WO2020166928A1 - 트라이액 모듈 - Google Patents

트라이액 모듈 Download PDF

Info

Publication number
WO2020166928A1
WO2020166928A1 PCT/KR2020/001883 KR2020001883W WO2020166928A1 WO 2020166928 A1 WO2020166928 A1 WO 2020166928A1 KR 2020001883 W KR2020001883 W KR 2020001883W WO 2020166928 A1 WO2020166928 A1 WO 2020166928A1
Authority
WO
WIPO (PCT)
Prior art keywords
triac
current
latch
switched
switching
Prior art date
Application number
PCT/KR2020/001883
Other languages
English (en)
French (fr)
Inventor
고관수
Original Assignee
고관수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고관수 filed Critical 고관수
Priority to CN202080007399.XA priority Critical patent/CN113597819B/zh
Priority to US17/418,194 priority patent/US11445581B2/en
Priority to JP2021535287A priority patent/JP7153405B2/ja
Publication of WO2020166928A1 publication Critical patent/WO2020166928A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a triac element of an electric device.
  • triode AC switch In general, a triode AC switch is used as a contactless switch element of an AC circuit, and there are two driving methods of such a triac.
  • One is a method of receiving and controlling a separate external power supply.
  • a trigger signal is provided to the gate terminal of the triac to be controlled with a separate power supply and a control circuit. That is, a separate power line is provided in the triac control circuit for operating the triac, and power is separately supplied to the triac control circuit. Therefore, in this case, since a total of 3 lines are connected, it can be called a 3-wire type.
  • This method is widely adopted, but requires a separate power supply, and is stable due to the addition of power lines and power supply circuits, but has a high cost and difficult to insert into a standard switch.
  • Another method is a two-wire control method.
  • the power line is connected to both ends of the triac
  • the control circuit part is connected to the power line of the triac, so that when the triac is off, energy is supplied from both ends of the triac's T1 and T2 terminals. This is the way.
  • LED is widely used as a lighting lamp, and various control methods are applied to this LED load.
  • the present invention was created to solve the problems of the prior art as described above, the object of the triac module according to the present invention,
  • the standby power of the triac in the off state can be minimized, and thus the power consumption can be reduced.
  • control circuit of the triac can be downsized and implemented at an ultra-low cost.
  • the load [as an electric device, for example, a lamp] is turned on.
  • the load [lamp] control operation eg, color change, brightness control (dimming)
  • the load [lamp] control operation can be performed simultaneously by using (utilizing) the configuration of the delay-off circuit of the load lamp,
  • Ninth it is constructed so that it can be manufactured as a single unit that is connected in parallel to the wall-mounted operation switch embedded or attached to the wall, without any configuration or structural changes to the existing wall-mounted operation switch or existing line. It allows simple installation, and thus allows general users to perform the installation of the triac of the present invention very simply and easily, even if not a professional technician,
  • the triac module of the present invention for achieving the above object is a triac module that is connected to one power line among two power lines supplying power from a commercial AC power source to an electric device to switch the electric device on and off.
  • a triac that is connected to one of two power lines supplying current from a commercial AC power source to an electric device, and is operated by a triac driving current input to the gate terminal to regulate the power supply of an electric device;
  • a bridge diode connected in parallel with the gate terminal and T2 terminal of the triac, full-wave rectifying current output from the gate terminal of the triac or input to the gate terminal of the triac, and connected to the output terminal of the bridge diode, the A triac trigger unit that operates the triac by receiving the current output from the bridge diode and outputting the triac driving current for turning on the triac to the gate terminal of the triac, and a triac trigger unit that is latched on Consisting of a latch circuit unit that outputs
  • the triac module of the present invention having the above configuration has the following effects.
  • the standby power of the triac in the off state can be minimized, and as a result, there is an effect of lowering the power consumption.
  • the control circuit of the triac can be downsized, and the triac can be implemented at an ultra-low cost.
  • the electric device is not turned off for a set period of time (the first set time) and the operating state is maintained (ie, the load delay is turned off). It has the effect of simultaneously performing control operations (eg, color change, dimming) for the load [lamp] by using (utilizing) the configuration of the delay-off circuit of the load lamp while it is in use. .
  • Ninth it is constructed so that it can be manufactured as a single unit that is connected in parallel to the wall-mounted operation switch embedded or attached to the wall, without any configuration or structural changes to the existing wall-mounted operation switch or existing line. It can be simply installed, and as a result, there is an effect that a general consumer can perform the installation of the triac of the present invention very simply and easily, even if not a professional engineer.
  • FIG. 1 is a circuit diagram of a triac module 100 according to an embodiment of the present invention.
  • FIG. 2 is a waveform diagram of the voltage applied to the electric device 10 while the operation switch SW is turned off at time T1 and the latch circuit unit 14 is latched on at time T2.
  • FIG 3 is an operation diagram showing a current flow during a first set time ⁇ T in which the triac 110 is switched on in the triac module 100 according to an embodiment of the present invention.
  • FIG. 4 is an operation diagram showing an operation of a current flow in which the triac 110 is switched off when the latch circuit unit 140 is latched on in the triac module 100 according to an embodiment of the present invention.
  • the electric device described in the present specification includes an electronic device and an electric device, and includes all devices operated by electricity.
  • components other than the triac 110 are control circuits for controlling the triac 110, and various additions to this control circuit in addition to the basic switching operation Features are implemented.
  • the triac module 100 is a technology related to a two-wire control method that is based on a two-wire control method, but does not require a separate power for driving the triac, and is a commercial AC power source ( It is a technology for switching on and off the electric device 10 by being connected to one power line L1 among two power lines supplying power from AC) to the electric device 10.
  • the triac module 100 is characterized in that it comprises a triac 110, a bridge diode 120, a triac trigger unit 130, and a latch circuit unit 140. .
  • the triac 110 is connected in series to one power line L1 among two power lines supplying current from a commercial AC power supply (AC) to the electric device 10, and a triac input through the gate terminal (g). It is a configuration that regulates the power supply of the electric device 10 by operating by a liquid driving current.
  • AC commercial AC power supply
  • the gate terminal g of the triac 110 is connected in the same direction as the T1 terminal T1.
  • the bridge diode 120 is connected in parallel with the gate terminal (g) and the T2 terminal (T2) of the triac (110), and is output from the gate terminal (g) of the triac (110) or from the bridge diode (120). It is a rectifying device for full-wave rectification of the current input to the gate terminal (g) of the triac 110.
  • the triac trigger unit 130 is connected to the bridge diode 120 and receives the full-wave rectified current I output from the bridge diode 120 to turn on the triac 110 By outputting the driving current I1 to the gate terminal g of the triac 110, the triac 110 is switched on, and the moment the latch circuit unit 140 is latched on, the triac driving current ( This is a configuration in which the output of I1) is blocked.
  • the latch circuit unit 140 is connected to the triac trigger unit 130 (specifically, the first switching element Q1 constituting the triac trigger unit 130 (for example, FET (Q1)) ) Is connected to the gate terminal (G)], and when a latch trigger signal is input from the external (for example, the latch trigger unit 150), the threshold current (Ith) for driving the triac 110 is latched on This configuration outputs a latch current having a smaller value to the gate terminal g of the triac 110.
  • the first switching element Q1 constituting the triac trigger unit 130 for example, FET (Q1)
  • the triac trigger unit 130 cuts off the output of the triac driving current I1 so that the triac 110 is switched off.
  • both ends of the triac 110 since power is not supplied from the T1 terminal (T1) and T2 terminal (T2), both ends of the triac 110, it is connected to the T1 terminal (T1) and the T2 terminal (T2), both ends of the triac 110.
  • a power supply for driving the triac 110 is unnecessary. Therefore, since a separate control power supply for driving the triac is unnecessary, stable driving is possible.
  • control circuit of the triac 110 can be miniaturized, and at the same time, it can be implemented at a very low cost.
  • the triac driving current I1 and the latch current are input to the gate terminal g of the triac 110 after passing through the bridge diode 120.
  • the triac trigger unit 130 includes a first switching element Q1 connected to the output terminal of the bridge diode 120, and the first switching element Q1 at the output terminal of the bridge diode 120. It characterized in that it comprises a second resistor (R2) connected in parallel.
  • the output terminal of the first switching element Q1 and the output terminal of the latch circuit part 140 are connected to the first terminal 1 of the bridge diode 120, and before the first switching element Q1 is switched on
  • the current (I) output from the bridge diode 120 passes through the second resistor (R2) and becomes a switching trigger current (I2) having a microcurrent value in the range of mA, and the switching trigger current (I2) is the first
  • the output current of the bridge diode 120 is converted to the triac driving current I1. It is characterized in that the triac 110 is driven by being input to the gate terminal g of the triac 110.
  • the latch circuit unit 140 is connected to the output terminal of the second resistor R2 (the gate terminal G of the first switching element Q1), and the latch circuit unit 140 is externally (for example, a latch trigger unit).
  • a latch trigger signal is input from (150)]
  • the first switching device (Q1) is switched off by latching on, and the first switching device (Q1) is turned off to reduce the triac driving current (I1). It is characterized in that the switch is off between the T1 terminal (T1) and the T2 terminal (T2) of the triac 110.
  • the latch is latched by the AC voltage applied between the T1 terminal (T1) and the T2 terminal (T2) of the switched off triac (110). It is characterized in that the current is maintained.
  • the latch circuit unit 140 is formed by a latch current flowing along a path formed by 140, the bridge diode 120 and the gate terminal g of the triac 110 and the T1 terminal T1 of the triac 110. Is characterized in that it maintains the latch-on state.
  • the latch circuit unit 140 may be composed of, for example, two transistors Q2 and Q3 alternately operating.
  • the first switching device (Q1) is composed of a FET (Q1), the gate terminal (G) of the FET (Q1) and the output terminal of the second resistor (R2) is connected to the second node (n2). It is characterized. Accordingly, the latch circuit unit 140 is connected to the second node n2.
  • a first resistor R1 is connected in parallel to a second resistor R2 between the output terminal n1 of the bridge diode 120 and the input terminal [drain terminal] D of the first switching device Q1.
  • the first resistance R1 has a relatively small resistance value in the range of 0 to several k ⁇ , and the second resistance R2 is a relatively very large value than the resistance value of the first resistance R1 (for example, the first resistance ( It is characterized in that the current distribution is formed by having a resistance value of 10 2 to 10 6 times the resistance value of R1).
  • the first latch circuit unit is connected to the second node n2 of the first switching device Q1 and the second resistor R2 to receive a charging voltage, and the triac 110 is turned on.
  • 140 is characterized in that it is configured to further include a first capacitor (C1) supplying a latch current for latch-on.
  • the first latch current for latch-on operation of the latch circuit unit 140 while the triac 110 is driven can be supplied to the latch circuit unit 140.
  • the charging voltage can be smoothly supplied.
  • a reverse flow prevention diode D1 connected between the output terminal of the bridge diode 120 and the second resistor R2 to block reverse flow is further included.
  • the triac module 100 according to another embodiment of the present invention is an application circuit of the triac module 100 according to the embodiment of the present invention described above, and a set time elapses after the triac 110 is turned on. After this, the triac 110 is automatically turned off.
  • the triac module 100 may be configured by further including a latch trigger unit 150 in addition to the above-described configuration.
  • the latch trigger unit 150 is connected to the second node n2 of the triac trigger unit 130 and is also connected in parallel to the latch circuit unit 140, and the first switching device Q1 is switched on. This configuration outputs a latch trigger signal for latch-on of the latch circuit unit 140 after the first set time ⁇ T has elapsed thereafter.
  • the latch circuit unit 140 is latched on after a first set time ( ⁇ T) has elapsed after the first switching device (Q1) is switched on, so that the triac 110 is switched on and a first set time ( ⁇ T). It is characterized in that it is possible to automatically turn off the triac 110 after) elapses.
  • the latch trigger unit 150 may include a second capacitor C2 connected to the second node n2 and charged by a voltage applied to the second node n2.
  • the latch trigger unit 150 when the charging voltage of the second capacitor C2 is charged with the first reference voltage V1, the second capacitor C2 charged with the first reference voltage V1 As a result, a latch trigger signal is output to the latch circuit unit 140, and the latch circuit unit 140 to which the latch trigger signal is input is latched on to turn off the first switching device Q1, and the second capacitor C2
  • the capacitance value of is set such that a time for charging the second capacitor C2 to the first reference voltage V1 becomes a first set time ⁇ T.
  • the latch trigger unit 150 includes a third resistor R3 connected between the output terminal n1 of the second resistor R2 and a second capacitor C2, and the third resistor.
  • a fourth resistor R4 connected in parallel to the second capacitor C2 at the output terminal of R3 may be further included.
  • the second is inserted between the input terminal of the second capacitor C2 and the latch circuit unit 140 so that the latch trigger signal is input to the latch circuit unit 140 only when the second capacitor C2 is equal to or higher than the first reference voltage. It is characterized in that the Zener diode (ZD2) is further included and configured.
  • the latch trigger unit 150 is composed of the second capacitor C2, but is not limited thereto, and any element capable of triggering the latch circuit unit 140 is the present invention. Belongs to the technical scope of.
  • the triac module 100 is another application circuit of the triac module 100 according to the embodiment of the present invention described above, and turns the electric device 10 on and off.
  • the triac 110 is connected in parallel to the operation switch (SW) to automatically turn off the operation of the electric device 10 after a set time ( It is a technology that performs an off operation delay function).
  • the triac module 100 is connected in series to one power line L1 among two power lines supplying power to the electric device 10 from a commercial AC power source, 10) It is characterized in that it is configured in parallel to the operation switch (SW) for on-off operation.
  • SW operation switch
  • the operation switch SW may be a wall-mounted operation switch SW that is embedded or attached to the wall.
  • the triac module 100 can be installed in parallel to the operation switch (SW) connected in series to one power line (L1) of the AC power line of the commercial AC power supply, the previously installed operation switch (SW) is completely Since it is possible to install the triac module 100 without touching it, the installation workability is very convenient and simple, and thus anyone who is not a professional engineer can install it.
  • the triac 110 is one of two power lines supplying power from a commercial AC power supply (AC) to the electric device 10.
  • a T1 terminal (T1) and a T2 terminal (T2) are connected in parallel to an operation switch (SW) which is connected in series to the power line (L1) to turn on and off the electric device 10, and the operation switch (SW) is turned off. It is turned on only for the first set time from time and is turned off when the first set time has elapsed.
  • the bridge diode 120 rectifies the AC current when the operation switch SW is turned off, and the triac trigger unit 130 ) And the latch circuit unit 140 to rectify the triac driving current and the latch current input to the gate terminal g1 of the triac 110.
  • the triac trigger unit 130 is the bridge diode 120 during a first set time ( ⁇ T) when the operation switch (SW) is turned off. ), the triac driving current (I1) for turning on the triac (110) by receiving the full-wave rectified current (I) is output to the gate terminal (g) of the triac (110). (110) is switched on.
  • the latch circuit unit 140 is latched off during a first set time ( ⁇ T), that is, during charging, and a first set time ( ⁇ T) When this elapses, the first switching device (Q1) is latched on, and the triac (110) is switched off by switching off the first switching device (Q1).
  • the triac module 100 is connected to the second node n2 of the triac trigger unit 130 and is also connected in parallel to the latch circuit unit 140, and the first 1 A latch trigger unit 150 for outputting a latch trigger signal for latching on the latch circuit unit 140 after the first set time ⁇ T has elapsed after the switching device Q1 is switched on is further included and configured.
  • the latch circuit unit 140 latches on after a first set time ⁇ T has elapsed after the first switching device Q1 is switched on, so that the triac 110 is switched on and a first set time ( It is characterized in that the triac 110 can be automatically turned off after ⁇ T) elapses.
  • the latch trigger unit 150 includes a second capacitor C2 connected to the second node n2 and charged by a voltage applied to the second node n2, and the second When the charging voltage of the capacitor C2 is charged to the first reference voltage V1, the latch trigger signal is output to the latch circuit unit 140 by the second capacitor C2 charged with the first reference voltage V1, and , The latch circuit unit 140 to which the latch trigger signal is input is latched on to turn off the first switching device (Q1), and the capacitance value of the second capacitor (C2) is the second capacitor (C2). 1 It is characterized in that the time to be charged with the reference voltage (V1) is set to be the first set time ( ⁇ T).
  • the latch trigger unit 150 includes a third resistor R3 connected between the output terminal n1 of the second resistor R2 and a second capacitor C2, and the third resistor.
  • a fourth resistor R4 connected in parallel to the second capacitor C2 at the output terminal of R3 may be further included.
  • the second is inserted between the input terminal of the second capacitor C2 and the latch circuit unit 140, so that the latch trigger signal is input to the latch circuit unit 140 only when the second capacitor C2 is equal to or higher than the first reference voltage.
  • a Zener diode ZD2 may be further included and configured.
  • an off-time generation unit 160 is additionally provided to the triac module 100 according to another embodiment of the present invention. This is a technology that enables control of the electric device 10 while the switch SW is turned off and the triac 110 is turned on.
  • the triac module 100 is connected to the second node n2 and connected in parallel with the latch trigger unit 150, and the operation switch SW is switched off.
  • the off-time generation unit 160 for turning off is further included.
  • the electric device 10 monitors the off state of the off time generator 160 and recognizes the switching off state of the off time generator 160 as a logic signal to perform a control operation. To do.
  • the lamp extinguishing delay operation delaying the extinguishing of the lamp [electrical device 10] after the first set time is performed.
  • the triac 110 is not immediately switched on as soon as the operation switch SW is turned off, and the output of the trigger signal for driving the triac 110 is held during the off-time ( ⁇ Ta), which is an extremely short time. And by recognizing this off time as a logic signal, the lamp can be controlled.
  • the off time ( ⁇ Ta) is the time from when the operation switch (SW) is turned off to the moment when the triac 110 is switched-on operation
  • the electric device 10 is configured with a lamp, and recognizes a switching off state and recognizes this as a color change, and performs a color change operation.
  • the electric device 10 is configured with a lamp, and recognizes a switching off state and recognizes it as dimming to perform a brightness adjustment operation.
  • the off-time generation unit 160 includes a second node n2 of the first switching device Q1 and the second resistor R2.
  • the electric device 10 is connected to and connected in parallel with the latch trigger unit 150, during the off-time ( ⁇ Ta) from the moment when the operation switch SW is switched off to the moment when the triac 110 is switched on. It is characterized in that it is composed of a first capacitor (C1) for turning off the electric device 10 by delaying the switching-on operation of the triac 110.
  • the first capacitor C1 is charged by a voltage applied to the gate terminal G of the first switching device Q1 according to the second resistor R2, and the gate terminal trigger voltage of the first switching device Q1 When (Vg) is reached, the trigger current of the first switching device is inputted to the gate terminal G of the first switching device Q1.
  • the triac module 100 is connected to the output terminal of the bridge diode 120 and the second node n2, and switching after the operation switch SW is turned off.
  • the operation switch SW is turned off and the voltage applied to the first capacitor C1 when switching is turned on later [this voltage is the second node ( It is characterized in that the discharge circuit unit 170 for discharging [n2) is further included.
  • the discharge circuit unit 170 is charged to the fifth set voltage (Vc5) by the current output from the bridge diode 120
  • Vc5 has a value greater than the voltage of the second node n2
  • the operation switch SW is switched on, the charged voltage is discharged to lower the voltage, It is characterized in that the voltage of the second node n2 is discharged.
  • the discharge circuit unit 170 is, for example, a fifth switching device (Q5) connected to the second node (n2), the output terminal of the bridge diode 120 and the fifth switching device (Q5). It may be configured to include a fifth capacitor C5 and a fifth resistor R5 connected in parallel with the fifth capacitor C5.
  • the fifth switching device Q5 may be formed of a transistor.
  • the discharge circuit unit 170 may further include a current supply unit 175 connected to the output terminal of the bridge diode 120 and supplying current to the fifth capacitor C5.
  • the switching trigger current I2 is input to the second resistor R2 having a relatively large value, and the switching trigger When the first capacitor C1 is charged by the current I2 and the charging voltage of the first capacitor C1 is charged enough to drive the first switching element Q1, the switching trigger current I2 is triggered. Is then introduced into the gate terminal G of the first switching device Q1, and the first switching device Q1 is switched on.
  • the triac driving current (for example, 10 mA) passes through the bridge diode 120 and is input to the gate terminal g of the triac 110 and is equal to or greater than the threshold current value Ith.
  • the triac driving current is input, the triac 110 is switched on so that the terminals T1 and T2 at both ends of the triac 110 are conducted.
  • the triac driving current I1 is the triac's T2 terminal (T2) -> bridge diode 120 (input to terminal 2 -> output to terminal 3) -> first Switching element (Q1) -> bridge diode (input to terminal 1 -> output to terminal 4) -> the triac 110 is switched on by flowing in the order of the gate terminal g of the triac 110.
  • a switch-off state occurs during a very short period of time ( ⁇ Ta) from the moment the operation switch SW is turned off to the moment the triac 110 is turned on, and the electric device 10 logically determines the off state. It recognizes as a signal and performs a control operation.
  • the first capacitor C1 is charged with the switching trigger current and the first capacitor C1 is charged until the gate driving voltage of the first switching device Q1 is reached.
  • a switching trigger current is input to the gate terminal of the first switching device Q1, so that the first switching device Q1 is switched on.
  • the latch circuit unit 140 When the latch circuit unit 140 is latched on, the first latch current flows to the latch circuit unit 140 by the charging voltage of the first capacitor C1, and the first switching device Q1 is switched off.
  • the triac driving current does not flow, and the latch current has a value smaller than the threshold current (Ith), so the T1 terminals (T1) and T2 terminals of the triac (110) (T2) is turned off.
  • the latch current by the first capacitor C1 is the latch circuit unit 140 -> bridge diode 120 (input to terminal 1 -> output to terminal 4) -> triac (
  • the triac is inputted to the triac 110 in the order of the gate terminal (g) of 110). Since the latch current has a value smaller than the threshold current Ith of the triac, the triac cannot be driven and the switching off state is maintained. .
  • the reason why the latch circuit unit 140 can continuously maintain the latch-on state when the triac 110 is turned off by the latch-on operation of the latch circuit unit 140 as described above is a unique configuration of the present invention, that is, This is because the gate terminal (g) and the T2 terminal (T2) of the triac 110 are connected in parallel with the bridge diode 120 will be described.
  • the triac 110 When the triac 110 is open, the AC voltage of the commercial AC power source (AC) is applied between the T1 terminal (T1) and the T2 terminal (T2) of the triac 110, and the switched off triac 110 ), the latch current continues to flow by the AC voltage applied between the T1 terminal (T1) and the T2 terminal (T2) of the latch circuit unit 140 to maintain the latch-on state.
  • AC commercial AC power source
  • the latch current is T2 terminal (T2) of the triac 110 -> Bridge diode 120 (input to terminal 2 -> output to terminal 3) -> 2nd resistor (R2)- > Latch circuit unit 140 -> Bridge diode 120 (Input to terminal 1 -> Output to terminal 4) -> Gate terminal (g) of Triac (110) -> T1 terminal (T1) of triac -> Operate in the order of the electric device 10.
  • the latch current is the T1 terminal (T1) of the triac 110 -> the gate terminal of the triac 110 (g) -> the bridge diode 120 (input to the 4 terminal -> 3 Output to terminal No.) -> 2nd resistor (R2) -> Latch circuit part 140 -> Bridge diode 120 (Input to terminal 1 -> Output to terminal 2) -> Commercial AC power supply (AC) It works in order.
  • the triac 110 When the triac 110 is turned on, it is charged with the fifth capacitor C5, and is charged until the voltage Vc5 of the fifth capacitor C5 becomes a fifth set voltage (eg, 6V).
  • a fifth set voltage eg, 6V
  • the fifth set voltage Vc5 is charged larger than the gate voltage Vn2 of the first switching device Q1, for example 5 V, so that the fourth switching device Q5 is turned off, thus driving the triac. The current does not pass to the fifth switching device Q5.
  • the operation switch SW is switched on, and at this time, the discharge circuit unit 170 is operated.
  • the operation switch SW When the operation switch SW is switched on, the voltage at the output terminal of the bridge diode 120 becomes 0 V, so that the charging voltage of the fifth capacitor C5 is discharged to the fifth resistor R5, and the fifth set voltage Vc5 ) As the charging voltage Vc5 (e.g. 6 V) drops, the magnitude of the gate voltage Vn2 becomes larger than the magnitude of the charging voltage Vc5, so that the fifth switching element Q5 is turned on, and the gate voltage ( Vn2) is discharged below the trigger voltage of the first switching device Q1.
  • the charging voltage Vc5 e.g. 6 V

Landscapes

  • Power Conversion In General (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은 게이트단자(g)로 입력되는 트라이액 구동전류에 의해 동작하는 트라이액(110)과, 트라이액(110)의 게이트단자(g)로부터 출력되거나 트라이액(110)의 게이트단자(g)로 입력되는 전류를 전파정류하는 브릿지다이오드(120)와, 브릿지다이오드(120)로부터 출력되는 전류(I)를 입력받아서 트라이액(110)을 온 동작시키기 위한 트라이액 구동전류(I1)를 트라이액(110)의 게이트단자(g)로 출력함으로써 트라이액(110)을 동작시키는 트라이액 트리거부(130)와, 래치 온되어서 트라이액(110)의 임계전류(Ith)보다 작은 값을 갖는 래치전류를 트라이액(110)의 게이트단자(g)로 출력하는 래치회로부(140)를 포함하여 구성되는 것을 특징으로 한다.

Description

트라이액 모듈
본 발명은 전기기기의 트라이액소자에 관한 것이다.
일반적으로 트라이액(triode AC switch)은 교류회로의 무접점 스위치 소자로 사용하고 있고, 이러한 트라이액의 구동방식에는 2 가지가 있다.
하나는 별도의 외부전원을 공급받아 제어하는 방식이 있는데 이 방식은 별도의 전원과 제어회로부를 가지고 제어대상인 트라이액의 게이트단자에 트리거신호를 제공하는 방식이다. 즉, 트라이액을 동작시키기 위한 트라이액 제어회로부에 별도의 전원라인을 구비하고, 이 트라이액 제어회로부에 별도로 전원을 공급하는 방식이다. 따라서, 이 경우에는 총 3 개의 선이 연결되므로 3 선식이라고도 할 수 있다. 이 방식은 일반적으로 많이 채택하고 있는 방식이지만, 별도의 전원공급부가 있어야 하고, 전원선의 추가, 전원부 회로의 추가로 인하여 안정적이기는 하나, 가격부담이 크고, 표준 스위치에 삽입이 어렵다는 단점이 있다.
다른 방식으로는 2선식 제어 방식이 있다.
이 2선식 제어 방식은 트라이액의 양단에 전원라인이 연결되고, 제어회로부는 트라이액의 전원라인에 연결되어서, 트라이액이 오프시에 트라이액의 T1단자와 T2 단자의 양단으로부터 에너지를 공급받는 방식이다.
그러나, 종래의 2선식 제어 방식은 2 개의 단자인 T1단자와 T2단자를 모두 사용하여야 했으므로, 2 개의 단자의 양단에서 제어하기 위해서는 부가회로가 많이 필요로 하였고, 이 부가회로에 의한 전류 소비가 크며, 전원이 매우 불안정하고, 부하에 큰 영향을 미쳐서 실용화에 큰 문제가 되었다.
한편, LED가 조명등으로 널리 사용되고 있고, 이 LED 부하에는 다양한 제어 방식들이 적용되고 있다.
특히 LED 부하에서 벽에 부착되거나 매입되어서 사용되는 벽부형 동작 스위치의 온-오프 스위칭 조작을 통해서 LED 부하의 조명의 밝기 조절(dimming), 색변화(color change)를 제어하고 있다.
그러나, 벽부형 동작 스위치의 온오프 반복 과정에서 발생되는 조명의 과도한 깜박임이 주는 불편함, 눈의 피로가 있었고, 또한 부하에 내장된 컨버터의 과동한 동작 불안정성에 의한 오동작이 발생되어서 이용자에게 많은 불편함을 제공함은 물론 기술 보급의 장애가 되고 있는 실정이다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위해 창작된 것으로 본 발명에 의한 트라이액 모듈의 목적은,
첫째, 트라이액의 T1단자와 T2단자가 아닌 게이트단자와 T2단자만을 브릿지다이오드에 병렬 연결 구성하고, 매우 작은 값(예컨대 약 1mA 이하의 전류값)의 미세한 래치전류에 의해서 트라이액의 구동을 제어할 수 있고,
둘째, 트라이액의 양단인 T1단자와 T2단자로부터 전원을 공급받지 않아서 트라이액의 양단인 T1단자와 T2 단자에 연결되어서 트라이액을 구동하기 위한 전원공급부를 채택하지 않아도 되도록 하며,
셋째, 트라이액을 구동하기 위한 별도의 제어 전원이 채택하지 않아도 되어서 안정적인 구동이 가능할 수 있도록 하며,
넷째, 매우 작은 값의 미세한 래치전류를 이용하여 트라이액을 구동 제어함으로써 오프 상태의 트라이액의 대기 전력을 최소로 할 수 있도록 하고 그리하여 소비 전력을 낮출 수 있도록 하며,
다섯째, 트라이액을 구동하기 위한 별도의 제어 전원부를 필요로 하지 않도록 함으로써 트라이액의 제어회로를 소형화 할 수 있도록 하며 또한 초저가로 구현할 수 있도록 하며,
여섯째, 미세한 래치전류가 트라이액과 직렬 연결된 전기기기에 영향을 최소화할 수 있도록 하며, 또한 스위치 오프시의 누설전류를 최소화할 수 있도록 하며,
일곱째, 동작 스위치를 스위칭 오프하더라도 설정된 시간(제1 설정시간) 동안은 전기기기가 오프되지 않고 동작 상태를 유지할 수 있도록 하되(즉 부하 지연 오프), 이렇게 부하[전기기기로서 예컨대 램프]가 온 동작되어 있는 동안에 부하인 램프의 지연 소등 회로의 구성을 이용(활용)하여서 부하[램프]에 대한 제어 동작[예컨대 색변화(color change), 밝기 조절(dimming)]을 동시에 수행할 수 있도록 하고,
여덟째, 부하에 대한 제어 동작(색변화, 밝기 조절)을 부하가 점등되어 있는 동안에 수행함으로써, 종래와 같이 부하의 밝기 조절이나 색변화 제어를 위해서 동작 스위치를 반복적으로 온-오프함으로 인하여 발생하였던 문제점인 부하의 깜빡 거림과 이용자의 눈의 피로, 사용 환경 상의 불편함을 예방할 수 있도록 하고, 또한 컨버터의 과도한 동작 불안정성을 예방할 수 있도록 하며,
아홉째, 벽에 매립 또는 부착되어 있는 벽부형의 동작 스위치에 병렬로 접속되는 하나의 단품으로 제작할 수 있도록 구성함으로써, 기존에 설치되어 있는 벽부형 동작 스위치나 기존의 선로를 전혀 구성이나 구조 변경이 없이도 간단하게 취부할 수 있도록 하며, 그리하여 본원 발명의 트라이액의 설치를 전문 기술자가 아니더라도 일반 수요자가 매우 간단하고도 쉽게 수행 할 수 있도록 하며,
열 번째, 본원발명의 특유의 결선 방식인 트라이액의 게이트단자와 브릿지다이오드의 병렬 연결 구성에 의해서, 트라이액이 오프된 경우에도 래치회로부의 래치 상태를 유지할 수 있도록 함으로써, 별도의 전원이 없더라도 동작될 수 있어서 무전원 동작 방식을 구현할 수 있도록 하기에 적당하도록 한 트라이액 모듈를 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명인 트라이액 모듈은, 상용교류전원에서 전기기기로 전원을 공급하는 2 개의 전원라인 중에서 하나의 전원라인에 연결되어서 전기기기를 온오프 스위칭 동작하는 트라이액 모듈로서, 상용교류전원에서 전기기기로 전류를 공급하는 2 개의 전원라인 중에서 하나의 전원라인에 연결되고, 게이트단자로 입력되는 트라이액 구동전류에 의해 동작하여서 전기기기의 전원공급을 단속하는 트라이액과, 상기 트라이액의 게이트단자 및 T2단자와 병렬 연결되고, 상기 트라이액의 게이트단자로부터 출력되거나 트라이액의 게이트단자로 입력되는 전류를 전파정류하는 브릿지다이오드와, 상기 브릿지다이오드의 출력단에 연결되고, 상기 브릿지다이오드로부터 출력되는 전류를 입력받아서 상기 트라이액을 온 동작시키기 위한 트라이액 구동전류를 상기 트라이액의 게이트단자로 출력함으로써 트라이액을 동작시키는 트라이액 트리거부와, 래치 온(latch on)되어서 트라이액의 임계전류보다 작은 값을 갖는 래치전류를 트라이액의 게이트단자로 출력하는 래치회로부를 포함하여 구성되고, 상기 래치회로부가 래치 온되는 경우 상기 트라이액 트리거부는 트라이액 구동전류의 출력이 차단되어서 트라이액이 스위칭 오프되는 것을 특징으로 한다.
상기와 같은 구성을 가지는 본 발명인 트라이액 모듈는 다음과 같은 효과가 있다.
첫째, 트라이액의 T1단자와 T2단자가 아닌 게이트단자와 T2단자만을 브릿지다이오드에 병렬 연결 구성하고, 매우 작은 값(예컨대 약 1mA 이하의 전류값)의 미세한 래치전류에 의해서 트라이액의 구동을 제어할 수 있는 효과가 있다.
둘째, 트라이액의 양단인 T1단자와 T2단자로부터 전원을 공급받지 않아서 트라이액의 양단인 T1단자와 T2 단자에 연결되어서 트라이액을 구동하기 위한 전원공급부를 채택하지 않아도 되는 효과가 있다.
셋째, 트라이액을 구동하기 위한 별도의 제어 전원이 채택하지 않아도 되어서 안정적인 구동이 가능할 수 있는 효과가 있다.
넷째, 매우 작은 값의 미세한 래치전류를 이용하여 트라이액을 구동 제어함으로써 오프 상태의 트라이액의 대기 전력을 최소로 할 수 있고, 그 결과 소비 전력을 낮출 수 있는 효과가 있다.
다섯째, 트라이액을 구동하기 위한 별도의 제어 전원부를 필요로 하지 않도록 함으로써 트라이액의 제어회로를 소형화 할 수 있고, 또한 초저가로 구현할 수 있는 효과가 있다.
여섯째, 미세한 래치전류가 트라이액과 직렬 연결된 전기기기에 영향을 최소화할 수 있고, 또한 스위치 오프시의 누설전류 최소화할 수 있는 효과가 있다.
일곱째, 동작 스위치를 스위칭 오프하더라도 설정된 시간(제1 설정시간) 동안은 전기기기가 오프되지 않고 동작 상태를 유지할 수 있도록 하되(즉 부하 지연 오프), 이렇게 부하[전기기기로서 예컨대 램프]가 온 동작되어 있는 동안에 부하인 램프의 지연 소등 회로의 구성을 이용(활용)하여서 부하[램프]에 대한 제어 동작[예컨대 색변화(color change), 밝기 조절(dimming)]을 동시에 수행할 수 있는 효과가 있다.
여덟째, 부하에 대한 제어 동작(색변화, 밝기 조절)을 부하가 점등되어 있는 동안에 수행함으로써, 종래와 같이 부하의 밝기 조절이나 색변화 제어를 위해서 동작 스위치를 반복적으로 온-오프함으로 인하여 발생하였던 문제점인 부하의 깜빡 거림과 이용자의 눈의 피로, 사용 환경 상의 불편함을 예방할 수 있도록 하고, 또한 컨버터의 과도한 동작 불안정성을 예방할 수 있는 효과가 있다.
아홉째, 벽에 매립 또는 부착되어 있는 벽부형의 동작 스위치에 병렬로 접속되는 하나의 단품으로 제작할 수 있도록 구성함으로써, 기존에 설치되어 있는 벽부형 동작 스위치나 기존의 선로를 전혀 구성이나 구조 변경이 없이도 간단하게 취부할 수 있고, 그 결과 본원 발명의 트라이액의 설치를 전문 기술자가 아니더라도 일반 수요자가 매우 간단하고도 쉽게 수행 할 수 있는 효과가 있다.
열 번째, 본원발명의 특유의 결선 방식인 트라이액의 게이트단자와 브릿지다이오드의 병렬 연결 구성에 의해서, 트라이액이 오프된 경우에도 래치회로부의 래치 상태를 유지할 수 있도록 함으로써, 별도의 전원이 없더라도 동작될 수 있어서 무전원 동작 방식을 구현할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 의한 트라이액 모듈(100)의 회로 구성도이다.
도 2는 시각 T1에서 동작 스위치(SW)가 오프되고, 시각 T2에서 래치회로부(14)가 래치 온되는 동안에 있어서 전기기기(10)에 인가되는 전압의 파형도이다.
도 3은 본 발명의 일 실시예에 의한 트라이액 모듈(100)에 있어서, 트라이액(110)이 스위칭 온 동작되는 제1 설정시간(ΔT) 동안의 전류 흐름을 표시한 동작도이다.
도 4는 본 발명의 일 실시예에 의한 트라이액 모듈(100)에 있어서, 래치회로부(140)가 래치 온되어서 트라이액(110)이 스위칭 오프되는 동작되는 전류 흐름을 표시한 동작도이다.
다음은 본 발명인 트라이액 모듈의 바람직한 실시예를 첨부한 도면을 참조하여 상세하게 설명한다.
본 명세서에 기재된 전기기기는 전자기기와 전기기기를 포함하는 개념으로 전기에 의해서 동작하는 모든 기기를 포함한다.
본 발명의 일 실시예에 의한 트라이액 모듈(100)에 있어서, 트라이액(110)을 제외한 나머지 구성들은 트라이액(110)을 제어하기 위한 제어회로로서, 이 제어회로에는 기본적인 스위칭 동작 외에 다양한 부가적인 기능들이 구현되어 있다.
본 발명의 일 실시예에 의한 트라이액 모듈(100)은, 2선식 제어 방식을 기반으로 하되, 트라이액의 구동에 별도의 전원을 요구하지 않는 2선식 제어방식에 관한 기술로서, 상용교류전원(AC)에서 전기기기(10)로 전원을 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 연결되어서 전기기기(10)를 온오프 스위칭 동작하는 기술이다.
본 발명의 일 실시예에 의한 트라이액 모듈(100)은, 트라이액(110)과 브릿지다이오드(120)와 트라이액 트리거부(130)와 래치회로부(140)를 포함하여 구성되는 것을 특징으로 한다.
상기 트라이액(110)은 상용교류전원(AC)에서 전기기기(10)로 전류를 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 직렬 연결되고, 게이트단자(g)로 입력되는 트라이액 구동전류에 의해 동작하여서 전기기기(10)의 전원공급을 단속하는 구성이다.
트라이액(110)의 게이트단자(g)는 T1단자(T1)와 동일한 방향에서 결선되어 있다.
상기 브릿지다이오드(120)는 트라이액(110)의 게이트단자(g) 및 T2단자(T2)와 병렬 연결되고, 상기 트라이액(110)의 게이트단자(g)로부터 출력되거나 브릿지다이오드(120)로부터 트라이액(110)의 게이트단자(g)로 입력되는 전류를 전파정류하는 정류소자이다.
상기 트라이액 트리거부(130)는 브릿지다이오드(120)에 연결되고, 상기 브릿지다이오드(120)로부터 출력되는 전파정류된 전류(I)를 입력받아서 상기 트라이액(110)을 온 동작시키기 위한 트라이액 구동전류(I1)를 상기 트라이액(110)의 게이트단자(g)로 출력함으로써 트라이액(110)을 스위칭 온 동작시키고, 래치회로부(140)가 래치 온(on)되는 순간 트라이액 구동전류(I1)의 출력이 차단되는 구성이다.
상기 래치회로부(140)는 트라이액 트리거부(130)에 연결되고[구체적으로는 하기하는 바와 같이 트라이액 트리거부(130)를 구성하는 제1 스위칭소자(Q1)(예를 들면 FET(Q1))의 게이트단자(G)에 연결되고], 외부[예컨대 래치 트리거부(150)]로부터 래치 트리거신호가 입력되면 래치 온(latch on)되어서 트라이액(110)이 구동되기 위한 임계전류(Ith)보다 작은 값을 갖는 래치전류를 트라이액(110)의 게이트단자(g)로 출력하는 구성이다.
그리고, 상기 래치회로부(140)가 래치 온되는 경우 상기 트라이액 트리거부(130)는 트라이액 구동전류(I1)의 출력이 차단되어서 트라이액(110)이 스위칭 오프된다.
이에 의하면, 트라이액(110)의 T1단자(T1)와 T2단자(T2)가 아닌 게이트단자(g)와 T2단자(T2)만을 브릿지다이오드(120)에 병렬 연결 구성하고, 매우 작은 값(예컨대 약 1mA 이하의 전류값)의 미세한 래치전류에 의해서 트라이액의 구동을 제어할 수 있는 이점이 있다.
또한, 트라이액(110)의 양단인 T1단자(T1)와 T2단자(T2)로부터 전원을 공급받지 않아서, 트라이액(110)의 양단인 T1단자(T1)와 T2 단자(T2)에 연결되어서 트라이액(110)을 구동하기 위한 전원공급부가 불필요하게 된다. 따라서, 트라이액을 구동하기 위한 별도의 제어 전원이 불필요하므로 안정적인 구동이 가능하게 되는 것이다.
그리고, 매우 작은 값의 미세한 래치전류를 이용하여 트라이액(110)을 제어함으로써 오프 시의 트라이액(110)의 대기 전력을 최소화할 수 있는 이점이 있다.
또한, 별도의 제어 전원부를 필요로 하지 않도록 함으로써 트라이액(110)의 제어회로를 초소형화 할 수 있고 동시에 초저가로 구현할 수 있다.
미세한 래치전류가 트라이액과 직렬 연결된 전기기기에 영향을 최소화할 수 있고, 스위치(SW) 오프시의 전기기기(10)의 누설전류를 최소화할 수 있는 것이다.
그리고, 상기 트라이액 구동전류(I1)와 래치전류는, 상기 브릿지다이오드(120)를 통과한 후에 트라이액(110)의 게이트단자(g)로 입력되는 것을 특징으로 한다.
또한, 상기 트라이액 트리거부(130)는, 상기 브릿지다이오드(120)의 출력단에 연결되는 제1 스위칭소자(Q1)와, 상기 브릿지다이오드(120)의 출력단에서 상기 제1 스위칭소자(Q1)와 병렬연결되는 제2 저항(R2)을 포함하여 구성되는 것을 특징으로 한다.
상기 제1 스위칭소자(Q1)의 출력단과 상기 래치회로부(140)의 출력단은 상기 브릿지다이오드(120)의 제1 단자(1)에 연결되며, 상기 제1 스위칭소자(Q1)가 스위칭 온되기 전에는 상기 브릿지다이오드(120)로부터 출력되는 전류(I)가 제2 저항(R2)을 통과하면서 mA 대의 미세전류값을 갖는 스위칭 트리거전류(I2)로 되고, 상기 스위칭 트리거전류(I2)가 상기 제1 스위칭소자(Q1)를 트리거시켜서 제1 스위칭소자(Q1)가 스위칭 온되고, 상기 제1 스위칭소자(Q1)가 스위칭 온되는 경우 브릿지다이오드(120)의 출력전류가 트라이액 구동전류(I1)로 되어서 트라이액(110)의 게이트단자(g)로 입력되어서 트라이액(110)이 구동되는 것을 특징으로 한다.
그리고, 상기 래치회로부(140)는 상기 제2 저항(R2)의 출력단[제1 스위칭소자(Q1)의 게이트단자(G)]에 연결되며, 상기 래치회로부(140)가 외부[예컨대 래치 트리거부(150)]로부터 래치 트리거신호가 입력되면 래치 온(latch on)되어서 상기 제1 스위칭소자(Q1)가 스위칭 오프되고, 상기 제1 스위칭소자(Q1)가 오프되어서 트라이액 구동전류(I1)가 차단되어 트라이액(110)의 T1단자(T1)와 T2단자(T2) 사이는 스위칭 오프되는 것을 특징으로 한다.
또한 상기 래치회로부(140)가 래치 온됨으로써 트라이액(110)이 스위칭 오프되는 경우, 상기 스위칭 오프된 트라이액(110)의 T1단자(T1)와 T2단자(T2) 간에 걸리는 AC 전압에 의해서 래치전류가 유지되는 것을 특징으로 한다.
이에 의하면, 별도의 전원이 없더라도 동작될 수 있는 이점이 있다.
상기 상기 래치회로부(140)가 래치 온됨으로써 트라이액(110)이 스위칭 오프되는 경우, 상기 트라이액(110)의 T2단자(T2)와 브릿지다이오드(120)와 제2 저항(R2)과 래치회로부(140)와 브릿지다이오드(120)와 트라이액(110)의 게이트단자(g)와 트라이액(110)의 T1단자(T1)가 형성하는 경로를 따라서 래치전류가 흐름으로써 상기 래치회로부(140)가 래치 온 상태를 유지하는 것을 특징으로 한다.
상기 래치회로부(140)는 예컨대 교번적으로 동작하는 2 개의 트랜지스터(Q2,Q3)로 구성될 수 있을 것이다.
상기 제1 스위칭소자(Q1)는 FET(Q1)로 구성되고, 상기 FET(Q1)의 게이트단자(G)와 상기 제2 저항(R2)의 출력단은 제2 노드(n2)로 접속되어 있는 것을 특징으로 한다. 따라서 상기 래치회로부(140)는 상기 제2 노드(n2)에 연결된다.
상기 브릿지다이오드(120)의 출력단(n1)과 제1 스위칭소자(Q1)의 입력단[드레인단자](D)에는 제1 저항(R1)이 제2 저항(R2)과 병렬로 연결되어 있다.
상기 제1 저항(R1)은 0 ~ 수 ㏀ 대의 상대적으로 작은 저항값을 가지고, 제2 저항(R2)은 상기 제1 저항(R1)의 저항값보다 상대적으로 매우 큰 값(예컨대 제1 저항(R1)의 저항값의 102 ~ 106 배의 저항값을 가져서 전류분배가 형성되는 것을 특징으로 한다.
그리고, 상기 제1 스위칭소자(Q1)와 제2 저항(R2)의 제2 노드(n2)에 접속되어서 충전전압을 공급받고, 상기 트라이액(110)이 온 되어 있는 상태에서 최초의 래치회로부(140)를 래치 온하기 위한 래치전류를 공급하는 제1 캐패시터(C1)가 더 포함되어서 구성되는 것을 특징으로 한다.
이에 의하면, 트라이액(110)이 구동된 상태에서 래치회로부(140)를 래치 온 동작시키기 위한 최초의 래치전류를 래치회로부(140)로 공급할 수 있게 된다.
또한 제1 캐패시터(C1)는 제2 노드(n2)에 결선되어 있어서 충전전압의 공급이 원활하게 될 수 있는 것이다.
그리고, 브릿지다이오드(120)의 출력단과 상기 제2 저항(R2) 사이에 연결되어서 역류를 차단하는 역류방지다이오드(D1)이 더 포함되어서 구성되는 것을 특징으로 한다.
다음은 본 발명의 다른 실시예에 의한 트라이액 모듈(100)에 대해서 설명한다. 하기의 본 발명의 다른 실시예에 의한 트라이액 모듈(100)은 전술한 본 발명의 일 실시예에 의한 트라이액 모듈(100)의 응용 회로로서, 트라이액(110)이 온 이후에 설정 시간 경과 후 트라이액(110)이 자동으로 오프되는 발명이다.
본 발명의 다른 실시예에 의한 트라이액 모듈(100)은 전술한 구성에 부가적으로 래치 트리거부(150)가 더 포함되어서 구성될 수 있다.
상기 래치 트리거부(150)는, 트라이액 트리거부(130)의 제2 노드(n2)에 연결되고 또한 상기 래치회로부(140)에 병렬 연결되며, 상기 제1 스위칭소자(Q1)가 스위칭 온되고 이후에 제1 설정시간(ΔT)이 경과한 후에 상기 래치회로부(140)를 래치 온하기 위한 래치 트리거신호를 출력하는 구성이다.
상기 래치회로부(140)는 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 래치 온됨으로써, 상기 트라이액(110)이 스위칭 온되고 제1 설정시간(ΔT)이 경과한 후에 자동으로 트라이액(110)을 오프시킬 수 있는 것을 특징으로 한다.
상기 래치 트리거부(150)는, 상기 제2 노드(n2)에 연결되고 상기 제2 노드(n2)에 걸리는 전압에 의해서 충전되는 제2 캐패시터(C2)를 포함하여 구성될 수 있다.
그리고, 상기 래치 트리거부(150)에 있어서, 제2 캐패시터(C2)의 충전전압이 제1 기준전압(V1)으로 충전되는 경우, 제1 기준전압(V1)으로 충전된 제2 캐패시터(C2)에 의해서 래치 트리거신호가 래치회로부(140)로 출력되고, 상기 래치 트리거신호가 입력된 래치회로부(140)는 래치 온되어서 상기 제1 스위칭소자(Q1)가 오프되며, 상기 제2 캐패시터(C2)의 용량값은, 상기 제2 캐패시터(C2)가 제1 기준전압(V1)으로 충전되는 시간이 제1 설정시간(ΔT)이 되도록 설정되어 있는 것을 특징으로 한다.
실시예에 따라서는 상기 래치 트리거부(150)는, 상기 제2 저항(R2)의 출력단(n1)과 제2 캐패시터(C2)의 사이에 연결되는 제3 저항(R3)과, 상기 제3 저항(R3)의 출력단에서 상기 제2 캐패시터(C2)에 병렬 연결되는 제4 저항(R4)이 더 포함되어서 구성될 수도 있다.
상기 제2 캐패시터(C2)의 입력단과 래치회로부(140) 사이에 삽입 구비되어서, 제2 캐패시터(C2)가 제1 기준전압 이상인 경우에만 래치회로부(140)로 래치 트리거신호가 입력되도록 하는 제2 제너다이오드(ZD2)가 더 포함되어서 구성되는 것을 특징으로 한다.
상기 예에서 래치 트리거부(150)는 제2 캐패시터(C2)로 구성되는 것을 예를 들어서 설명하고 있으나, 이에 한정되는 것은 아니며 래치회로부(140)를 트리거할 수 있는 소자라면 어느 것이라도 모두 본원발명의 기술적 범위에 속한다.
다음은 본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 대해서 설명한다.
하기의 본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)은 전술한 본 발명의 일 실시예에 의한 트라이액 모듈(100)의 또 다른 응용 회로로서, 전기기기(10)를 온오프하기 위한 별도의 동작 스위치(SW)가 마련되어 있는 경우에, 이 동작 스위치(SW)에 트라이액(110)을 병렬로 연결하여서 전기기기(10)의 동작 오프를 설정된 시간 후에 자동으로 오프되도록 하는 기능(오프 동작 지연 기능)을 하는 기술이다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)은, 상용교류전원에서 전기기기(10)로 전원을 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 직렬 연결되어서 전기기기(10)를 온오프 동작하는 동작 스위치(SW)에 병렬되어서 구성되는 것을 특징으로 한다.
여기서 동작 스위치(SW)는 벽에 매립되거나 부착되어서 설치되는 벽부형 동작 스위치(SW)일 수도 있다.
상기와 같이 상용교류전원의 AC 전원라인의 하나의 전원라인(L1)에 직렬 연결되는 동작 스위치(SW)에 트라이액 모듈(100)를 병렬로 설치할 수 있으므로, 기 설치된 동작 스위치(SW)를 전혀 건드리지 않고도 트라이액 모듈(100)를 설치할 수 있으므로 설치 작업성이 매우 편리하고 간단하며, 따라서 전문기술자가 아니라도 누구간 설치할 수 있게 된다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 트라이액(110)은, 상용교류전원(AC)에서 전기기기(10)로 전원을 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 직렬 연결되어서 전기기기(10)를 온오프 동작하는 동작 스위치(SW)에 T1단자(T1)와 T2단자(T2)가 병렬 연결되고, 상기 동작 스위치(SW)가 오프 동작시부터 제1 설정시간 동안만 온 동작되고 제1 설정시간이 경과하면 오프 동작한다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 브릿지다이오드(120)는, 상기 동작 스위치(SW)가 오프되는 경우의 AC전류를 정류하고, 또한 트라이액 트리거부(130)와 래치회로부(140)로부터 트라이액(110)의 게이트단자(g1)로 입력되는 트라이액 구동전류와 래치전류를 정류한다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 트라이액 트리거부(130)는 상기 동작 스위치(SW)가 오프됨과 동시에 제1 설정시간(ΔT) 동안에는상기 브릿지다이오드(120)로부터 출력되는 전파정류된 전류(I)를 입력받아서 상기 트라이액(110)을 온 동작시키기 위한 트라이액 구동전류(I1)를 상기 트라이액(110)의 게이트단자(g)로 출력함으로써 트라이액(110)을 스위칭 온 동작시킨다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 래치회로부(140)는, 제1 설정시간(ΔT) 동안에는 즉 충전되는 동안에는 래치 오프되어 있고, 제1 설정시간(ΔT)이 경과하면 래치 온(latch on)되어서 상기 제1 스위칭소자(Q1)를 스위칭 오프시켜서 트라이액(110)의 스위칭 오프하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 트라이액 트리거부(130)의 제2 노드(n2)에 연결되고 또한 상기 래치회로부(140)에 병렬 연결되며, 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 상기 래치회로부(140)를 래치 온하기 위한 래치 트리거신호를 출력하는 래치 트리거부(150)가 더 포함되어서 구성되고, 상기 래치회로부(140)는 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 래치 온됨으로써, 상기 트라이액(110)이 스위칭 온되고 제1 설정시간(ΔT)이 경과한 후에 자동으로 트라이액(110)을 오프시킬 수 있는 것을 특징으로 한다.
그리고, 상기 래치 트리거부(150)는, 상기 제2 노드(n2)에 연결되고 상기 제2 노드(n2)에 걸리는 전압에 의해서 충전되는 제2 캐패시터(C2)를 포함하여 구성되고, 상기 제2 캐패시터(C2)의 충전전압이 제1 기준전압(V1)으로 충전되는 경우, 제1 기준전압(V1)으로 충전된 제2 캐패시터(C2)에 의해서 래치 트리거신호가 래치회로부(140)로 출력되고, 상기 래치 트리거신호가 입력된 래치회로부(140)는 래치 온되어서 상기 제1 스위칭소자(Q1)가 오프되며, 상기 제2 캐패시터(C2)의 용량값은, 상기 제2 캐패시터(C2)가 제1 기준전압(V1)으로 충전되는 시간이 제1 설정시간(ΔT)이 되도록 설정되어 있는 것을 특징으로 한다.
실시예에 따라서는 상기 래치 트리거부(150)는, 상기 제2 저항(R2)의 출력단(n1)과 제2 캐패시터(C2)의 사이에 연결되는 제3 저항(R3)과, 상기 제3 저항(R3)의 출력단에서 상기 제2 캐패시터(C2)에 병렬 연결되는 제4 저항(R4)이 더 포함되어서 구성될 수도 있다.
상기 제2 캐패시터(C2)의 입력단과 래치회로부(140) 사이에 삽입 구비되어서, 제2 캐패시터(C2)가 제1 기준전압 이상인 경우에만 래치회로부(140)로 래치 트리거신호가 입력되도록 하는 제2 제너다이오드(ZD2)가 더 포함되어서 구성될 수도 있다.
다음은 본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 대해서 설명한다.
하기의 본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)은 전술한 본 발명의 다른 실시예에 의한 트라이액 모듈(100)에 오프 타임 생성부(160)가 부가적으로 구비되어서, 동작 스위치(SW)가 오프되고 트라이액(110)이 온되어 있는 시간 동안에 전기기기(10)에 대하여 제어를 수행할 수 있도록 하는 기술이다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 제2 노드(n2)에 접속되고 상기 래치 트리거부(150)와 병렬 연결되고, 상기 동작 스위치(SW)가 스위칭 오프 순간부터 상기 트라이액(110)이 스위칭 온되는 순간까지의 오프타임(ΔTa) 동안의 극히 짧은 시간 예컨대 4 ms 동안에 전기기기(10)에 트라이액(110)의 스위칭 온 동작을 지연시켜서 전기기기(10)를 오프시키기 위한 오프 타임 생성부(160)가 더 포함되어서 구성되는 것을 특징으로 한다.
이때, 상기 전기기기(10)는, 상기 오프 타임 생성부(160)의 오프 상태를 모니터링하고, 상기 오프 타임 생성부(160)의 스위칭 오프 상태를 논리신호로 인식하여서 제어 동작이 수행되는 것을 특징으로 한다.
따라서, 상기 전기기기(10)가 램프로 구성되는 경우, 동작 스위치(SW)가 스위칭 오프된 이후라도 램프[전기기기(10)]의 소등을 제1 설정시간 이후로 지연시키는 램프 소등 지연 동작을 수행하는 과정에서, 동작 스위치(SW)가 오프되자 마자 곧바로 트라이액(110)을 스위칭 온하지 않고 극히 짧은 시간인 오프타임(ΔTa) 동안에는 트라이액(110)을 구동하기 위한 트리거 신호의 출력을 홀딩하고 있도록 하고, 이 오프타임을 논리신호로 인식함으로써 램프를 제어할 수 있게 되는 것이다.
따라서, 상술한 종래의 램프 동작 제어의 문제점을 해결함과 동시에 램프 지연 오프 동작과 동시에 램프의 동작(예컨대 색변화, 디밍)을 수행할 수 있고, 그 결과 램프가 켜져 있는 동안 동작(예컨대 색변화, 디밍) 제어가 수행되므로 이용자의 불편함을 예방할 수 있고 컨버터의 과도 동작의 오류를 개선할 수 있는 것이다.
한편, 동작 스위치(SW)가 오프된 이후부터 트라이액(110)이 스위칭 온 동작이 되는 순간 까지의 시간인 상기 오프타임(ΔTa) 동안의 매우 짧은 시간 동안에 램프(10)에 전원이 공급되지 않더라도 상기 오프타임(ΔTa)은 극히 짧은 찰나이므로 램프에 있는 잔류 전류에 의해서 램프(10)는 연속적인 점등 상태를 유지할 수 있음은 물론이다.
상기 전기기기(10)는 램프로 구성되고, 스위칭 오프 상태를 인식하여서 이를 색변화(COLOR CHANGE)로 인식하여서 색변화 동작을 수행하는 것을 특징으로 한다.
상기 전기기기(10)는 램프로 구성되고, 스위칭 오프 상태를 인식하여서 이를 밝기 조절(dimming)로 인식하여서 밝기 조절 동작을 수행하는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 오프 타임 생성부(160)는, 상기 제1 스위칭소자(Q1)와 제2 저항(R2)의 제2 노드(n2)에 접속되고 상기 래치 트리거부(150)와 병렬 연결되며, 상기 동작 스위치(SW)가 스위칭 오프 순간부터 상기 트라이액(110)이 스위칭 온되는 순간까지의 오프타임(ΔTa) 동안에 전기기기(10)에 트라이액(110)의 스위칭 온 동작을 지연시켜서 전기기기(10)를 오프시키기 위한 제1 캐패시터(C1)로 구성되는 것을 특징으로 한다.
상기 제1 캐패시터(C1)는, 상기 제2 저항(R2) 따라서 제1 스위칭소자(Q1)의 게이트단자(G)에 걸리는 전압에 의해서 충전되어서 상기 제1 스위칭소자(Q1)의 게이트단자 트리거전압(Vg)에 도달한 경우에 제1 스위칭소자 트리거전류를 제1 스위칭소자(Q1)의 게이트단자(G)로 입력되는 것을 특징으로 한다.
본 발명의 또 다른 실시예에 의한 트라이액 모듈(100)에 있어서, 상기 브릿지다이오드(120)의 출력단과 상기 제2 노드(n2)에 접속되어 있고, 상기 동작 스위치(SW)가 오프된 후에 스위칭 온된 후부터 그 다음 스위칭 오프 시까지 재충전을 통해서 지연이 되도록 하기 위해서, 상기 동작 스위치(SW)가 오프되고 이후 스위칭 온 시에 상기 제1 캐패시터(C1)에 걸려있는 전압[이 전압은 제2 노드(n2)에 걸려 있는 전압이다.]을 방전하기 위한 방전회로부(170)가 더 포함되어서 구성되는 것을 특징으로 한다.
상기 방전회로부(170)는, 동작 스위치(SW)가 스위칭 오프되고 트라이액(110)이 스위칭 온되는 경우에, 상기 브릿지다이오드(120)로부터 출력되는 전류에 의해서 제5 설정전압(Vc5)까지 충전되고, 상기 제5 설정전압(Vc5)은 상기 제2 노드(n2)의 전압보다 큰 값을 가지며, 상기 동작 스위치(SW)가 스위칭 온되는 경우에, 충전된 전압이 방전되어서 전압이 낮아지고, 제2 노드(n2)의 전압을 방전하는 것을 특징으로 한다.
상기 방전회로부(170)는, 예컨대 상기 제2 노드(n2)에 연결되는 제5 스위칭소자(Q5)와, 상기 브릿지다이오드(120)의 출력단과 상기 제5 스위칭소자(Q5) 사이에 연결되는 제5 캐패시터(C5)와, 상기 제5 캐패시터(C5)와 병렬 연결되는 제5 저항(R5)을 포함하여 구성될 수 있을 것이다.
상기 제5 스위칭소자(Q5)는 트랜지스터로 구성될 수 있을 것이다.
상기 방전회로부(170)는, 상기 브릿지다이오드(120)의 출력단에 연결되어서 상기 제5 캐패시터(C5)로 전류를 공급하는 전류공급부(175)가 더 포함되어서 구성될 수 있다.
다음은 상기와 같은 구성을 가지는 본 발명의 일 실시예에 의한 트라이액 모듈(100)의 동작에 대하여 기술한다.
먼저, 동작 스위치(SW)가 온(close) 상태에 있는 경우, 상용교류전원의 전류는 전기기기(10)로만 흐르고, 병렬 연결된 트라이액 모듈(100)에는 전류가 흐르지 못한다.
이제 전기기기(10)를 스위칭 오프[램프인 경우에는 소등]하기 위해서 동작 스위치(SW)를 오프(open)하는 동작에 대해서 설명한다.
동작 스위치(SW)가 오프(개방)되는 순간, 상용교류전원의 AC 전류가 브릿지다이오드(120)를 통해서 제1 스위칭소자(Q1)가 스위칭 온 된다.
왜냐하면, 래치회로부(140)가 래치 오프 상태이므로 래치회로부(140)로는 전류가 흐르지 못하고, 따라서 상대적으로 매우 큰 값을 갖는 제2 저항(R2)으로 스위칭 트리거전류(I2)가 입력되며, 스위칭 트리거전류(I2)에 의해서 제1 캐패시터(C1)가 충전되고, 제1 캐패시터(C1)의 충전전압이 제1 스위칭소자(Q1)를 구동할 수 있을 정도로 충전되면 스위칭 트리거전류(I2)가 트리거신호가 되어서 제1 스위칭소자(Q1)의 게이트단자(G)로 유입되어서 제1 스위칭소자(Q1)가 스위칭 온된다.
제1 스위칭소자(Q1)가 스위칭 온되어서 트라이액 구동전류(예컨대 10 mA)가 브릿지다이오드(120)를 통과하여서 트라이액(110)의 게이트단자(g)로 입력되고 임계전류값(Ith) 이상인 트라이액 구동전류가 입력되면 트라이액(110)이 스위칭 온되어서 트라이액(110) 양단의 단자(T1,T2)가 도통된다.
도 3에 도시된 바와 같이, 트라이액 구동전류(I1)는, 트라이액의 T2단자(T2) -> 브릿지다이오드(120)(2번단자로 입력 -> 3번단자로 출력) -> 제1 스위칭소자(Q1) -> 브릿지다이오드(1번단자로 입력 -> 4번단자로 출력) -> 트라이액(110)의 게이트단자(g)의 순서로 흘러서 트라이액(110)이 스위칭 온된다.
상기와 같은 동작으로 트라이액(110)이 스위칭 온되는 경우 동작 스위치(SW)가 오프되더라도 전기기기(10)로 상용교류전원이 입력되어서 전기기기(10)가 온되고, 만약 전기기기(10)가 램프인 경우에는 그 점등 상태를 계속 유지하게 된다.
한편, 동작 스위치(SW)가 오프되는 순간부터 트라이액(110)이 온되는 순간까지의 시간(ΔTa)의 매우 짧은 시간 동안에는 스위치 오프 상태가 발생하는데, 전기기기(10)는 이 오프 상태를 논리신호로서 인식하여서 제어 동작을 수행하게 된다.
동작 스위치(SW)가 오프되는 순간에 제1 캐패시터(C1)는 스위칭 트리거전류의 충전이 되고 제1 스위칭소자(Q1)의 게이트 구동전압에 도달할 때까지 제1 캐패시터(C1)가 충전되는 순간 제1 스위칭소자(Q1)의 게이트단자로 스위칭 트리거전류가 입력되어서 제1 스위칭소자(Q1)가 스위칭 온된다.
따라서 동작 스위치(SW)가 오프되는 순간부터 트라이액(110)이 온되는 순간까지의 시간(ΔTa) 동안에는 상기 제1 캐패시터(C1)에 의해서 스위치 오프 상태가 발생하는 것이고, 이 스위치 오프 상태가 발생하면 부하인 전기기기(10)는 이를 논리신호로 인식하여서 기 저장된 프로그램에 의해서 부하의 제어 동작을 하게 된다.
이제, 스위칭 트리거전류(I2)가 제2 캐패시터(C2)로 계속 충전되고, 래치회로부(140)를 래치 온 동작할 정도의 전압[제1 기준전압(V1)]으로 충전되면[이 충전시간만큼 전기기기(10)가 오프 지연이 되어서 동작 스위치(SW)가 오프되더라도 전기기기(10)가 온 상태를 유지함은 전술한 바와 같다.] 래치회로부(140)로 래치 트리거신호가 입력되어서 래치회로부(140)가 래치 온된다.
래치회로부(140)가 래치 온되면 제1 캐패시터(C1)의 충전전압에 의해서 최초 래치전류가 래치회로부(140)로 흐르게 되고, 제1 스위칭소자(Q1)는 스위칭 오프된다.
제1 스위칭소자(Q1)가 스위칭 오프되면 트라이액 구동전류는 흐르지 않게 되고, 래치전류는 임계전류(Ith)보다 작은 값을 가지므로 트라이액(110)의 양단인 T1단자(T1)와 T2단자(T2)는 오프된다.
도 4에 도시된 바와 같이, 제1 캐패시터(C1)에 의한 래치전류는 래치회로부(140) -> 브릿지다이오드(120)(1번단자로 입력 -> 4번단자로 출력) -> 트라이액(110)의 게이트단자(g)의 순서로 트라이액(110)으로 입력되는데, 래치전류는 트라이액의 임계전류(Ith)보다 작은 값을 가지므로 트라이액은 구동하지 못하고 스위칭 오프 상태를 유지하게 된다.
상기와 같이 래치회로부(140)의 래치 온 동작에 의해서 트라이액(110)이 오프된 상태에서, 래치회로부(140)가 계속적으로 래치 온 상태를 유지할 수 있는 이유는 본원발명의 특유의 구성 즉, 트라이액(110)의 게이트단자(g) 및 T2단자(T2)가 브릿지다이오드(120)와 병렬 연결되어 있기 때문인데 이에 대해서 설명한다.
트라이액(110)이 오픈된 경우, 트라이액(110)의 T1단자(T1)와 T2단자(T2) 사이에는 상용교류전원(AC)의 AC전압이 걸리게 되고, 상기 스위칭 오프된 트라이액(110)의 T1단자(T1)와 T2단자(T2) 사이에 걸리는 AC전압에 의해서 래치전류가 계속 흘러서 래치회로부(140)가 래치 온상태를 유지하게 되는 것이다.
래치전류는 (+) 주기에서는, 트라이액(110)의 T2단자(T2) -> 브릿지다이오드(120)(2번단자로 입력 -> 3번단자로 출력) -> 제2 저항(R2) -> 래치회로부(140) -> 브릿지다이오드(120)(1번단자로 입력 -> 4번단자로 출력) -> 트라이액(110)의 게이트단자(g) -> 트라이액의 T1단자(T1) -> 전기기기(10)의 순서로 동작한다.
마찬가지로 래치전류는 (-) 주기에서는, 트라이액(110)의 T1단자(T1) -> 트라이액(110)의 게이트단자(g) -> 브릿지다이오드(120)(4번단자로 입력 -> 3번단자로 출력) -> 제2 저항(R2) -> 래치회로부(140) -> 브릿지다이오드(120)(1번단자로 입력 -> 2번단자로 출력) -> 상용교류전원(AC)의 순서로 동작한다.
다음은 방전회로부(170)의 동작에 대해서 설명한다.
먼저, 동작 스위치(SW)가 스위칭 오프되고 트라이액(110)이 스위칭 온되는 경우에는 방전회로부(170)에 충전 동작이 수행된다.
트라이액(110)이 온되는 경우, 제5 캐패시터(C5)로 충전이 되고, 이 제5 캐패시터(C5)의 전압(Vc5)이 제5 설정전압(예컨대 6V)으로 될 때까지 충전된다.
이 제5 설정전압(Vc5)의 크기는 제1 스위칭소자(Q1)의 게이트전압(Vn2, 예컨대 5 V)의 크기 보다 크게 충전되어서, 제4 스위칭소자(Q5)는 오프되고, 따라서 트라이액 구동전류가 제5 스위칭소자(Q5)로 넘어오지 못하도록 하고 있다.
이제, 동작 스위치(SW)가 스위칭 온되고, 이때 방전회로부(170)가 동작하게 된다.
동작 스위치(SW)가 스위칭 온되면, 브릿지다이오드(120) 출력단의 전압이 0 V로 되어서, 제5 캐패시터(C5)의 충전전압이 제5 저항(R5)으로 방전되고, 제5 설정전압(Vc5)인 충전전압(Vc5)(예컨대 6 V)이 전압강하되면서, 게이트전압(Vn2)의 크기가 충전전압(Vc5)의 크기보다 크게 되어서, 제5 스위칭소자(Q5)는 온되고, 게이트 전압(Vn2)이 제1 스위칭소자(Q1) 트리거 전압 이하로 방전하게 되는 것이다.
이와 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것은 해당 기술분야에 있어서 통상의 지식을 가진 사람에게는 자명한 것이다.그러므로, 상술한 실시예는 제한적인 것이 아니라 예시적인 것으로 이해해야만 한다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 상용교류전원(AC)에서 전기기기(10)로 전원을 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 연결되어서 전기기기(10)를 온오프 스위칭 동작하는 트라이액 모듈(100)로서,
    상용교류전원(AC)에서 전기기기(10)로 전류를 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 연결되고, 게이트단자(g)로 입력되는 트라이액 구동전류에 의해 동작하여서 전기기기(10)의 전원공급을 단속하는 트라이액(110)과,
    상기 트라이액(110)의 게이트단자(g) 및 T2단자(T2)와 병렬 연결되고, 상기 트라이액(110)의 게이트단자(g)로부터 출력되거나 트라이액(110)의 게이트단자(g)로 입력되는 전류를 전파정류하는 브릿지다이오드(120)와,
    상기 브릿지다이오드(120)에 연결되고, 상기 브릿지다이오드(120)로부터 출력되는 전류(I)를 입력받아서 상기 트라이액(110)을 온 동작시키기 위한 트라이액 구동전류(I1)를 상기 트라이액(110)의 게이트단자(g)로 출력함으로써 트라이액(110)을 동작시키는 트라이액 트리거부(130)와,
    래치 온(latch on)되어서 트라이액(110)이 구동될 수 있는 임계전류(Ith)보다 작은 값을 갖는 래치전류를 트라이액(110)의 게이트단자(g)로 출력하는 래치회로부(140)를 포함하여 구성되고,
    상기 래치회로부(140)가 래치 온되는 경우 상기 트라이액 트리거부(130)는 트라이액 구동전류(I1)의 출력이 차단되어서 트라이액(110)이 스위칭 오프되는 것을 특징으로 하는 트라이액 모듈.
  2. 청구항 1에 있어서,
    상기 트라이액 구동전류(I1)와 래치전류는 상기 브릿지다이오드(120)를 통과한 후에 트라이액(110)의 게이트단자(g)로 입력되는 것을 특징으로 하는 트라이액 모듈.
  3. 청구항 2에 있어서,
    상기 트라이액 트리거부(130)는,
    상기 브릿지다이오드(120)의 출력단에 연결되는 제1 스위칭소자(Q1)와,
    상기 브릿지다이오드(120)의 출력단에서 상기 제1 스위칭소자(Q1)와 병렬연결되는 제2 저항(R2)을 포함하여 구성되고,
    상기 제1 스위칭소자(Q1)의 출력단과 상기 래치회로부(140)의 출력단은 상기 브릿지다이오드(120)에 연결되며,
    상기 제1 스위칭소자(Q1)가 스위칭 온되기 전에는 상기 브릿지다이오드(120)로부터 출력되는 전류(I)가 제2 저항(R2)을 통과하면서 스위칭 트리거전류(I2)로 되고,
    상기 스위칭 트리거전류(I2)가 상기 제1 스위칭소자(Q1)를 트리거시켜서 제1 스위칭소자(Q1)가 스위칭 온되며,
    상기 제1 스위칭소자(Q1)가 스위칭 온되는 경우, 브릿지다이오드(120)의 출력전류가 트라이액 구동전류(I1)로 되어서 트라이액(110)의 게이트단자(g)로 입력되어서 트라이액(110)이 구동되는 것을 특징으로 하는 트라이액 모듈.
  4. 청구항 3에 있어서,
    상기 래치회로부(140)는 상기 제2 저항(R2)의 출력단에 연결되며,
    래치 트리거신호가 입력되면 상기 래치회로부(140)가 래치 온(latch on)되어서 상기 제1 스위칭소자(Q1)가 스위칭 오프되고,
    상기 제1 스위칭소자(Q1)가 오프되어서 트라이액 구동전류(I1)가 차단되어 트라이액(110)의 T1단자(T1)와 T2단자(T2) 사이는 스위칭 오프되는 것을 특징으로 하는 트라이액 모듈.
  5. 청구항 3에 있어서,
    상기 트라이액 트리거부(130)의 제2 노드(n2)에 연결되고 또한 상기 래치회로부(140)에 연결되며, 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 상기 래치회로부(140)를 래치 온하기 위한 래치 트리거신호를 출력하는 래치 트리거부(150)가 더 포함되어서 구성되고,
    상기 래치회로부(140)는 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 래치 온됨으로써, 상기 트라이액(110)이 스위칭 온되고 제1 설정시간(ΔT)이 경과한 후에 자동으로 트라이액(110)을 오프시킬 수 있는 것을 특징으로 하는 트라이액 모듈.
  6. 청구항 1에 있어서,
    상기 트라이액(110)은,
    상용교류전원(AC)에서 전기기기(10)로 전원을 공급하는 2 개의 전원라인 중에서 하나의 전원라인(L1)에 직렬 연결되어서 전기기기(10)를 온오프 동작하는 동작 스위치(SW)에 T1단자(T1)와 T2단자(T2)가 병렬 연결되고, 상기 동작 스위치(SW)가 오프 동작시부터 제1 설정시간 동안만 온 동작되고 제1 설정시간이 경과하면 오프 동작하며,
    상기 브릿지다이오드(120)는, 상기 동작 스위치(SW)가 오프되는 경우의 AC전류를 정류하고, 또한 트라이액 트리거부(130)와 래치회로부(140)로부터 트라이액(110)의 게이트단자(g1)로 입력되는 트라이액 구동전류와 래치전류를 정류하며,
    상기 트라이액 트리거부(130)는,
    상기 동작 스위치(SW)가 오프됨과 동시에 제1 설정시간(ΔT) 동안에는상기 브릿지다이오드(120)로부터 출력되는 전류(I)를 입력받아서 상기 트라이액(110)을 온 동작시키기 위한 트라이액 구동전류(I1)를 상기 트라이액(110)의 게이트단자(g)로 출력함으로써 트라이액(110)을 동작시키며,
    상기 래치회로부(140)는, 제1 설정시간(ΔT) 동안에는 래치 오프되어 있고, 제1 설정시간(ΔT)이 경과하면 래치 온(latch on)되어서 상기 제1 스위칭소자(Q1)를 스위칭 오프시켜서 트라이액(110)의 스위칭 오프하는 것을 특징으로 하는 트라이액 모듈.
  7. 청구항 6에 있어서,
    상기 트라이액 트리거부(130)의 제2 노드(n2)에 연결되고, 상기 래치회로부(140)에 연결되며, 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 상기 래치회로부(140)를 래치 온하기 위한 래치 트리거신호를 출력하는 래치 트리거부(150)가 더 포함되어서 구성되고,
    상기 래치회로부(140)는 상기 제1 스위칭소자(Q1)가 스위칭 온된 후에 제1 설정시간(ΔT)이 경과한 후에 래치 온됨으로써, 상기 트라이액(110)이 스위칭 온되고 제1 설정시간(ΔT)이 경과한 후에 자동으로 트라이액(110)을 오프시킬 수 있는 것을 특징으로 하는 트라이액 모듈.
  8. 청구항 7에 있어서,
    상기 제2 노드(n2)에 접속되고 상기 래치 트리거부(150)와 병렬 연결되고, 상기 동작 스위치(SW)가 스위칭 오프 순간부터 상기 트라이액(110)이 스위칭 온되는 순간까지의 오프타임(ΔTa) 동안에 전기기기(10)에 트라이액(110)의 스위칭 온 동작을 지연시켜서 전기기기(10)를 오프시키기 위한 오프 타임 생성부(160)가 더 포함되어서 구성되고,
    상기 전기기기(10)는, 상기 오프 타임 생성부(160)의 오프 상태를 모니터링하고, 상기 오프 타임 생성부(160)의 스위칭 오프 상태를 논리신호로 인식하여서 제어 동작이 수행되는 것을 특징으로 하는 트라이액 모듈.
  9. 청구항 8에 있어서,
    상기 오프 타임 생성부(160)는,
    상기 제1 스위칭소자(Q1)와 제2 저항(R2)의 제2 노드(n2)에 접속되고 상기 래치 트리거부(150)와 병렬 연결되며, 상기 동작 스위치(SW)가 스위칭 오프 순간부터 상기 트라이액(110)이 스위칭 온되는 순간까지의 오프타임(ΔTa) 동안에 전기기기(10)에 트라이액(110)의 스위칭 온 동작을 지연시켜서 전기기기(10)를 오프시키기 위한 제1 캐패시터(C1)로 구성되는 것을 특징으로 하는 트라이액 모듈.
  10. 청구항 9에 있어서,
    상기 브릿지다이오드(120)의 출력단과 상기 제2 노드(n2)에 접속되어 있고,
    상기 동작 스위치(SW)가 오프된 후에 스위칭 온된 후부터 그 다음 스위칭 오프 시까지 재충전을 통해서 지연이 되도록 하기 위해서, 상기 동작 스위치(SW)가 오프되고 이후 스위칭 온 시에 상기 제1 캐패시터(C1)에 걸려있는 전압을 방전하기 위한 방전회로부(170)가 더 포함되어서 구성되는 것을 특징으로 하는 트라이액 모듈.
PCT/KR2020/001883 2019-02-12 2020-02-11 트라이액 모듈 WO2020166928A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080007399.XA CN113597819B (zh) 2019-02-12 2020-02-11 双向可控硅模块
US17/418,194 US11445581B2 (en) 2019-02-12 2020-02-11 TRIAC module
JP2021535287A JP7153405B2 (ja) 2019-02-12 2020-02-11 トライアックモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0016395 2019-02-12
KR1020190016395A KR102138942B1 (ko) 2019-02-12 2019-02-12 트라이액 모듈

Publications (1)

Publication Number Publication Date
WO2020166928A1 true WO2020166928A1 (ko) 2020-08-20

Family

ID=71831581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001883 WO2020166928A1 (ko) 2019-02-12 2020-02-11 트라이액 모듈

Country Status (5)

Country Link
US (1) US11445581B2 (ko)
JP (1) JP7153405B2 (ko)
KR (1) KR102138942B1 (ko)
CN (1) CN113597819B (ko)
WO (1) WO2020166928A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513877B (zh) * 2021-09-30 2023-06-23 杰华特微电子股份有限公司 Led驱动方法、电路及led照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171702A (ja) * 2012-02-21 2013-09-02 Hokkaido Electric Power Co Inc:The 電子式自動点滅器
KR20140102271A (ko) * 2012-01-17 2014-08-21 파나소닉 주식회사 2선식 조광 스위치
KR101530598B1 (ko) * 2014-06-12 2015-06-22 정연욱 대기 전력 차단 기능을 갖는 전원 스위치
KR20160032370A (ko) * 2014-09-15 2016-03-24 매그나칩 반도체 유한회사 교류 직결형 조명 장치의 구동 회로 및 방법
KR20170082010A (ko) * 2016-01-05 2017-07-13 엘지이노텍 주식회사 시간 지연 회로가 구비된 led 구동 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69120220T2 (de) * 1990-12-03 1996-12-05 Philips Electronics Nv Verbessertes System für Triacimpulssteuerung in Verbindung mit einem Fühler
FR2744067A1 (fr) 1996-01-30 1997-08-01 Michelin & Cie Bande de roulement pour pneumatique
CN1168210C (zh) * 2000-06-27 2004-09-22 百利通电子(上海)有限公司 红外线感应照明灯电子开关
US6624989B2 (en) * 2001-05-18 2003-09-23 Franklin Electric Company, Inc. Arc suppressing circuit employing a triggerable electronic switch to protect switch contacts
KR20050117853A (ko) 2004-06-11 2005-12-15 삼성물산 주식회사 멀티 입력신호의 자동 개방용 타임 딜레이장치 및 그의제어방법
JP2009021035A (ja) * 2007-07-10 2009-01-29 Panasonic Electric Works Co Ltd 調光回路及び調光器
JP5325603B2 (ja) * 2009-02-23 2013-10-23 神保電器株式会社 トライアック制御・安定化電源回路を有する電子式スイッチ
WO2011060728A1 (en) * 2009-11-19 2011-05-26 Huizhou Light Engine Ltd. Method and apparatus for controlling brightness of light emitting diodes
US8729814B2 (en) * 2009-11-25 2014-05-20 Lutron Electronics Co., Inc. Two-wire analog FET-based dimmer switch
JP5154588B2 (ja) 2010-01-29 2013-02-27 Tdkラムダ株式会社 スイッチング電源装置
TW201141303A (en) * 2010-05-07 2011-11-16 Light Engine Ltd Triac dimmable power supply unit for LED
US8664884B2 (en) * 2011-01-12 2014-03-04 Green Solution Technology Co., Ltd. LED driving circuit and feedback control circuit thereof
JP2014087215A (ja) * 2012-10-25 2014-05-12 Yoshikawa Rf Semicon Co Ltd トライアック起動回路
CN203522564U (zh) * 2013-08-13 2014-04-02 江苏海事职业技术学院 一种高压侧测量用电源电路
US9148919B2 (en) * 2013-12-06 2015-09-29 Semiconductor Components Industries, Llc Method for mitigating flicker
JP6396793B2 (ja) * 2014-12-26 2018-09-26 ニチコン株式会社 スイッチング電源回路
CN205237357U (zh) * 2015-12-18 2016-05-18 仙桃市聚兴橡胶有限公司 用可控硅控制电焊机自动断电节电装置
US11239656B2 (en) * 2019-07-19 2022-02-01 Texas Instruments Incorporated Methods and apparatus for current sensing and current limiting
CN111031635B (zh) * 2019-12-27 2021-11-30 昂宝电子(上海)有限公司 用于led照明系统的调光系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140102271A (ko) * 2012-01-17 2014-08-21 파나소닉 주식회사 2선식 조광 스위치
JP2013171702A (ja) * 2012-02-21 2013-09-02 Hokkaido Electric Power Co Inc:The 電子式自動点滅器
KR101530598B1 (ko) * 2014-06-12 2015-06-22 정연욱 대기 전력 차단 기능을 갖는 전원 스위치
KR20160032370A (ko) * 2014-09-15 2016-03-24 매그나칩 반도체 유한회사 교류 직결형 조명 장치의 구동 회로 및 방법
KR20170082010A (ko) * 2016-01-05 2017-07-13 엘지이노텍 주식회사 시간 지연 회로가 구비된 led 구동 장치

Also Published As

Publication number Publication date
CN113597819B (zh) 2024-01-30
JP2022514866A (ja) 2022-02-16
JP7153405B2 (ja) 2022-10-14
CN113597819A (zh) 2021-11-02
US11445581B2 (en) 2022-09-13
US20220117052A1 (en) 2022-04-14
KR102138942B1 (ko) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2014189298A1 (ko) 발광다이오드 구동장치
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2012096455A2 (ko) 고효율 전원을 구비한 엘이디 조명장치
WO2018019213A1 (zh) 智能控制电路、充电器、漏电保护器及智能插座
WO2014081145A1 (ko) 변조지수가 개선된 엘이디 조명장치
WO2014126392A1 (ko) 발광다이오드의 점멸주파수를 변환시키는 전원공급회로
WO2015003338A1 (zh) 一种用于电子烟盒的控制电路及其控制方法
WO2011052834A1 (ko) 정전류 구동 led 모듈 장치
WO2014209008A1 (ko) 발광 다이오드 조명 장치 및 그의 제어 회로
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2015039561A1 (en) Led driving and dimming circuit and configuration method
WO2015152548A1 (ko) 발광 모듈
WO2014137099A1 (ko) 발광 다이오드 구동 장치
WO2013187573A1 (ko) 대용량 부하에 대한 폐회로 전력선 통신 시스템
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
WO2020166928A1 (ko) 트라이액 모듈
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2019132373A1 (ko) 전기차용 파워 릴레이 어셈블리 및 그 구동 방법
WO2015068978A1 (ko) 교류 led 구동회로
WO2017122960A1 (ko) 도어벨 장치 및 그의 전원 공급 방법
WO2015122753A1 (ko) 전력선을 이용한 통신장치와 이를 이용한 엘이디 조명시스템
WO2015122635A1 (ko) 교류 직결형 스마트 led 드라이버 모듈
WO2019225917A1 (ko) 형광등 안전기 호환형 led 램프의 안정화 장치 및 이의 실행 방법
WO2017086674A1 (ko) 발광 다이오드 조명 장치
WO2021010598A1 (en) Electronic apparatus, control method thereof and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755463

Country of ref document: EP

Kind code of ref document: A1