (lighting (1)) whose ID is “1” is updated to “1”. To do.
  • Step S205 the handset 2 (illumination (2)) whose ID is “2” determines whether or not (2 ⁇ A) seconds have elapsed since ID “2” is multiplied by the conversion coefficient A (ie, (2 ⁇ A) seconds).
  • step S205: NO the child device 2 (lighting (2)) enters a state of waiting for progress.
  • step S205: YES the child device 2 (lighting (2)) transmits a reply command indicating that the light has been turned on to the parent device 1.
  • the parent device 1 receives the reply command and updates the lighting status of the child device 2 whose ID is “2” to “lighted” (step S103). Specifically, the lighting flag of the handset 2 (lighting (1)) whose ID is “2” is updated to “1”.
  • step S208 the slave unit 2 (illumination (n)) whose ID is “n” has multiplied the conversion coefficient A by ID “n”, that is, whether (n ⁇ A) seconds have elapsed. Is determined (step S208).
  • step S208: NO the child device 2 (lighting (n)) is in a waiting state.
  • step S208: YES the child device 2 (lighting (n)) transmits a reply command indicating that the lighting has been turned on to the parent device 1.
  • the master unit 1 receives the reply command and updates the lighting status of the slave unit 2 whose ID is “n” to “lighted” (step S104). Specifically, the lighting flag of the handset 2 (lighting (n)) whose ID is “n” is updated to “1”.
  • FIG. 3 is a schematic diagram showing a state of reply command processing in the base unit 1 of the lighting control system according to Embodiment 1 of the present invention.
  • the time T required for the update process or the like in the base unit 1 is indicated by a double arrow.
  • the conversion coefficient A so that the time T required for the update process or the like is smaller than the conversion coefficient A, it is possible to avoid duplication of processing for each reply command in the base unit 1. Can do. Therefore, it is possible to avoid an excessive processing load on the base unit 1.
  • the overall processing time can be minimized by setting the conversion coefficient A so as to coincide with the time T required for the update processing or the like.
  • the conversion coefficient A can be updated in the base unit 1 according to the time T required for the update process or the like.
  • the base unit 1 may include an input device and a display device (update means) and accept the update of the conversion coefficient A. Even if the system configuration or processing software version is different, the reply signal from one slave unit 2 does not collide with the reply signal from another slave unit 2 and the processing time as a whole is shortened. Because it can be done.
  • FIG. 4 is a schematic diagram showing the relationship between the time T required for the update process and the like in the base unit 1 of the lighting control system according to Embodiment 1 of the present invention and the conversion coefficient A.
  • the conversion coefficient A is set to a value A1 that is smaller than the time T required for the update process or the like, the process of the previous reply command is completed before the process of the next reply command is started. Therefore, the processing for each reply command is duplicated in the base unit 1.
  • the parent device 1 broadcasts the ON command (transmission signal) to all the plurality of child devices 2, so that the plurality of child devices 2 process the ON command. Can be started almost simultaneously. Further, each of the slave units 2 transmits a reply command (reply signal) to the master unit 1 with a delay of a time calculated by multiplying the identification information (ID) of its own unit by an arbitrary conversion coefficient A.
  • the reply signal from the slave unit 2 does not collide with the reply signals from the other slave units 2, and the processing time can be shortened as a whole by appropriately setting the conversion coefficient A.
  • base station 1 can receive the update of the conversion coefficient A, the delay time until each subunit
  • Embodiment 2 Since the configuration of the illumination control system according to Embodiment 2 of the present invention is the same as that of Embodiment 1, detailed description thereof will be omitted by assigning the same reference numerals.
  • the second embodiment is different from the first embodiment in that the parent device 1 includes a memory that temporarily stores a reply command (reply signal) from the child device 2.
  • a memory 13 indicated by a broken line in FIG. 1 is provided between the microcomputer 11 of the base unit 1 and the wireless communication unit 12, and a reply command received by the wireless communication unit 12 is temporarily stored.
  • the memory 13 may be built in the microcomputer 11 or may be built in the wireless communication unit 12.
  • FIG. 5 is a flowchart showing signal transmission timing of the illumination control system according to Embodiment 2 of the present invention.
  • FIG. 5 shows that time elapses from top to bottom.
  • Step S205 the handset 2 (illumination (2)) whose ID is “2” determines whether or not (2 ⁇ A) seconds have elapsed since ID “2” is multiplied by the conversion coefficient A (ie, (2 ⁇ A) seconds).
  • step S205: NO the child device 2 (lighting (2)) enters a state of waiting for progress.
  • step S205: YES the child device 2 (lighting (2)) transmits a reply command indicating that the light has been turned on to the parent device 1.
  • Master unit 1 receives the reply command and temporarily stores it in memory 13 together with ID '2' (step S106).
  • step S208 the slave unit 2 (illumination (n)) whose ID is “n” has multiplied the conversion coefficient A by ID “n”, that is, whether (n ⁇ A) seconds have elapsed. Is determined (step S208).
  • step S208: NO the child device 2 (lighting (n)) is in a waiting state.
  • step S208: YES the child device 2 (lighting (n)) transmits a reply command indicating that the lighting has been turned on to the parent device 1.
  • Master unit 1 receives the reply command and temporarily stores it together with ID 'n' in memory 13 (step S107).
  • base unit 1 initializes counter X. Specifically, the counter X is set to “1” (step S111). Base unit 1 determines whether or not the process for the reply command can be executed (step S112). Specifically, it is determined whether or not the update process or the like has been completed, that is, whether or not any process is being executed in the parent device 1.
  • step S112 NO
  • the base unit 1 determines that the process is not executable (step S112: NO)
  • the base unit 1 enters a process waiting state. If base unit 1 determines that the process can be executed (step S112: YES), base unit 1 returns a reply command associated with ID 'X' from the reply command temporarily stored in memory 13. Is read (step S113).
  • the parent device 1 updates the lighting status of the child device 2 (lighting (X)) corresponding to the ID “X” to “lighted” (step S114). Specifically, the lighting flag of the handset 2 (lighting (X)) corresponding to the ID “X” is updated to “1”.
  • the base unit 1 determines whether or not all reply commands temporarily stored in the memory 13 have been read (step S115). For example, the header information of the reply command that is temporarily stored may be confirmed, or the reply command is temporarily stored in a specific area of the memory 13, and it is determined whether or not data exists in the specific area that is temporarily stored. You may do it. If the base unit 1 determines that all have been read (step S115: YES), the base unit 1 ends the process. When the base unit 1 determines that there is a reply command that has not been read (step S115: NO), the base unit 1 increments the counter X by “1” (step S116), and returns the process to step S112. The above process is repeated.
  • FIG. 6 is a schematic diagram showing a state of reply command processing in the base unit 1 of the lighting control system according to Embodiment 2 of the present invention.
  • the reply command is temporarily stored in the memory 13, and as shown in FIG. 6B, the reply command is associated with ID '2' when the processing for the reply command associated with ID '1' is completed. Read the reply command and execute the process.
  • the reply command is temporarily stored in the memory 13, and as shown in FIG. 6B, the reply command is associated with ID '2' when the processing for the reply command associated with ID '1' is completed.
  • the reply command (reply signal) from the slave unit 2 is temporarily stored in the memory 13 of the master unit 1 and at an appropriate timing according to the processing status in the master unit 1.
  • the reply command can be read. Therefore, even if the system configuration or the version of the processing software is different, the reply signal from one slave unit 2 does not collide with the reply signal from the other slave unit 2, and the processing time as a whole Can be shortened.
  • Embodiment 3 Since the configuration of the illumination control system according to Embodiment 3 of the present invention is the same as that of Embodiments 1 and 2, detailed description will be omitted by attaching the same reference numerals.
  • the third embodiment is different from the first and second embodiments in that a reply command (reply signal) from the slave unit 2 is broadcasted to the master unit 1 and all other slave units 2.
  • FIG. 7 is a flowchart showing signal transmission timing of the illumination control system according to Embodiment 3 of the present invention.
  • FIG. 7 shows that time elapses from top to bottom.
  • the base unit 1 that is a control device broadcasts an ON command, which is a command for turning on the illumination, to all the slave units 2 as a transmission signal (step S101).
  • Each cordless handset 2 (lighting (1), lighting (2),..., Lighting (n)) receives the ON command and turns on the lighting (step S211, step S213, step S216).
  • the slave unit 2 (illumination (1)) whose ID is “1” broadcasts a reply command indicating that the illumination is turned on to the master unit 1 and all the other slave units 2 (step S212).
  • the parent device 1 receives the reply command and updates the lighting status of the child device 2 whose ID is “1” to “lighted” (step S102). Specifically, the lighting status indicating the lighting state is stored in the parent device 1 as a lighting flag, and the lighting flag of the child device 2 (lighting (1)) whose ID is “1” is updated to “1”. To do.
  • the other handset 2 that has received the reply command it is determined whether or not the ID of the handset 2 that is the transmission source is the ID immediately before the own handset ID.
  • a reply command is broadcasted only when it is determined that it exists.
  • the slave unit 2 (lighting (2)) whose ID is “2” receives the reply command from the other slave unit 2, and whether the ID of the source slave unit 2 is “1”. It is determined whether or not (step S214).
  • the handset 2 (lighting (2)) determines that the ID is not “1” (step S214: NO)
  • the handset 2 (lighting (2)) enters a reception waiting state. If the handset 2 (lighting (2)) determines that the ID is “1” (step S214: YES), the handset 2 (lighting (2)) sends a reply command indicating that the light is turned on. Broadcast transmission is performed to the parent device 1 and all other child devices 2 (step S215).
  • the slave unit 2 has a faulty slave unit 2 (out of the light bulb), the slave unit 2 from which the light bulb has been removed (thinning illumination), or the like. Therefore, when the continuity of ID cannot be maintained, it is preferable to skip the ID corresponding to the handset 2 that is not operating normally.
  • the slave unit 2 corresponding to ID “2” receives a reply command from the slave unit 2 with the previous ID, that is, the slave unit 2 corresponding to ID “1”, before entering the process of step S214. Wait until a certain time.
  • the process proceeds to step S215.
  • the slave unit 2 corresponding to the ID “2” does not receive a reply command from the slave unit 2 corresponding to the ID “1” even when a certain time has elapsed, the slave corresponding to the ID “2” The machine 2 determines that a timeout has occurred, that is, there is some abnormality in the child machine 2 corresponding to the ID “1”, and forcibly advances the process to step S215.
  • the process proceeds in the same manner, and the slave unit 2 corresponding to ID “n” corresponds to the slave unit 2 with the previous ID, that is, ID ′ (n ⁇ 1) ′, before entering the process of step S217. It waits for a certain time until a reply command from the slave unit 2 is received.
  • the process proceeds to step S218.
  • ID “n” If the slave unit 2 corresponding to ID “n” does not receive a reply command from the slave unit 2 corresponding to ID “(n ⁇ 1)” even if a certain time has elapsed, ID “n”
  • ID “n” The handset 2 corresponding to ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ is timed out, that is, it is determined that there is some abnormality in the handset 2 corresponding to ID ′ (n ⁇ 1) ′, and the process is forcibly advanced to step S218.
  • mobile_unit 2 corresponding to the last ID is not specifically limited.
  • the time may be about 2 to 10 times the time during which one command can be received.
  • the parent device 1 receives the reply command and updates the lighting status of the child device 2 whose ID is “2” to “lighted” (step S103). Specifically, the lighting flag of the handset 2 (illumination (2)) whose ID is “2” is updated to “1”.
  • step S217) If the handset 2 (lighting (n)) determines that the ID is not ‘(n ⁇ 1)’ (step S217: NO), the handset 2 (lighting (n)) enters a reception waiting state. When the handset 2 (lighting (n)) determines that the ID is “(n ⁇ 1)” (step S217: YES), the handset 2 (lighting (n)) indicates that the lighting is on.
  • the reply command shown is broadcasted to the parent device 1 and all other child devices 2 (step S218).
  • the master unit 1 receives the reply command and updates the lighting status of the slave unit 2 whose ID is “n” to “lighted” (step S104). Specifically, the lighting flag of the handset 2 (lighting (n)) whose ID is “n” is updated to “1”.
  • step S2128 a reply command is broadcasted from all the slave units 2 whose ID is 'n' to all the slave units 2 whose ID is 'n'. All the slave units 2 are in a reception waiting state.
  • each slave unit 2 can grasp which ID slave unit 2 broadcasts the reply command, and the master unit 1 sequentially repeats the reply commands from the slave unit 2 without duplication. Can be received.
  • base unit 1 broadcasts an ON command (transmission signal) to all of the plurality of handset units 2, so that the plurality of handset units 2 perform processing for the ON command. You can start almost simultaneously. Further, the slave unit 2 broadcasts the reply command only when the ID (identification information) of the transmission source of the received reply command is the ID immediately before the ID of its own unit. Thus, the reply signal from the mobile terminal 2 does not collide with the reply signal from the other slave unit 2, and the overall processing time can be shortened.
  • Embodiment 4 Since the configuration of the illumination control system according to Embodiment 4 of the present invention is the same as that of Embodiments 1 to 3, detailed description will be omitted by attaching the same reference numerals.
  • the fourth embodiment is different from the first to third embodiments in that the ON command (transmission signal) includes the IDs (identification information) of all the slave units 2 given as continuous numerical values.
  • FIG. 8 is an exemplary diagram of a data configuration of a transmission signal of the illumination control system according to Embodiment 4 of the present invention.
  • the ON command (transmission signal) according to Embodiment 4 of the present invention includes a header, a transmission source ID, and a command ID.
  • a command ID “01” indicating an ON command that is a command to turn on the illumination is included.
  • Various commands can be transmitted by changing the command ID of the transmission signal.
  • the ON command includes the IDs of all the slave units 2 that can perform data communication by wireless communication.
  • FIG. 9 is a flowchart showing signal transmission timing of the illumination control system according to Embodiment 4 of the present invention.
  • FIG. 9 shows that time elapses from top to bottom.
  • the base unit 1 that is a control device broadcasts an ON command, which is a command for turning on the illumination, to all the slave units 2 as a transmission signal (step S101).
  • Each cordless handset 2 (lighting (1), lighting (2),..., Lighting (n)) receives the ON command and turns on the lighting (step S221, step S226, step S231).
  • Each cordless handset 2 (lighting (1), lighting (2),..., Lighting (n)) reads the first ID included in the ON command (step S222, step S227, step S232).
  • step S223 When the handset 2 (lighting (1)) matches, that is, when the read ID is determined to be “1” (step S223: YES), the handset 2 (lighting (1)) is lit. A reply command indicating that is transmitted to the base unit 1 (step S225).
  • the parent device 1 receives the reply command and updates the lighting status of the child device 2 whose ID is “1” to “lighted” (step S102). Specifically, the lighting status indicating the lighting state is stored in the parent device 1 as a lighting flag, and the lighting flag of the child device 2 (lighting (1)) whose ID is “1” is updated to “1”. To do.
  • the slave unit 2 (illumination (2)) whose ID is “2” is whether or not the read ID matches the ID of the own device, that is, whether or not the read ID is “2”. Is determined (step S228). If handset 2 (lighting (2)) does not match, that is, if the read ID is not '2' (step S228: NO), handset 2 (lighting (2)) The ID is read (step S229), the process returns to step S228, and the above-described process is repeated.
  • step S228 YES
  • the handset 2 (lighting (2)) is lit.
  • a reply command indicating that is transmitted to the base unit 1 step S230).
  • the parent device 1 receives the reply command and updates the lighting status of the child device 2 whose ID is “2” to “lighted” (step S103). Specifically, the lighting flag of the handset 2 (lighting (1)) whose ID is “2” is updated to “1”.
  • step S233 the slave unit 2 (illumination (n)) whose ID is “n” is whether or not the read ID matches the ID of the own device, that is, the read ID is “n”. It is determined whether or not (step S233). If the handset 2 (lighting (n)) does not match, that is, if the read ID is not “n” (step S233: NO), the handset 2 (lighting (n)) The ID is read (step S234), the process returns to step S233, and the above-described process is repeated.
  • step S233 When the handset 2 (lighting (n)) matches, that is, when it is determined that the read ID is “n” (step S233: YES), the handset 2 (lighting (n)) is lit. A reply command indicating that is transmitted to the base unit 1 (step S235).
  • the master unit 1 receives the reply command and updates the lighting status of the slave unit 2 whose ID is “n” to “lighted” (step S104). Specifically, the lighting flag of the child device 2 (lighting (1)) whose ID is “n” is updated to “1”.
  • the base unit 1 sends all the handset units 2 given as continuous numerical values to the ON command (transmission signal) broadcasted to all the plurality of handset units 2. Therefore, each slave unit 2 sequentially reads out the identification information included in the ON command, and the respective slave units 2 according to the time difference until the identification information of the own unit and the read out identification information match. The timing at which 2 sends a reply command (reply signal) can be shifted. Therefore, a reply signal from one slave unit 2 does not collide with a reply signal from another slave unit 2, and the processing time as a whole can be shortened.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

各子機から親機への返信信号の衝突を回避することができるとともに、全体として処理時間を短縮することができる照明制御システム及び照明制御方法を提供する。本発明に係る照明制御システム及び照明制御方法は、互いにデータ通信することが可能な親機1及び複数の子機2で構成される。親機1は、すべての子機2に対して送信信号をブロードキャスト送信し、子機2は、それぞれ連続した数値が識別情報として付与されており、該識別情報に変換係数Aを乗算して算出された時間だけ遅れて親機1へ返信信号を送信する。変換係数Aは自由に更新することができる。

Description

照明制御システム及び照明制御方法
 本発明は、例えば戸建て住宅、集合住宅等に設置される照明の点灯・消灯を制御する照明制御システム及び照明制御方法に関する。
 図10は、従来の照明制御システムにおける親機と子機との間で行われる電波や赤外線による無線通信の概要を示す説明図である。
 図10に示すように、従来の照明制御システムでは、「1」の無線通信において、ブロードキャスト又はユニキャストにより、親機1から制御を行うすべての子機2に点灯、消灯等の動作を制御する制御コマンドが送信される。その後、「2」の無線通信において、制御コマンドを受信したか否かを確認するための確認コマンドが親機1から第1の子機2aに送信され、「3」の無線通信において、返信コマンドが第1の子機2aから親機1に送信される。同様に、「4」、「6」の無線通信において、確認コマンドが親機1から第2の子機2b、第3の子機2cに送信され、「5」、「7」の無線通信において、返信コマンドが第2の子機2b、第3の子機2cから親機1に送信される。
 そして、親機1は、返信コマンドを受信することにより、子機2が確実に制御コマンドを受信して制御が実行されたことを確認することができる。返信コマンドを受信しなかった場合、親機1は、受信しなかった子機2が制御コマンドを受信していないと判断することができ、その子機2に制御コマンドを再送するなどの処理を実行することが可能となる。
 このように、親機1から子機2に制御コマンドが送信された後、子機2ではなく親機1が、子機2に確認コマンドを送信するタイミングを制御して、子機2から親機1へ返信コマンドを送信するタイミングを決定することにより、各子機2から親機1への返信コマンドが衝突して、親機1が子機2からの返信コマンドを受信することができなくなることを防止していた。
 返信信号(返信コマンド)の衝突を回避するためには、他にも様々な工夫がなされている。例えば特許文献1では、子機からの返信信号の衝突の可能性を少しでも低減するために、複数の照明コントローラをグループ化し、グループごとの複数の照明コントローラの中から1つを親機、他を子機と決定し、親機が各子機の調光率を制御する照明システム制御装置が開示されている。
 また、特許文献2には、各子機で受信した制御コマンドの内容と、個別の順番とにより設定される返信タイミングで返信信号を送信する照明用通信システムが開示されている。特許文献2では、各子機から親機への返信信号が衝突しないようにし、各子機による一連の返信に要する通信占有時間を短縮することができる。
特開2002-299072号公報 特開2005-135644号公報
 しかし、特許文献1では、個別の子機(照明コントローラ)に対して、親機(照明コントローラ)から照度モニタ要求を出力し、親機は子機からの照度モニタ応答を受信した後に各子機に調光率の調光指令を出力する。親機から出力された調光指令に基づいて、子機の動作が制御される。したがって、子機が多数である大規模システムにおいては、順次1個ずつ子機の動作を制御するので、すべての子機に対する制御を完了するまでに相当の時間を要するという問題点があった。
 一方、特許文献2では、複数の子機それぞれが、返信タイミングに空白時間を生じさせない個別の順番に従って親機に返信する。しかし、各子機でそれぞれの返信タイミングが算出され、算出処理を実行している間は返信されないことから、全体として処理時間を一定時間以上短縮することは困難であるという問題点があった。さらに、受信した制御コマンドの内容と、個別の順番とにより子機ごとの待ち時間が設定されるので、親機の制御プログラム変更時には返信信号の衝突が生じるおそれも残されている。
 本発明は、斯かる事情に鑑みてなされたものであり、各子機から親機への返信信号の衝突を回避することができるとともに、全体として処理時間を短縮することができる照明制御システム及び照明制御方法を提供することを目的とする。
 上記目的を達成するために本発明に係る照明制御システムは、互いにデータ通信することが可能な親機及び複数の子機で構成された照明制御システムにおいて、前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、前記子機は、それぞれ連続した数値が識別情報として付与されており、該識別情報に変換係数を乗算して算出された時間だけ遅れて前記親機へ返信信号を送信することを特徴とする。
 上記構成では、親機は、複数の子機すべてに対して送信信号をブロードキャスト送信するので、複数の子機は送信信号に対する処理をほぼ同時に開始することができる。また、子機はそれぞれ自機の識別情報(ID)に任意の変換係数を乗算して算出された時間だけ遅れて親機へ返信信号を送信するので、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 また、本発明に係る照明制御システムは、前記親機は、前記変換係数の更新を受け付ける更新手段を備えることが好ましい。
 上記構成では、親機が変換係数の更新を受け付けることができるので、各子機が返信信号を送信するまでの遅延時間を自由に変更することができる。したがって、システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 また、本発明に係る照明制御システムは、前記親機は、前記子機から受信した返信信号を前記識別情報に対応付けて一時記憶するメモリを備え、該メモリから一の識別情報に対応する返信信号を読み出し、読み出した返信信号に対する処理が完了する都度、前記メモリから次の識別情報に対応する返信信号を読み出すことが好ましい。
 上記構成では、親機のメモリに子機からの返信信号を一時記憶し、親機での処理状況に応じて適切なタイミングで返信信号を読み出すことができる。したがって、システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 次に、上記目的を達成するために本発明に係る照明制御システムは、互いにデータ通信することが可能な親機及び複数の子機で構成された照明制御システムにおいて、前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、前記子機は、それぞれ連続した数値が識別情報として付与されており、前記親機及び他のすべての子機に対して返信信号をそれぞれブロードキャスト送信し、自機の識別情報の1つ前の識別情報の子機からの返信信号を受信した場合に、返信信号をブロードキャスト送信することを特徴とする。
 上記構成では、親機は、複数の子機すべてに対して送信信号をブロードキャスト送信するので、複数の子機は送信信号に対する処理をほぼ同時に開始することができる。また、子機は、親機及び他のすべての子機に対して返信信号をそれぞれブロードキャスト送信し、自機の識別情報の1つ前の識別情報の子機からの返信信号を受信した場合にのみ返信信号をブロードキャスト送信するので、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 次に、上記目的を達成するために本発明に係る照明制御システムは、互いにデータ通信することが可能な親機及び複数の子機で構成された照明制御システムにおいて、前記親機から送信する送信信号は、連続した数値として付与されたすべての前記子機の識別情報を含んでおり、前記親機は、すべての前記子機に対して前記送信信号をブロードキャスト送信し、前記子機は、前記送信信号に含まれる識別情報を順次読み出し、読み出した識別情報が自機の識別情報と一致した時点で前記親機へ返信信号を送信することを特徴とする。
 上記構成では、親機は、複数の子機すべてに対してブロードキャスト送信する送信信号に、連続した数値として付与されたすべての子機の識別情報を含むよう構成してあるので、各子機が送信信号に含まれる識別情報を順次読み出し、自機の識別情報と読み出した識別情報とが一致するまでの時間差によって、各子機が返信信号を送信するタイミングをずらすことができる。したがって、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 次に、上記目的を達成するために本発明に係る照明制御方法は、互いにデータ通信することが可能な親機及び複数の子機で構成されたシステムで実行することが可能な照明制御方法において、前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、前記子機は、それぞれ連続した数値が識別情報として付与されており、該識別情報に変換係数を乗算して算出された時間だけ遅れて前記親機へ返信信号を送信することを特徴とする。
 上記構成では、親機は、複数の子機すべてに対して送信信号をブロードキャスト送信するので、複数の子機は送信信号に対する処理をほぼ同時に開始することができる。また、子機はそれぞれ自機の識別情報(ID)に任意の変換係数を乗算して算出された時間だけ遅れて親機へ返信信号を送信するので、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 また、本発明に係る照明制御方法は、前記親機は、前記変換係数の更新を受け付けることが好ましい。
 上記構成では、親機が変換係数の更新を受け付けることができるので、各子機が返信信号を送信するまでの遅延時間を自由に変更することができる。したがって、システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 また、本発明に係る照明制御方法は、前記親機は、前記子機から受信した返信信号を前記識別情報に対応付けて一時記憶し、一の識別情報に対応する返信信号を読み出し、読み出した返信信号に対する処理が完了する都度、次の識別情報に対応する返信信号を読み出すことが好ましい。
 上記構成では、親機は、子機からの返信信号を一時記憶し、親機での処理状況に応じて適切なタイミングで返信信号を読み出すことができる。したがって、システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 次に、上記目的を達成するために本発明に係る照明制御方法は、互いにデータ通信することが可能な親機及び複数の子機で構成されたシステムで実行することが可能な照明制御方法において、前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、前記子機は、それぞれ連続した数値が識別情報として付与されており、前記親機及び他のすべての子機に対して返信信号をそれぞれブロードキャスト送信し、自機の識別情報の1つ前の識別情報の子機からの返信信号を受信した場合に、返信信号をブロードキャスト送信することを特徴とする。
 上記構成では、親機は、複数の子機すべてに対して送信信号をブロードキャスト送信するので、複数の子機は送信信号に対する処理をほぼ同時に開始することができる。また、子機は、親機及び他のすべての子機に対して返信信号をそれぞれブロードキャスト送信し、自機の識別情報の1つ前の識別情報の子機からの返信信号を受信した場合にのみ返信信号をブロードキャスト送信するので、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 次に、上記目的を達成するために本発明に係る照明制御方法は、互いにデータ通信することが可能な親機及び複数の子機で構成されたシステムで実行することが可能な照明制御方法において、前記親機から送信する送信信号は、連続した数値として付与されたすべての前記子機の識別情報を含んでおり、前記親機は、すべての前記子機に対して前記送信信号をブロードキャスト送信し、前記子機は、前記送信信号に含まれる識別情報を順次読み出し、読み出した識別情報が自機の識別情報と一致した時点で前記親機へ返信信号を送信することを特徴とする。
 上記構成では、親機は、複数の子機すべてに対してブロードキャスト送信する送信信号に、連続した数値として付与されたすべての子機の識別情報を含むよう構成してあるので、各子機が送信信号に含まれる識別情報を順次読み出し、自機の識別情報と読み出した識別情報とが一致するまでの時間差によって、各子機が返信信号を送信するタイミングをずらすことができる。したがって、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 上記構成では、親機は、複数の子機すべてに対して送信信号をブロードキャスト送信するので、複数の子機は送信信号に対する処理をほぼ同時に開始することができる。また、子機はそれぞれ自機の識別情報(ID)に任意の変換係数を乗算して算出された時間だけ遅れて親機へ返信信号を送信するので、一の子機からの返信信号が他の子機からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
本発明の実施の形態1に係る照明制御システムの構成を示す模式図である。 本発明の実施の形態1に係る照明制御システムの信号の送信タイミングを示すフローチャートである。 本発明の実施の形態1に係る照明制御システムの親機における返信コマンド処理の状態を示す模式図である。 本発明の実施の形態1に係る照明制御システムの親機における更新処理等に要する時間と変換係数との関係を示す模式図である。 本発明の実施の形態2に係る照明制御システムの信号の送信タイミングを示すフローチャートである。 本発明の実施の形態2に係る照明制御システムの親機における返信コマンド処理の状態を示す模式図である。 本発明の実施の形態3に係る照明制御システムの信号の送信タイミングを示すフローチャートである。 本発明の実施の形態4に係る照明制御システムの送信信号のデータ構成の例示図である。 本発明の実施の形態4に係る照明制御システムの信号の送信タイミングを示すフローチャートである。 従来の照明制御システムにおける親機と子機との間で行われる電波や赤外線による無線通信の概要を示す説明図である。
 以下、本発明の実施の形態に係る照明制御システムについて、図面に基づいて具体的に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る照明制御システムの構成を示す模式図である。図1に示すように、本実施の形態1に係る照明制御システムは、照明機器であるn(nは自然数)個の子機2と、n個の子機2と無線通信によりデータ通信することが可能に接続されている制御装置である親機1とで構成されている。
 親機1は、演算処理用のマイコン11と無線通信用モジュールである無線通信部12とで構成されている。もちろん、親機1の構成はこれに限定されるものではなく、マイコン11と無線通信部12とが一体化されていても良いし、子機2からの返信信号を一時記憶するメモリ13を備えていても良い。
 子機2は、演算処理用のマイコン21と無線通信用モジュールである無線通信部22とで構成されている。もちろん、子機2の構成はこれに限定されるものではなく、マイコン21と無線通信部22とが一体化されていても良い。また、n個の子機2には、それぞれ識別情報として連続した数値、例えば‘1’から‘n’までのIDが付与されている。
 なお、親機1と複数の子機2とは無線LANで接続されていても良いし、その他、Bluetooth(登録商標)通信、ZigBee通信等の通信方法により、データ通信することが可能に接続されていても良い。
 図2は、本発明の実施の形態1に係る照明制御システムの信号の送信タイミングを示すフローチャートである。図2では、上から下へと時間が経過することを示している。
 まず、制御装置である親機1は、照明を点灯させるコマンドであるONコマンドを、送信信号として複数の子機2すべてに対してブロードキャスト送信する(ステップS101)。各子機2(照明(1)、照明(2)、・・・、照明(n))は、ONコマンドを受信して、照明を点灯させる(ステップS201、ステップS204、ステップS207)。IDが‘1’である子機2(照明(1))は、ID‘1’に変換係数Aを乗算した時間、すなわち(1×A)秒経過したか否かを判断する(ステップS202)。
 子機2(照明(1))が、経過していないと判断した場合(ステップS202:NO)、子機2(照明(1))は、経過待ち状態となる。子機2(照明(1))が、経過したと判断した場合(ステップS202:YES)、子機2(照明(1))は、照明が点灯した旨を示す返信コマンド(返信信号)を親機1へ送信する(ステップS203)。
 親機1は、返信コマンドを受信し、IDが‘1’である子機2の照明ステータスを‘点灯’に更新する(ステップS102)。具体的には、親機1に照明の状態を示す照明ステータスを点灯フラグとして記憶しておき、IDが‘1’である子機2(照明(1))の点灯フラグを‘1’に更新する。
 次に、IDが‘2’である子機2(照明(2))は、ID‘2’に変換係数Aを乗算した時間、すなわち(2×A)秒経過したか否かを判断する(ステップS205)。子機2(照明(2))が、経過していないと判断した場合(ステップS205:NO)、子機2(照明(2))は、経過待ち状態となる。子機2(照明(2))が、経過したと判断した場合(ステップS205:YES)、子機2(照明(2))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS206)。
 親機1は、返信コマンドを受信し、IDが‘2’である子機2の照明ステータスを‘点灯’に更新する(ステップS103)。具体的には、IDが‘2’である子機2(照明(1))の点灯フラグを‘1’に更新する。
 以下、同様に処理を繰り返し、IDが‘n’である子機2(照明(n))は、ID‘n’に変換係数Aを乗算した時間、すなわち(n×A)秒経過したか否かを判断する(ステップS208)。子機2(照明(n))が、経過していないと判断した場合(ステップS208:NO)、子機2(照明(n))は、経過待ち状態となる。子機2(照明(n))が、経過したと判断した場合(ステップS208:YES)、子機2(照明(n))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS209)。
 親機1は、返信コマンドを受信し、IDが‘n’である子機2の照明ステータスを‘点灯’に更新する(ステップS104)。具体的には、IDが‘n’である子機2(照明(n))の点灯フラグを‘1’に更新する。
 このようにすることで、各子機2が親機1への返信コマンドを送信するタイミングをずらすことができる。図3は、本発明の実施の形態1に係る照明制御システムの親機1における返信コマンド処理の状態を示す模式図である。図3に示すように、IDが‘1’である子機2(照明(1))は、時刻t=Aで返信コマンドを親機1へ送信し、親機1は点灯フラグの更新処理等を実行する。
 図3では、親機1での更新処理等に要する時間Tを両矢印で示している。図3に示すように、更新処理等に要する時間Tが変換係数Aよりも小さくなるように変換係数Aを設定することにより、親機1において各返信コマンドに対する処理が重複することを回避することができる。したがって、親機1における演算処理負荷が過大となることを回避することができる。もちろん、更新処理等に要する時間Tと一致するように変換係数Aを設定することにより、全体としての処理時間を最短にすることが可能となる。
 なお、親機1において、更新処理等に要する時間Tに応じて変換係数Aを更新できることが好ましい。例えば親機1が、入力装置及び表示装置(更新手段)を備え、変換係数Aの更新を受け付けるようにすれば良い。システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機2からの返信信号が他の子機2からの返信信号と衝突することがなく、全体として処理時間を短縮することができるからである。
 図4は、本発明の実施の形態1に係る照明制御システムの親機1における更新処理等に要する時間Tと変換係数Aとの関係を示す模式図である。図4に示すように、変換係数Aを更新処理等に要する時間Tよりも小さい値A1に設定した場合、次の返信コマンドの処理が開始されるまでに、前の返信コマンドの処理が完了せず、親機1において各返信コマンドに対する処理が重複することになる。
 一方、変換係数Aを更新処理等に要する時間Tよりも大きい値A2に設定した場合、次の返信コマンドの処理が開始されるまでに、前の返信コマンドの処理が完了するので、親機1において各返信コマンドに対する処理が重複することはない。したがって、親機1における演算処理負荷が過大となることを回避することができる。
 以上のように本実施の形態1によれば、親機1は、複数の子機2すべてに対してONコマンド(送信信号)をブロードキャスト送信するので、複数の子機2は、ONコマンドに対する処理をほぼ同時に開始することができる。また、子機2は、それぞれ自機の識別情報(ID)に任意の変換係数Aを乗算して算出された時間だけ遅れて親機1へ返信コマンド(返信信号)を送信するので、一の子機2からの返信信号が他の子機2からの返信信号と衝突することがなく、しかも変換係数Aを適宜設定することにより、全体として処理時間を短縮することが可能となる。また、親機1が変換係数Aの更新を受け付けることができるので、各子機2が返信信号を送信するまでの遅延時間を自由に変更することができる。したがって、システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機2からの返信信号が他の子機2からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 (実施の形態2)
 本発明の実施の形態2に係る照明制御システムの構成は、実施の形態1と同様であることから、同一の符号を付することにより、詳細な説明は省略する。本実施の形態2では、親機1が、子機2からの返信コマンド(返信信号)を一時記憶するメモリを備える点で実施の形態1とは相違する。
 本実施の形態2では、親機1のマイコン11と無線通信部12との間に、図1において破線で示しているメモリ13を備えており、無線通信部12で受信した返信コマンドを一時記憶する。もちろん、メモリ13は、マイコン11に内蔵されていても良いし、無線通信部12に内蔵されていても良い。
 図5は、本発明の実施の形態2に係る照明制御システムの信号の送信タイミングを示すフローチャートである。図5では、上から下へと時間が経過することを示している。
 まず、制御装置である親機1は、照明を点灯させるコマンドであるONコマンドを、送信信号としてすべての子機2に対してブロードキャスト送信する(ステップS101)。各子機2(照明(1)、照明(2)、・・・、照明(n))は、ONコマンドを受信して、照明を点灯させる(ステップS201、ステップS204、ステップS207)。IDが‘1’である子機2(照明(1))は、ID‘1’に変換係数Aを乗算した時間、すなわち(1×A)秒経過したか否かを判断する(ステップS202)。
 子機2(照明(1))が、経過していないと判断した場合(ステップS202:NO)、子機2(照明(1))は、経過待ち状態となる。子機2(照明(1))が、経過したと判断した場合(ステップS202:YES)、子機2(照明(1))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS203)。
 親機1は、返信コマンドを受信し、メモリ13にID‘1’とともに一時記憶する(ステップS105)。つまり、受信した返信コマンドに対する処理は、該返信コマンドがメモリ13から読み出されるまで実行されない。
 次に、IDが‘2’である子機2(照明(2))は、ID‘2’に変換係数Aを乗算した時間、すなわち(2×A)秒経過したか否かを判断する(ステップS205)。子機2(照明(2))が、経過していないと判断した場合(ステップS205:NO)、子機2(照明(2))は、経過待ち状態となる。子機2(照明(2))が、経過したと判断した場合(ステップS205:YES)、子機2(照明(2))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS206)。
 親機1は、返信コマンドを受信し、メモリ13にID‘2’とともに一時記憶する(ステップS106)。
 以下、同様に処理を繰り返し、IDが‘n’である子機2(照明(n))は、ID‘n’に変換係数Aを乗算した時間、すなわち(n×A)秒経過したか否かを判断する(ステップS208)。子機2(照明(n))が、経過していないと判断した場合(ステップS208:NO)、子機2(照明(n))は、経過待ち状態となる。子機2(照明(n))が、経過したと判断した場合(ステップS208:YES)、子機2(照明(n))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS209)。
 親機1は、返信コマンドを受信し、メモリ13にID‘n’とともに一時記憶する(ステップS107)。
 一方、親機1は、カウンタXを初期化する。具体的にはカウンタXを‘1’に設定する(ステップS111)。親機1は、返信コマンドに対する処理が実行可能であるか否かを判断する(ステップS112)。具体的には、更新処理等が完了しているか否か、すなわち親機1で何らかの処理が実行されているか否かを判断する。
 親機1が、処理が実行可能ではないと判断した場合(ステップS112:NO)、親機1は、処理待ち状態となる。親機1が、処理が実行可能であると判断した場合(ステップS112:YES)、親機1は、メモリ13に一時記憶されている返信コマンドから、ID‘X’に対応付けられた返信コマンドを読み出す(ステップS113)。
 親機1は、読み出した返信コマンドに基づいて、ID‘X’に対応する子機2(照明(X))の照明ステータスを‘点灯’に更新する(ステップS114)。具体的には、ID‘X’に対応する子機2(照明(X))の点灯フラグを‘1’に更新する。
 親機1は、メモリ13に一時記憶されている返信コマンドをすべて読み出したか否かを判断する(ステップS115)。例えば一時記憶されている返信コマンドのヘッダ情報を確認しても良いし、返信コマンドをメモリ13の特定の領域に一時記憶させ、一時記憶させた特定の領域にデータが存在するか否かで判断しても良い。親機1が、すべて読み出したと判断した場合(ステップS115:YES)、親機1は、処理を終了する。親機1が、まだ読み出されていない返信コマンドがあると判断した場合(ステップS115:NO)、親機1は、カウンタXを‘1’インクリメントし(ステップS116)、処理をステップS112へ戻し、上述した処理を繰り返す。
 このようにすることで、親機1が、変換係数Aの更新を受け付ける更新手段を備えていない場合であっても、親機1の演算処理負荷が過大となることを回避することができ、全体として処理時間を短縮することが可能となる。図6は、本発明の実施の形態2に係る照明制御システムの親機1における返信コマンド処理の状態を示す模式図である。
 図6(a)に示すように、変換係数Aを更新処理等に要する時間Tよりも小さい値A1に設定した場合、親機1において各返信コマンドに対する処理が重複する。
 そこで、返信コマンドをメモリ13に一時記憶しておき、図6(b)に示すように、ID‘1’に対応付けられた返信コマンドに対する処理が完了した時点でID‘2’に対応付けられた返信コマンドを読み出して処理を実行する。以下、同様に順次、返信コマンドを読み出して処理を実行することにより、変換係数Aの設定にかかわらず、親機1において各返信コマンドに対する処理が重複することを回避することができる。したがって、親機1における演算処理負荷が過大となることを回避することができる。
 以上のように本実施の形態2によれば、親機1のメモリ13に子機2からの返信コマンド(返信信号)を一時記憶し、親機1での処理状況に応じて適切なタイミングで返信コマンドを読み出すことができる。したがって、システム構成あるいは処理ソフトウエアのバージョン等が相違する場合であっても、一の子機2からの返信信号が他の子機2からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 (実施の形態3)
 本発明の実施の形態3に係る照明制御システムの構成は、実施の形態1及び2と同様であることから、同一の符号を付することにより、詳細な説明は省略する。本実施の形態3では、子機2からの返信コマンド(返信信号)を親機1及び他のすべての子機2に対してブロードキャスト送信する点で実施の形態1及び2とは相違する。
 図7は、本発明の実施の形態3に係る照明制御システムの信号の送信タイミングを示すフローチャートである。図7では、上から下へと時間が経過することを示している。
 まず、制御装置である親機1は、照明を点灯させるコマンドであるONコマンドを、送信信号としてすべての子機2に対してブロードキャスト送信する(ステップS101)。各子機2(照明(1)、照明(2)、・・・、照明(n))は、ONコマンドを受信して、照明を点灯させる(ステップS211、ステップS213、ステップS216)。IDが‘1’である子機2(照明(1))は、照明が点灯した旨を示す返信コマンドを親機1及び他のすべての子機2に対してブロードキャスト送信する(ステップS212)。
 親機1は、返信コマンドを受信し、IDが‘1’である子機2の照明ステータスを‘点灯’に更新する(ステップS102)。具体的には、親機1に照明の状態を示す照明ステータスを点灯フラグとして記憶しておき、IDが‘1’である子機2(照明(1))の点灯フラグを‘1’に更新する。
 一方、返信コマンドを受信した他の子機2では、送信元の子機2のIDが、それぞれ自機のIDの1つ前のIDであるか否かを判断し、1つ前のIDであると判断した場合にのみ返信コマンドをブロードキャスト送信する。
 具体的には、IDが‘2’である子機2(照明(2))は、他の子機2から返信コマンドを受信し、送信元の子機2のIDが‘1’であるか否かを判断する(ステップS214)。子機2(照明(2))が、IDが‘1’ではないと判断した場合(ステップS214:NO)、子機2(照明(2))は、受信待ち状態となる。子機2(照明(2))が、IDが‘1’であると判断した場合(ステップS214:YES)、子機2(照明(2))は、照明が点灯した旨を示す返信コマンドを親機1及び他のすべての子機2に対してブロードキャスト送信する(ステップS215)。
 なお、本実施の形態3では、各IDに対応する子機(照明機器)2がすべて正常に稼動していることを前提としている。しかし、実際には、子機2の中に、故障している子機2(電球切れ)、電球を取り外している子機2(間引き照明)等が存在するおそれがある。したがって、IDの連続性が維持できない場合は、正常に稼働していない子機2に対応するIDをスキップすることが好ましい。
 例えば、ID‘2’に対応する子機2は、ステップS214の処理に入る前にIDが1つ前の子機2、すなわちID‘1’に対応する子機2からの返信コマンドを受信するまで一定時間待機する。ID‘2’に対応する子機2が、一定時間内にID‘1’に対応する子機2からの返信コマンドを受信したときには、ステップS215へ処理を進める。ID‘2’に対応する子機2が、一定時間経過した場合であってもID‘1’に対応する子機2からの返信コマンドを受信しなかったときには、ID‘2’に対応する子機2は、タイムアウトした、すなわちID‘1’に対応する子機2に何らかの異常が存在すると判断して、処理をステップS215へ強制的に進める。
 以下、同様に処理を進め、ID‘n’に対応する子機2は、ステップS217の処理に入る前にIDが1つ前の子機2、すなわちID‘(n-1)’に対応する子機2からの返信コマンドを受信するまで一定時間待機する。ID‘n’に対応する子機2が、一定時間内にID‘(n-1)’に対応する子機2からの返信コマンドを受信したときには、ステップS218へ処理を進める。ID‘n’に対応する子機2が、一定時間経過した場合であってもID‘(n-1)’に対応する子機2からの返信コマンドを受信しなかったときには、ID‘n’に対応する子機2は、タイムアウトした、すなわちID‘(n-1)’に対応する子機2に何らかの異常が存在すると判断して、処理をステップS218へ強制的に進める。
 なお、1つ前のIDに対応する子機2から返信コマンドを受信するまで待機する一定時間は、特に限定されるものではない。例えば、設計上、一コマンドを受信することが可能な時間の2~10倍程度の時間であれば良い。
 親機1は、返信コマンドを受信し、IDが‘2’である子機2の照明ステータスを‘点灯’に更新する(ステップS103)。具体的には、IDが‘2’である子機2(照明(2))の点灯フラグを‘1’に更新する。
 以下、同様に処理を繰り返し、IDが‘n’である子機2(照明(n))は、返信コマンドを受信し、送信元の子機2のIDが‘(n-1)’であるか否かを判断する(ステップS217)。子機2(照明(n))が、IDが‘(n-1)’ではないと判断した場合(ステップS217:NO)、子機2(照明(n))は、受信待ち状態となる。子機2(照明(n))が、IDが‘(n-1)’であると判断した場合(ステップS217:YES)、子機2(照明(n))は、照明が点灯した旨を示す返信コマンドを親機1及び他のすべての子機2に対してブロードキャスト送信する(ステップS218)。
 親機1は、返信コマンドを受信し、IDが‘n’である子機2の照明ステータスを‘点灯’に更新する(ステップS104)。具体的には、IDが‘n’である子機2(照明(n))の点灯フラグを‘1’に更新する。
 ステップS218において、IDが‘n’以外のすべての子機2に対して、IDが‘n’である子機2から返信コマンドがブロードキャスト送信されるが、この場合、返信コマンドを受信した他のすべての子機2において受信待ち状態となる。
 このようにすることで、各子機2は、どのIDの子機2が返信コマンドをブロードキャスト送信したか把握することができ、親機1は子機2からの返信コマンドを重複することなく順次受信することができる。
 以上のように本実施の形態3によれば、親機1は、複数の子機2すべてに対してONコマンド(送信信号)をブロードキャスト送信するので、複数の子機2はONコマンドに対する処理をほぼ同時に開始することができる。また、子機2は、受信した返信コマンドの送信元のID(識別情報)が、自機のIDの1つ前のIDである場合にのみ返信コマンドをブロードキャスト送信するので、一の子機2からの返信信号が他の子機2からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 (実施の形態4)
 本発明の実施の形態4に係る照明制御システムの構成は、実施の形態1乃至3と同様であることから、同一の符号を付することにより、詳細な説明は省略する。本実施の形態4では、ONコマンド(送信信号)に、連続した数値として付与されたすべての子機2のID(識別情報)を含んでいる点で実施の形態1乃至3とは相違する。
 図8は、本発明の実施の形態4に係る照明制御システムの送信信号のデータ構成の例示図である。図8に示すように、本発明の実施の形態4に係るONコマンド(送信信号)には、ヘッダ、送信元ID及びコマンドIDが含まれている。図8の例では、照明を点灯させるコマンドであるONコマンドを示すコマンドID‘01’が含まれている。送信信号のコマンドIDを変更することにより種々のコマンドを送信することができる。本実施の形態4では、ONコマンドに、無線通信によりデータ通信することが可能なすべての子機2のIDを含んでいる。
 図9は、本発明の実施の形態4に係る照明制御システムの信号の送信タイミングを示すフローチャートである。図9では、上から下へと時間が経過することを示している。
 まず、制御装置である親機1は、照明を点灯させるコマンドであるONコマンドを、送信信号としてすべての子機2に対してブロードキャスト送信する(ステップS101)。各子機2(照明(1)、照明(2)、・・・、照明(n))は、ONコマンドを受信して、照明を点灯させる(ステップS221、ステップS226、ステップS231)。各子機2(照明(1)、照明(2)、・・・、照明(n))は、ONコマンドに含まれる最初のIDを読み出す(ステップS222、ステップS227、ステップS232)。
 IDが‘1’である子機2(照明(1))は、読み出したIDが自機のIDと一致しているか否か、すなわち読み出したIDが‘1’であるか否かを判断する(ステップS223)。子機2(照明(1))が、一致していない、すなわち読み出したIDが‘1’ではないと判断した場合(ステップS223:NO)、子機2(照明(1))は、次のIDを読み出し(ステップS224)、処理をステップS223へ戻して上述した処理を繰り返す。
 子機2(照明(1))が、一致する、すなわち読み出したIDが‘1’であると判断した場合(ステップS223:YES)、子機2(照明(1))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS225)。
 親機1は、返信コマンドを受信し、IDが‘1’である子機2の照明ステータスを‘点灯’に更新する(ステップS102)。具体的には、親機1に照明の状態を示す照明ステータスを点灯フラグとして記憶しておき、IDが‘1’である子機2(照明(1))の点灯フラグを‘1’に更新する。
 次に、IDが‘2’である子機2(照明(2))は、読み出したIDが自機のIDと一致しているか否か、すなわち読み出したIDが‘2’であるか否かを判断する(ステップS228)。子機2(照明(2))が、一致していない、すなわち読み出したIDが‘2’ではないと判断した場合(ステップS228:NO)、子機2(照明(2))は、次のIDを読み出し(ステップS229)、処理をステップS228へ戻して上述した処理を繰り返す。
 子機2(照明(2))が、一致する、すなわち読み出したIDが‘2’であると判断した場合(ステップS228:YES)、子機2(照明(2))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS230)。
 親機1は、返信コマンドを受信し、IDが‘2’である子機2の照明ステータスを‘点灯’に更新する(ステップS103)。具体的には、IDが‘2’である子機2(照明(1))の点灯フラグを‘1’に更新する。
 以下、同様の処理を繰り返し、IDが‘n’である子機2(照明(n))は、読み出したIDが自機のIDと一致しているか否か、すなわち読み出したIDが‘n’であるか否かを判断する(ステップS233)。子機2(照明(n))が、一致していない、すなわち読み出したIDが‘n’ではないと判断した場合(ステップS233:NO)、子機2(照明(n))は、次のIDを読み出し(ステップS234)、処理をステップS233へ戻して上述した処理を繰り返す。
 子機2(照明(n))が、一致する、すなわち読み出したIDが‘n’であると判断した場合(ステップS233:YES)、子機2(照明(n))は、照明が点灯した旨を示す返信コマンドを親機1へ送信する(ステップS235)。
 親機1は、返信コマンドを受信し、IDが‘n’である子機2の照明ステータスを‘点灯’に更新する(ステップS104)。具体的には、IDが‘n’である子機2(照明(1))の点灯フラグを‘1’に更新する。
 このようにすることで、IDが連続した数値で付与されている場合、数値が大きいIDが付与されている子機2ほど、自機のIDと読み出したIDとが一致するまでの処理ループの回数が多くなるので、点灯した旨を示す返信コマンドを送信するまでの遅延時間が長くなる。したがって、遅延時間を演算することなく、各子機2が返信コマンドを送信するタイミングをずらすことができる。
 以上のように本実施の形態4によれば、親機1は、複数の子機2すべてに対してブロードキャスト送信するONコマンド(送信信号)に、連続した数値として付与されたすべての子機2の識別情報を含むよう構成してあるので、各子機2がONコマンドに含まれる識別情報を順次読み出し、自機の識別情報と読み出した識別情報とが一致するまでの時間差によって、各子機2が返信コマンド(返信信号)を送信するタイミングをずらすことができる。したがって、一の子機2からの返信信号が他の子機2からの返信信号と衝突することがなく、全体として処理時間を短縮することが可能となる。
 その他、上述した実施の形態は、本発明の趣旨を逸脱しない範囲で変更することができることは言うまでもない。例えば、送信信号のコマンドIDを変更することにより、子機2である照明を消灯させるOFFコマンドを送信することができ、照明の消灯を制御する場合にも同様の効果を奏することが可能となる。
 1 親機
 2 子機
 11、21 マイコン
 12、22 無線通信部
 13 メモリ
 A 変換係数
 T 更新処理等に要する時間

Claims (10)

  1.  互いにデータ通信することが可能な親機及び複数の子機で構成された照明制御システムにおいて、
     前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、
     前記子機は、それぞれ連続した数値が識別情報として付与されており、該識別情報に変換係数を乗算して算出された時間だけ遅れて前記親機へ返信信号を送信することを特徴とする照明制御システム。
  2.  前記親機は、前記変換係数の更新を受け付ける更新手段を備えることを特徴とする請求項1に記載の照明制御システム。
  3.  前記親機は、前記子機から受信した返信信号を前記識別情報に対応付けて一時記憶するメモリを備え、
     該メモリから一の識別情報に対応する返信信号を読み出し、読み出した返信信号に対する処理が完了する都度、前記メモリから次の識別情報に対応する返信信号を読み出すことを特徴とする請求項1に記載の照明制御システム。
  4.  互いにデータ通信することが可能な親機及び複数の子機で構成された照明制御システムにおいて、
     前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、
     前記子機は、それぞれ連続した数値が識別情報として付与されており、前記親機及び他のすべての子機に対して返信信号をそれぞれブロードキャスト送信し、
     自機の識別情報の1つ前の識別情報の子機からの返信信号を受信した場合に、返信信号をブロードキャスト送信することを特徴とする照明制御システム。
  5.  互いにデータ通信することが可能な親機及び複数の子機で構成された照明制御システムにおいて、
     前記親機から送信する送信信号は、連続した数値として付与されたすべての前記子機の識別情報を含んでおり、
     前記親機は、すべての前記子機に対して前記送信信号をブロードキャスト送信し、
     前記子機は、前記送信信号に含まれる識別情報を順次読み出し、読み出した識別情報が自機の識別情報と一致した時点で前記親機へ返信信号を送信することを特徴とする照明制御システム。
  6.  互いにデータ通信することが可能な親機及び複数の子機で構成されたシステムで実行することが可能な照明制御方法において、
     前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、
     前記子機は、それぞれ連続した数値が識別情報として付与されており、該識別情報に変換係数を乗算して算出された時間だけ遅れて前記親機へ返信信号を送信することを特徴とする照明制御方法。
  7.  前記親機は、前記変換係数の更新を受け付けることを特徴とする請求項6に記載の照明制御方法。
  8.  前記親機は、前記子機から受信した返信信号を前記識別情報に対応付けて一時記憶し、
     一の識別情報に対応する返信信号を読み出し、読み出した返信信号に対する処理が完了する都度、次の識別情報に対応する返信信号を読み出すことを特徴とする請求項6に記載の照明制御方法。
  9.  互いにデータ通信することが可能な親機及び複数の子機で構成されたシステムで実行することが可能な照明制御方法において、
     前記親機は、すべての前記子機に対して送信信号をブロードキャスト送信し、
     前記子機は、それぞれ連続した数値が識別情報として付与されており、前記親機及び他のすべての子機に対して返信信号をそれぞれブロードキャスト送信し、
     自機の識別情報の1つ前の識別情報の子機からの返信信号を受信した場合に、返信信号をブロードキャスト送信することを特徴とする照明制御方法。
  10.  互いにデータ通信することが可能な親機及び複数の子機で構成されたシステムで実行することが可能な照明制御方法において、
     前記親機から送信する送信信号は、連続した数値として付与されたすべての前記子機の識別情報を含んでおり、
     前記親機は、すべての前記子機に対して前記送信信号をブロードキャスト送信し、
     前記子機は、前記送信信号に含まれる識別情報を順次読み出し、読み出した識別情報が自機の識別情報と一致した時点で前記親機へ返信信号を送信することを特徴とする照明制御方法。
PCT/JP2013/081900 2013-05-28 2013-11-27 照明制御システム及び照明制御方法 WO2014192185A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013111451 2013-05-28
JP2013-111451 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192185A1 true WO2014192185A1 (ja) 2014-12-04

Family

ID=51988245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081900 WO2014192185A1 (ja) 2013-05-28 2013-11-27 照明制御システム及び照明制御方法

Country Status (1)

Country Link
WO (1) WO2014192185A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135640A (ja) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd 照明用通信システム
JP2006100952A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 通信装置
JP2009259847A (ja) * 2009-08-04 2009-11-05 Panasonic Electric Works Co Ltd 照明用通信システム
JP2012028966A (ja) * 2010-07-22 2012-02-09 Tokyo Gas Co Ltd 無線検針システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135640A (ja) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd 照明用通信システム
JP2006100952A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 通信装置
JP2009259847A (ja) * 2009-08-04 2009-11-05 Panasonic Electric Works Co Ltd 照明用通信システム
JP2012028966A (ja) * 2010-07-22 2012-02-09 Tokyo Gas Co Ltd 無線検針システム

Similar Documents

Publication Publication Date Title
CN108347807B (zh) 照明控制方法及灯具
US20050102040A1 (en) Radio frequency lighting control system programming device and method
US10405404B1 (en) Lighting controls data synchronization
KR20110096572A (ko) 하나의 디바이스의 세팅들을 다른 디바이스에 복사하기 위한, 특히 램프들 간의 세팅들을 복사하기 위한 시스템 및 방법
JP2012089277A (ja) 照明制御装置
WO2013034361A1 (en) An illumination control system, an illuminating device and a secondary controller
JP2017510135A (ja) 無線wifiインテリジェントシーリングライト用の赤外線リモコンで操作可能な家電のシステム
US11432167B2 (en) Selective updating of nodes of a nodal wireless network
JP2008027822A (ja) 照明制御システム
JP2017016868A (ja) 制御システム
WO2014192185A1 (ja) 照明制御システム及び照明制御方法
JP4803287B2 (ja) 照明用通信システム
CN110679183A (zh) 为提供相似照明服务的照明设备组确定值班时间表
KR20140145306A (ko) 조명 시스템
JP4981859B2 (ja) 照明用通信システム
KR102107392B1 (ko) 가로등 무선원격 관제시스템
KR102311131B1 (ko) 단말기, 조명 기구, 정보 단말, 페어링 방법 및 프로그램
JP2023014176A (ja) 照明装置点検システム
JP2005135640A (ja) 照明用通信システム
JP2019061806A (ja) 照明装置
JP7246016B2 (ja) 通信方法、プログラムおよび通信装置
JP7170220B2 (ja) 通信装置、通信システム、通信設備装置、設備システム、通信方法、および、プログラム
JP2011113760A (ja) 照明制御システム
JP7365692B2 (ja) 照明システム及びその制御方法
JP2019160808A (ja) 照明装置および制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP