WO2014189298A1 - 발광다이오드 구동장치 - Google Patents

발광다이오드 구동장치 Download PDF

Info

Publication number
WO2014189298A1
WO2014189298A1 PCT/KR2014/004561 KR2014004561W WO2014189298A1 WO 2014189298 A1 WO2014189298 A1 WO 2014189298A1 KR 2014004561 W KR2014004561 W KR 2014004561W WO 2014189298 A1 WO2014189298 A1 WO 2014189298A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
circuit
diode array
voltage
Prior art date
Application number
PCT/KR2014/004561
Other languages
English (en)
French (fr)
Inventor
장민준
장우준
Original Assignee
주식회사 제이앤씨테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이앤씨테크 filed Critical 주식회사 제이앤씨테크
Priority to US14/892,719 priority Critical patent/US9451663B2/en
Priority to EP14801325.3A priority patent/EP3001779A4/en
Priority to JP2016515270A priority patent/JP2016522551A/ja
Priority to CN201480039125.3A priority patent/CN105432149B/zh
Publication of WO2014189298A1 publication Critical patent/WO2014189298A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a light emitting diode driving apparatus. More particularly, the present invention relates to a light emitting diode driving apparatus capable of reducing total harmonic distortion (THD) and improving power factor and visibility.
  • TDD total harmonic distortion
  • LEDs Since light emitting diodes (LEDs) have advantages in terms of light efficiency and durability, they have been spotlighted as light sources for backlights of lighting devices and display devices.
  • the light emitting diode is driven at a low direct current. Therefore, conventionally, a power supply device for changing a commercial AC voltage (AC 220 volts) into a DC voltage was used. For example, switched-mode power supplies (SMPS), linear power and the like have been used. However, these power supplies generally have poor conversion efficiency. In addition, since the life of the electrolytic capacitor is short among the components used, there is a problem that the use of such a power supply shortens the life of the LED lighting device.
  • SMPS switched-mode power supplies
  • the problem with the method of rectifying the AC power after using the bridge circuit is that the LED is driven using a full-wave rectified wave having a frequency of 120 kHz, so that the magnitude of the AC power is emitted in a considerable section around the phase 180 degrees. It is smaller than the driving voltage of the diode, which causes unlit.
  • the human eye feels that the light source flashing above the flicker fusion frequency is turned on continuously rather than intermittently blinking. Therefore, the light emitting diode flashing at a frequency above the blinking fusion frequency seems to remain on in the human eye.
  • Most human eyes feel light sources that are flashing above 75 kHz as continuous.
  • light-sensitive people may also feel the flicker of the light emitting diode flickering at 120 kHz, which may cause photo seizures, so it is desirable that the light flicker as high as possible.
  • Korean Patent Laid-Open Publication No. 10-2010-0104362 discloses a method using a valley fill circuit. Although this method can be expected to improve the flicker phenomenon, a large capacitor must be used, and the power factor is degraded due to the installation of the capacitor. In addition, when the input voltage is lowered, the flicker of 120 mA is shown.
  • a charge / discharge circuit as disclosed in Korean Patent Laid-Open Publication No. 10-2012-0082468 may be used.
  • the flicker phenomenon is improved, but the flicker frequency 120 kHz does not go beyond the limit.
  • the charging start time is shortened and the discharge start time is shortened, thereby making the flicker phenomenon more prominent.
  • Another problem of the method of rectifying the AC power after using the bridge circuit is that, when the driving voltage is set high, the phase period in which the light emitting diodes are turned on is small, so that the light emitting diode utilization efficiency (light emitting diode effective power consumption / direct current rating) is reduced.
  • the power consumption of the light emitting diode during current driving) and the power factor decrease, and in the case where the driving voltage is set low, a large portion of the power is consumed as heat, thereby reducing power efficiency.
  • Korean Patent Laid-Open Publication No. 10-2012-0074502 also includes a charge / discharge block, and the charge / discharge block charges the charge of the driving stage in the charging section, and discharges below the driving voltage of the light emitting diode array to remove the unlit section of the light emitting diode array.
  • a lighting apparatus is disclosed.
  • U.S. Patent No. 8,299,724 uses an over-voltage protection (OVP) element to block the current flowing through the LED array when the voltage at the driving stage is at a peak, thereby increasing the blinking frequency of the LED array to four times the input AC power frequency.
  • OVP over-voltage protection
  • the amount of light energy generated in illumination increases in proportion to the amount of electrical energy input. But how the human eye perceives is another matter.
  • Pulse width modulation control is a control method of controlling power by adjusting the frequency and duty cycle of a pulse.
  • the graph indicated by the circle shows the parent brightness of the LED driven by the constant current method
  • the graph indicated by the triangle shows the apparel according to the change in the duty cycle of the LED driven by the PWM control method when the average intensity is the same as the constant current method.
  • the parent brightness means a psychological amount of contrast corresponding to brightness, which is a physical quantity of light. That is, it means the brightness felt by humans, not the actual brightness.
  • the present invention is to improve the above-mentioned problems, by applying a voltage in the form of a pulse or more than the driving voltage of the light emitting diode around the phase 180 degrees around the phase to minimize the non-illumination period while consuming relatively little power, It is an object of the present invention to provide a power supply circuit that allows a diode to exhibit the same level of brightness.
  • an object of the present invention is to provide a power supply circuit capable of improving the flicker phenomenon by increasing the blinking frequency of the light emitting diode.
  • the current of the rectifier circuit output stage is increased to reduce the total harmonic distortion (THD) of the drive stage current waveform and improve the power factor. It aims to provide.
  • a light emitting diode driving apparatus for achieving the above object is connected to an AC voltage source, a rectifying circuit for full-wave rectifying the AC voltage of the AC voltage source, a plurality of light emitting diode arrays connected to the output side of the rectifying circuit
  • a light emitting diode driving apparatus including a light emitting diode array including blocks and a charge and discharge circuit configured to be charged by a voltage output from the rectifying circuit, the light emitting diode driving apparatus further comprising a discharge switch, a block switch circuit, and a controller.
  • the discharge switch is configured to connect or block a path through which energy charged in the charge / discharge circuit is transferred to the light emitting diode array.
  • the block switch circuit is configured to adjust the number of light emitting diode array blocks to which a voltage output from the rectifying circuit is transferred among a plurality of light emitting diode array blocks.
  • the controller is configured to discharge the charge / discharge circuit after the entire light emitting diode array is turned off after the light emitting diode array is turned off in a section A where the instantaneous value of the voltage output from the rectifying circuit is less than a predetermined value.
  • the discharge switch and the block switch circuit are controlled to turn on and off at least one of the light emitting diode array blocks.
  • the controller may be configured to block the block switch so that the number of the light emitting diode array blocks that are turned on increases as the instantaneous value of the voltage output from the rectifying circuit increases in a section B where the instantaneous value of the voltage output from the rectifying circuit is greater than or equal to the predetermined value. To control the circuit.
  • the above-described light emitting diode driving apparatus may further include a flashing switch configured to connect or block a path through which the voltage output from the rectifying circuit is transmitted to the light emitting diode array, wherein the controller is configured to emit the light at least once in the section B.
  • the flashing switch may be controlled to flash the diode array.
  • the above-described LED driving device is connected to the output side of the rectifying circuit to store or consume electrical energy in order to reduce the total harmonic distortion (THD) of the current waveform output from the rectifying circuit. It may further include a power factor correction circuit.
  • the apparatus may further include a charging switch configured to connect or block a path through which the voltage output from the rectifier circuit is transmitted to the charge / discharge circuit, and the controller may adjust the total harmonic distortion rate of the current waveform output from the rectifier circuit.
  • the charge switch may be controlled to delay a time point at which the voltage output from the rectifier circuit is transferred to the charge / discharge circuit in section B.
  • the apparatus may further include a charging current limiting circuit configured to limit the charging current of the charging / discharging circuit to reduce the total harmonic distortion rate of the current waveform output from the rectifier circuit.
  • the block switch circuit may include a path for bypassing a portion of the plurality of light emitting diode array blocks and a block switch provided at the path.
  • a current detection circuit or the light emitting diode array block connected to the light emitting diode array block in series with a resistor provided in a path for bypassing the light emitting diode array block and detecting a current flowing through the light emitting diode array block.
  • a voltage detection circuit connected to detect a voltage applied to the light emitting diode array block, wherein the controller is further configured to block the current or voltage value detected by the current detection circuit or the voltage detection circuit if the value is greater than or equal to a predetermined value. It may be configured to switch off.
  • the light emitting diode driving apparatus uses a charge / discharge circuit and a switch to apply a voltage higher than the driving voltage to a section around a phase of 180 degrees at which the magnitude of the voltage applied by the AC voltage source is less than the driving voltage and the LED cannot be driven. Can be authorized. Through this, it is possible to increase the flashing frequency of the light emitting diode to 240 kHz or more (60 VAC case). Since the light emitting diode is flickered by the pulse voltage in the region around the phase 180 degrees where the light emitting diode is turned off, the flicker frequency of the light emitting diode is doubled. This can improve the flicker phenomenon.
  • the light emitting diode is flickered by the pulse voltage in the region around the phase of 180 degrees, and according to the law of the broker Schulcher (Broca-Sulzer), the power consumption is relatively low. It can maintain the same level of brightness as lighting systems using circuits.
  • the current of the rectifier circuit output stage is increased in accordance with the increase in the voltage output from the rectifier circuit, thereby reducing the total harmonic distortion (THD, Total hamonic distortion) of the drive stage current waveform, Power factor can be improved.
  • TDD Total harmonic distortion
  • the light emitting diode is not driven at a considerable interval around the phase of 180 degrees by applying a pulse voltage equal to or greater than the driving voltage around 180 degrees, thereby improving power supply efficiency and utilization efficiency of the light emitting diode. Is improved at the same time.
  • FIG. 1 is a view schematically showing an embodiment of a light emitting diode driving apparatus according to the present invention.
  • FIG. 2 is a block diagram of one embodiment of the controller shown in FIG.
  • 3A is a diagram illustrating an example of a voltage waveform and a current waveform of an input source in the LED driving apparatus shown in FIG. 1.
  • FIG. 3B is a diagram illustrating an example of a voltage waveform of an input source and a current waveform applied to the LED array in the LED driving apparatus shown in FIG. 1.
  • FIG. 4A is a diagram illustrating another example of the voltage waveform and the current waveform of the input source in the LED driving apparatus shown in FIG. 1.
  • FIG. 4B is a diagram illustrating another example of a voltage waveform of an input source and a current waveform applied to the LED array in the LED driving apparatus shown in FIG. 1.
  • 5 to 7 are diagrams schematically showing other embodiments of the LED driving apparatus according to the present invention.
  • FIG. 8A is a diagram illustrating an example of a voltage waveform and a current waveform of an input source in the LED driving apparatus shown in FIG. 7.
  • FIG. 8B is a diagram illustrating an example of a voltage waveform of an input source and a current waveform applied to the LED array in the LED driving apparatus shown in FIG. 7.
  • FIG. 9 is a view schematically showing another embodiment of a light emitting diode driving apparatus according to the present invention.
  • FIG. 13 is a graph illustrating a change in the ratio of the average brightness and the average intensity according to the duty cycle.
  • FIG. 1 is a view schematically showing an embodiment of a light emitting diode driving apparatus according to the present invention.
  • an embodiment of a light emitting diode driving apparatus includes a light emitting diode array 2, a discharge switch 11, a charge switch 12, a block switch 13, a controller 20, and a charge.
  • the light emitting diode array 2 of the light emitting diode driving apparatus includes a first light emitting diode array block 2-1 and a second light emitting diode array block 2-2 connected in series.
  • the driving voltage of the first light emitting diode array block 2-1 may be about 50V
  • the driving voltage of the second light emitting diode array block 2-2 may be about 200V.
  • the first light emitting diode array block 2-1 and the second light emitting diode array block 2-2 may include one or more light emitting diodes connected in series, in parallel or in parallel.
  • the second light emitting diode array block 2-2 or the whole of the light emitting diode array 2 is driven according to the instantaneous change of the voltage output from the rectifying circuit.
  • the number of light emitting diode array blocks to be turned on increases as the instantaneous value increases, and the number of light emitting diode array blocks to be turned on as the instantaneous value decreases. That is, as the instantaneous value increases after the second light emitting diode array block 2-2 is turned on, the entire light emitting diode array 2 is turned on. As the instantaneous value decreases again, the first light emitting diode array block 2-1 is turned off, and only the second light emitting diode array block 2-2 remains lit.
  • the Vt value may be a minimum voltage value capable of driving the second LED array block 2-2.
  • the light emitting diode array block is not turned on by the voltage output from the rectifier circuit.
  • the instantaneous value is low, and the second LED array block 2-2 is not turned on by the voltage output from the rectifier circuit.
  • the instantaneous value in section A may be greater than or equal to the value that the first light emitting diode array block 2-1 can turn on.
  • the first light emitting diode array block 2- Since the voltage output from the rectifier circuit 3 cannot be applied only to 1), when the instantaneous value reaches section A, the entire light emitting diode array 2 is turned off.
  • the entire light emitting diode array 2 or the second light emitting diode array block 2-2 is turned on by the electric energy supplied from the charge / discharge circuit 30 and then turned off again.
  • the block switch 13 is in the ON state, only the second LED array block 2-2 flashes, and in the OFF state, the entire LED array 2 blinks.
  • the light emitting diode driving apparatus effectively controls the charging time and the discharging time of the charge / discharge circuit 30 connected to the rectifier circuit 3 so that the instantaneous value of the voltage output from the rectifier circuit 3 belongs to section A.
  • the LED array 2 also blinks at least once. Through this, it is possible to increase the light emitting diode utilization efficiency (light emitting diode effective power consumption / light emitting diode power consumption when driving a DC rated current), to improve the flicker phenomenon and to improve visibility.
  • the rectifier circuit 3 serves to full-wave rectify the input AC voltage.
  • the rectifier circuit 3 may be a bridge diode circuit.
  • the rectifier circuit 3 is connected to the AC voltage source 1 as shown in FIG.
  • the switches 11, 12, and 13 may be formed of a metal oxide semiconductor field effect transistor (MOSFET) device or the like.
  • Charge is installed in the path connecting the output terminal and the charge and discharge circuit 30 of the discharge switch 11 and the rectifier circuit 3 is installed in the path connecting the front end of the charge and discharge circuit 30 and the light emitting diode array (2)
  • the switch 12 is used to adjust the discharge time and the charge time of the charge / discharge circuit 30. By adjusting the charging time point, the current waveform flowing through the output of the rectifier circuit 3 can be adjusted close to the voltage waveform, and the harmonic distortion can be reduced. By adjusting the discharge point, all or some of the blocks of the light emitting diode array 2 flash at least once in the section A.
  • the charging switch 12 When the charging switch 12 is turned on, the output terminal of the rectifier circuit 3 and the charge / discharge circuit 30 are connected, and the charge is generated in the charge / discharge circuit 30.
  • the discharge switch 11 When the discharge switch 11 is turned on, the charge / discharge circuit 3 is turned on. And the light emitting diode array 2 are connected, and discharge occurs in the charge / discharge circuit 30 so that power is supplied to the light emitting diode array 2.
  • the block switch 13 is installed in the bypass path 8 of the first light emitting diode array block 2-1.
  • the block switch 13 and the bypass path 8 constitute a block switch circuit.
  • the block switch 13 When the block switch 13 is turned off, current flows through the entire light emitting diode array 2.
  • the block switch 13 When the block switch 13 is turned on, current flows only in the second LED array block 2-2. That is, the block switch 13 determines whether the current flows only in the second LED array block 2-2 or whether the current flows through the entire LED array 2.
  • the block switch circuit may be configured in various forms by installing one or a plurality of switching elements in a line connecting the elements in addition to the method of installing the switch in the bypass line as shown in FIG. 1.
  • the controller 20 controls the discharge time and the charging time by checking the magnitude or phase of the voltage output from the rectifier circuit 3 and controlling the discharge switch 11 and the charge switch 12.
  • the controller 20 controls the on / off time of the block switch 13.
  • the block switch 13 When the magnitude of the voltage output from the rectifier circuit 3 or the charge / discharge circuit 30 is greater than or equal to the driving voltage of the light emitting diode array 2, the block switch 13 is turned off to block the bypass path 8 to emit light. Current flows through the diode array 2.
  • the controller 20 may include a voltage or phase detection circuit 22 and / or a switch controller 23 and / or a memory 21.
  • the voltage detection circuit checks in which range the instantaneous value of the voltage output from the rectifier circuit 3 falls.
  • the voltage detection circuit may use various circuits widely used in the electronic circuit field. For example, a voltage comparator using a plurality of OP amplifiers can be used.
  • the controller 20 may use a phase detection circuit instead of the voltage detection circuit that directly detects the voltage.
  • the phase detection circuit can be configured using a zero cross detector or the like capable of detecting the instant when the instantaneous value of the voltage becomes zero. Since the instantaneous value of the voltage output from the rectifier circuit 3 changes depending on the phase, the change of the instantaneous value can be known through the change of phase. If the input power source is unstable, it is preferable to use a voltage detection circuit.
  • the memory 21 stores driving data for driving the switches 11, 12, and 13 according to the magnitude of the voltage output from the rectifier circuit 3.
  • the driving data is determined according to the number and driving voltage of the light emitting diodes, the flashing frequency of the light emitting diode array required, and the like.
  • the switches 11, 12, and 13 may be controlled according to a voltage or phase detected for each channel without using a memory, or by using a counter element such as a timer.
  • the charging and discharging circuit 30 is charged by the output voltage of the rectifying circuit 3 in section B and then discharged in section A, and serves to apply power to the light emitting diode array 2.
  • a capacitor is used as an example of the charge / discharge circuit 30.
  • the charging switch 12 When the charging switch 12 is turned on, the charge / discharge circuit 30 is connected to the rectifier circuit 3 to store electrical energy in the charge / discharge circuit 30.
  • the discharge switch 11 When the discharge switch 11 is turned on, the charge / discharge circuit 30 is connected to the light emitting diode array 2 side and discharge occurs in the charge / discharge circuit 30 so that power is supplied to the light emitting diode array 2 side.
  • An inductor may be used as the charge / discharge circuit 30.
  • the current limiting circuit or the voltage limiting circuit 4 serves to limit the current or voltage applied to the load.
  • the current limiting circuit or the voltage limiting circuit is for preventing excessive current from flowing through the light emitting diode array 2 and is connected in series to the light emitting diode array 2.
  • the current limiting circuit can be implemented with a resistor, a capacitor, a bipolar transistor, a MOS transistor, or the like.
  • the method may be implemented by a combination of a field effect transistor (FET) or a transistor (TR) and an auxiliary device, and a method using an integrated circuit such as an OP AMP or a regulator.
  • the LED driving apparatus may further include a surge protection circuit composed of a resistor 6, a surge suppression element (not shown), a fuse 5, and the like for protecting the LED driving apparatus from a surge voltage.
  • the power factor correction circuit 7 may further include a power factor correction circuit 7 configured to store or consume energy in order to minimize the difference between the current waveform and the voltage waveform flowing through the output of the rectifier circuit 3.
  • This circuit may consist of a resistor, a capacitor, or a switch.
  • it may be composed of a resistor installed in parallel to the rectifier circuit (3) and a switch provided in the path connecting the resistor and the rectifier circuit (3).
  • the stored energy may be used for supplying driving power to the controller 20 and the switches 11, 12, and 13.
  • one embodiment of the LED driving apparatus may further include a flashing switch 14 that serves to pulse the LED array (2).
  • the flashing switch 14 serves to change the flashing frequency of the light emitting diode array 2.
  • the second light emitting diode array block 2-2 or the entire light emitting diode array 2 is driven by the pulse voltage, and the time when the flashing switch 14 is turned on By adjusting the time of over and off, the shape of the pulse voltage is determined.
  • the flashing switch 14 may serve as an over-voltage protection (OVP) device that blocks a current flowing through the LED array when the voltage of the driving stage is at a peak value.
  • OVP over-voltage protection
  • the apparatus further includes a charging current limiting circuit 9 configured to limit the charging current of the charging / discharging circuit 30 to reduce the total harmonic distortion rate of the current waveform.
  • the charge current limiting circuit 9 is connected in series with the charge / discharge circuit 30 to limit the current flowing through the charge / discharge circuit 30.
  • the charging current limiting circuit 9 may be implemented with a resistor, a capacitor, a bipolar transistor, a MOS transistor, or the like.
  • FIG. 3A illustrates an example of a voltage waveform and a current waveform of an input source in the LED driving apparatus shown in FIG. 1
  • FIG. 3B illustrates an example of the LED driving apparatus shown in FIG. 1.
  • FIG. 1 shows an example of a voltage waveform of an input source and a current waveform applied to a light emitting diode array. 3A and 3B, the operation of one cycle of the light emitting diode driving apparatus will be described.
  • the controller 20 turns off the discharge switch 11 and the charge switch 12, The block switch 13 is turned on (it is not discharged even when the discharge switch 11 is turned on since it is still charged).
  • the second light emitting diode array block 2-2 When the magnitude of the voltage output from the rectifier circuit 3 reaches section B, which is greater than or equal to Vt, the second light emitting diode array block 2-2 may be turned on by the voltage output from the rectifier circuit 3. The light emitting diode array block 2-2 is turned on. Since the block switch 13 of the bypass path 8 is turned on, no current flows to the first light emitting diode array block 2-1. As shown in (b) of FIG. 3, the current flowing in the second light emitting diode array block 2-2 increases as the magnitude of the voltage output from the rectifier circuit 3 increases, but the voltage / current limiting circuit ( 4) does not increase above a certain level.
  • the controller 20 turns off the block switch 13 when the magnitude of the voltage output from the rectifier circuit 3 is equal to or greater than a value Va that can light up the entire light emitting diode array 2. Since the block switch 13 of the bypass path is turned off, the entire light emitting diode array 2 is turned on. At this time, as shown in (b) of FIG. 3, the current limited by the voltage / current limiting circuit 4 continues to flow through the light emitting diode array 2.
  • the controller turns on the charging switch 12 at a certain point in the section B to allow current to flow in the charge / discharge circuit 30.
  • the value of the current flowing through the input terminal of the circuit increases.
  • the current flowing through the LED array 2 is limited by the current or the voltage limiting circuit 4 and is constant, but the value of the current flowing through the input terminal of the circuit increases by the value of the current flowing through the charge / discharge circuit 30.
  • the current value flowing through the charge / discharge circuit 30 is limited by the charge current limiting circuit 9. In this way, by bringing the current waveform of the circuit closer to the input voltage waveform, the total harmonic distortion (THD) of the current waveform can be reduced and the power factor can be improved.
  • TDD total harmonic distortion
  • the controller 20 turns on the block switch 13 again so that current flows only in the second light emitting diode array block 2-2. do.
  • the controller 20 turns on the discharge switch 11 after a predetermined time and transmits electric energy charged in the capacitor to the LED array 2. Supply to turn the LED array 2 off and on. Then, the discharge switch 11 is turned off again so that the light emitting diode array 2 is turned off. At this time, the time point at which the discharge is started and stopped is determined in conjunction with variables such as the forward voltage of the light emitting diode array 2, the charge capacity, the voltage variation of the input source, and the set driving frequency. The discharge start time and the stop time can be adjusted to control the time at which the entire light emitting diode array 2 is turned off and on at the section A. FIG.
  • FIG. 4A is a view showing another example of the voltage waveform and the current waveform of the input source in the LED driving apparatus shown in FIG. 1, and FIG. 4B is the LED driving apparatus shown in FIG.
  • FIG. 4A is a view showing another example of the voltage waveform and the current waveform of the input source in the LED driving apparatus shown in FIG. 1
  • FIG. 4B is the LED driving apparatus shown in FIG.
  • Another example of a voltage waveform of an input source and a current waveform applied to a light emitting diode array is shown.
  • the light emitting diode array 2 blinks in section B, and the blinking frequency of the light emitting diode array 2 increases to 240 kHz or more.
  • the flashing switch 14 When the magnitude of the voltage output from the rectifier circuit 3 reaches a section for turning off the light emitting diode array 2 in section B, the flashing switch 14 is turned off and then turned on again after a predetermined time. When blinking once in section B, as shown in Figure 4, the flashing frequency is increased to 360 Hz.
  • the number of flashes can be increased in section B.
  • the time that the flashing switch 14 is on / off it is also possible to adjust the duty cycle and frequency. It is preferable to adjust the time at which the flashing switch 14 is turned on / off so that the average power applied to the load is constant. If the on-time of the flashing switch 14 is increased in a section where the voltage is small, and the on-time of the flashing switch 14 is shortened when the voltage is large, the magnitude of the average power applied to the load can be made constant. have.
  • the ON state of the block switch 13 is maintained in this embodiment. Therefore, in the section A, only the second light emitting diode array block 2-2, not the entire light emitting diode array 2, blinks.
  • the block switch 13 is turned on in the section A so as to turn on the first light emitting diode array block. (2-1) can be bypassed.
  • the current waveform may be adjusted by increasing the current flowing in the charge / discharge circuit 30 in the section where the flashing switch 14 is turned off.
  • the current flowing through the charge / discharge circuit 30 may be increased in the section where the flashing switch 14 is turned off by adjusting the current limit value of the charge current limiting circuit 9.
  • FIG. 5 is a view schematically showing another embodiment of a light emitting diode driving apparatus according to the present invention.
  • the controller 20 detects a change in the instantaneous value of the voltage output from the rectifier circuit 3 to control the block switch 13 of the bypass path 8.
  • the present embodiment differs in that the block switch 13 is controlled by using the current value detected by the current detection circuit 25 provided in series with the first light emitting diode array block 2-1.
  • the current detection circuit 25 installed in series with the first light emitting diode array block 2-1 is used.
  • the voltage detection circuit provided in parallel with the first light emitting diode array block 2-1 detects the voltage.
  • the block switch 13 may be controlled using the voltage value.
  • the current flowing through the resistor 10 of the bypass path 8 gradually increases.
  • the voltage applied to the resistor 10 of the bypass path 8 becomes a constant voltage equal to or greater than the driving voltage of the first light emitting diode array block 2-1.
  • a current also flows in the first light emitting diode array block 2-1 and the current detection circuit 25, which are connected in parallel with the resistor 10.
  • FIG. 6 is a view schematically showing another embodiment of a light emitting diode driving apparatus according to the present invention.
  • the first light emitting diode array block 2-1 and the second light emitting diode array block 2-2 which are connected in series are selectively driven according to the instantaneous value change of the voltage output from the rectifier circuit 3. Since the method differs from the embodiment shown in FIG. 1, only the details will be described. That is, in the configuration of the block switch 15, there is a difference from the embodiment shown in FIG.
  • the present embodiment has a path connecting the output side of the rectifying circuit 3 and the front end of the second light emitting diode array block 2-2, so that the block switch ( 15) is installed.
  • the controller 20 turns on the block switch 15 in section B so that current flows only in the second light emitting diode array block 2-2.
  • the block switch 15 is turned off so that a current flows through the entire light emitting diode array 2.
  • the block switch 15 is turned off, the discharge switch 11 is turned on, and current flows through the light emitting diode array 2 by electric energy of the charge / discharge circuit 30.
  • the flashing switch 14 may be continuously turned on in the entire section, and when the flashing frequency is changed, the on / off may be repeated in the section B.
  • FIG. 7 is a view schematically showing another embodiment of a light emitting diode driving apparatus according to the present invention.
  • the discharge switch 27 connected in series with the charge / discharge circuit 30 simultaneously performs the role of the charge switch. That is, charging is progressed when the discharge switch 27 is turned on, and charging is stopped when turned off. When the discharge switch 27 is turned on again in the charged state, the discharge proceeds, and when the discharge switch 27 is turned off, the discharge is stopped.
  • FIG. 8A illustrates an example of a voltage waveform and a current waveform of an input source in the LED driving apparatus shown in FIG. 7, and FIG. 8B illustrates an example of the LED driving apparatus shown in FIG. 7.
  • FIG. 1 shows an example of a voltage waveform of an input source and a current waveform applied to a light emitting diode array. Referring to FIGS. 8A and 8B, the operation of one cycle of the light emitting diode driving apparatus will be described.
  • the controller 20 When the controller 20 measures the magnitude of the voltage output from the rectifier circuit 3 and determines that the controller 20 belongs to section A which is less than the driving voltage of the second light emitting diode array block 2-2, the controller 20 The temporary discharge switch 27 is turned off, and the block switch 13 is turned on.
  • the voltage output from the rectifying circuit 3 reaches the second light emitting diode array block. Since the driving voltage is higher than (2-2), the second light emitting diode array block 2-2 is turned on. Since the block switch 13 of the bypass path 8 is turned on, no current flows to the first light emitting diode array block 2-1. The current flowing through the second light emitting diode array block 2-2 increases as the magnitude of the voltage output from the rectifying circuit 3 increases, but does not increase above a certain level by the voltage / current limiting circuit 4.
  • the controller 20 turns off the block switch 13. Since the block switch 13 of the bypass path is turned off, the entire light emitting diode array 2 is turned on. At this time, as shown in FIG. 8B, the current limited by the voltage / current limiting circuit 4 flows to the light emitting diode array 2.
  • the controller 20 turns on the block switch 13 again to allow current to flow only in the second light emitting diode array block 2-2.
  • the charge / discharge circuit 30 is separated from the second light emitting diode array block 2-2 to maintain the electrical energy stored therein.
  • the controller 20 turns on the discharge switch 27 after a predetermined time and transmits the electric energy charged in the capacitor to the LED array 2. Supply to turn the LED array 2 off and on. Then, the discharge switch 27 is turned off to turn off the LED array 2.
  • FIG. 9 is a view schematically showing another embodiment of a light emitting diode driving apparatus according to the present invention.
  • the light emitting diode array 2 includes three blocks 2-1, 2-2a and 2-2b. As the magnitude of the voltage output from the rectifier circuit 3 increases in section B, the LED array 2 is first turned on, and then the second LED array is lit. The block 2-2a and the third light emitting diode array block 2-2b are turned on together. When the voltage increases further, the entire LED array 2 is turned on. That is, the number of light emitting diodes to be turned on increases as the voltage increases in section B.
  • the first block switch 16a is turned on at the beginning of the section B so that current flows only in the second light emitting diode array block 2-2a.
  • the first block switch 16a is turned off.
  • the second block switch 16b is turned on so that current flows in the second light emitting diode array block 2-2a and the third light emitting diode array block 2-2b.
  • both the first block switch 16a and the second block switch 16b are turned off, so that a current flows through the entire light emitting diode array 2.
  • the block switches may be controlled to reduce the number of light emitting diode array blocks that are turned on as the magnitude of the voltage output from the charge / discharge circuit 30 decreases.
  • the entire LED array 2 may be turned off after a certain time after being turned on, but when sufficient electric energy is not stored due to the charging current limitation, charging and discharging
  • the number of light emitting diode array blocks decreases, and block switches may be controlled to turn off the whole after a predetermined time.
  • the first block switch 17a is turned on at the beginning of the section B so that current flows only in the second light emitting diode array block 2-2a.
  • the first block switch 17a is turned off.
  • the second block switch 17b is turned on so that current flows in the second light emitting diode array block 2-2a and the third light emitting diode array block 2-2b.
  • both the first block switch 17a and the second block switch 17b are turned off, so that a current flows through the entire light emitting diode array 2.
  • the first block switch 18a and the second block switch 18b are both turned on at the beginning of the section B, and current flows only in the second light emitting diode array block 2-2a.
  • the first block switch 18a is turned off to generate the first light.
  • Current flows through the second light emitting diode array block 2-2a and the third light emitting diode array block 2-2b.
  • both the first block switch 18a and the second block switch 18b are turned off, so that a current flows in the entire light emitting diode array 2.
  • the current flowing through the third light emitting diode array block 2-2b and the first light emitting diode array block 2-1 is detected by the current detection circuit 25. It differs from the embodiment shown in FIG. 10 in that the first block switch 19a and the second block switch 19b are controlled.
  • the block switch for selectively flowing current to the blocks of the light emitting diode array can be implemented in various forms in addition to the above-described embodiment, the modified form is also included in the scope of the present invention.
  • the light emitting diode array is described as including three light emitting diode array blocks, but may include four or more light emitting diode array blocks.
  • AC voltage source 2 LED array
  • rectifier circuit 7 power factor correction circuit
  • controller 25 current detection circuit

Abstract

본 발명은 발광다이오드 구동장치에 관한 것이다. 본 발명에 따른 발광다이오드 구동장치는 교류 전압원에 접속하여, 상기 교류 전압원의 교류 전압을 전파 정류하는 정류회로와, 상기 정류회로의 출력 측과 연결되며 복수의 발광다이오드 어레이 블록들을 포함하는 발광다이오드 어레이와, 상기 정류회로에서 출력된 전압에 의해서 충전되도록 구성된 충방전회로를 포함하는 발광다이오드 구동장치로서, 방전스위치와 블록스위치 회로와 제어기를 포함한다. 본 발명에 따른 발광다이오드 구동장치는 충방전회로와 스위치를 이용하여 교류 전압원에 의해서 인가되는 전압의 크기가 구동전압 이하로서 발광다이오드를 구동할 수 없는 위상 180도 주변의 구간에 구동전압 이상의 전압을 인가할 수 있다.

Description

발광다이오드 구동장치
본 발명은 발광다이오드 구동장치에 관한 것이다. 더욱 상세하게는 전체 고조파 왜곡률(THD, Total hamonic distortion)을 줄이고, 역률 및 시인성을 개선할 수 있는 발광다이오드 구동장치에 관한 것이다.
발광다이오드(LED)는 광효율이나 내구성 측면에서 장점이 있기 때문에, 조명장치나 디스플레이 장치의 백라이트용 광원으로서 각광을 받고 있다.
발광다이오드는 낮은 직류전류에서 구동된다. 따라서 종래에는 상용 교류전압(교류 220볼트)을 직류전압으로 변경시키기 위한 전원공급장치를 사용하였다. 예를 들면, SMPS(Switched-Mode Power Supply), 리니어 파워(Linear Power) 등이 사용되었다. 그러나 이러한 전원공급장치는 변환효율이 대체로 떨어진다. 또한, 사용된 부품 중 전해콘덴서의 수명이 짧기 때문에, 이러한 전원공급장치의 사용은 발광다이오드 조명장치의 수명을 단축시킨다는 문제가 있었다.
이러한 문제를 해결하기 위해서, 직류로 변환하지 않고, 교류 전원에 직접 두 개의 발광다이오드 스트링을 순방향과 역방향으로 연결하는 방법이 개발되었다. 그러나 이러한 방식은 연결된 발광다이오드 중에서 50%이하만이 켜지게 되므로 효율이 낮다는 문제가 있었다. 또한, 입력 전압의 크기가 변화하면서, 발광다이오드에 흐르는 전류가 급격하게 변화하므로, 발광다이오드 소자에 악영향을 미칠 수 있으며, 밝기의 변화도 크다는 문제가 있었다. 또한, 입력 전압의 크기가 발광다이오드 스트링에 포함된 발광다이오드 모두를 작동시킬 수 있는 값 이상일 때만 회로에 전류가 흐르기 때문에 회로에 흐르는 전류의 파형과 전압의 파형의 차이가 크며, 이로 인해서 역률이 저하되는 문제가 발생한다.
상기, 교류 전원을 직접 사용하는 방법의 문제점을 해결하기 위해서, 교류를 브릿지 회로를 통해서 정류한 후에 사용하는 다양한 방법이 개발되었다. 예를 들어, 일본등록특허 4581646, 미국등록특허 6,989,807, 일본공개특허 2011-040701, 한국공개특허 10-2012-0041093 등에는 교류 전압을 정류한 후에 정류 전압의 크기 변화에 따라서 정류 전압이 인가되는 발광다이오드의 수를 조절하는 방법이 개시되어 있다. 이러한 방법은 교류 전원을 직접 이용하는 방법에 비해서 작동하는 발광다이오드 수가 증가하므로 효율이 높으며, 전류 공급 시간이 빨라져서 역률이 개선된다는 장점이 있다.
상기 교류 전원을 브릿지 회로를 이용하여 정류한 후 사용하는 방법의 문제점은 120㎐의 주파수를 가지는 전파 정류파를 이용하여 발광다이오드를 구동하므로, 위상 180도 주변의 상당한 구간에서 교류 전원의 크기가 발광다이오드의 구동전압 이하로 작아져서 미 점등이 발생한다는 것이다.
인간의 눈은 점멸 융합 주파수(flicker fusion frequency) 이상으로 점멸되는 광원의 경우에는 단속적 점멸이 아니라 연속적으로 켜진 것으로 느낀다. 따라서 점멸 융합 주파수 이상의 주파수로 점멸하는 발광다이오드는 인간의 눈에는 계속 켜져 있는 것으로 느껴진다. 대부분의 인간의 눈은 75㎐ 이상으로 점멸되는 광원은 연속적인 것으로 느낀다. 하지만 광에 민감한 사람의 경우에는 120㎐로 점멸되는 발광다이오드의 깜박임도 느낄 수 있으며, 이로 인해서 광발작을 일으킬 수 있기 때문에 가능하면 높은 주파수로 점멸되는 것이 바람직하다.
따라서 일본의 경우 100㎐에서 500㎐사이에서는 플리커(flicker) 현상이 없을 것을 조명인증규격에 명시하고 있으며, 유럽의 국가들도 150㎐이상의 주파수로 조명을 구동하도록 명문화하려는 작업이 진행되고 있다. 미국은 최근 에너지스타 인증규정을 마련하여 플리커 수준이 일정기준을 넘지 못하면 인증 대상에 포함하지 않도록 했다. 따라서 상기 전파 정류파를 이용하여 구동되는 발광다이오드 조명은 판매가 원천적으로 불가능해지는 상황이 도래할 수 있다.
이를 개선하기 위하여 한국 공개특허 10-2010-0104362에는 밸리 필 회로(valley fill circuit)를 이용하는 방법이 개시되어 있다. 이러한 방법은 플리커 현상의 개선효과를 기대할 수는 있으나 용량이 큰 커패시터를 사용하여야 하며 커패시터의 장착으로 인하여 역률이 나빠지는 부작용이 발생하게 된다. 또한, 입력전압이 낮아지면 120㎐의 플리커를 나타내게 된다.
또 다른 개선방법으로는 한국 공개특허 10-2012-0082468에 개시된 바와 같은 충방전 회로를 이용할 수 있다. 이 경우에도 플리커 현상이 개선되기는 하지만 주파수 120㎐의 플리커가 발생하는 한계를 벗어나지는 못한다. 또한, 입력 전압이 떨어지게 되면 충분한 충전이 이루어지지 않고 방전개시 시점이 짧아져서 플리커 현상이 더욱 두드러지게 된다.
상기 교류 전원을 브릿지 회로를 이용하여 정류한 후 사용하는 방법의 또 다른 문제점은 구동전압을 높게 설정하는 경우에는 발광다이오드가 점등되는 위상구간이 작아 발광다이오드 이용효율(발광다이오드 실효 소비전력/직류정격 전류 구동시의 발광다이오드 소비전력)과 역률이 떨어지고, 구동전압을 낮게 설정하는 경우에는 전력의 상당부분이 열로서 소비되어 전원 효율이 떨어진다는 것이다.
한국 공개특허 10-2012-0074502에도 충방전 블록을 구비하며, 충방전 블록이 충전구간에서 구동단의 전하를 충전하고, 발광다이오드 어레이의 구동전압 이하에서는 방전되어 발광다이오드 어레이의 미점등 구간을 제거하는 조명장치가 개시되어 있다.
플리커 현상을 개선하기 위한 또 다른 방법으로는, 발광다이오드의 점멸주파수를 증가시키는 방법이 있다. 미국 등록특허 8,299,724에는 OVP(over-voltage protection)소자를 이용하여, 구동단의 전압이 피크치일 때 발광다이오드 어레이에 흐르는 전류를 차단함으로써 발광다이오드 어레이의 점멸주파수를 입력 교류 전원 주파수의 4배로 증가시키는 방법이 개시되어 있다. 그러나 구동단의 전압이 발광다이오드 어레이의 구동전압 이하인 경우에 미점등 구간이 길다는 문제가 있다.
또한, 미국 공개특허 2012-0229041에는 커패시터와 같은 에너지 저장 소자를 이용하여 전기에너지를 저장한 후, 구동단의 전압의 크기가 발광다이오드 어레이의 구동전압이하로 떨어지면, 방전함으로써 발광다이오드 어레이에 인가되는 전류의 주파수를 입력 교류 전원 주파수의 4배로 증가시키는 방법이 개시되어 있다.
한편, 고효율 조명을 구현하여 전기에너지를 절감하는 방법으로, 인지현상과 자극의 물리적인 성질과의 관계를 연구하는 정신물리학(psychophysics)적인 측면을 고려하는 시도가 있다.
통상적으로, 조명에서 발생하는 빛에너지의 양은 입력된 전기에너지의 양에 비례하여 증가한다. 그러나 인간의 눈이 어떻게 인식할 것인지는 다른 문제이다.
발광다이오드(light emitting diode, LED)의 경우, 직류 전원을 사용하는 정전류 제어 방식 또는 펄스 전압을 이용하는 펄스 폭 변조(pulse width modulation, PWM) 제어 방식으로 제어된다. 펄스 폭 변조 제어는 펄스의 주파수와 듀티 사이클(duty cycle)을 조절하여, 전력을 조절하는 제어방식이다.
펄스 전압을 이용하여 구동되는 조명과 같이, 단속적으로 점멸하는 광원의 밝기를 인간의 눈이 어떻게 인식할 것인지에 대한 연구결과는 1900년대부터 발표되고 있다.
탤보트 플래튜(Talbot-Plateau)의 법칙에 따르면, 단속적으로 점멸하는 광원을 관찰하는 인간은 그 광원이 평균적인 밝기(brightness)로 계속 켜져 있는 것으로 느낀다고 한다.
또한, 브로커 슐처(Broca-Sulzer)의 법칙에 따르면, 카메라 플래시와 같은 강한 빛에 노출되면, 인간의 눈은 실제 빛의 밝기에 비해서 몇 배 밝게 느낀다고 한다.
최근 일본의 에히메 대학의 연구에 따르면, 펄스 전압을 사용할 경우에는 브로커 슐처 효과가 탤보트 플래튜 효과에 비해서 더 큰 영향을 미치고, 인간의 눈은 광원을 평균적인 밝기보다 더 밝게 인식하게 된다고 한다.
또한, 중국의 천진 대학의 연구에 따르면, 도 13에 도시된 바와 같이, 평균 강도(average intensity)가 동일할 경우, PWM 제어 방식으로 구동되는 LED가 정전류 방식으로 구동되는 LED에 비해서 더 밝게 느껴진다고 한다.
도 13에서 원형으로 표시된 그래프는 정전류 방식으로 구동되는 LED의 어패런트 브라이트니스를 나타내며, 삼각형으로 표시된 그래프는 정전류 방식과 평균 강도가 동일한 경우 PWM 제어 방식으로 구동되는 LED의 듀티 사이클의 변화에 따른 어패런트 브라이트니스의 변화를 나타낸다. 어패런트 브라이트니스란 빛의 물리량인 휘도(brightness)에 대응하는 명암감의 심리량을 의미한다. 즉, 실제 밝기가 아닌 인간이 느끼는 밝기를 의미한다.
또한, 도 13에 도시된 바와 같이, PWM 제어 방식의 경우에는 듀티 사이클이 짧은 펄스 전압을 사용할수록 정전류 방식과의 어패런트 브라이트니스(apparent brightness) 차이가 더 커지는 것을 알 수 있다.
도 13을 참고하면, 주파수가 100Hz인 경우, 듀티 사이클이 50%이면, 정전류 방식에 비해서 약 40% 더 밝게 느껴지는 것을 알 수 있으며, 듀티 사이클이 80%이면, 약 25% 더 밝게 느껴지는 것을 알 수 있으며, 듀티 사이클이 100%이면, 정전류 방식과 차이가 없는 것을 알 수 있다.
이러한 결과는 일본의 에히메 대학의 연구결과에서도 확인할 수 있다. 에히메 대학의 연구결과에 따르면, 듀티 사이클이 5%이며, 60Hz인 펄스 전압으로 LED를 구동할 경우, 정전류 구동방식에 비해 최대 120% 더 밝게 느껴진다고 한다.
도 13의 결과를 통해서, 평균 강도가 동일할 경우, 강도가 크며, 듀티 사이클이 짧은 펄스 전압으로 구동되는 LED가, 강도가 작으며, 듀티 사이클이 긴 펄스 전압으로 구동되는 LED에 비해서 더 밝게 인식될 것을 예상할 수 있다.
[선행기술문헌]
[특허문헌]
한국등록특허 10-0971757
한국공개특허 10-2012-0041093
일본등록특허 4581646
미국등록특허 6,989,807
일본공개특허 2011-040701
한국공개특허 10-2010-0104362
한국공개특허 10-2012-0082468
한국공개특허 10-2012-0074502
미국등록특허 8,299,724
미국공개특허 2012-0229041
한국공개특허 10-2011-0091444
[비특허문헌]
Masafumi JINNO, Keiji MORITA, Yudai TOMITA, Yukinobu TODA, Hideki MOTOMURA(2008), "Effective illuminance improvement of light source by using pwm", J. Light & Vis. Env. Vol. 32, No. 2, 2008.
Zhang Yinxin, Zhang Zhen, Huang Zhanhua, Cai Huaiyu, Xia Lin, Zhao Jie(2008), "Apparent Brightness of LEDs under Different dimming Methods" Proc. of SPIE Vol. 6841 684109.
본 발명은 상술한 문제점을 개선하기 위한 것으로서, 위상 180도 주변의 미점등 영역에 발광다이오드의 구동전압 이상의 펄스 형태의 전압을 인가하여 미점등 구간을 최소화하는 동시에 상대적으로 적은 전력을 소비하면서도, 발광다이오드가 동일한 수준의 어패런트 브라이트니스를 나타내도록 하는 전원공급회로를 제공하는 것을 목적으로 한다.
또한, 발광다이오드의 점멸주파수를 증가시켜 플리커 현상을 개선할 수 있는 전원공급회로를 제공하는 것을 목적으로 한다.
또한, 정류회로에서 출력된 전압의 순시치의 증가에 따라서 정류회로 출력단의 전류를 증가시켜, 구동단 전류 파형의 전체 고조파 왜곡률(THD, Total hamonic distortion) 줄이고, 역률을 개선할 수 있는 전원공급회로를 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위한 본 발명에 따른 발광다이오드 구동장치는 교류 전압원에 접속하여, 상기 교류 전압원의 교류 전압을 전파 정류하는 정류회로와, 상기 정류회로의 출력 측과 연결되며 복수의 발광다이오드 어레이 블록들을 포함하는 발광다이오드 어레이와, 상기 정류회로에서 출력된 전압에 의해서 충전되도록 구성된 충방전회로를 포함하는 발광다이오드 구동장치로서, 방전스위치와 블록스위치 회로와 제어기를 더 포함한다.
방전스위치는 상기 충방전회로에 충전된 에너지가 상기 발광다이오드 어레이에 전달되는 경로를 연결 또는 차단시키도록 구성된다.
블록스위치 회로는 복수의 상기 발광다이오드 어레이 블록들 중에서 정류회로에서 출력된 전압이 전달되는 발광다이오드 어레이 블록의 수를 조절할 수 있도록 구성된다.
제어기는 상기 정류회로에서 출력된 전압의 순시치가 미리 정해진 값 미만인 A구간에서, 상기 발광다이오드 어레이 전체가 꺼진 후 상기 충방전회로가 방전되어 상기 A구간에서 적어도 한번 발광다이오드 어레이 전체가 꺼진 후 복수의 상기 발광다이오드 어레이 블록 중 적어도 하나가 켜졌다 꺼지도록 상기 방전스위치와 블록스위치 회로를 제어한다.
또한, 상기 제어기는 상기 정류회로에서 출력된 전압의 순시치가 상기 미리 정해진 값 이상인 B구간에서 상기 정류회로에서 출력되는 전압의 순시치가 증가함에 따라서 점등되는 상기 발광다이오드 어레이 블록의 수가 증가하도록 상기 블록스위치 회로를 제어한다.
상술한 발광다이오드 구동장치는 상기 정류회로에서 출력된 전압이 상기 발광다이오드 어레이에 전달되는 경로를 연결 또는 차단시키도록 구성된 점멸스위치를 더 포함할 수 있으며, 상기 제어기는 상기 B구간에서 적어도 한번 상기 발광다이오드 어레이가 점멸되도록, 상기 점멸스위치를 제어할 수 있다.
또한, 상술한 발광다이오드 구동장치는 상기 정류회로에서 출력되는 전류 파형의 전체 고주파 왜곡률(THD, Total harmonic distortion)을 줄이기 위해서, 상기 정류회로의 출력 측에 연결되어, 전기에너지를 저장 또는 소비하도록 구성된 역률 개선 회로를 더 포함할 수 있다.
또한, 상기 정류회로에서 출력된 전압이 상기 충방전회로에 전달되는 경로를 연결 또는 차단시키도록 구성된 충전스위치를 더 포함할 수 있으며, 상기 제어기는 상기 정류회로에서 출력되는 전류파형의 전체고조파 왜곡률을 줄이기 위하여, 상기 B구간에서 상기 정류회로에서 출력된 전압이 상기 충방전회로에 전달되는 시점을 지연시키도록 상기 충전스위치를 제어할 수 있다.
또한, 상기 정류회로에서 출력되는 전류파형의 전체고조파 왜곡률을 줄이기 위하여 충방전회로의 충전전류를 제한하도록 구성된 충전전류제한 회로를 더 포함할 수 있다.
상기 블록스위치 회로는 복수의 상기 발광다이오드 어레이 블록 중 일부를 바이패스하는 경로와 그 경로에 설치된 블록스위치를 포함할 수 있다.
또한, 상기 발광다이오드 어레이 블록을 바이패스하는 경로에 설치된 저항과, 상기 발광다이오드 어레이 블록과 직렬로 연결되어 상기 발광다이오드 어레이 블록에 흐르는 전류를 검출하는 전류 검출회로 또는 상기 발광다이오드 어레이 블록과 병렬로 연결되어 상기 발광다이오드 어레이 블록에 인가되는 전압을 검출하는 전압 검출회로를 더 포함할 수 있으며, 상기 제어기는 상기 전류 검출회로 또는 전압 검출회로에서 검출된 전류 또는 전압 값이 미리 정해진 값 이상이면 상기 블록스위치를 오프하도록 구성될 수 있다.
본 발명에 따른 발광다이오드 구동장치는 충방전회로와 스위치를 이용하여 교류 전압원에 의해서 인가되는 전압의 크기가 구동전압 이하로서 발광다이오드를 구동할 수 없는 위상 180도 주변의 구간에 구동전압 이상의 전압을 인가할 수 있다. 이를 통해서, 발광다이오드의 점멸주파수를 240㎐ 이상으로 증가시킬 수 있다(60㎐ 교류전원인 경우). 발광다이오드가 소등되는 위상 180도 주변의 영역에서 펄스 전압에 의해서 발광다이오드가 점멸되므로, 발광다이오드의 점멸주파수가 2배로 증가한다. 이를 통해서 플리커 현상을 개선할 수 있다.
또한, 본 전원공급회로를 사용하는 조명시스템은 위상 180도 주변의 영역에서 펄스 전압에 의해서 발광다이오드가 점멸되므로, 브로커 슐처(Broca-Sulzer)의 법칙에 의해서 상대적으로 적은 전력을 소비하면서도 다른 전원공급회로를 사용한 조명시스템과 동일한 수준의 어패런트 브라이트니스를 유지할 수 있다.
또한, 충방전회로의 충전시점을 조절하여, 정류회로에서 출력된 전압의 크기의 증가에 따라서 정류회로 출력단의 전류를 증가시켜, 구동단 전류 파형의 전체 고조파 왜곡률(THD, Total hamonic distortion) 줄이고, 역률을 개선할 수 있다.
또한, 구동전압을 높게 설정할 경우에 위상 180도 주변의 상당한 구간에서 발광다이오드가 구동되지 않는 문제를 180도 주변에 구동전압 이상의 펄스 전압을 인가하는 방법으로 해결함으로써, 전원효율과 발광다이오드 이용효율이 동시에 향상된다.
도 1은 본 발명에 따른 발광다이오드 구동장치의 일실시예를 개략적으로 나타낸 도면이다.
도 2는 도 1에 도시된 제어기의 일실시예의 블록도이다.
도 3의 (a)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 전류 파형의 일 예를 나타낸 도면이다.
도 3의 (b)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 발광다이오드 어레이에 인가되는 전류 파형의 일 예를 나타낸 도면이다.
도 4의 (a)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 전류 파형의 다른 예를 나타낸 도면이다.
도 4의 (b)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 발광다이오드 어레이에 인가되는 전류 파형의 다른 일 예를 나타낸 도면이다.
도 5 내지 7은 본 발명에 따른 발광다이오드 구동장치의 다른 실시예들을 개략적으로 나타낸 도면들이다.
도 8의 (a)는 도 7에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 전류 파형의 일 예를 나타낸 도면이다.
도 8의 (b)는 도 7에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 발광다이오드 어레이에 인가되는 전류 파형의 일 예를 나타낸 도면이다.
도 9는 본 발명에 따른 발광다이오드 구동장치의 또 다른 실시예를 개략적으로 나타낸 도면이다.
도 10 내지 12는 본 발명에 따른 발광다이오드 구동장치의 또 다른 실시예들의 일부를 개략적으로 나타낸 도면이다.
도 13은 듀티 사이클에 따른 어패런트 브라이트니스(apparent brightness)와 평균강도의 비의 변화를 나타낸 도표이다.
이하, 첨부된 도면을 참고하여 본 발명에 대해서 상세히 설명한다.
이하에서는 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.
도 1은 본 발명에 따른 발광다이오드 구동장치의 일실시예를 개략적으로 나타낸 도면이다.
도 1을 참고하면, 본 발명에 따른 발광다이오드 구동장치의 일실시예는 발광다이오드 어레이(2), 방전스위치(11), 충전스위치(12), 블록스위치(13), 제어기(20), 충방전회로(30), 정류회로(3), 전류 또는 전압제한회로(4) 및 역률 개선 회로(7)를 포함한다.
본 발명에 따른 발광다이오드 구동장치의 발광다이오드 어레이(2)는 직렬로 연결된 제1발광다이오드 어레이 블록(2-1)과 제2발광다이오드 어레이 블록(2-2)을 포함한다. 220V 교류 전압에서 구동되는 경우를 예로 들면, 제1발광다이오드 어레이 블록(2-1)의 구동전압은 약 50V이고, 제2발광다이오드 어레이 블록(2-2)의 구동전압은 약 200V일 수 있다. 제1발광다이오드 어레이 블록(2-1)과 제2발광다이오드 어레이 블록(2-2)은 직렬, 병렬 또는 직병렬로 연결된 하나 이상의 발광다이오드를 포함할 수 있다.
본 발명에 따른 발광다이오드 구동장치의 일실시예에서는 정류회로에서 출력되는 전압의 순시치 변화에 따라서 제2발광다이오드 어레이 블록(2-2) 또는 발광다이오드 어레이(2) 전체가 구동된다.
순시치가 미리 정해진 값(Vt) 이상인 B구간에서는 순시치가 증가함에 따라서 점등되는 발광다이오드 어레이 블록의 수가 증가하고, 순시치가 감소함에 따라서 점등되는 발광다이오드 어레이 블록의 수가 감소한다. 즉, 제2발광다이오드 어레이 블록(2-2)이 점등된 후 순시치가 증가함에 따라서 발광다이오드 어레이(2) 전체가 점등된다. 그리고 다시 순시치가 감소함에 따라서 제1발광다이오드 어레이 블록(2-1)이 소등되고, 제2발광다이오드 어레이 블록(2-2)만 점등된 상태를 유지한다. 여기서 Vt 값은 제2발광다이오드 어레이 블록(2-2)을 구동시킬 수 있는 최소 전압 값일 수 있다.
순시치가 미리 정해진 값(Vt) 미만인 A구간에서는 정류회로에서 출력되는 전압에 의해서 발광다이오드 어레이 블록이 점등되지 않는다. A구간에서는 순시치가 낮아서 정류회로에서 출력되는 전압에 의해서 제2발광다이오드 어레이 블록(2-2)이 점등되지 않는다. A구간에서의 순시치는 제1발광다이오드 어레이 블록(2-1)은 점등할 수 있는 값 이상이 될 수 있으나, 도 1에 도시된 바와 같이, 회로의 구성상 제1발광다이오드 어레이 블록(2-1)에만 정류회로(3)에서 출력되는 전압이 인가될 수 없으므로, 순시치가 A구간에 도달하면, 발광다이오드 어레이(2) 전체가 소등된다. 그리고 일정한 시간이 경과한 후 충방전회로(30)에서 공급된 전기에너지에 의해서 발광다이오드 어레이 전체(2) 또는 제2발광다이오드 어레이 블록(2-2)이 점등된 후 다시 꺼진다. 블록스위치(13)가 온 상태인 경우에는 제2발광다이오드 어레이 블록(2-2)만 점멸하며, 오프 상태인 경우에는 발광다이오드 어레이 전체(2)가 점멸한다.
본 발명에 따른 발광다이오드 구동장치는 정류회로(3)와 연결된 충방전회로(30)의 충전시점과 방전시점을 효과적으로 제어하여, 정류회로(3)에서 출력되는 전압의 순시치가 A구간에 속하는 경우에도 발광다이오드 어레이(2)가 적어도 한번 점멸되도록 한다. 이를 통해서, 발광다이오드 이용효율(발광다이오드 실효 소비전력/직류정격 전류 구동시의 발광다이오드 소비전력)을 높일 수 있으며, 플리커 현상을 개선하고, 시인성을 향상시킬 수 있다.
정류회로(3)는 입력되는 교류 전압을 전파 정류하는 역할을 한다. 정류회로(3)는 브리지 다이오드 회로일 수 있다. 정류회로(3)는 도 1에 도시된 바와 같이 교류 전압원(1)에 접속된다.
스위치들(11, 12, 13)은 MOSFET(Metal Oxide Semiconductor Field Effect Transistor) 소자 등으로 구성할 수 있다. 충방전회로(30)와 발광다이오드 어레이(2)의 전단을 연결하는 경로에 설치되는 방전스위치(11)와 정류회로(3)의 출력단과 충방전회로(30)를 연결하는 경로에 설치되는 충전스위치(12)는 충방전회로(30)의 방전시점과 충전시점을 조절하기 위해서 사용된다. 충전시점을 조절함으로써 정류회로(3) 출력단에 흐르는 전류 파형을 전압 파형에 가깝게 조절할 수 있으며, 고조파 왜곡률을 낮출 수 있다. 방전시점을 조절함으로써, A구간에서 발광다이오드 어레이(2) 전체 또는 일부 블록이 적어도 한번 점멸되도록 한다.
충전스위치(12)가 온되면 정류회로(3)의 출력단과 충방전회로(30)가 연결되면서 충방전회로(30)에서 충전이 일어나며, 방전스위치(11)가 온되면 충방전회로(3)와 발광다이오드 어레이(2)가 연결되고, 충방전회로(30)에서 방전이 일어나 발광다이오드 어레이(2) 측에 전원이 공급된다.
블록스위치(13)는 제1발광다이오드 어레이 블록(2-1)의 바이패스 경로(8)에 설치된다. 본 실시예에서는 블록스위치(13)와 바이패스 경로(8)가 블록스위치 회로를 구성한다. 블록스위치(13)가 오프되면 발광다이오드 어레이(2) 전체에 전류가 흐른다. 블록스위치(13)가 온되면 제2발광다이오드 어레이 블록(2-2)에만 전류가 흐른다. 즉, 블록스위치(13)는 제2발광다이오드 어레이 블록(2-2)에만 전류가 흐르도록 할지 발광다이오드 어레이(2) 전체에 전류가 흐르도록 할지 여부를 결정하는 역할을 한다. 블록스위치 회로는 도 1에 도시된 형태와 같이 바이패스 라인에 스위치를 설치하는 방법 이외에 소자들을 연결하는 라인에 하나 또는 복수의 스위칭 소자를 설치하여 다양한 형태로 구성할 수 있다.
제어기(20)는 정류회로(3)에서 출력되는 전압의 크기 또는 위상을 확인하여, 방전스위치(11)와 충전스위치(12)를 제어함으로써, 방전시점과 충전시점을 제어한다.
또한, 제어기(20)는 블록스위치(13)의 온/오프 시간을 제어한다. 정류회로(3) 또는 충방전회로(30)에서 출력되는 전압의 크기가 발광다이오드 어레이(2)의 구동전압 이상인 경우에는 블록스위치(13)를 오프하여 바이패스 경로(8)를 차단함으로써, 발광다이오드 어레이(2) 전체에 전류가 흐르도록 한다.
도 2는 도 1에 도시된 제어기의 일실시예의 블록도이다. 도 2를 참고하면, 제어기(20)는 전압 또는 위상 검출회로(22) 및/또는 스위치제어부(23) 및/또는 메모리(21)를 포함할 수 있다. 전압검출회로는 정류회로(3)에서 출력되는 전압의 순시치가 어느 범위에 속하는지를 확인한다. 전압검출회로는 전자회로 분야에서 널리 쓰이는 다양한 회로를 사용할 수 있다. 예를 들면, 복수의 OP 앰프를 이용한 전압 비교기 등을 사용할 수 있다. 제어기(20)에는 전압을 직접 검출하는 전압검출회로 대신에 위상검출회로를 사용할 수 있다. 위상검출회로는 전압의 순시치가 0이 되는 순간을 검출할 수 있는 제로크로스 검출기 등을 이용하여 구성할 수 있다. 정류회로(3)에서 출력되는 전압은 위상에 따라서 순시치가 변하므로 위상의 변화를 통해서 순시치의 변화를 알 수 있다. 입력 전원이 불안정한 경우에는 전압검출회로를 사용하는 것이 바람직하다.
메모리(21)에는 정류회로(3)에서 출력되는 전압의 크기에 따라서 스위치들(11, 12, 13)을 구동하기 위한 구동 데이터가 저장되어 있다. 구동 데이터는 발광다이오드의 수 및 구동전압, 요구되는 발광다이오드 어레이의 점멸주파수 등에 따라서 정해진다.
메모리를 사용하지 않고 채널별로 검출된 전압 또는 위상에 따라, 혹은, 타이머와 같은 카운터 소자를 이용하여 스위치들(11, 12, 13)을 제어할 수도 있다.
충방전회로(30)는 B구간에서 정류회로(3)의 출력전압에 의해서 충전된 후 A구간에서 방전되면서, 발광다이오드 어레이(2)에 전원을 인가하는 역할을 한다. 본 실시예에 있어서, 충방전회로(30)의 일 예로 커패시터를 사용한다. 충전스위치(12)가 온되면, 충방전회로(30)가 정류회로(3)와 연결되어 충방전회로(30)에 전기에너지가 저장된다. 방전스위치(11)가 온되면, 충방전회로(30)가 발광다이오드 어레이(2) 측과 연결되고 충방전회로(30)에서 방전이 일어나 발광다이오드 어레이(2) 측에 전원이 공급된다. 충방전회로(30)로는 인덕터를 사용할 수도 있다.
전류제한회로 또는 전압제한회로(4)는 부하에 걸리는 전류 또는 전압을 제한하는 역할을 한다. 전류제한회로 또는 전압제한회로는 발광다이오드 어레이(2)에 과도한 전류가 흐르는 것을 방지하기 위한 것으로서, 발광다이오드 어레이(2)에 직렬로 연결된다. 전류제한회로는 저항, 커패시터, 바이폴라 트랜지스터, 모스 트랜지스터 등으로 구현할 수 있다. 또한, 전계효과 트랜지스터(FET) 혹은 트랜지스터(TR)와 보조소자의 조합으로 구현하는 방법, 그리고 OP AMP 혹은 레귤레이터 등 집적회로를 이용하는 방법 등으로 구현할 수 있다.
본 발명에 따른 발광다이오드 구동장치는 서지전압으로부터 발광다이오드 구동장치를 보호하기 위한 저항(6), 서지억제소자(미도시), 퓨즈(5) 등으로 구성한 서지보호회로를 더 포함할 수 있다.
또한, 정류회로(3)의 출력단에 흐르는 전류 파형과 전압 파형의 차이를 최소화하기 위해서, 에너지를 저장하거나, 소비하도록 구성된 역률 개선 회로(7)를 더 포함할 수 있다. 이 회로는 저항이나 커패시터 등과 스위치로 이루어질 수 있다. 예를 들어, 정류회로(3)에 병렬로 연결된 저항과 저항과 정류회로(3)를 연결하는 경로에 설치된 스위치로 이루어질 수 있다. 전류 파형과 전압 파형의 차이가 큰 구간, 예를 들어 A구간 및 B구간 초기에 스위치를 온하면, 정류회로(3)의 출력단의 전압이 저항에 인가되고, 저항에 그 전압에 비례하여 사인파 형태로 전류가 흐른다. A구간에서는 발광다이오드 어레이(2)로는 전류가 흐르지 않으므로, 이 저항에 흐르는 전류가 정류회로(3)의 출력단에 흐르는 전류가 된다. 이와 같은 방법으로, 정류회로(3)의 출력단의 전류의 형태를 전압의 형태와 거의 일치시킴으로써 역률을 개선할 수 있으며, A구간에서 B구간으로 넘어가면서, 제2발광다이오드 어레이 블록(2-2)으로 갑자기 많은 전류가 흘러, 정류회로(3)의 출력단의 전류 파형에 고조파 성분이 많이 생기는 것도 방지할 수 있다.
역률 개선 회로(7)로 에너지를 저장할 수 있는 커패시터 등을 사용하는 경우에는 저장된 에너지를 제어기(20) 및 스위치들(11, 12, 13)의 구동 전원을 공급하는 용도로 활용할 수 있다.
또한, 본 발명에 따른 발광다이오드 구동장치의 일실시예는 발광다이오드 어레이(2)를 펄스 구동하는 역할을 하는 점멸스위치(14)를 더 포함할 수 있다. 점멸스위치(14)는 발광다이오드 어레이(2)의 점멸주파수를 변경하는 역할을 한다. 점멸스위치(14)의 온/오프가 반복되는 경우에는 제2발광다이오드 어레이 블록(2-2) 또는 전체 발광다이오드 어레이(2)가 펄스 전압에 의해서 구동되며, 점멸스위치(14)가 온되는 시간과 오프되는 시간을 조절함으로써, 펄스 전압의 형태가 결정된다.
점멸스위치(14)는 구동단의 전압이 피크치일 때 발광다이오드 어레이에 흐르는 전류를 차단하는 OVP(over-voltage protection)소자의 역할을 할 수도 있다.
또한, 전류파형의 전체고조파 왜곡률을 줄이기 위하여 충방전회로(30)의 충전전류를 제한하도록 구성된 충전전류제한 회로(9)를 더 포함한다. 충전전류제한 회로(9)는 충방전회로(30)에 직렬로 연결되어 충방전회로(30)에 흐르는 전류를 제한한다. 충전전류제한 회로(9)는 저항, 커패시터, 바이폴라 트랜지스터, 모스 트랜지스터 등으로 구현할 수 있다.
도 3의 (a)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 전류 파형의 일 예를 나타낸 도면이며, 도 3의 (b)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 발광다이오드 어레이에 인가되는 전류 파형의 일 예를 나타낸 도면이다. 도 3의 (a) 및 도 3의 (b)를 참고하여, 발광다이오드 구동장치의 1주기 분의 작용을 설명한다.
제어기(20)에서 정류회로(3)에서 출력되는 전압의 순시치를 측정한 결과, A구간에 속하는 것으로 판단된 경우에는, 제어기(20)가 방전스위치(11)와 충전스위치(12)는 오프하고, 블록스위치(13)는 온한다(아직 충전되기 전이므로 방전스위치(11)를 온하여도 방전되지 않는다).
A구간에서는, 도 3의 (b)에 도시된 바와 같이, 제2발광다이오드 어레이 블록(2-2)에 전류가 흐르지 않는다. 그리고 도 3의 (a)에 도시된 바와 같이 역률 개선 회로(7)에는 전압파형과 유사한 사인파 형태의 전류가 흐른다.
정류회로(3)에서 출력되는 전압의 크기가 Vt 이상인 B구간에 도달하면, 정류회로(3)에서 출력된 전압에 의해서 제2발광다이오드 어레이 블록(2-2)이 점등될 수 있으므로, 제2발광다이오드 어레이 블록(2-2)이 켜진다. 바이패스 경로(8)의 블록스위치(13)가 온되어 있으므로, 제1발광다이오드 어레이 블록(2-1)에는 전류가 흐르지 않는다. 도 3의 (b)에 도시된 바와 같이, 제2발광다이오드 어레이 블록(2-2)에 흐르는 전류는 정류회로(3)에서 출력되는 전압의 크기가 증가함에 따라서 증가하지만 전압/전류 제한회로(4)에 의해서 일정한 수준 이상으로 증가하지 않는다.
정류회로(3)에서 출력되는 전압의 크기가 발광다이오드 어레이(2) 전체를 점등시킬 수 있는 값(Va) 이상이 되면 제어기(20)는 블록스위치(13)를 오프시킨다. 바이패스 경로의 블록스위치(13)가 오프되었으므로, 발광다이오드 어레이(2) 전체가 켜진다. 이때, 도 3의 (b)에 도시된 바와 같이, 발광다이오드 어레이(2)에는 전압/전류 제한회로(4)에 의해서 제한된 전류가 계속 흐른다.
제어기는 B구간의 일정한 시점에 충전스위치(12)를 온시켜, 충방전회로(30)에 전류가 흐르도록 한다. 이때, 도 3의 (a)에 도시된 바와 같이, 회로의 입력단에 흐르는 전류 값이 커진다. 발광다이오드 어레이(2)에 흐르는 전류는 전류 또는 전압제한회로(4)에 의해서 제한되어 일정하지만, 회로의 입력단에 흐르는 전류 값은 충방전회로(30)에 흐르는 전류 값만큼 증가한다. 충방전회로(30)에 흐르는 전류 값은 충전전류제한회로(9)에 의해서 제한된다. 이와 같은 방법으로 회로의 전류 파형을 입력 전압 파형에 근접시킴으로써, 전류 파형의 전체 고주파 왜곡률(THD, Total harmonic distortion)을 줄이고, 역률을 개선할 수 있다. 충전스위치(12)를 온하는 시점과 오프하는 시점 및 충전전류의 양은 전류 파형을 입력 전압 파형에 근접시키기 위해서 B구간 내에서 조절이 가능하다.
정류회로(3)에서 출력되는 전압의 크기가 다시 Va미만인 구간에 도달하면, 제어기(20)는 다시 블록스위치(13)를 온하여 제2발광다이오드 어레이 블록(2-2)에만 전류가 흐르도록 한다.
정류회로(3)에서 출력되는 전압의 크기가 다시 A구간에 도달하면, 제어기(20)는 일정 시간 경과 후 방전스위치(11)를 온하여 커패시터에 충전된 전기에너지를 발광다이오드 어레이(2)에 공급하여 발광다이오드 어레이(2)가 꺼졌다 켜지도록 한다. 그리고 다시 방전스위치(11)를 오프하여 발광다이오드 어레이(2)가 꺼지도록 한다. 이때, 방전을 개시하고 중지하는 시점은 발광다이오드 어레이(2)의 순전압, 충전용량, 입력원의 전압변동 및 설정 구동 주파수 등의 변수에 연동하여 결정한다. 방전 개시시점과 중지시점을 조절하여 A구간에서 발광다이오드 어레이(2) 전체가 꺼져있는 시간과 켜져 있는 시간을 조절할 수 있다.
도 3의 (a)와 3b에 도시된 바와 같이, 이때, 입력단에는 전류가 거의 흐르지 않지만, 발광다이오드 어레이(2)에는 충방전회로(30)에서 공급된 전기에너지에 의한 전류가 흐른다.
도 4의 (a)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 전류 파형의 다른 예를 나타낸 도면이며, 도 4의 (b)는 도 1에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 발광다이오드 어레이에 인가되는 전류 파형의 다른 일 예를 나타낸 도면이다. 본 예에서는 B구간에서 발광다이오드 어레이(2)가 점멸하여 발광다이오드 어레이(2)의 점멸주파수가 240㎐ 이상으로 증가하였다.
방전스위치(11), 충전스위치(12)의 동작은 도 3의 (a) 및 도 3의 (b)에 도시된 바와 동일하므로, 점멸스위치(14)의 B구간에서의 동작과 블록스위치(13)의 A구간에서의 동작에 대해서만 설명한다.
정류회로(3)에서 출력되는 전압의 크기가 B구간 중 발광다이오드 어레이(2)를 소등시키고자 하는 구간에 도달하면, 점멸스위치(14)를 오프시키고, 일정한 시간 경과 후 다시 온시킨다. B구간에서 한번 점멸시킨 경우에는 도 4에 도시된 바와 같이, 점멸주파수가 360㎐로 증가한다.
점멸주파수를 더욱 증가시킬 필요가 있는 경우에는 B구간에서 점멸 횟수를 증가시킬 수 있다. 이때, 점멸스위치(14)가 온/오프되는 시간을 조절하면, 듀티사이클과 주파수도 조절할 수 있다. 점멸스위치(14)가 온/오프되는 시간은 부하에 인가되는 평균 전력의 크기가 일정하도록 조정하는 것이 바람직하다. 전압의 크기가 작은 구간에서는 점멸스위치(14)의 온 시간을 길게 하고, 전압의 크기가 큰 경우에는 점멸스위치(14)의 온 시간을 짧게 하면 부하에 인가되는 평균 전력의 크기를 일정하게 할 수 있다.
정류회로(3)에서 출력되는 전압의 크기가 A구간 도달하면, 본 실시예에서는 블록스위치(13)의 온 상태가 유지된다. 따라서 A구간에서 발광다이오드 어레이(2) 전체가 아닌 제2발광다이오드 어레이 블록(2-2)만이 점멸한다. 충전전류의 제한으로 충방전회로(30)에 충전된 전압이 전체 발광다이오드 어레이(2)를 점등시키기에 부족한 경우에는 이와 같이, A구간에서 블록스위치(13)를 온하여 제1발광다이오드 어레이 블록(2-1)을 바이패스하도록 할 수 있다.
도 4의 (a)에는 점멸스위치(14)를 오프하는 시점에 발광다이오드 어레이(2)에 흐르는 전류가 차단되므로 입력원의 전류 값이 감소하는 것으로 도시되어 있다. 그러나 전체고조파 왜곡률을 줄이기 위하여 점멸스위치(14)가 오프되는 구간에 충방전회로(30)에 흐르는 전류를 증가시키는 방법으로 전류 파형을 조절할 수도 있다. 예를 들어, 충전전류 제한회로(9)의 전류제한 값을 조절하여 점멸스위치(14)가 오프되는 구간에 충방전회로(30)에 흐르는 전류를 증가시킬 수 있다.
도 5는 본 발명에 따른 발광다이오드 구동장치의 다른 실시예를 개략적으로 나타낸 도면이다.
본 실시예는 도 1에 도시된 실시예와 블록스위치(13)의 제어방법에 있어서 차이가 있으므로 여기에 대해서만 상세히 설명한다. 도 1에 도시된 실시예에서는 정류회로(3)에서 출력된 전압의 순시치의 변화를 제어기(20)에서 검출하여 바이패스 경로(8)의 블록스위치(13)를 제어하였다. 그러나 본 실시예에서는 제1발광다이오드 어레이 블록(2-1)에 직렬로 설치된 전류 검출회로(25)에서 검출된 전류 값을 이용하여 블록스위치(13)를 제어한다는 점에서 차이가 있다. 도 5에서는 제1발광다이오드 어레이 블록(2-1)에 직렬로 설치된 전류 검출회로(25)를 이용하는 것으로 설명하였으나, 제1발광다이오드 어레이 블록(2-1)에 병렬로 설치된 전압 검출회로에서 검출된 전압 값을 이용하여 블록스위치(13)를 제어할 수도 있다.
정류회로(3)에서 출력된 전압이 증가하면, 바이패스 경로(8)의 저항(10)에 흐르는 전류가 점점 증가한다. 정류회로(3)에서 출력된 전압의 크기가 점점 커져서, 바이패스 경로(8)의 저항(10)에 인가되는 전압이 제1발광다이오드 어레이 블록(2-1)의 구동전압 이상인 일정한 전압이 되면, 저항(10)과 병렬로 연결되어 있는 제1발광다이오드 어레이 블록(2-1) 및 전류 검출회로(25)에도 전류가 흐른다. 전류 검출회로(25)에 전류가 흘러, 전류 검출회로(25)가 블록스위치(13)에 검출신호를 송신하면, 블록스위치(13)가 오프되어 바이패스 경로(8)가 차단됨으로써, 발광다이오드 어레이(2) 전체에 전류가 흐르게 된다.
도 6은 본 발명에 따른 발광다이오드 구동장치의 또 다른 실시예를 개략적으로 나타낸 도면이다.
본 실시예에서는 정류회로(3)에서 출력되는 전압의 순시치 변화에 따라서 직렬로 연결된 제1발광다이오드 어레이 블록(2-1)과 제2발광다이오드 어레이 블록(2-2)을 선택적으로 구동하는 방법에 있어서, 도 1에 도시된 실시예와 차이가 있으므로, 여기에 대해서만 상세히 설명한다. 즉, 블록스위치(15)의 구성에 있어서, 도 1에 도시된 실시예와 차이가 있다.
본 실시예는 도 1에 도시된 실시예와 달리, 정류회로(3)의 출력 측과 제2발광다이오드 어레이 블록(2-2)의 전단을 연결하는 경로를 구비하여, 이 경로에 블록스위치(15)가 설치된다.
본 실시예에 있어서, 제어기(20)는 B구간에서 블록스위치(15)를 온하여, 제2발광다이오드 어레이 블록(2-2)에만 전류가 흐르도록 한다. 전압이 증가하여 발광다이오드 어레이(2) 전체를 점등할 수 있는 수준이 되면 블록스위치(15)를 오프하여, 발광다이오드 어레이(2) 전체에 전류가 흐르도록 한다. A구간에서는 블록스위치(15)를 오프하고, 방전스위치(11)를 온하여, 충방전회로(30)의 전기에너지에 의해서 발광다이오드 어레이(2) 전체에 전류가 흐르도록 한다. 점멸스위치(14)는 전 구간에서 계속 온되어 있을 수 있으며, 점멸주파수를 변경할 경우에는 B구간에서 온오프가 반복될 수 있다.
도 7은 본 발명에 따른 발광다이오드 구동장치의 또 다른 실시예를 개략적으로 나타낸 도면이다.
본 실시예의 경우에는 충방전회로(30)와 직렬로 연결된 방전스위치(27)가 충전스위치의 역할을 동시에 수행한다. 즉, 방전스위치(27)를 온시키면 충전이 진행되고, 오프시키면 충전이 중지된다. 그리고 충전이 된 상태에서 다시 방전스위치(27)를 온시키면 방전이 진행되고, 오프시키면 방전이 중지된다.
도 8의 (a)는 도 7에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 전류 파형의 일 예를 나타낸 도면이며, 도 8의 (b)는 도 7에 도시된 발광다이오드 구동장치에서 입력원의 전압 파형과 발광다이오드 어레이에 인가되는 전류 파형의 일 예를 나타낸 도면이다. 도 8의 (a) 및 도 8의 (b)를 참고하여, 발광다이오드 구동장치의 1주기 분의 작용을 설명한다.
제어기(20)에서 정류회로(3)에서 출력되는 전압의 크기를 측정한 결과, 제2발광다이오드 어레이 블록(2-2)의 구동전압 미만인 A구간에 속하는 것으로 판단된 경우에는, 제어기(20)가 방전스위치(27)는 오프하고, 블록스위치(13)는 온한다.
제2발광다이오드 어레이 블록(2-2)의 구동전압 미만이므로, 도 8의 (b)에 도시된 바와 같이, 제2발광다이오드 어레이 블록(2-2)에 전류가 흐르지 않는다. 그리고 도 8의 (a)에 도시된 바와 같이 역률 개선 회로(7)에 사인파 형태의 전류가 흐른다.
정류회로(3)에서 출력되는 전압의 크기가 제2발광다이오드 어레이 블록(2-2)의 구동전압 범위인 B구간에 도달하면, 정류회로(3)에서 출력된 전압이 제2발광다이오드 어레이 블록(2-2)의 구동전압 이상이므로, 제2발광다이오드 어레이 블록(2-2)이 켜진다. 바이패스 경로(8)의 블록스위치(13)가 온되어 있으므로, 제1발광다이오드 어레이 블록(2-1)에는 전류가 흐르지 않는다. 제2발광다이오드 어레이 블록(2-2)에 흐르는 전류는 정류회로(3)에서 출력되는 전압의 크기가 증가함에 따라서 증가하지만 전압/전류 제한회로(4)에 의해서 일정한 수준 이상으로 증가하지 않는다.
정류회로(3)에서 출력되는 전압의 크기가 발광다이오드 어레이(2) 전체를 점등할 수 있는 구간에 도달하면, 제어기(20)는 블록스위치(13)는 오프시킨다. 바이패스 경로의 블록스위치(13)가 오프되었으므로, 발광다이오드 어레이(2) 전체가 켜진다. 이때, 도 8의 (b)에 도시된 바와 같이, 발광다이오드 어레이(2)에는 전압/전류 제한회로(4)에 의해서 제한된 전류가 흐른다.
그리고 B구간의 방전스위치(27)가 온된 시점부터는 충방전회로(30)에도 전류가 흐른다. 따라서 도 8의 (a)에 도시된 바와 같이, 회로의 입력단에 흐르는 전류 값이 커진다. 발광다이오드 어레이(2)에 흐르는 전류는 전류 또는 전압제한회로(4)에 의해서 제한되어 일정하게 유지되지만, 회로의 입력단에 흐르는 전류 값은 충방전회로(30)에 흐르는 전류 값만큼 증가한다. 충방전회로(30)에 흐르는 전류 값은 충전전류제한회로(9)에 의해서 제한된다.
정류회로(3)에서 출력되는 전압의 크기가 다시 감소하면, 제어기(20)는 다시 블록스위치(13)를 온하여 제2발광다이오드 어레이 블록(2-2)에만 전류가 흐르도록 한다.
B구간에서 방전스위치(27)가 오프되면, 충방전회로(30)는 제2발광다이오드 어레이 블록(2-2)과 분리되어 전기에너지가 저장된 상태로 유지된다.
정류회로(3)에서 출력되는 전압의 크기가 다시 A구간에 도달하면, 제어기(20)는 일정 시간 경과 후 방전스위치(27)를 온하여 커패시터에 충전된 전기에너지를 발광다이오드 어레이(2)에 공급하여 발광다이오드 어레이(2)가 꺼졌다 켜지도록 한다. 그리고 다시 방전스위치(27)를 오프하여 발광다이오드 어레이(2)가 꺼지도록 한다.
도 9는 본 발명에 따른 발광다이오드 구동장치의 또 다른 실시예를 개략적으로 나타낸 도면이다.
본 실시예는 발광다이오드 어레이(2)의 구성에 있어서 상술한 실시예들과 차이가 있다. 본 실시예에 있어서, 발광다이오드 어레이(2)는 3개의 블록(2-1, 2-2a, 2-2b)을 포함한다. 발광다이오드 어레이(2)는 B구간에서 정류회로(3)에서 출력되는 전압의 크기가 증가함에 따라서, 처음에는 제2발광다이오드 어레이 블록(2-2a)이 점등되고, 이후에는 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)이 함께 점등된다. 그리고 전압의 크기가 더욱 증가하면 전체 발광다이오드 어레이(2)가 점등된다. 즉, B구간에서 전압이 증가함에 따라서 점등되는 발광다이오드의 수가 증가한다.
본 실시예에 있어서, B구간의 초기에는 제1블록스위치(16a)가 온되어, 제2발광다이오드 어레이 블록(2-2a)에만 전류가 흐른다. 그리고 전압이 증가하여, 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)이 함께 점등될 수 있는 상태가 되면, 제1블록스위치(16a)가 오프되고, 제2블록스위치(16b)가 온되어 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)에 전류가 흐른다. 그리고 전압이 더욱 증가하면, 제1블록스위치(16a)와 제2블록스위치(16b)가 모두 오프되어, 전체 발광다이오드 어레이(2)에 전류가 흐른다.
A구간에서는 충방전회로(30)에서 출력되는 전압의 크기가 감소함에 따라서 점등되는 발광다이오드 어레이 블록의 수가 감소하도록 블록스위치들이 제어될 수 있다. 충방전회로(30)에 충분한 전기에너지가 저장된 경우에는 전체 발광다이오드 어레이(2)가 점등된 후 일정시간 경과 후 소등될 수도 있으나, 충전전류 제한에 의해서 충분한 전기에너지가 저장되지 않은 경우에는 충방전회로(30)에서 출력되는 전압의 크기가 감소함에 따라서 발광다이오드 어레이 블록의 수가 감소하고, 일정시간 경과 후 전체가 소등되도록 블록스위치들이 제어될 수 있다.
도 10 내지 12는 본 발명에 따른 발광다이오드 구동장치의 또 다른 실시예들의 일부를 개략적으로 나타낸 도면이다.
도 10에서는 B구간의 초기에는 제1블록스위치(17a)가 온되어, 제2발광다이오드 어레이 블록(2-2a)에만 전류가 흐른다. 그리고 전압이 증가하여, 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)이 함께 점등될 수 있는 상태가 되면, 제1블록스위치(17a)가 오프되고, 제2블록스위치(17b)가 온되어 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)에 전류가 흐른다. 그리고 전압이 더욱 증가하면, 제1블록스위치(17a)와 제2블록스위치(17b)가 모두 오프되어, 전체 발광다이오드 어레이(2)에 전류가 흐른다.
도 11에서는 B구간의 초기에는 제1블록스위치(18a)와 제2블록스위치(18b)가 모두 온되어, 제2발광다이오드 어레이 블록(2-2a)에만 전류가 흐른다. 그리고 전압이 증가하여, 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)이 함께 점등될 수 있는 상태가 되면, 제1블록스위치(18a)가 오프되어 제2발광다이오드 어레이 블록(2-2a)과 제3발광다이오드 어레이 블록(2-2b)에 전류가 흐른다. 그리고 전압이 더욱 증가하면, 제1블록스위치(18a)와 제2블록스위치(18b)가 모두 오프되어, 전체 발광다이오드 어레이(2)에 전류가 흐른다.
도 12에서는 도 5에 도시된 실시예와 마찬가지로, 제3발광다이오드 어레이 블록(2-2b)과 제1발광다이오드 어레이 블록(2-1)에 흐르는 전류를 전류 검출회로(25)를 통해서 검출하여 제1블록스위치(19a)와 제2블록스위치(19b)를 제어한다는 점에서 도 10에 도시된 실시예와 차이가 있다.
이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
즉, 발광다이오드 어레이의 블록들에 선택적으로 전류를 흘리기 위한 블록스위치는 상술한 실시예외에 다양한 형태로 구현할 수 있으며, 그 변형된 형태도 본 발명의 범위에 포함된다.
또한, 도 9 내지 12에는 발광다이오드 어레이가 세 개의 발광다이오드 어레이 블록을 포함하는 것으로 설명하였으나, 네 개 이상의 발광다이오드 어레이 블록을 포함할 수도 있다.
[부호의 설명]
1: 교류 전압원 2: 발광다이오드 어레이
2-1: 제1발광다이오드 어레이 블록 2-2: 제2발광다이오드 블록
3: 정류회로 7: 역률 개선 회로
8: 바이패스 경로 9: 충전전류 제한회로
11, 27: 방전스위치 12: 충전스위치
13, 15: 블록스위치 14: 점멸스위치
20: 제어기 25: 전류 검출회로
30: 충방전회로

Claims (7)

  1. 교류 전압원에 접속하여, 상기 교류 전압원의 교류 전압을 전파 정류하는 정류회로와, 상기 정류회로의 출력 측과 연결되며 복수의 발광다이오드 어레이 블록들을 포함하는 발광다이오드 어레이와, 상기 정류회로에서 출력된 전압에 의해서 충전되도록 구성된 충방전회로를 포함하는 발광다이오드 구동장치로서,
    상기 충방전회로에 충전된 에너지가 상기 발광다이오드 어레이에 전달되는 경로를 연결 또는 차단시키도록 구성된 방전스위치와,
    복수의 상기 발광다이오드 어레이 블록들 중에서 정류회로에서 출력된 전압이 전달되는 발광다이오드 어레이 블록의 수를 조절할 수 있도록 구성된 블록스위치 회로와,
    상기 정류회로에서 출력된 전압의 순시치가 미리 정해진 값 미만인 A구간에서, 상기 발광다이오드 어레이 전체가 꺼진 후 상기 충방전회로가 방전되어 상기 A구간에서 적어도 한번 발광다이오드 어레이 전체가 꺼진 후 복수의 상기 발광다이오드 어레이 블록 중 적어도 하나가 켜졌다 꺼지도록 상기 방전스위치와 블록스위치 회로를 제어하는 제어기를 포함하며,
    상기 제어기는 상기 정류회로에서 출력된 전압의 순시치가 상기 미리 정해진 값 이상인 B구간에서 상기 정류회로에서 출력되는 전압의 순시치가 증가함에 따라서 점등되는 상기 발광다이오드 어레이 블록의 수가 증가하도록 상기 블록스위치 회로를 제어하는 발광다이오드 구동장치.
  2. 제1항에 있어서,
    상기 정류회로에서 출력된 전압이 상기 발광다이오드 어레이에 전달되는 경로를 연결 또는 차단시키도록 구성된 점멸스위치를 더 포함하며,
    상기 제어기는 상기 B구간에서 적어도 한번 상기 발광다이오드 어레이가 점멸되도록, 상기 점멸스위치를 제어하는 발광다이오드 구동장치.
  3. 제1항에 있어서,
    상기 정류회로에서 출력되는 전류 파형의 전체 고주파 왜곡률(THD, Total harmonic distortion)을 줄이기 위해서, 상기 정류회로의 출력 측에 연결되어, 전기에너지를 저장 또는 소비하도록 구성된 역률 개선 회로를 더 포함하는 발광다이오드 구동장치.
  4. 제1항에 있어서,
    상기 정류회로에서 출력된 전압이 상기 충방전회로에 전달되는 경로를 연결 또는 차단시키도록 구성된 충전스위치를 더 포함하며,
    상기 제어기는 상기 정류회로에서 출력되는 전류파형의 전체고조파 왜곡률을 줄이기 위하여, 상기 B구간에서 상기 정류회로에서 출력된 전압이 상기 충방전회로에 전달되는 시점을 지연시키도록 상기 충전스위치를 제어하는 발광다이오드 구동장치.
  5. 제4항에 있어서,
    상기 정류회로에서 출력되는 전류파형의 전체고조파 왜곡률을 줄이기 위하여 충방전회로의 충전전류를 제한하도록 구성된 충전전류제한 회로를 더 포함하는 발광다이오드 구동장치.
  6. 제1항에 있어서,
    상기 블록스위치 회로는 복수의 상기 발광다이오드 어레이 블록 중 일부를 바이패스하는 경로와 그 경로에 설치된 블록스위치를 포함하는 발광다이오드 구동장치.
  7. 제6항에 있어서,
    상기 발광다이오드 어레이 블록을 바이패스하는 경로에 설치된 저항과,
    상기 발광다이오드 어레이 블록과 직렬로 연결되어 상기 발광다이오드 어레이 블록에 흐르는 전류를 검출하는 전류 검출회로 또는 상기 발광다이오드 어레이 블록과 병렬로 연결되어 상기 발광다이오드 어레이 블록에 인가되는 전압을 검출하는 전압 검출회로를 더 포함하며,
    상기 제어기는 상기 전류 검출회로 또는 전압 검출회로에서 검출된 전류 또는 전압 값이 미리 정해진 값 이상이면 상기 블록스위치를 오프하도록 구성된 발광다이오드 구동장치.
PCT/KR2014/004561 2013-05-23 2014-05-22 발광다이오드 구동장치 WO2014189298A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/892,719 US9451663B2 (en) 2013-05-23 2014-05-22 Apparatus for driving light emitting diode
EP14801325.3A EP3001779A4 (en) 2013-05-23 2014-05-22 APPARATUS FOR CONTROLLING LIGHT EMITTING DIODE
JP2016515270A JP2016522551A (ja) 2013-05-23 2014-05-22 発光ダイオード駆動装置
CN201480039125.3A CN105432149B (zh) 2013-05-23 2014-05-22 发光二极管驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130058456 2013-05-23
KR10-2013-0058456 2013-05-23

Publications (1)

Publication Number Publication Date
WO2014189298A1 true WO2014189298A1 (ko) 2014-11-27

Family

ID=51933794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004561 WO2014189298A1 (ko) 2013-05-23 2014-05-22 발광다이오드 구동장치

Country Status (7)

Country Link
US (1) US9451663B2 (ko)
EP (1) EP3001779A4 (ko)
JP (1) JP2016522551A (ko)
KR (1) KR101686501B1 (ko)
CN (1) CN105432149B (ko)
TW (1) TWI551185B (ko)
WO (1) WO2014189298A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093534A1 (ko) * 2014-12-12 2016-06-16 서울반도체 주식회사 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2016122182A1 (ko) * 2015-01-30 2016-08-04 주식회사 실리콘웍스 발광 다이오드 조명 장치의 제어 회로 및 제어 방법
WO2016133118A1 (ja) * 2015-02-18 2016-08-25 株式会社ステラージアLed 駆動回路
DE102015117481A1 (de) * 2015-10-14 2017-04-20 Atlas Elektronik Gmbh Schaltung zum flackerarmen und normgemäßen Betreiben von Leuchtdioden, sowie Leuchtmittel und Leuchte
US10187945B2 (en) 2014-12-12 2019-01-22 Seoul Semiconductor Co., Ltd. LED drive circuit with improved flicker performance, and LED lighting device comprising same
EP3284324A4 (en) * 2015-04-09 2019-04-10 Lynk Labs, Inc. LED LIGHTING SYSTEM ATTACKED BY ALTERNATIVE CURRENT WITH LOW SCINTILATION, ATTACK METHOD AND APPARATUS
RU2709628C2 (ru) * 2015-03-17 2019-12-19 Филипс Лайтинг Холдинг Б.В. Возбудитель по меньшей мере с четырьмя различными состояниями

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552824B1 (ko) * 2013-02-28 2015-09-14 주식회사 실리콘웍스 발광 다이오드 조명 장치의 제어 회로
WO2017217690A1 (ko) * 2016-06-16 2017-12-21 주식회사 루멘스 다각형 전류로 구동되는 엘이디 조명장치
US9794992B1 (en) * 2016-07-27 2017-10-17 Vastview Technology Inc. Universal method for driving LEDs using high voltage
FR3060934B1 (fr) * 2016-12-21 2020-11-27 Aledia Circuit optoelectronique comprenant des diodes electroluminescentes
TWI640146B (zh) * 2017-02-06 2018-11-01 圓展科技股份有限公司 智慧型充電系統及智慧型充電方法
DE102017104290A1 (de) 2017-03-01 2018-09-06 Atlas Elektronik Gmbh Leuchtdiodenschaltung und Leuchte
US10178717B2 (en) * 2017-03-09 2019-01-08 Dongming Li Lamp-control circuit for lamp array emitting constant light output
WO2018206430A1 (en) * 2017-05-12 2018-11-15 Philips Lighting Holding B.V. Led driver and lighting device
CN109152125A (zh) * 2017-06-28 2019-01-04 群光电能科技股份有限公司 发光装置及其驱动方法
CN111567146B (zh) 2018-01-02 2022-09-23 昕诺飞控股有限公司 照明驱动器、照明系统和控制方法
TWI670995B (zh) * 2018-05-29 2019-09-01 矽誠科技股份有限公司 具有開關控制電路之發光二極體驅動裝置
US10433383B1 (en) 2018-07-23 2019-10-01 Semisilicon Technology Corp. Light emitting diode driving apparatus with switch control circuit
US11013086B2 (en) * 2018-12-12 2021-05-18 i Sine Inc. Methods and apparatus for delivery of constant magnitude power to LED strings
US11831237B2 (en) 2021-12-09 2023-11-28 Microsoft Technology Licensing, Llc Power supply with power factor correction bypass

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028776A (en) * 1997-07-31 2000-02-22 Samsung Electro-Mechanics Co. Ltd. Power factor correction converter
US6989807B2 (en) 2003-05-19 2006-01-24 Add Microtech Corp. LED driving device
KR20100104362A (ko) 2009-03-17 2010-09-29 (주)씨엠시스 자동차 브레이크의 캘리퍼 피스톤 가공용 다축터닝장치
JP4581646B2 (ja) 2004-11-22 2010-11-17 パナソニック電工株式会社 発光ダイオード点灯装置
US20110025225A1 (en) * 2009-07-31 2011-02-03 Sanyo Electric Co., Ltd. Light-Emitting Diode Driver Circuit and Lighting Apparatus
JP2011040701A (ja) 2009-07-14 2011-02-24 Nichia Corp 発光ダイオード駆動回路及び発光ダイオードの点灯制御方法
KR20110091444A (ko) 2010-02-05 2011-08-11 샤프 가부시키가이샤 Led 구동 회로, 조광 장치, led 조명등 기구, led 조명 기기, 및 led 조명 시스템
KR20120018646A (ko) * 2010-08-23 2012-03-05 삼성엘이디 주식회사 교류구동 발광장치
KR20120041093A (ko) 2010-10-20 2012-04-30 서울반도체 주식회사 발광 다이오드 구동 장치
KR20120074502A (ko) 2010-12-28 2012-07-06 주식회사 티엘아이 변조 지수를 개선하는 엘이디 조명 장치
KR20120082468A (ko) 2009-11-13 2012-07-23 니치아 카가쿠 고교 가부시키가이샤 발광 다이오드 구동장치 및 발광 다이오드의 점등 제어 방법
US20120212143A1 (en) * 2011-02-22 2012-08-23 Panasonic Corporation Lighting device and illumination apparatus including same
US20120229041A1 (en) 2009-11-05 2012-09-13 Eldolab Holding B.V. Led driver for powering an led unit from a electronic transformer
US8299724B2 (en) 2010-03-19 2012-10-30 Active-Semi, Inc. AC LED lamp involving an LED string having separately shortable sections

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709208B2 (en) 2004-11-08 2010-05-04 New York University Methods for diagnosis of major depressive disorder
US20060188333A1 (en) 2005-02-14 2006-08-24 Ron Hicks Surface stripe, apparatus and method
KR100971757B1 (ko) 2009-02-17 2010-07-21 주식회사 루미네이처 Led 조명장치
JP5717718B2 (ja) 2009-03-30 2015-05-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 重合可能な組成物
JP5600456B2 (ja) * 2009-05-19 2014-10-01 ローム株式会社 発光ダイオードの駆動回路およびそれを用いた発光装置およびディスプレイ装置、駆動回路の保護方法
WO2011030246A2 (en) 2009-09-09 2011-03-17 Koninklijke Philips Electronics N.V. Driving circuit for driving a plurality of light sources
JP2011076556A (ja) * 2009-10-02 2011-04-14 Koyo Denshi Kogyo:Kk 負荷駆動制御方法
TWI475922B (zh) * 2010-03-22 2015-03-01 Point Somee Ltd Liability Co 用於提供ac線電力至發光裝置的設備、方法及系統
US8693890B2 (en) 2010-08-20 2014-04-08 Nec Laboratories America, Inc. Look-up table and digital transmitter based architecture for fiber nonlinearity compensation
JP5733931B2 (ja) * 2010-09-10 2015-06-10 三菱電機株式会社 電源装置及び照明装置
US8815671B2 (en) 2010-09-28 2014-08-26 International Business Machines Corporation Use of contacts to create differential stresses on devices
KR101198408B1 (ko) 2010-10-26 2012-11-07 (주)로그인디지탈 플리커 저감 및 광효율 개선 기능을 갖춘 ac 직결형 led 조명기기
KR101397953B1 (ko) * 2010-12-20 2014-05-27 이동원 상용전원 2 종류를 지원하는 교류구동 엘이디 조명장치
KR20120104788A (ko) * 2011-03-14 2012-09-24 이승호 벅부스트형 발광 다이오드 전원장치
EP2692207B1 (en) 2011-03-28 2016-05-18 Koninklijke Philips N.V. Driving device and method for driving a load, in particular an led assembly
US8330390B2 (en) 2011-04-11 2012-12-11 Bridgelux, Inc. AC LED light source with reduced flicker
JP5821279B2 (ja) 2011-05-24 2015-11-24 日亜化学工業株式会社 発光ダイオード駆動装置
CN202759632U (zh) * 2012-06-20 2013-02-27 伟思科技控股有限公司 一种发光二极管的驱动电路及照明装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028776A (en) * 1997-07-31 2000-02-22 Samsung Electro-Mechanics Co. Ltd. Power factor correction converter
US6989807B2 (en) 2003-05-19 2006-01-24 Add Microtech Corp. LED driving device
JP4581646B2 (ja) 2004-11-22 2010-11-17 パナソニック電工株式会社 発光ダイオード点灯装置
KR20100104362A (ko) 2009-03-17 2010-09-29 (주)씨엠시스 자동차 브레이크의 캘리퍼 피스톤 가공용 다축터닝장치
JP2011040701A (ja) 2009-07-14 2011-02-24 Nichia Corp 発光ダイオード駆動回路及び発光ダイオードの点灯制御方法
US20110025225A1 (en) * 2009-07-31 2011-02-03 Sanyo Electric Co., Ltd. Light-Emitting Diode Driver Circuit and Lighting Apparatus
US20120229041A1 (en) 2009-11-05 2012-09-13 Eldolab Holding B.V. Led driver for powering an led unit from a electronic transformer
KR20120082468A (ko) 2009-11-13 2012-07-23 니치아 카가쿠 고교 가부시키가이샤 발광 다이오드 구동장치 및 발광 다이오드의 점등 제어 방법
KR20110091444A (ko) 2010-02-05 2011-08-11 샤프 가부시키가이샤 Led 구동 회로, 조광 장치, led 조명등 기구, led 조명 기기, 및 led 조명 시스템
US8299724B2 (en) 2010-03-19 2012-10-30 Active-Semi, Inc. AC LED lamp involving an LED string having separately shortable sections
KR20120018646A (ko) * 2010-08-23 2012-03-05 삼성엘이디 주식회사 교류구동 발광장치
KR20120041093A (ko) 2010-10-20 2012-04-30 서울반도체 주식회사 발광 다이오드 구동 장치
KR20120074502A (ko) 2010-12-28 2012-07-06 주식회사 티엘아이 변조 지수를 개선하는 엘이디 조명 장치
US20120212143A1 (en) * 2011-02-22 2012-08-23 Panasonic Corporation Lighting device and illumination apparatus including same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAFUMI JINNO; KEIJI MORITA; YUDAI TOMITA; YUKINOBU TODA; HIDEKI MOTOMURA: "Effective illuminance improvement of light source by using pwm", J. LIGHT & VIS. ENV., vol. 32, no. 2, 2008
See also references of EP3001779A4
ZHANG YINXIN; ZHANG ZHEN; HUANG ZHANHUA; CAI HUAIYU; XIA LIN; ZHAO JIE: "Apparent Brightness of LEDs under Different dimming Methods", PROC. OF SPIE, vol. 6841, 2008, pages 684109

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093534A1 (ko) * 2014-12-12 2016-06-16 서울반도체 주식회사 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
CN105704854A (zh) * 2014-12-12 2016-06-22 首尔半导体株式会社 闪烁性能得到改善的led驱动电路及包括此的led照明装置
US10187945B2 (en) 2014-12-12 2019-01-22 Seoul Semiconductor Co., Ltd. LED drive circuit with improved flicker performance, and LED lighting device comprising same
US10321529B2 (en) 2014-12-12 2019-06-11 Seoul Semiconductor Co., Ltd. LED drive circuit with improved flicker performance, and LED lighting device comprising same
WO2016122182A1 (ko) * 2015-01-30 2016-08-04 주식회사 실리콘웍스 발광 다이오드 조명 장치의 제어 회로 및 제어 방법
US10271397B2 (en) 2015-01-30 2019-04-23 Silicon Works Co., Ltd. Control circuit and method of LED lighting apparatus
WO2016133118A1 (ja) * 2015-02-18 2016-08-25 株式会社ステラージアLed 駆動回路
RU2709628C2 (ru) * 2015-03-17 2019-12-19 Филипс Лайтинг Холдинг Б.В. Возбудитель по меньшей мере с четырьмя различными состояниями
EP3284324A4 (en) * 2015-04-09 2019-04-10 Lynk Labs, Inc. LED LIGHTING SYSTEM ATTACKED BY ALTERNATIVE CURRENT WITH LOW SCINTILATION, ATTACK METHOD AND APPARATUS
US10433382B2 (en) 2015-04-09 2019-10-01 Lynk Labs, Inc. Low flicker AC driven LED lighting system, drive method and apparatus
DE102015117481A1 (de) * 2015-10-14 2017-04-20 Atlas Elektronik Gmbh Schaltung zum flackerarmen und normgemäßen Betreiben von Leuchtdioden, sowie Leuchtmittel und Leuchte

Also Published As

Publication number Publication date
EP3001779A4 (en) 2016-04-13
CN105432149A (zh) 2016-03-23
KR101686501B1 (ko) 2016-12-14
KR20140138054A (ko) 2014-12-03
JP2016522551A (ja) 2016-07-28
US9451663B2 (en) 2016-09-20
TWI551185B (zh) 2016-09-21
US20160095179A1 (en) 2016-03-31
TW201509230A (zh) 2015-03-01
CN105432149B (zh) 2018-03-20
EP3001779A1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2014189298A1 (ko) 발광다이오드 구동장치
WO2014126392A1 (ko) 발광다이오드의 점멸주파수를 변환시키는 전원공급회로
WO2014058196A2 (ko) Led 연속구동을 위한 led 구동장치 및 구동방법
WO2014081145A1 (ko) 변조지수가 개선된 엘이디 조명장치
WO2011052834A1 (ko) 정전류 구동 led 모듈 장치
WO2014148767A1 (ko) 이중 브리지 다이오드를 이용한 led 구동회로, 이를 포함하는 led 조명장치
WO2012096455A9 (ko) 고효율 전원을 구비한 엘이디 조명장치
WO2010107161A1 (ko) 발광장치 및 그의 구동회로
WO2015152548A1 (ko) 발광 모듈
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
WO2013133547A1 (ko) 효율 개선 기능을 가진 엘이디 구동회로
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2015190646A1 (ko) Led 구동 회로
KR101209059B1 (ko) 조명기구 보호회로 내장형 엘이디 조명장치
US8362711B2 (en) AC LED apparatus
WO2015080393A1 (ko) 전원 공급 장치와 그를 이용한 엘이디 조명장치
WO2014073911A1 (ko) 교류 led 구동 및 조광 제어장치와 그 방법
WO2017086674A1 (ko) 발광 다이오드 조명 장치
WO2020166928A1 (ko) 트라이액 모듈
WO2015080467A1 (ko) Led 조명용 전원 장치
WO2016167584A1 (ko) 초고효율 led램프 구동 장치 및 구동 방법
WO2012023635A1 (ko) 위상제어용 발광다이오드 드라이버
WO2017188757A2 (ko) 전해 캐패시터 레스 전원 공급장치를 구비한 디밍형 led 조명장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039125.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515270

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14892719

Country of ref document: US

Ref document number: 2014801325

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE