WO2014191368A1 - Vorrichtung und verfahren zur wärmebehandlung von metallischem nutzgut unter schutzgas-/reaktionsgasatmosphäre im durchlaufbetrieb - Google Patents

Vorrichtung und verfahren zur wärmebehandlung von metallischem nutzgut unter schutzgas-/reaktionsgasatmosphäre im durchlaufbetrieb Download PDF

Info

Publication number
WO2014191368A1
WO2014191368A1 PCT/EP2014/060859 EP2014060859W WO2014191368A1 WO 2014191368 A1 WO2014191368 A1 WO 2014191368A1 EP 2014060859 W EP2014060859 W EP 2014060859W WO 2014191368 A1 WO2014191368 A1 WO 2014191368A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
zone
preheating zone
exhaust gas
gas
Prior art date
Application number
PCT/EP2014/060859
Other languages
English (en)
French (fr)
Inventor
Klaus Schmitz
Original Assignee
Otto Junker Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otto Junker Gmbh filed Critical Otto Junker Gmbh
Priority to EP14726595.3A priority Critical patent/EP3004404B1/de
Publication of WO2014191368A1 publication Critical patent/WO2014191368A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • F27B9/047Furnaces with controlled atmosphere the atmosphere consisting of protective gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D99/0035Heating indirectly through a radiant surface

Definitions

  • the invention relates to a device for heat treatment of metallic Nutzgut under protective gas / reaction gas atmosphere in continuous operation with a furnace chamber surrounding a heating zone furnace housing and a plurality of protruding into the furnace chamber heating elements for heating the furnace chamber and with a heating zone upstream preheating zone, wherein the
  • Combustion gases do not come into contact with the Nutzgut and a method for operating such a device.
  • Firing efficiencies in the order of about 90% at 400 ° C to about 75% at 1,100 ° C reached.
  • the pollutant content generally exceeds the accepted limit values.
  • the so-called “flameless oxidation” can be used to reduce the NO, NOx pollutants.
  • the furnace interior is filled for metallurgical reasons with a special protective gas or reaction gas, which is why the combustion exhaust gas must not get into the furnace interior 21.
  • the heating takes place indirectly, that is, the combustion takes place in special heating elements, namely in the oven interior 21 closed and projecting into the oven housing 22 so-called radiant tubes 24, which emit the heat of combustion on their outer surfaces to the furnace interior 21.
  • the furnace interior 21 usually consists of several modules 23, which are arranged directly behind one another and form a heating zone HZ.
  • the metallic Nutzgut to be heated can, as shown in Fig. 3, for example, from a metal strip M or even by means of a
  • Transportation device individually guided through the oven blocks, bolts, racks with resting support material od, etc. exist.
  • the combustion gases may not be introduced freely into the furnace housing 22, the known continuation of the combustion gases within the furnace interior 21 from the hotter zones to upstream zones at a lower temperature level, so-called preheating, is not possible and the exhaust gas of the burner 25 must be separated by separate exhaust pipes 26 be dissipated.
  • Oxygen instead of air (21% oxygen / 79% nitrogen) is significantly reduced.
  • the absence of nitrogen does not lead to the formation of pollutants NO and NOx.
  • the necessary oxygen must first be produced again in a cost and energy-consuming manner.
  • Protective gas / reaction gas is passed from the cooling part directly to the preheating zone or by interposing a circuit with a heat transfer medium between the cooling part and the preheating zone.
  • a circuit with a heat transfer medium between the cooling part and the preheating zone.
  • only the usually fairly low temperature level of the protective gas / reaction gas in the cooling part is available here.
  • it is due to the heat transfer again to further temperature losses and thus to a reduction in usable energy.
  • the invention is therefore based on the object, the above-mentioned and previously described in detail known devices and corresponding method for heat treatment of metallic Nutzgut under inert gas
  • a collecting device for collecting the exhaust gas of the heating elements and provided by the collecting means and arranged in the interior of the preheating zone heat transfer unit are provided.
  • Heating elements for preheating the metallic Nutzgutes be used in the lying directly in front of the heating zone preheating without it comes to the mixing of exhaust gas and inert gas / reaction gas.
  • the associated method according to the preamble of claim 10 solves the problem in that the exiting the heating elements exhaust collected and the actual heating part upstream, exhaust-heated preheating zone is fed and there its heat via appropriately provided with large surfaces heat transfer surfaces indirectly to that in the preheating zone contained
  • Protective gas / reaction gas transfers are for heating the heating zone as heating elements Rekuperatorbrenner, Regeneratorbrenner,
  • Oxygen burner or cold air burner provided.
  • the heat transfer unit in the preheating zone is ribbed on one side or both sides and / or benoppt.
  • a further embodiment of the invention provides that the heat transfer unit in the preheating of a particularly thermally conductive material such as copper, copper alloys or
  • heating zone is followed by a cooling element, in this case it is particularly appropriate that the
  • Heat recovery Cables are provided for the transport of hot air from the cooling element in the preheating zone in order to achieve an even greater increase in efficiency.
  • the process simulation used also simulates metallic influences in the useful material and incorporates them into the simulation process.
  • a further teaching of the invention envisages that the process simulation used directly relies on the operating and performance states of the exhaust-generating heating elements in the heating zone which are known in plant control.
  • a further embodiment of the invention provides that the protective gas
  • Reaction gas temperature in the heating zone can be controlled by changing the amount of exhaust gas supplied via controllable valves, flaps or conveyors.
  • the operation of the mechanical devices is done automatically by the plant control.
  • the protective gas / reaction gas temperature in the heating zone directly recalls the operating and performance states of the exhaust-generating heating elements in the heating zone which are known in plant control. As a result, an optimal control of the heat treatment process can be achieved.
  • the protective gas / reaction gas temperature in the exhaust-heated preheating zone can be increased by means of additional heating units or - alternatively - can be specifically regulated by means of additional cooling units or heating units.
  • FIG. 1 shows a first exemplary embodiment of a device according to the invention
  • Fig. 2 shows another embodiment of a device according to the invention and a device for heat treatment according to the prior art.
  • various devices for heat treatments are shown.
  • the device shown in FIG. 3 and known from the prior art has already been described.
  • 1 now shows a device for heat treatment of metallic useful material, in the illustrated and insofar preferred embodiment of a metal strip M, which is moved in the direction of the arrow from left to right through a furnace chamber 1.
  • the furnace chamber 1 is enclosed by a furnace housing 2, and consists of a plurality of immediately successively arranged furnace modules 3, in each of which a heating element 4 protrudes.
  • the furnace modules 3 provided with the heating elements 4 form the actual heating zone HZ.
  • each heating element 4 a burner 5 is arranged, the exhaust gases are withdrawn through a separate exhaust pipe 6 and in this way not with the
  • Collector 7 open, which in turn is connected via a line 8 with a heat transfer unit 9 in connection.
  • the heat transfer unit 9 is located in a preheating module 3 ', which forms the preheating zone of the device according to the invention. After the hot exhaust gas has flowed through the heat transfer unit 9 in the preheating module 3 ', it leaves the heat transfer unit 9 via an outlet 10.
  • the heating elements depending on the application, as a recuperative burner,
  • Regenerator burner oxygen burner or cold air burner may be formed.
  • Heat transfer unit 9 not only has a particular shape to achieve a large surface, but is also according to a preferred
  • Embodiment of the invention ribbed on one or both sides and / or benoppt.
  • the heat transfer unit 9 is preferably made of a particularly thermally conductive material such as copper, copper alloys or aluminum. Furthermore, Fig. 1 can still be seen that the device optionally also a
  • Cooling element 3 may have, which is the heating zone HZ downstream and forms a cooling zone KZ.
  • FIG. 2 shows an embodiment of a device according to the invention which is even better than that of FIG. 1, the previously mentioned one being shown
  • Cooling element 3 "realized to also form an active cooling zone KZ
  • Cooling zone KZ works to such an extent that heated protective gas / reaction gas from the cooling element 3 "through a line 11 by means of a pump 12 of the
  • Preheating zone VZ is supplied, where it enters the furnace interior 1
  • Optimized process simulation and plant control ensure optimal energy utilization during heat treatment.
  • the metallic utility product may also be metal bodies moving on a conveyor through the oven interior 1, such as blocks, bolts or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Furnace Details (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Dargestellt und beschrieben sind eine Vorrichtung zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas-/Reaktionsgasatmosphäre im Durchlaufbetrieb mit einem einen Ofenraum (1) als Heizzone (HZ) umgebenden Ofengehäuse (2) und einer Mehrzahl von in den Ofenraum (1) hineinragenden Heizelementen (4) zur Erwärmung des Ofenraums (1) sowie mit einer der Heizzone (HZ) vorgeschalteten Vorwärmzone (VZ), wobei die Verbrennungsabgase nicht mit dem Nutzgut in Berührung kommen sowie ein entsprechendes Verfahren zur Wärmebehandlung. Zur Verbesserung des Wirkungsgrades wird vorgeschlagen, dass die Vorrichtung ferner eine Sammeleinrichtung (7) zum Auffangen des Abgases der Heizelemente und eine von der Sammeleinrichtung (7) gespeiste und im Inneren der Vorwärmzone (VZ) angeordnete Wärmeübertragungseinheit (9) aufweist beziehungsweise, dass die Vorrichtung nach Anspruch 8 zur Wärmerückgewinnung Leitungen (11, 13) zum Transport von Warmluft vom Kühlelement (3") in die Vorwärmzone (VZ) vorgesehen sind und das an den Heizelementen austretende Abgas aufgefangen und einer dem eigentlichen Heizteil vorlagerten, abgasbeheizten Vorwärmzone (VZ) zugeführt wird und dort seine Wärme über Wärmeübertragungsflächen indirekt auf das in der Vorwärmzone (VZ) enthaltene Schutzgas/Reaktionsgas überträgt.

Description

Vorrichtung und Verfahren zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas-/Reaktionsgasatmospähre im Durchlaufbetrieb
Die Erfindung betrifft eine Vorrichtung zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas-/Reaktionsgasatmosphäre im Durchlaufbetrieb mit einem einen Ofenraum als Heizzone umgebenden Ofengehäuse und einer Mehrzahl von in den Ofenraum hineinragenden Heizelementen zur Erwärmung des Ofenraums sowie mit einer der Heizzone vorgeschalteten Vorwärmzone, bei der die
Verbrennungsabgase nicht mit dem Nutzgut in Berührung kommen und ein Verfahren zum Betreiben einer solchen Vorrichtung.
Anlagen zur kontinuierlichen Wärmebehandlung oder zum Anwärmen von
metallischem Nutzgut sind aus der Praxis in vielerlei Ausführungen bekannt. Sie erfordern je nach Einsatzfall Ofenraumtemperaturen im Bereich von ca. 400° C bis ca. 1.300° C. Zur Erzielung möglichst hoher Wirkungsgrade beim Einsatz flüssiger, gasförmiger oder fester Brennstoffe werden bereits seit Jahren Verbrennungssysteme eingesetzt, in denen die Verbrennungsluft mittels der Abgaswärme vorgewärmt wird, sogenannte Rekuperatorbrenner oder Regenerativbrenner. Damit werden
feuerungstechnische Wirkungsgrade in der Größenordnung von ca. 90% bei 400°C bis ca. 75% bei 1.100°C erreicht. Bei einer höheren Luftvorwärmung übersteigt zumeist der Schadstoffanteil (NO, NOx) die akzeptierten Grenzwerte. Oberhalb von ca. 900°C kann die sogenannte„flammenlose Oxidation" zur Reduktion der NO-, NOx- Schadstoffe verwendet werden. In bekannten Anlagen zur Wärmebehandlung unter Schutzgas-
/Reaktionsgasatmosphäre, wie in Fig. 3 dargestellt, ist der Ofeninnenraum aus metallurgischen Gründen mit einem speziellen Schutzgas oder Reaktionsgas gefüllt, weshalb das Verbrennungsabgas nicht in den Ofeninnenraum 21 gelangen darf. Zu diesem Zweck erfolgt die Beheizung indirekt, das heißt, die Verbrennung findet in speziellen Heizelementen statt, nämlich in vom Ofeninnenraum 21 abgeschlossenen und in das Ofengehäuse 22 hineinragenden sogenannten Strahlheizrohren 24, die die Verbrennungswärme über ihre Außenflächen an den Ofeninnenraum 21 abgeben. Der Ofeninnenraum 21 besteht meist aus mehreren Modulen 23, welche unmittelbar hintereinander angeordnet sind und eine Heizzone HZ bilden.
Das zu erwärmende metallische Nutzgut kann dabei, wie in Fig. 3 dargestellt, beispielsweise aus einem Metallband M oder aber auch aus mittels einer
Transportvorrichtung einzeln durch den Ofen geführten Blöcken, Bolzen, Gestellen mit aufliegendem Stützgut od, dgl. bestehen.
Da die Verbrennungsabgase nicht frei in das Ofengehäuse 22 eingeleitet werden dürfen, ist die bekannte Weiterführung der Verbrennungsabgase innerhalb des Ofeninnenraums 21 von den heißeren Zonen in vorgelagerte Zonen auf niedrigerem Temperaturniveau, sogenannte Vorwärmzonen, nicht möglich und das Abgas der Brenner 25 muss durch separate Abgasleitungen 26 abgeführt werden.
Zur Minimierung der verbleibenden Abgasverluste sind weiterhin für sich
Sauerstoffbrenner bekannt, bei denen der Abgasvolumenstrom durch den Einsatz von
Sauerstoff anstelle von Luft (21% Sauerstoff/ 79% Stickstoff) deutlich reduziert wird. Gleichzeitig kommt es aufgrund des fehlenden Stickstoffs nicht zur Entstehung der Schadstoffe NO und NOx. Der notwendige Sauerstoff muss allerdings erst wieder kosten- und energieaufwändig hergestellt werden.
Bei der Wärmebehandlung mit anschließender Kühlung sind für sich ebenfalls bereits Ofenanlagen und entsprechende Verfahren zum Betrieb solcher Ofenanlagen mit Schutzgas-/Reaktionsgasbetrieb bekannt, die die in den Kühlzonen vom Nutzgut wieder entzogene und damit dem Schutzgas/Reaktionsgas zugeführte Energie in einer der Heizzone vorgeschalteten Vorwärmzone zu führen. Dies entweder indem das
Schutzgas-/Reaktionsgasgas aus dem Kühlteil direkt zur Vorwärmzone geführt wird oder indem ein Kreislauf mit einem Wärmeträgermedium zwischen dem Kühlteil und der Vorwärmzone zwischengeschaltet wird. Hier steht jedoch nur das üblicherweise recht niedrige Temperaturniveau des Schutzgas-/Reaktionsgases im Kühlteil zur Verfügung. Bei Verwendung eines Zwischenkreises kommt es aus Gründen der Wärmeübertragung nochmals zu weiteren Temperaturverlusten und damit zu einer Verringerung der nutzbaren Energie.
Der Erfindung liegt daher die Aufgabe zugrunde, die eingangs genannten und zuvor näher beschriebenen bekannten Vorrichtungen und entsprechende Verfahren zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas-
/Reaktionsgasatmosphäre im Durchlaufbetrieb so auszugestalten und weiterzubilden, dass ihr Wirkungsgrad verbessert wird.
Vorrichtungsmäßig erfolgt die Lösung der Aufgabe dadurch, dass bei einer
Vorrichtung nach dem Oberbegriff von Patentanspruch 1 eine Sammeleinrichtung zum Auffangen des Abgases der Heizelemente und eine von der Sammeleinrichtung gespeiste und im Inneren der Vorwärmzone angeordnete Wärmeübertragungseinheit vorgesehen sind. Erfindungsgemäß kann also die Abwärme des Abgases der
Heizelemente zur Vorwärmung des metallischen Nutzgutes in der unmittelbar vor der Heizzone liegenden genutzt Vorwärmzone werden, ohne dass es zur Vermischung von Abgas und Schutzgas/Reaktionsgas kommt.
Das zugehörige Verfahren nach dem Oberbegriff von Patentanspruch 10 löst die Aufgabe dadurch, dass das an den Heizelementen austretende Abgas aufgefangen und einer dem eigentlichen Heizteil vorlagerten, abgasbeheizten Vorwärmzone zugeführt wird und dort seine Wärme über entsprechend mit großen Oberflächen versehene Wärmeübertragungsflächen indirekt auf das in der Vorwärmzone enthaltene
Schutzgas/Reaktionsgas überträgt. Nach weiteren bevorzugten Ausgestaltungen der Erfindung sind zur Beheizung der Heizzone als Heizelemente Rekuperatorbrenner, Regeneratorbrenner,
Sauerstoffbrenner oder Kaltluftbrenner vorgesehen. Zur Verbesserung des Wärmeübergangs ist nach einer weiteren Lehre der Erfindung vorgesehen, dass die Wärmeübertragungseinheit in der Vorwärmzone einseitig oder beidseitig berippt und/oder benoppt ist.
Zur Verbesserung des Wärmedurchgangs sieht eine weitere Ausbildung der Erfindung vor, dass die Wärmeübertragungseinheit in der Vorwärmzone aus einem besonders wärmeleitfähigen Material wie zum Beispiel Kupfer, Kupferlegierungen oder
Aluminium hergestellt ist.
Eine andere Lehre der Erfindung sieht vor, dass der Heizzone ein Kühlelement nachgeschaltet ist, in diesem Fall ist es besonders zweckmäßig, dass zur
Wärmerückgewinnung Leitungen zum Transport von Warmluft vom Kühlelement in die Vorwärmzone vorgesehen sind, um eine noch größere Wirkungsgradsteigerung zu erreichen. In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass mit Hilfe einer
Prozesssimulation dynamische Schwankungen der Wärmebehandlungstemperaturen insbesondere beim Anfahren automatisch kompensiert werden. Auf diese Weise lässt sich eine verbesserte Automatisierung durchführen, wodurch auch die
Bedienerfreundlichkeit weiter verbessert wird.
Nach einer weiteren Lehre der Erfindung simuliert die eingesetzte Prozesssimulation auch metallische Einflüsse im Nutzgut und bindet diese in den Simulationsvorgang ein. Eine weitere Lehre der Erfindung sieht vor, dass die eingesetzte Prozesssimulation direkt auf die in der Anlagensteuerung bekannten Betriebs- und Leistungszustände der abgaserzeugenden Heizelemente in der Heizzone zurückgreift. Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Schutzgas-
/Reaktionsgastemperatur in der Heizzone durch Veränderung der zugeführten Abgasmenge über regelbare Ventile, Klappen oder Fördereinrichtungen geregelt werden kann. Die Betätigung der mechanischen Einrichtungen geschieht dabei automatisiert durch die Anlagensteuerung.
Weiterhin ist bevorzugt, dass die Schutzgas-/Reaktionsgastemperatur in der Heizzone direkt auf die in der Anlagensteuerung bekannten Betriebs- und Leistungszustände der abgaserzeugenden Heizelemente in der Heizzone zurückgreift. Hierdurch lässt sich eine optimale Regelung des Wärmebehandlungsprozesses erreichen.
Schließlich ist vorgesehen, dass die Schutzgas-/Reaktionsgastemperatur in der abgasbeheizten Vorwärmzone mittels zusätzlicher Beheizungseinheiten erhöht oder - alternativ - mittels zusätzlicher Kühleinheiten beziehungsweise Beheizungseinheiten gezielt reguliert werden kann.
Nachfolgend wird die Erfindung anhand einer lediglich Ausführungsbeispiele darstellenden Zeichnung näher erläutert. In der Zeichnung zeigen, jeweils in schematischer Seitenansicht, Fig. 1 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung,
Fig. 2 ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung und eine Vorrichtung zur Wärmebehandlung gemäß dem Stand der Technik. In den Figuren sind verschiedene Vorrichtungen zur Wärmebehandlungen dargestellt. Die in der Fig. 3 gezeigte und aus dem Stand der Technik bekannte Vorrichtung wurde bereits beschrieben. Fig. 1 zeigt nun eine Vorrichtung zur Wärmebehandlung von metallischem Nutzgut, im dargestellten und insoweit bevorzugten Ausführungsbeispiel eines Metallbandes M, welches in Pfeilrichtung von links nach rechts durch einen Ofenraum 1 bewegt wird. Der Ofenraum 1 ist dabei von einem Ofengehäuse 2 umschlossen, und besteht aus einer Mehrzahl unmittelbar hintereinander angeordneter Ofenmodule 3, in die jeweils ein Heizelement 4 hineinragt. Die mit den Heizelementen 4 versehenen Ofenmodule 3 bilden die eigentliche Heizzone HZ.
In jedem Heizelement 4 ist ein Brenner 5 angeordnet, dessen Abgase durch eine separate Abgasleitung 6 abgezogen werden und auf diese Weise nicht mit dem
Innenraum des Ofengehäuses 2, welches zur Wärmebehandlung mit Schutzgas- /Reaktionsgas gefüllt ist, in Berührung treten kann.
Erfindungsgemäß wird nun auch die Wärme des aus den Heizelementen 4
abgezogenen Abgases ausgenutzt, in dem die Abgasleitungen 6 in einer
Sammeleinrichtung 7 münden, welche wiederum über eine Leitung 8 mit einer Wärmeübertragungseinheit 9 in Verbindung steht.
Die Wärmeübertragungseinheit 9 befindet sich in einem Vorwärmmodul 3', welches die Vorwärmzone der erfindungsgemäßen Vorrichtung bildet. Nachdem das heiße Abgas die Wärmeübertragungseinheit 9 im Vorwärmmodul 3' durchströmt hat, verlässt es die Wärmeübertragungseinheit 9 über einen Auslass 10.
Die Heizelemente 4 können, je nach Einsatzfall, als Rekuperatorbrenner,
Regeneratorbrenner, Sauerstoffbrenner oder Kaltluftbrenner ausgebildet sein. Zur Verbesserung des Wärmeübergangs in der Vorwärmzone VZ weist die
Wärmeübertragungseinheit 9 nicht nur eine besondere Form zur Erzielung einer großen Oberfläche auf, sondern ist darüber hinaus gemäß einer bevorzugten
Ausgestaltung der Erfindung einseitig oder beidseitig berippt und/oder benoppt.
Zur Verbesserung des Wärmedurchgangs besteht die Wärmeübertragungseinheit 9 bevorzugt aus einem besonders wärmeleitfähigen Material wie zum Beispiel Kupfer, Kupferlegierungen oder Aluminium. Ferner ist Fig. 1 noch zu entnehmen, dass die Vorrichtung optional auch noch ein
Kühlelement 3" aufweisen kann, welches der Heizzone HZ nachgeschaltet ist und eine Kühlzone KZ bildet.
In Fig. 2 ist ein gegenüber Fig. 1 noch verbessertes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung gezeigt, dabei ist das zuvor angesprochene
Kühlelement 3" verwirklicht, um auch eine aktive Kühlzone KZ zu bilden. Die
Kühlzone KZ funktioniert dabei dermaßen, dass erwärmtes Schutzgas/Reaktionsgas aus dem Kühlelement 3" durch eine Leitung 11 mittels einer Pumpe 12 der
Vorwärmzone VZ zugeführt wird, wo es in den Ofeninnenraum 1 eintretende
Metallband M im Vorwärmmodul 3' vorwärmen kann. Das abgekühlte Schutzgas verlässt dann über eine weitere Leitung 13 das Vorwärmmodul 3' wieder und strömt zurück in das Kühlelement 3". Dieser zusätzliche 'Kreislauf erlaubt eine sehr genaue Temperaturregelung und damit einen hohen Automatisierungsgrad, um den
Wirkungsgrad der Vorrichtung weiter zu verbessern.
Eine optimierte Prozesssimulation und Anlagensteuerung sorgen für eine optimale Energieausnutzung bei der Wärmbehandlung.
Auch wenn nicht dargestellt, kann es sich bei dem metallischen Nutzgut auch um auf einem Förderer durch den Ofeninnenraum 1 bewegte Metallkörper wie Blöcke, Bolzen oder dergleichen handeln.

Claims

Pa te nta nsp rü che
Vorrichtung zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas- /Reaktionsgasatmosphäre im Durchlaufbetrieb mit einem einen Ofenraum (1) als Heizzone [HZ) umgebenden Ofengehäuse (2) und einer Mehrzahl von in den Ofenraum (1) hineinragenden Heizelementen (4) zur Erwärmung des Ofenraums (1) sowie mit einer der Heizzone (HZ) vorgeschalteten Vorwärmzone (VZ), wobei die Verbrennungsabgase nicht mit dem Nutzgut in Berührung kommen, dadurch gekennzeichnet, dass
die Vorrichtung ferner eine Sammeleinrichtung (7) zum Auffangen des Abgases der Heizelemente und eine von der Sammeleinrichtung (7) gespeiste und im Inneren der Vorwärmzone (VZ) angeordnete Wärmeübertragungseinheit (9) aufweist.
Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
zur Beheizung der Heizzone (HZ) Rekuperatorbrenner vorgesehen sind.
Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
zur Beheizung der Heizzone (HZ) Regeneratorbrenner vorgesehen sind.
Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
zur Beheizung der Heizzone (HZ) Sauerstoffbrenner vorgesehen sind.
Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet, dass
zur Beheizung der Heizzone (HZ) Kaltluftbrenner vorgesehen sind. Vorrichtung nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Wärmeübertragungseinheit (9) in der Vorwärmzone (VZ) zur Verbesserung des Wärmeübergangs einseitig oder beidseitig berippt und/oder benoppt ist.
Vorrichtung nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
die Wärmeübertragungseinheit (9) in der Vorwärmzone (VZ] zur Verbesserung des Wärmedurchgangs aus einem besonders wärmeleitfähigen Material wie beispielsweise Kupfer, Kupferlegierungen oder Aluminium hergestellt ist.
Vorrichtung nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
der Heizzone (HZ) ein Kühlelement (3") nachgeschaltet ist.
Vorrichtung nach Anspruch 8,
dadurch gekennzeichnet, dass
zur Wärmerückgewinnung Leitungen (11, 13) zum Transport von Warmluft vom Kühlelement (3") in die Vorwärmzone (VZ) vorgesehen sind.
Verfahren zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas-/ Reaktionsgasatmosphäre im Durchlaufbetrieb, wobei das Nutzgut in einem Ofenraum mittels in den Ofenraum hineinragenden Heizelementen erwärmt werden und wobei die Verbrennungsabgase nicht mit dem Nutzgut in Berührung kommen,
dadurch gekennzeichnet, dass
das an den Heizelementen austretende Abgas aufgefangen und einer dem eigentlichen Heizteil vorlagerten, abgasbeheizten Vorwärmzone zugeführt wird und dort seine Wärme über Wärmeübertragungsflächen indirekt auf das in der Vorwärmzone enthaltene Schutzgas/Reaktionsgas überträgt.
Verfahren nach Anspruch 10,
dadurch gekennzeichnet, dass
mit Hilfe einer Prozesssimulation dynamische Schwankungen der
Wärmebehandlungstemperaturen insbesondere beim Anfahren automatisch kompensiert werden. 12. Verfahren nach Anspruch 11,
dadurch gekennzeichnet, dass
die eingesetzte Prozesssimulation auch metallurgische Einflüsse im Nutzgut simuliert und einbindet.
Verfahren nach Anspruch 11 oder 12,
dadurch gekennzeichnet, dass
die eingesetzte Prozesssimulation direkt auf die in der Anlagensteuerung bekannten Betriebs- und Leistungszustände der Abgas erzeugenden
Heizelemente in der Heizzone zurückgreift.
Verfahren nach einem der Ansprüche 10 bis 13,
dadurch gekennzeichnet, dass
die Schutzgas-/Reaktionsgastemperatur in der Heizzone durch Veränderung zugeführten Abgasmenge über regelbare Ventile, Klappen oder
Fördereinrichtungen geregelt werden kann.
Verfahren nach einem der Ansprüche 10 bis 14,
dadurch gekennzeichnet, dass
die Schutzgas-/Reaktionsgastemperatur in der Heizzone direkt auf die in ι Anlagensteuerung bekannten Betriebs- und Leistungszustände der Abgas erzeugenden Heizelemente in der Heizzone zurückgreift.
16. Verfahren nach einem der Ansprüche 10 bis 15,
dadurch gekennzeichnet, dass
die Schutzgas-/Reaktionsgastemperatur in der abgasbeheizten Vorwärmzone mittels zusätzlicher Beheizungseinheiten zusätzlich erhöht werden kann.
17. Verfahren nach einem der Ansprüche 10 bis 16,
dadurch gekennzeichnet, dass
die Schutzgas-/Reaktionsgastemperatur in der abgasbeheizten Vorwärmzone mittels zusätzlicher Kühleinheiten bzw. Beheizungseinheiten gezielt reguliert werden kann.
PCT/EP2014/060859 2013-05-29 2014-05-26 Vorrichtung und verfahren zur wärmebehandlung von metallischem nutzgut unter schutzgas-/reaktionsgasatmosphäre im durchlaufbetrieb WO2014191368A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14726595.3A EP3004404B1 (de) 2013-05-29 2014-05-26 Vorrichtung und verfahren zur wärmebehandlung von metallischem nutzgut unter schutzgas-/reaktionsgasatmosphäre im durchlaufbetrieb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013105543.5A DE102013105543A1 (de) 2013-05-29 2013-05-29 Vorrichtung und Verfahren zur Wärmebehandlung von metallischem Nutzgut unter Schutzgas-/Reaktionsgasatmosphäre im Durchlaufbetrieb
DE102013105543.5 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014191368A1 true WO2014191368A1 (de) 2014-12-04

Family

ID=50828899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/060859 WO2014191368A1 (de) 2013-05-29 2014-05-26 Vorrichtung und verfahren zur wärmebehandlung von metallischem nutzgut unter schutzgas-/reaktionsgasatmosphäre im durchlaufbetrieb

Country Status (3)

Country Link
EP (1) EP3004404B1 (de)
DE (2) DE102013105543A1 (de)
WO (1) WO2014191368A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518105A (zh) * 2018-12-04 2019-03-26 贵溪骏达特种铜材有限公司 一种特种铜棒冶炼成型用冷却设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155392A1 (it) * 2015-11-09 2017-05-09 Rossano Bono Apparato e metodo di recupero di calore da fumi di scarico di un forno per riscaldo billette
AT520134B1 (de) * 2017-07-13 2020-03-15 Andritz Tech & Asset Man Gmbh Verfahren zur reduktion von stickoxiden in bandbehandlungsöfen
CN112831636A (zh) * 2020-11-27 2021-05-25 河北永洋特钢集团有限公司 货叉扁钢专用热处理装置
DE102021130814A1 (de) * 2021-11-24 2023-05-25 Otto Junker Gesellschaft mit beschränkter Haftung Wärmebehandlungsanlage mit einem Ofen und einer Kühlsektion sowie Verfahren zur Wärmebehandlung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147083A (en) * 1991-09-25 1992-09-15 General Motors Corporation Method and apparatus for convection brazing of aluminum heat exchangers
WO2012168141A1 (de) * 2011-06-10 2012-12-13 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur vorbehandlung eines walzguts vor dem warmwalzen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2605972C3 (de) * 1976-02-14 1979-08-23 Egon 6834 Ketsch Koenn Durchlauf-Anlaßofen für Baustahlmatten mit Wärmerückgewinnung aus dem Einsatzgut und dem Abgas
DE3707099A1 (de) * 1987-03-05 1988-09-15 Junker Gmbh O Verfahren zur reduzierung der schadstoffemissionswerte eines mit schutzgas arbeitenden erwaermungsofens
DE102007062551B4 (de) * 2007-12-20 2012-02-23 Otto Junker Gmbh Vorrichtung und Verfahren zur Erwärmung von Metallbolzen
DE102009009407A1 (de) * 2009-02-18 2010-08-26 Kramer, Carl, Prof. Dr.-Ing. Verfahren zum Betrieb einer Wärmebehandlungsanlage und Vorrichtung zur Durchführung des Verfahrens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147083A (en) * 1991-09-25 1992-09-15 General Motors Corporation Method and apparatus for convection brazing of aluminum heat exchangers
WO2012168141A1 (de) * 2011-06-10 2012-12-13 Siemens Vai Metals Technologies Gmbh Verfahren und vorrichtung zur vorbehandlung eines walzguts vor dem warmwalzen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518105A (zh) * 2018-12-04 2019-03-26 贵溪骏达特种铜材有限公司 一种特种铜棒冶炼成型用冷却设备
CN109518105B (zh) * 2018-12-04 2020-08-21 贵溪骏达特种铜材有限公司 一种特种铜棒冶炼成型用冷却设备

Also Published As

Publication number Publication date
DE202013102749U1 (de) 2013-10-17
EP3004404B1 (de) 2017-02-22
EP3004404A1 (de) 2016-04-13
DE102013105543A1 (de) 2014-12-04

Similar Documents

Publication Publication Date Title
EP3004404B1 (de) Vorrichtung und verfahren zur wärmebehandlung von metallischem nutzgut unter schutzgas-/reaktionsgasatmosphäre im durchlaufbetrieb
AT508555A4 (de) Vorrichtung zur wärmebehandlung von blechzuschnitten
EP3155322B1 (de) Abgasbehandlungsvorrichtung und verfahren zur abgasbehandlung
DE102008005259B4 (de) Verfahren zur Energieeinsparung bei Wärmebehandlungsanlagen mit durch Heizteil und Kühlteil bewegtem Gut
EP0236666B1 (de) Arbeitsverfahren zum Aufheizen von in Stranggusseinrichtungen gegossenen oder in Umformeinrichtungen umgeformten Halbzeugen für deren Einbringen in Umform- und/oder Weiterverarbeitungseinrichtungen
EP2134497B1 (de) Anlage und verfahren zum löten
DE102005053134A1 (de) Anlage zur trockenen Umwandlung eines Material-Gefüges von Halbzeugen
WO2016124309A1 (de) Verfahren, ofeneinrichtung und anlage zum formhärten von werkstücken
EP0078446A1 (de) Verfahren und Vorrichtung zum Vorwärmen
AT513851B1 (de) Vorrichtung zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
DE102010029082A1 (de) Durchlaufofen zum Erwärmen von Werkstücken mit hoher Aufheizrate im Eingangsbereich
AT507669B1 (de) Verfahren zum erwärmen von leichtmetallblöcken
DE102012001742A1 (de) Vorrichtung zum Erwärmen von Blechwerkstücken für ein nachfolgendes Warmumformen und insbesondere Presshärten
DE102015101356A1 (de) Roststab mit Kühlmittel-Kanal
DE102014002258A1 (de) System und Verfahren zum Temperieren von Werkstücken und Warenträger für ein System zurn Temperieren von Werkstücken
AT390322B (de) Vorrichtung zum durchwaermen von stahlteilen
DE202013102653U1 (de) Anlassofen
DE102013015347A1 (de) Ofen zur Erwärmung eines Stahlblechs
DE69204102T2 (de) Hubbalkenofen mit zentraler Ladung zum Beheizen und Speichern von Warmgut.
DE3206238A1 (de) Einrichtung fuer das zusaetzliche rueckgewinnen von waerme im inneren von oefen zum beheizen von z.b. metallischen barren
EP2150762B1 (de) Beschichtungsanlage
WO2009046757A1 (de) Verfahren und vorrichtung zur nutzung der abwärme eines anoden-ringofens
DE102021202737A1 (de) Verfahren zum Verbinden eines wärmeerzeugenden Bauteils mit einer Kühlvorrichtung
DE102020106139A1 (de) Thermisches Behandeln eines Bauteils
EP2508828B1 (de) Vorrichtung und Verfahren zum Erwärmen von Metallbolzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14726595

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2014726595

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014726595

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE