WO2014188936A1 - X線ct装置及び撮影方法 - Google Patents

X線ct装置及び撮影方法 Download PDF

Info

Publication number
WO2014188936A1
WO2014188936A1 PCT/JP2014/062901 JP2014062901W WO2014188936A1 WO 2014188936 A1 WO2014188936 A1 WO 2014188936A1 JP 2014062901 W JP2014062901 W JP 2014062901W WO 2014188936 A1 WO2014188936 A1 WO 2014188936A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
motion
dose
specific phase
motion cycle
Prior art date
Application number
PCT/JP2014/062901
Other languages
English (en)
French (fr)
Inventor
角村 卓是
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2015518206A priority Critical patent/JPWO2014188936A1/ja
Publication of WO2014188936A1 publication Critical patent/WO2014188936A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal

Definitions

  • the present invention relates to an X-ray CT apparatus and an imaging method, and more particularly, to an X-ray CT apparatus and an imaging method suitable for imaging a moving part such as a heart.
  • an artifact due to the motion occurs in the obtained tomographic image.
  • the physiological movement is measured using a biosensor such as an electrocardiograph or a respiration sensor, and the imaging is controlled using the obtained measurement signal, Process images.
  • ECG information is measured with an electrocardiograph, and ECG-synchronized reconstruction is performed by collecting projection data with a phase with little heart movement based on the ECG information to reconstruct a tomogram.
  • a construction method has been carried out. As a result, a relatively stationary heart image can be obtained.
  • the ECG synchronization reconstruction method is roughly classified into a Retrospective Gating method and a Prospective Triggering method.
  • the Retrospective-Gating method performs a helical scan while collecting electrocardiogram information of the subject, and collects only the projection data with low movement using the electrocardiogram information from the obtained projection data.
  • Image reconstruction method Prospective-triggering is a method in which the electrocardiogram information of a subject is monitored and an X-ray is irradiated and an axial scan is performed only after a predetermined phase has elapsed since the detection of the R wave. In this case, since X-rays are not irradiated continuously but only when a specific phase is reached, a very small exposure dose is sufficient.
  • the Prospective Triggering method which requires low exposure, is desirable.
  • the success of the Prospective-Triggering method has a problem that it largely depends on heart rate variability.
  • the Retrospective Gating method irradiates a normal X-ray dose only at a specific heartbeat phase, and emits a low X-ray dose at other heartbeat phases, and thus images of phases other than a specific heartbeat phase.
  • a method ECG ⁇ ⁇ Dose Modulation method that reduces exposure while making it possible to create a device has been proposed.
  • ECG Dose Modulation method it is desirable to capture the heart rate phase with little heart movement at normal X-ray dose.
  • a method of setting a specific phase to be imaged with a normal X-ray dose as a range having a certain width has been proposed.
  • a method has been proposed in which the X-ray irradiation timing is determined so that a normal X-ray dose is irradiated within the range of heart rate variability (see Patent Document 1).
  • the normal X-ray irradiation time is from the start of a specific phase at the time of a high heartbeat to the end of a specific phase at the time of a low heartbeat in an assumed heart rate (heartbeat cycle).
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to cope with movements with fluctuations in the cycle and to reduce the exposure dose while maintaining the image quality. It is to provide a CT apparatus and an imaging method.
  • the first invention provides an X-ray source for generating X-rays, an X-ray detector for detecting X-rays transmitted through a subject, and transmission X detected by the X-ray detector.
  • a data collection device that collects line data, a motion information measurement unit that measures motion information of the subject, and a motion that acquires a motion period distribution based on the motion information measured by the motion information measurement unit prior to the main imaging
  • a period distribution acquisition unit, a mode calculation unit that calculates the most frequent motion cycle from the motion cycle distribution, and the X-ray dose is a first level in a specific phase range of the motion cycle, and X in a phase other than the specific phase range X-ray modulation that determines an X-ray modulation timing and an X-ray modulation curve that specifies an X-ray dose so that the dose is lower than the first level based on the most frequent motion cycle and the motion cycle distribution X-ray according to the curve calculation unit and the X-ray modulation curve
  • a step of obtaining a motion cycle distribution based on the measured motion information of the subject, and a most frequent motion cycle are calculated from the motion cycle distribution.
  • the X-ray modulation timing and the X-ray dose so that the X-ray dose is at a first level in a specific phase range of the motion cycle and the X-ray dose is lower than the first level in a phase other than the specific phase range.
  • An imaging method comprising: a step; and a step of reconstructing an image of a subject based on transmission X-ray data obtained in the main imaging.
  • an X-ray CT apparatus and an imaging method capable of dealing with movements having a fluctuation in cycle and reducing the exposure dose while maintaining image quality.
  • FIG. 1 Hardware configuration diagram of image processing apparatus 40 used in X-ray CT apparatus 1
  • FIG. 1 Hardware configuration diagram of image processing apparatus 40 used in X-ray CT apparatus 1
  • FIG. 1 An example of motion cycle distribution 71 obtained from electrocardiogram information (motion information) measured during breath holding practice time
  • Conventional example of X-ray modulation curve 75a corresponding to heart rate variability
  • An example of X-ray modulation curve 75b considering the limitation of X-ray modulation speed due to hardware specifications etc.
  • Example (Example 4) of an X-ray modulation curve 84 created based on the frequency distribution 72a of FIG.15 (b) Flowchart explaining the flow of X-ray modulation curve calculation processing of the second embodiment
  • An example of the X-ray modulation curve 85 created based on the time difference of the specific phase by the process of FIG. 17 (second embodiment) The figure which shows the function structure of the image processing apparatus 40a of 3rd Embodiment. Flowchart for explaining a flow of photographing processing according to the third embodiment
  • the X-ray CT apparatus 1 includes a gantry 2 that performs X-ray irradiation on a subject 6 and detects X-rays transmitted through the subject 6, and a bed table 3 on which the subject 6 is placed.
  • the image processing device 40 for controlling each part of the X-ray CT apparatus 1, the imaging controller 20 for controlling the imaging operation of the gantry 2 according to the control signal sent from the image processing device 40, and the motion information of the subject 6
  • the movement information measuring device 7 for acquiring the image and the reconstruction calculator 43 for reconstructing the image based on the transmission X-ray data collected by the imaging operation of the gantry 2.
  • an X-ray source 201 and an X-ray detector 205 are disposed so as to face each other through an opening of a rotating disk.
  • a bed table 3 on which the subject 6 is placed is carried into the opening.
  • the rotating disk is driven to circulate around the subject 6 by the driving force transmitted through the driving transmission system from the rotating disk driving device controlled by the gantry controller 208 of the imaging controller 20.
  • the X-ray source 201 is composed of an X-ray tube and a high voltage generator.
  • the X-ray source 201 is controlled by the X-ray controller 202 of the imaging controller 20 to irradiate X-rays having a predetermined intensity continuously or intermittently.
  • the X-ray controller 202 of the imaging controller 20 controls the X-ray tube voltage and the X-ray tube current applied or supplied to the X-ray tube according to the X-ray tube voltage and the X-ray tube current determined by the image processing device 40. To do.
  • the X-ray source 201 is provided with a collimator, and the subject 6 is irradiated with X-rays emitted from the X-ray source 201 as X-rays such as a cone beam (conical or pyramidal beam), for example.
  • the opening width of the collimator is controlled by the imaging controller 20. X-rays transmitted through the subject 6 enter the X-ray detector 205.
  • the X-ray detector 205 includes, for example, about 1000 X-ray detection element groups configured by a combination of a scintillator and a photodiode in the channel direction (circumferential direction), for example, about 1 to 320 in the column direction (body axis direction). They are arranged and arranged so as to face the X-ray source 201 with the subject 6 interposed therebetween.
  • the X-ray detector 205 detects the X-ray dose irradiated from the X-ray source 201 and transmitted through the subject 6, and outputs it to a DAS (data collection device) 206.
  • the DAS 206 collects X-ray doses detected by the individual X-ray detection elements of the X-ray detector 205, converts them into digital data, and sequentially outputs them to the reconstruction calculator 43 as transmitted X-ray data.
  • the imaging controller 20 includes an X-ray controller 202 that controls X-ray irradiation, a gantry controller 208 that controls the rotation operation of the gantry 2, a table controller 207 that controls the movement operation of the table 3, and projection data And a DAS (data collection device) 206 that performs a collection operation.
  • X-ray controller 202 that controls X-ray irradiation
  • gantry controller 208 that controls the rotation operation of the gantry 2
  • table controller 207 that controls the movement operation of the table 3
  • projection data And a DAS (data collection device) 206 that performs a collection operation.
  • the couch table 3 has an appropriate height of the couch table 3 according to the control signal sent from the table controller 207 of the imaging controller 20, and is moved back and forth in the body axis direction and in the direction perpendicular to the body axis. Therefore, it moves in the direction parallel to the top (left and right). Thereby, the subject 6 is carried into and out of the opening (X-ray irradiation space) of the gantry 2.
  • the image processing device 40 includes a CPU (Central Processing Unit) 401, a ROM (Read Only Memory), a main memory 402 such as a RAM (Random Access Memory), a data recording device 403 such as a hard disk, and a network adapter.
  • the computer includes 404, a display memory 405, a controller 406, a display device 407, an input device 409, and the like.
  • main memory 402 or data recording device 403 of the image processing device 40 programs and data for realizing the functions of the X-ray CT apparatus 1 are stored in advance.
  • the image processing device 40 sends a control signal corresponding to the shooting condition set by the operator to the shooting controller 20.
  • the imaging controller 20 receives X-rays while controlling the rotational speed of the gantry 2, the X-ray dose irradiated from the X-ray source 201, and the position of the bed table 3 based on the control signal input from the image processing device 40.
  • the sample 6 is irradiated.
  • the image processing apparatus 40 acquires transmission X-ray data detected by the X-ray detector 205 and collected by the DAS 206, and sends it to the reconstruction calculator 43.
  • the image processing apparatus 40 modulates and controls the irradiation X-ray dose based on the motion information of the subject measured using the motion information measuring device 7 before the actual imaging in the imaging process described later.
  • the X-ray dose modulation control will be described later.
  • the reconstruction calculator 43 acquires transmission X-ray data input from the DAS 206, and performs preprocessing such as logarithmic conversion and sensitivity correction to create a projection data set necessary for reconstruction. Further, the reconstruction calculator 43 reconstructs an image such as a tomogram using the created projection data set. If the shooting method is Retrospective Gating method, use the motion information after shooting to collect a set of projection data with the same phase in the cycle of motion information, and reconstruct the projection data set to create an image with less motion Get the series. If the imaging method is the Prospective Triggering method, monitor the motion information captured by the image processing device 40 during the main imaging, and irradiate X-rays at a specific time specified in advance from the feature wave of the motion information. Get an image series with little movement. The image data reconstructed by the reconstruction calculator 43 is input to the image processing device 40 and stored in the data recording device 403.
  • the display device 407 includes a display device such as a liquid crystal panel and a CRT monitor, and a logic circuit for executing display processing in cooperation with the display device, and is connected to the image processing device 40.
  • the display device 407 displays the reconstructed image output from the reconstruction calculator 43 and various information handled by the image processing device 40.
  • the input device 409 includes, for example, a keyboard, a pointing device such as a mouse 408, a numeric keypad, and various switch buttons, and outputs various instructions and information input by the operator to the image processing device 40.
  • the operator interactively operates the X-ray CT apparatus 1 using the display device 407 and the input device 409.
  • the motion information measuring device 7 is a device that measures data relating to the motion of the subject.
  • the movement of the subject is a physiological movement of the subject, and includes, for example, the pulsation of the heart and the movement of the lungs due to respiration.
  • an electrocardiograph may be used as the motion information measuring instrument 7 when measuring the pulsation of the heart.
  • the electrocardiograph measures the electrocardiogram information representing the time change of the action potential reflecting the heart beat movement of the heart via the electrode attached to the subject 6, and, for example, at a predetermined sampling pitch such as an interval of 0.1 second. Convert to digital signal.
  • a respiration sensor or the like when measuring the movement of the chest due to respiration, a respiration sensor or the like may be used.
  • the present invention can also be applied to a motion other than the heartbeat.
  • the motion information measured by the motion information measuring device 7 is sequentially sent to the image processing device 40.
  • the image processing device 40 determines the X-ray modulation timing and the X-ray dose based on the motion information measured by the motion information measuring device 7 when calculating the X-ray modulation curve in the imaging process.
  • the image processing apparatus 40 includes a motion cycle distribution acquisition unit 51, a motion cycle frequency calculation unit 52, a motion phase specific phase time calculation unit 53, an X-ray modulation curve calculation unit 54, an imaging control unit 55, and a storage unit. 403.
  • the motion cycle distribution acquisition unit 51 obtains a motion cycle distribution 71 based on the motion information measured by the motion information measuring device 7 prior to the main photographing.
  • the motion cycle is a value indicating how many times the periodic motion is performed within a predetermined time. In the case of a heartbeat, the number of pulsations per predetermined time (heart rate [bpm]) is the motion cycle.
  • measurement of motion information for acquiring the motion cycle distribution 71 is performed before the main photographing. For example, it is preferable that the movement information is measured within a breath holding practice period or the like performed before the main photographing.
  • the motion cycle distribution 71 represents the fluctuation distribution of the heart rate obtained during the motion information measurement.
  • the CPU 401 of the image processing device 40 calculates, for example, a heart rate that is the reciprocal of the heart cycle based on the electrocardiogram information measured by the electrocardiograph (motion information measuring device 7) before the main imaging, and the motion cycle distribution 71 Record as.
  • the heart rate here does not mean the number of heart beats in the entire breath holding practice period, but the heart rate per unit time (unit: [beats per minute, bpm]), that is, the reciprocal of the heartbeat cycle.
  • Measure heart rate not only during the breath-holding practice period, but any time before the start of the actual shooting. For example, measurement may be performed during a delay immediately before shooting.
  • FIG. 4 is an example of the motion period distribution 71.
  • the heart rate is not always constant during the breath holding practice period, and varies in the range of 65 to 71 [bpm].
  • the motion cycle frequency calculation unit 52 calculates a motion cycle frequency distribution 72 based on the motion cycle distribution 71. Further, the most frequent motion cycle (hereinafter referred to as the most frequent cycle) is calculated from the frequency distribution 72.
  • the CPU 401 of the image processing apparatus 40 counts the frequency of each heart rate from the motion cycle distribution 71 and obtains the frequency distribution 72 of the heart rate. For example, a frequency distribution 72 shown in FIG. 5 is obtained from the motion cycle distribution 71 shown in FIG. In the frequency distribution 72 of FIG. 5, the minimum heart rate (minimum cycle) is 65 [bpm], the maximum cycle (maximum heart rate) is 71 [bpm], and the most frequent cycle (mode heart rate) is 68 [bpm]. .
  • the specific phase time calculation unit 53 for each motion cycle obtains a specific phase time that is a time position corresponding to a specific phase range for each heart rate (motion cycle).
  • the specific phase range is a phase range suitable for obtaining data used for image reconstruction within one heartbeat period.
  • the specific phase range is desirably a stationary phase with the least movement.
  • the position of the specific phase is determined by a ratio when the range from the R wave to the R wave is 100%, such as “75% from the R wave”.
  • the specific phase may be a value designated by the operator from the input device 409 or may be obtained by calculation.
  • FIG. 6 shows the relationship between the heart rate and the specific phase time 74.
  • the position of the specific phase range is specified at a rate with the period from the R wave to the R wave as 100%. Therefore, the time position of the specific phase time 74 differs depending on the heartbeat period (heart rate).
  • FIG. 6 (a) is an example of an electrocardiogram 73a with a high heart rate
  • FIG. 6 (b) is an example of an electrocardiogram 73b with a low heart rate.
  • the specific phase time 74a of the high heart rate is located earlier than the specific phase time 74b of the low heart rate.
  • the X-ray modulation curve calculation unit 54 determines the X-ray modulation timing and the X-ray modulation so that the X-ray dose becomes a normal level in a specific phase range of the motion cycle, and becomes lower than the normal level in a phase other than the specific phase range. Calculate the X-ray modulation curve that specifies the X-ray dose.
  • the normal X-ray dose level is referred to as a high X-ray dose L1
  • the minimum X-ray dose required for reconstruction is referred to as a low X-ray dose L2.
  • the X-ray modulation curve calculation unit 54 performs X-ray modulation based on the most frequent motion cycle obtained by the motion cycle frequency calculation unit 52 and the motion cycle distribution 71 obtained by the motion cycle distribution acquisition unit 51. Calculate the curve.
  • a general X-ray modulation method will be described.
  • X-ray modulation during imaging using electrocardiogram information as shown in Fig. 7, a high X-ray dose L1 is emitted at a specific cardiac phase, and a low X-ray dose at a phase other than a specific cardiac phase. Irradiate L2.
  • high X-ray dose irradiation and low X-ray dose irradiation within one cycle of the heartbeat, X-ray dose irradiation is suppressed outside of a specific phase, reducing the exposure of the entire radiography.
  • the curve that specifies the X-ray dose switching timing in advance is called the X-ray modulation curve.
  • the subject's heart rate varies. For this reason, the time position of the specific phase in a cardiac cycle changes for every heart rate. Therefore, for example, even if the specific phase is set at a position 75% from the R wave, the time position varies depending on the heart rate as shown in FIG.
  • the specific phase time at the minimum heart rate ends from the start time T1 of the specific phase time at the maximum heart rate of the heart rate fluctuation.
  • the X-ray modulation curve 75a is created with the time range up to time T2 as the high X-ray dose L1 and the other times as the low X-ray dose L2.
  • switching the X-ray dose takes time. Switching from a low X dose to a high X dose or vice versa is preferably performed instantaneously from the viewpoint of reducing exposure. However, in practice, switching takes time due to limitations of the X-ray tube that irradiates X-rays and the high-voltage generator that supplies a high voltage to the X-ray tube.
  • the switching speed can be obtained by a combination of an X-ray tube and a high voltage generator. Therefore, the limit value of the switching speed is measured in advance and stored in the data recording device (storage unit) 403, and when the image processing device 40 calculates the X-ray modulation curve, the X-ray dose is taken into account when considering the switching time. Start the switching operation.
  • the conventional X-ray modulation curve 75b has a high X in the range from the start position T1 of the specific phase time 74a of high heartbeat to the end position T2 of the specific phase time 74b of low heartbeat.
  • the dose is L1.
  • the time T1a is set as a switching start position from the low X-ray dose L2 to the high X-ray dose L1.
  • the switching from the high X-ray dose L1 to the low X-ray dose L2 reaches the low X-ray dose L2 at time T2a when the end position T2 of the specific phase time 74b of the low heartbeat is set as the switching start time.
  • the time range from the start time T1 of the specific phase time at the maximum heart rate to the end time T2 of the specific phase time at the minimum heart rate is a high X-ray dose L1
  • the heart rate variability is large and the maximum heart rate
  • the minimum heart rate is a unique heart rate with a low frequency, it is necessary to take a long specific phase time. Therefore, the effect of reducing the exposure dose is reduced.
  • the image processing apparatus 40 determines the X-ray modulation curve
  • the frequency of the heart rate in heart rate variability is taken into consideration.
  • a specific method for calculating the X-ray modulation curve will be described in Examples 1 to 4 below.
  • the imaging control unit 55 performs main imaging while modulating the X-ray dose according to the X-ray modulation curve determined by the X-ray modulation curve calculation unit 54.
  • the X-ray dose is an X-ray dose (irradiation X-ray dose) irradiated to the subject.
  • the X-ray tube current is generally modulated.
  • the X-ray tube voltage may be modulated.
  • it is conceivable to adjust the irradiation X-ray dose by appropriately inserting a filter corresponding to the irradiation X-ray dose in the X-ray irradiation space between the X-ray source and the subject.
  • the data recording device (storage unit) 403 holds a limit value of the speed (modulation speed) for switching the X-ray dose measured in advance. It is desirable that the X-ray modulation curve calculation unit 54 determines the X-ray modulation curve so as not to exceed the limit value of the speed at which the X-ray dose is switched.
  • the CPU of the image processing apparatus 40 of the X-ray CT apparatus 1 reads the program and data related to the imaging process shown in FIG. 9 from the main memory 402, and executes the process based on this program and data.
  • the X-ray CT apparatus 1 measures the motion information by the motion information measuring instrument 7 before the main imaging (step S101). For example, electrocardiogram information is acquired by the electrocardiograph 7 during a breath-holding practice period that is performed before the actual photographing. The electrocardiograph 7 sends the acquired electrocardiogram information to the image processing device 40.
  • the image processing apparatus 40 calculates an X-ray dose modulation curve based on the measured motion information (step S102). Details of the X-ray dose modulation curve calculation process will be described later.
  • the image processing apparatus 40 performs the main imaging while controlling the irradiation X-ray dose according to the X-ray modulation curve (step S103).
  • the X-ray controller 202 of the imaging control unit 20 supplies a power signal and an X-ray generation timing signal to the X-ray source 201.
  • the gantry controller 208 controls the rotational speed and position of the components on the gantry 2 according to the imaging conditions.
  • the table controller 207 moves the bed table 3 to a position determined by the image processing device 40 according to the photographing conditions, and controls the bed table 3 so as to have a predetermined moving speed.
  • X-rays transmitted through the subject 6 and incident on the X-ray detector 205 are converted into digital signals by the DAS 206 and sent to the image processing apparatus 40 as transmitted X-ray data.
  • the image processing apparatus 40 sends the acquired transmission X-ray data to the reconstruction calculator 43.
  • the reconstruction calculator 43 performs predetermined preprocessing such as correction processing on the transmission X data acquired from the image processing device 40 to create a projection data set, and reconstructs an image (step S104).
  • the reconstructed image is stored in the data recording device 403 of the image processing device 40 and displayed on the display device 407.
  • step S102 an example of calculating the X-ray modulation curve in step S102 will be described.
  • the X-ray modulation curve calculation unit 54 of the image processing device 40 calculates the frequency of each motion cycle from the motion cycle distribution 71, and the X-ray dose is at the first level at the specific phase time of the most frequent motion cycle (most frequent heart rate).
  • the X-ray modulation curve is calculated so that the X-ray dose is in accordance with the frequency at the specific phase time of each motion cycle other than the most frequent motion cycle.
  • the calculation procedure of the X-ray modulation curve in the first embodiment will be described with reference to the flowchart of FIG.
  • the CPU 401 of the image processing apparatus 40 of the X-ray CT apparatus 1 reads a program and data related to the imaging process shown in FIG. 10 from the main memory 402, and executes processing based on this program and data.
  • the image processing apparatus 40 acquires the motion information measured in step S101 in FIG. 9 (step S201). If it is a heartbeat, ECG information is acquired. Next, the image processing device 40 calculates the motion cycle distribution 71 based on the electrocardiogram information acquired in step S201 (step S202). By the process in step S202, for example, a motion cycle distribution 71 as shown in FIG. 4 is obtained. Further, the image processing device 40 obtains the frequency distribution 72 of the motion cycle (heart rate) based on the motion cycle distribution 71 obtained in step S202, and calculates the most frequent cycle (most frequent heart rate) (step S203). Further, the image processing device 40 calculates the frequency ratio of each heart rate when the most frequent heart rate is 100% (step S204).
  • FIG. 5 shows a frequency distribution 72 of the heart rate obtained from the motion cycle distribution 71 shown in FIG.
  • the ratio of the frequency of each heart rate is 65 [bpm]: 14.3%, 66 [bpm]: 0.0%, 67 [bpm]: 0.0%, 68 [bpm ]: 100.0%, 69 [bpm]: 71.4%, 70 [bpm]: 28.6%, 71 [bpm]: 14.3%.
  • the image processing device 40 obtains the start time or end time of the specific phase time of each motion cycle (heart rate) (step S205). Specifically, if the heart rate is lower than the most frequent heart rate, the end time of the specific phase time is calculated. If the heart rate is higher than the most frequent heart rate, the start time of the specific phase time is calculated.
  • the start time (Start Time) and end time (End Time) in a specific phase of each heart rate can be obtained by the following equations (1) and (2).
  • FIG. 11 shows specific phase times 76a to 76g at each heart rate.
  • the image processing device 40 calculates an X-ray modulation curve so as to obtain an X-ray dose corresponding to the frequency ratio of each heart rate at a specific phase time of each heart rate (step S206).
  • the process of step S206 will be specifically described.
  • the X-ray dose is 100% for the high X-ray dose L1 and 0% for the low X-ray dose L2.
  • the X-ray dose is increased so as to become an X-ray dose corresponding to the frequency ratio of the heart rate at the start time of each specific phase time.
  • the X-ray dose is set to a level of 100% from the start time to the end time of the specific phase time.
  • the X-ray dose is reduced so that the X-ray dose becomes a proportion corresponding to the frequency rate of the heart rate at the end time of each specific phase time.
  • the start time of each specific phase time Therefore, the X-ray dose corresponding to the frequency ratio is irradiated.
  • the frequency rate is 14.3% with respect to the most frequent heart rate, so 14.3% of the X-ray dose is irradiated at the start time of the specific phase time with respect to the high X-ray dose.
  • Increase the dose With a heart rate of 70 [bpm], the frequency is 28.6% of the most frequent heart rate, so the dose is increased so that 28.6% of the X-ray dose is emitted.
  • the frequency rate is 71.4% of the most frequent heart rate, so the dose should be adjusted so that 71.4% of the X-ray dose is emitted at the start time of the specified phase time. increase.
  • the X-ray dose is 100% from the start time to the end time.
  • an X-ray dose corresponding to the frequency ratio is applied at the end time of each specific phase time.
  • the rate of frequency is 14.3% of the most frequent heart rate, so the dose is reduced so that an X-ray dose of 14.3% is applied.
  • the heart rates 66 [bpm] and 67 [bpm] are not considered because they are less frequent than the smaller heart rates (65 [bpm]). This is to smooth the curve of the X-ray modulation curve.
  • the speed at which X-rays are modulated can be adjusted according to the frequency of the heart rate (motion cycle). For this reason, compared to the case where the specific phase range is set to a high X-dose L1 from the minimum heart rate to the maximum heart rate, such as when the minimum heart rate and the maximum heart rate do not appear frequently, It becomes possible to reduce.
  • the X-ray modulation curve calculation unit 54 of the image processing device 40 calculates the frequency of each motion cycle from the motion cycle distribution 71, extracts a motion cycle with a characteristic frequency, and outputs a high X in a specific phase range of the extracted motion cycle.
  • the X-ray modulation curve may be calculated so as to reduce the X-ray dose in a specific phase range of other motion cycles.
  • the CPU 401 of the image processing apparatus 40 extracts a heart rate (high frequency heart rate) with a frequency ratio equal to or higher than a predetermined threshold when the frequency of the most frequent heart rate is 100%. Then, an X-ray dose of 100% (high X-dose) is irradiated at the specific phase time at the extracted high-frequency heart rate, and modulation is performed so that the X-ray dose is low at the specific phase time at a heart rate with a frequency less than the threshold.
  • a heart rate high frequency heart rate
  • a frequency ratio equal to or higher than a predetermined threshold when the frequency of the most frequent heart rate is 100%.
  • the CPU 401 of the image processing device 40 refers to the frequency distribution 72 shown in FIG. 5, and the heart rate (68 [bpm], 69 [bpm]) is extracted. Then, the X dose is set to 100% (high X dose) at the start time or end time of the extracted heart rate. Heart rate with a frequency rate of less than 50% is a low X-ray dose. At this time, it is desirable that the switching speed from the high X-ray dose to the low X-ray dose is in a range that does not exceed the limit value caused by the hardware specifications.
  • the X-ray modulation curve calculation unit 54 of the image processing apparatus 40 determines the X-ray modulation curve 81 shown in FIG. 12 and the X-ray modulation curve 82 shown in FIG. 13 to be smooth curves by high-order interpolation such as spline interpolation. May be.
  • An X-ray modulation curve 83 shown in FIG. 14 is an example in which the X-ray modulation curve 81 of FIG. 12 is interpolated so that the change in the X-ray dose becomes smooth at the start time or end time of the specific phase time of each heart rate.
  • the X-ray modulation curve calculation unit 54 of the image processing device 40 may delete a motion cycle with a characteristic frequency and calculate an X-ray modulation curve based on the frequency of the motion cycle after deletion.
  • a heart rate having a characteristic frequency may be extracted, and an X-ray modulation curve may be calculated based on the extracted frequency of the motion cycle.
  • FIG. 15 (a) shows a frequency distribution 72 of the same movement cycle (heart rate) as FIG.
  • the X-ray modulation curve calculation unit 54 deletes 65 [bpm] and 71 [bpm], which are the minimum frequency heart rates, which are characteristic frequencies, from the frequency distribution 72 in FIG. . In other words, the frequency is treated as 0%. Also, 68 [bpm] and 69 [bpm], which are heart rates equal to or higher than a predetermined frequency, are extracted, and the ratio of the frequencies is set to 100%.
  • FIG. 15B shows a frequency distribution 72a after the characteristic frequency is deleted and extracted.
  • the heart rates of 68 [bpm] and 69 [bpm] are changed to 100% as shown in FIG. 15 (b). . Since 70 [bpm] has a frequency of 28.6%, the frequency is maintained as it is. The minimum frequencies of 71 [bpm] and 65 [bpm] are changed to 0%.
  • the X-ray modulation curve calculation unit 54 calculates the X-ray modulation curve 84 based on the frequency distribution 72a of the motion period after deletion and extraction.
  • the calculation of the X-ray modulation curve 84 may be performed in the same manner as in the first embodiment.
  • the dose is increased so that 28.6% of the X-ray dose is emitted at the start time of the specific phase time.
  • a heart rate of 69 [bpm] since the rate of frequency is 100%, the dose is increased so that 100% of the X-ray dose is emitted at the start time of the specific phase time.
  • the X-ray dose is 100% from the start time to the end time.
  • Example 4 since the heart rate of 67 [bpm] or less has a frequency of 0%, the dose is reduced so that 0% X-ray dose is irradiated at the end time of the specific phase time of 67 [bpm]. Note that since a predetermined time is required for switching from the high X-ray dose to the low X-ray dose, the X-ray dose is reduced within a range in which the modulation speed does not exceed the limit value in the X-ray modulation curve 84 shown in FIG.
  • the characteristic frequency to be deleted or extracted is not limited to the minimum frequency or the maximum frequency, but may be a range or a threshold value.
  • the characteristic frequency to be deleted or extracted may be a value set in advance and held in the storage unit, or may be set by the operator.
  • a graph of the frequency distribution 72 as shown in FIG.15 (a) is displayed, and the operator refers to the graph.
  • An input instruction such as designating a threshold value or a heartbeat to be deleted may be received.
  • the exposure dose can be reduced by calculating an X-ray modulation curve excluding a heart rate that is very infrequent.
  • a heart rate that is slightly different from the frequency of the most frequent heart rate, it is possible to irradiate a high X-ray dose considering that the frequency of the heart rate is 100%. Image quality can be obtained.
  • the X-ray modulation curve calculation unit 54 of the image processing device 40 calculates the start time and end time of the time range corresponding to the specific phase range for each motion cycle, and the most frequent motion cycle and the maximum motion
  • the modulation rate of the X-ray dose is determined according to the time difference between the start times of the specific phase ranges in the period and the time difference between the end times of the specific phase ranges in the most frequent motion cycle and the minimum motion cycle.
  • the hardware configuration and functional configuration of the X-ray CT apparatus 1 of the second embodiment are the same as those of the first embodiment (see FIGS. 1 to 3). Further, the overall flow of the photographing process is the same as that of the first embodiment (see FIG. 9). In the second embodiment, the X-ray modulation curve calculation method is different from the first embodiment.
  • the X-ray modulation curve calculation procedure in the second embodiment will be described with reference to the flowchart of FIG. 17 and FIG.
  • the CPU 401 of the image processing apparatus 40 of the X-ray CT apparatus 1 reads a program and data related to the X-ray modulation curve calculation process shown in FIG. 17 from the main memory 402, and executes processing based on this program and data.
  • the image processing apparatus 40 acquires the motion information measured in step S101 of FIG. 9 as in Example 1 of the first embodiment (step S301).
  • the image processing device 40 calculates the motion cycle distribution 71 (step S302).
  • the image processing device 40 obtains the motion cycle frequency distribution 72 based on the motion cycle distribution 71 calculated in step S302, and calculates the most frequent cycle (step S303).
  • the CPU 401 of the image processing device 40 obtains a specific phase time of each motion cycle (heart rate). At this time, if the heart rate is lower than the most frequent heart rate, the end time of the specific phase time is calculated, and if the heart rate is higher than the most frequent heart rate, the start time of the specific phase time is calculated (step S304).
  • the start time (Start Time) and end time (End Time) of a specific phase of each heart rate can be obtained by the above formulas (1) and (2). .
  • the specific phase time for each heart rate as shown in the upper diagram of FIG. 18 is obtained by the processing from step S301 to step S304.
  • the most frequent heart rate is 70 [bpm]
  • the maximum heart rate is 71 [bpm]
  • the minimum heart rate is 65 [bpm].
  • the CPU 401 of the image processing device 40 has an X-ray modulation speed corresponding to the time difference between the start times of the specific phase times in the most frequent motion cycle (most frequent heart rate) and the maximum motion cycle (maximum heart rate).
  • a line modulation curve 85 is calculated.
  • the X-ray modulation curve 85 is calculated so that the X-ray modulation speed corresponds to the time difference between the end times of each specific phase time in the most frequent motion cycle (mode heart rate) and the minimum motion cycle (minimum heart rate). (Step S305). That is, when the time difference is large, the modulation is performed gently, and when the time difference is small, the modulation is performed sharply.
  • the start time T1c for switching from low X-dose to high X-dose is the high X-ray dose at the start time T1b of the specific phase time 76a at the maximum heart rate (71 [bpm]). It is assumed that the time is tA that is necessary to irradiate with The X-ray dose modulation rate is the rate at which the transition from the low X-dose to the high X-dose is made using the entire time from the switching start time T1c to the start time T1 of the specific phase time 76b at the most frequent heart rate (70 [bpm]). To do.
  • (b) Modulation from high X dose to low X dose The switching start time from the high X dose to the low X dose is the end time T2 of the specific phase time 76b in the most frequent heart rate (70 [bpm]). Further, a time tB required for switching from the high X dose to the low X dose is obtained in advance.
  • the speed from the high X-ray dose to the low X-ray dose is set in the time from the start time T2 to the above-mentioned time T2c.
  • the X-ray dose when the time difference between the minimum heart rate or the maximum heart rate and the most frequent heart rate is large, the X-ray dose can be modulated gently. Conversely, when the time difference between the minimum heart rate or the maximum heart rate and the most frequent heart rate is small, the X-ray dose can be modulated with a steep curve.
  • the image processing device 40 of the X-ray CT apparatus 1 of the third embodiment corrects the X-ray modulation curve calculated based on the motion information measured before the main imaging based on the motion information measured during the main imaging. To do. Then, the main imaging is performed while modulating the X-ray dose according to the modified X-ray modulation curve.
  • FIG. 19 is a diagram illustrating a functional configuration of the image processing device 40a according to the third embodiment.
  • the image processing apparatus 40a according to the third embodiment includes a correction unit 56 in addition to the functional configuration of the image processing apparatus 40 illustrated in FIG.
  • the correction unit 56 corrects the X-ray modulation curve calculated based on the motion information measured before the main imaging based on the motion information measured during the main imaging. Note that the X-ray modulation curve calculated before the actual imaging may be calculated using any of the calculation methods described in the respective examples of the first embodiment or the second embodiment. Good.
  • the imaging control unit 55 performs main imaging while modulating the X-ray dose according to the X-ray modulation curve corrected by the correcting unit 56.
  • the hardware configuration of the X-ray CT apparatus 1 of the third embodiment is the same as that of the first embodiment (see FIGS. 1 and 2).
  • the procedure of the imaging process in the third embodiment will be described with reference to the flowchart of FIG.
  • the image processing device 40 of the X-ray CT apparatus 1 measures the motion information by the motion information measuring device 7 before the main imaging (step S401). For example, electrocardiogram information is acquired by the electrocardiograph 7 during a breath-holding practice period that is performed before the actual photographing. The electrocardiograph 7 sends the acquired electrocardiogram information to the image processing device 40.
  • the image processing apparatus 40 calculates an X-ray dose modulation curve based on the motion information (step S402).
  • the X-ray dose modulation curve calculated here may be calculated based on the frequency of the motion cycle as described in the first embodiment, or may be calculated based on the frequency of the motion cycle as described in the second embodiment. It may be calculated based on the time difference of fluctuation.
  • the image processing apparatus 40 starts actual photographing.
  • the image processing device 40 acquires the motion information measured by the motion information measuring device 7 and sends it to the correction unit 56 (step S403).
  • the correction unit corrects the X-ray dose modulation curve based on the motion information acquired during the main imaging (step S404).
  • the image processing apparatus 40 for example, moderately modulates the X-ray modulation curve when the heart rate measured during the main imaging is in a wider fluctuation range than the acquired heart rate distribution. Change the modulation speed as follows. On the other hand, when the heart rate measured during the main imaging falls within a fluctuation range narrower than the acquired heart rate distribution, the modulation speed is changed so that the modulation of the X-ray modulation curve becomes steep.
  • the image processing apparatus 40 performs main imaging while controlling the irradiation X-ray dose according to the corrected X-ray modulation curve (step S405).
  • the reconstruction calculator 43 performs preprocessing such as predetermined correction processing on the transmission X data acquired from the image processing device 40 to create a projection data set, and reconstructs an image (step S406).
  • the X-ray modulation curve determined based on the motion information obtained before the main imaging is corrected based on the motion information measured during the main imaging. Line modulation can be performed.
  • the imaging target is described as the heart.
  • the application target of the present invention is not limited to the heart, and can be applied to imaging of all moving parts.
  • the specific phase time for each heart rate and the X-ray modulation curve as shown in FIGS. 12 to 14, 16, and 18 may be displayed side by side on the display device 407 to be confirmed by the operator.
  • the frequency distribution 72 may be displayed in correspondence with the specific phase time for each heart rate.
  • the operator may be able to edit the X-ray modulation curve using the input device 409 while confirming the specific phase time and frequency distribution for each heart rate displayed together with the X-ray modulation curve.
  • the operator may be able to edit the X-ray modulation curve using the input device 409 while confirming the specific phase time and frequency distribution for each heart rate displayed together with the X-ray modulation curve.
  • 1 X-ray CT device 1 X-ray CT device, 2 gantry, 20 imaging controller, 201 X-ray source, 202 X-ray controller, 205 X-ray detector, 206 DAS, 3 bed table, 40 image processing device, 401 CPU, 402 main memory, 407 display device, 43 reconstruction calculator, 51 motion cycle distribution acquisition unit, 52 motion cycle frequency calculation unit, 53 motion phase specific phase time calculation unit, 54 X-ray modulation curve calculation unit, 55 imaging control unit, 56 correction Part 7, motion information measuring instrument

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 周期に変動のある動きに対応し、画質を維持しながら被曝量を低減することが可能なX線CT装置及び撮影方法を提供する為に、X線CT装置1の画像処理装置40は本撮影に先立ち、被検者の心電情報を取得し、心拍数(動き周期)の分布を取得する。また、各心拍数の頻度を算出する。そして最頻の動き周期(最頻心拍数)における特定位相時間でX線量が高レベルとなり、最頻の動き周期以外の各動き周期における特定位相時間で頻度に応じたX線量となるようにX線変調曲線を算出する。具体的には、最頻心拍数より低い心拍数であれば特定位相時間の終了時刻で頻度の割合に応じたX線量となるように変調する。また、最頻心拍数より高い心拍数であれば特定位相時間の開始時刻で頻度の割合に応じたX線量となるように変調する。

Description

X線CT装置及び撮影方法
 本発明は、X線CT装置及び撮影方法に係り、詳細には、心臓等、動きのある部位の撮影に好適なX線CT装置及び撮影方法に関する。
 従来から、X線CT(Computed Tomography)装置によって身体の動きのある部位を撮影する場合、得られる断層像には動きに起因するアーチファクトが発生する。このアーチファクトを低減するためには、一般的には心電計や呼吸センサ等の生体センサを用いて生理的運動の計測を合わせて行い、得られた計測信号を用いて撮影を制御したり、画像を処理したりする。例えば心臓を対象とする撮影では、心電計によって心電情報を計測し、心電情報をもとに心臓の動きの少ない位相の投影データを収集して断層像を再構成する心電同期再構成法が行われている。これにより、比較的静止した心臓の画像を得ることが可能となる。心電同期再構成法には、大別してRetrospective Gating法と、Prospective Triggering法とがある。
 Retrospective Gating法は、前述したように、被検者の心電情報を収集しながらヘリカルスキャンし、得られた投影データの中から心電情報を用いて動きが少ない位相の投影データのみを収集して画像再構成する方法である。Prospective Triggering法は、被検者の心電情報をモニタリングし、R波を検出してから予め設定した特定の位相になる時間後にのみX線を照射してアキシャルスキャンする方法である。この場合、X線を連続的に照射するのではなく、特定の位相になったときだけ照射するので、非常に少ない被曝量で済む。
 被曝の観点から考えると、低被曝ですむProspective Triggering法が望ましい。しかし、予め設定した特定位相のみX線を照射する原理上、心臓の動きが少ない心拍位相がX線を照射した位相以外にある場合は、最も動きが少ない心拍位相の画像を得ることができない。また、Prospective Triggering法の成否は心拍変動に大きく依存するという問題がある。このような課題に対して、Retrospective Gating法において、特定の心拍位相でのみ通常のX線量を照射し、それ以外の心拍位相では低いX線量を照射することで特定の心拍位相以外の位相の画像も作成可能にしつつ被曝を低減する方法(ECG Dose Modulation法)が提案されている。
 ECG Dose Modulation法においても、心臓の動きが少ない心拍位相は通常のX線量で撮影されることが望ましい。これに対応する方法として、通常のX線量で撮影する特定位相をある程度の幅のある範囲として設定する方法が提案されている。また、心拍変動の範囲内であれば通常のX線量が照射されるようにX線照射のタイミングを決定する方法が提案されている(特許文献1参照)。特許文献1の方法では、通常のX線量を照射する時間は、想定される心拍数(心拍周期)の中の高心拍時における特定位相開始時から低心拍時における特定位相終了時までである。
特許第4945203号公報
 しかしながら、上述の特許文献1の方法では、想定される心拍変動が広範囲の場合は、通常のX線量を照射する期間が長くなり、被曝量低減の効果が小さくなってしまう。そして、想定される心拍変動の範囲を広くとったとしても、実際には変動範囲の下限や上限となる心拍数があまり現れない場合(頻度が小さい場合)は、画像に寄与しない期間のデータを通常のX線量で照射する可能性が高く、結果的に被曝低減効果が小さくなってしまう。
 本発明は、前述した問題点に鑑みてなされたものであり、その目的とすることは、周期に変動のある動きに対応し、画質を維持しながら被曝量を低減することが可能なX線CT装置及び撮影方法を提供することである。
 前述した目的を達成するために第1の発明は、X線を発生するX線源と、被検体を透過したX線を検出するX線検出器と、前記X線検出器により検出した透過X線データを収集するデータ収集装置と、被検体の動き情報を計測する動き情報計測部と、本撮影に先立ち、前記動き情報計測部により計測された動き情報に基づいて動き周期分布を取得する動き周期分布取得部と、前記動き周期分布から最頻の動き周期を算出する最頻周期算出部と、動き周期の特定位相範囲でX線量が第1レベルとなり、前記特定位相範囲以外の位相でX線量が前記第1レベルより低いレベルとなるようにX線変調のタイミング及びX線量を指定するX線変調曲線を、前記最頻の動き周期と前記動き周期分布とに基づいて決定するX線変調曲線算出部と、前記X線変調曲線に従ってX線量を変調しながら本撮影を行う撮影制御部と、本撮影において前記データ収集装置から得られた透過X線データに基づいて被検体の画像を再構成する再構成演算部と、を備えることを特徴とするX線CT装置である。
 また、第2の発明は、X線CT装置による本撮影に先立ち、計測された被検体の動き情報に基づいて動き周期分布を取得するステップと、前記動き周期分布から最頻の動き周期を算出するステップと、動き周期の特定位相範囲でX線量が第1レベルとなり、前記特定位相範囲以外の位相でX線量が前記第1レベルより低いレベルとなるようにX線変調のタイミング及びX線量を指定するX線変調曲線を、前記最頻の動き周期と前記動き周期分布とに基づいて決定するステップと、前記X線変調曲線に従ってX線量を変調しながら前記X線CT装置が本撮影を行うステップと、本撮影において得られた透過X線データに基づいて被検体の画像を再構成するステップと、を含むことを特徴とする撮影方法である。
 本発明により、周期に変動のある動きに対応し、画質を維持しながら被曝量を低減することが可能なX線CT装置及び撮影方法を提供することができる。
X線CT装置1の全体構成図 X線CT装置1に用いる画像処理装置40のハードウエア構成図 画像処理装置40の機能構成を示す図 息止め練習時間に計測した心電情報(動き情報)から取得した動き周期分布71の一例 図4の動き周期分布71から算出した動き周期(心拍数)の頻度分布72の例 (a)高心拍時における特定位相時間74aと(b)低心拍時における特定位相時間74bとを比較して示す図 心拍変動に対応したX線変調曲線75aの従来例 ハードウエアスペック等に起因するX線変調速度の限界を考慮したX線変調曲線75bの一例 本発明に係る撮影処理の全体の流れを説明するフローチャート 第1の実施の形態のX線変調曲線算出処理の流れを説明するフローチャート 動き周期(心拍数)別特定位相時間76a~76gの一例 各心拍数の特定位相時間76a~76gにおけるX線量を各動き周期の頻度に応じて決定した場合のX線変調曲線81の一例(実施例1) 所定の閾値より頻度の割合が大きい心拍数で高X線量となるように作成されたX線変調曲線82の一例(実施例2) 図12のX線変調曲線81を補間により滑らかな曲線としたX線変調曲線83の一例(実施例3) (a)動き周期の頻度分布72、(b)(a)の頻度分布72から特徴的頻度を抽出または削除した動き周期の頻度分布72aの例(実施例4) 図15(b)の頻度分布72aに基づいて作成されたX線変調曲線84の一例(実施例4) 第2の実施の形態のX線変調曲線算出処理の流れを説明するフローチャート 図17の処理により、特定位相の時間差に基づいて作成されたX線変調曲線85の一例(第2実施形態) 第3の実施の形態の画像処理装置40aの機能構成を示す図 第3の実施の形態の撮影処理の流れを説明するフローチャート
 以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 [第1の実施の形態]
 まず、図1及び図2を参照して、X線CT装置1の構成について説明する。
 図1に示すように、X線CT装置1は、被検体6に対するX線照射を行うとともに被検体6を透過したX線を検出するガントリ2と、被検体6を載置する寝台テーブル3と、X線CT装置1の各部を制御するための画像処理装置40と、画像処理装置40から送出される制御信号に従ってガントリ2の撮影動作を制御する撮影制御器20と、被検体6の動き情報を取得する動き情報計測器7と、ガントリ2の撮影動作により収集された透過X線データに基づいて画像を再構成する再構成演算器43とを備える。
 ガントリ2には、X線源201とX線検出器205とが、回転盤の開口部を介して対向配置されている。開口部には被検体6が載置される寝台テーブル3が搬入される。回転盤は、撮影制御器20のガントリ制御器208によって制御される回転盤駆動装置から駆動伝達系を通じて伝達される駆動力によって被検体6の周囲を周回するよう駆動される。
 X線源201はX線管及び高電圧発生装置から構成される。X線源201は、撮影制御器20のX線制御器202に制御されて所定の強度のX線を連続的または断続的に照射する。撮影制御器20のX線制御器202は、画像処理装置40により決定されたX線管電圧及びX線管電流に従って、X線管に印加または供給するX線管電圧及びX線管電流を制御する。X線源201にはコリメータが設けられ、X線源201から放射されたX線を、例えばコーンビーム(円錐形または角錐形ビーム)等のX線として被検体6に照射させる。コリメータの開口幅は撮影制御器20により制御される。被検体6を透過したX線はX線検出器205に入射する。
 X線検出器205は、例えばシンチレータとフォトダイオードの組み合わせによって構成されるX線検出素子群をチャネル方向(周回方向)に例えば1000個程度、列方向(体軸方向)に例えば1~320個程度配列したものであり、被検体6を介してX線源201に対向するように配置される。X線検出器205はX線源201から照射されて被検体6を透過したX線量を検出し、DAS(データ収集装置)206に出力する。DAS206は、X線検出器205の個々のX線検出素子により検出されるX線量を収集し、デジタルデータに変換し、透過X線データとして再構成演算器43に順次出力する。
 撮影制御器20は、X線照射を制御するX線制御器202と、ガントリ2の回転動作を制御するガントリ制御器208と、テーブル3の移動動作を制御するテーブル制御器207と、投影データの収集動作を行うDAS(データ収集装置)206とを備える。
 寝台テーブル3は、撮影制御器20のテーブル制御器207から送出される制御信号に従って、寝台テーブル3の高さを適切なものにし、また、体軸方向への前後動、体軸と垂直方向であって天板に平行な方向(左右方向)に移動する。これにより、被検体6がガントリ2の開口部(X線照射空間)に搬入及び搬出される。
 画像処理装置40は、図2に示すように、CPU(Central Processing Unit)401、ROM(Read Only Memory)、RAM(Random Access Memory)等の主メモリ402、ハードディスク等のデータ記録装置403、ネットワークアダプタ404、表示メモリ405、コントローラ406、表示装置407、及び入力装置409等を備えたコンピュータである。画像処理装置40の記憶部(主メモリ402またはデータ記録装置403)にはX線CT装置1の機能を実現するためのプログラムやデータ等が予め記憶される。
 画像処理装置40は、操作者により設定された撮影条件に応じた制御信号を撮影制御器20に送出する。撮影制御器20は、画像処理装置40から入力された制御信号に基づいて、ガントリ2の回転速度やX線源201から照射するX線量、及び寝台テーブル3の位置を制御しながらX線を被検体6に対して照射する。また画像処理装置40は、X線検出器205により検出されDAS206により収集された透過X線データを取得し、再構成演算器43に送る。
 本実施の形態の画像処理装置40は、後述する撮影処理において、本撮影の前に動き情報計測器7を用いて計測した被検体の動き情報に基づいて照射X線量を変調制御する。X線量の変調制御については後述する。
 再構成演算器43は、DAS206から入力された透過X線データを取得し、対数変換、感度補正等の前処理を行って再構成に必要な投影データセットを作成する。また、再構成演算器43は作成した投影データセットを用いて断層像等の画像を再構成する。撮影方法がRetrospective Gating法であれば、撮影終了後に動き情報を用いて動き情報の周期における位相が同じとなる投影データのセットを収集し、投影データセットを画像再構成することで動きの少ない画像シリーズを得る。撮影方法がProspective Triggering法であれば、本撮影中に画像処理装置40に取り込まれる動き情報をモニタリングし、動き情報の特徴波から予め指定された特定時間後になった時点でX線を照射することで動きの少ない画像シリーズを得る。再構成演算器43により再構成された画像データは、画像処置装置40に入力され、データ記録装置403に保存される。
 表示装置407は、液晶パネル、CRTモニタ等のディスプレイ装置と、ディスプレイ装置と連携して表示処理を実行するための論理回路で構成され、画像処理装置40に接続される。表示装置407は再構成演算器43から出力される再構成画像、並びに画像処理装置40が取り扱う種々の情報を表示するものである。
 入力装置409は、例えば、キーボード、マウス408等のポインティングデバイス、テンキー、及び各種スイッチボタン等により構成され、操作者によって入力される各種の指示や情報を画像処理装置40に出力する。操作者は、表示装置407及び入力装置409を使用して対話的にX線CT装置1を操作する。
 動き情報計測器7は、被検者の動きに関するデータを計測する装置である。被検体の動きとは、被検体の生理的運動であり、例えば心臓の拍動や呼吸による肺の動き等を含む。
動き情報計測器7は、心臓の拍動を測定する場合は、例えば心電計を用いればよい。心電計は、被検体6に取り付けた電極を介して、心臓の心拍運動を反映した活動電位の時間変化を表す心電情報を計測し、例えば0.1秒間隔等の所定のサンプリングピッチでデジタル信号に変換する。
 また例えば、呼吸による胸部の動きを測定する場合は、呼吸センサ等を用いればよい。
 以下の説明では、心臓の拍動を動き情報として計測する例について説明するが、本発明は心臓の拍動以外の動きについて適用することも可能である。
 動き情報計測器7により計測した動き情報は、画像処理装置40へ順次送出される。画像処理装置40は撮影処理においてX線変調曲線を算出する際に、動き情報計測器7により計測した動き情報に基づいてX線変調のタイミングやX線量を決定する。
 次に、図3を参照して、X線CT装置1の機能構成について説明する。
 本発明に係る画像処理装置40は、動き周期分布取得部51、動き周期の頻度算出部52、動き周期別特定位相時間算出部53、X線変調曲線算出部54、撮影制御部55、記憶部403を有する。
 動き周期分布取得部51は、本撮影に先立ち、動き情報計測器7により計測された動き情報に基づいて動き周期分布71を求める。動き周期とは、周期的な動きが所定時間内に何回行われたかを示す値である。心拍であれば、所定時間ごとの拍動回数(心拍数[bpm])が動き周期である。また、動き周期分布71を取得するための動き情報の計測は本撮影の前に行われる。例えば、本撮影の前に行われる息止め練習期間内等に動き情報が計測されることが好適である。動き周期分布71は、動き情報計測中に得た心拍数の変動分布を表すものである。
 画像処理装置40のCPU401は、例えば、本撮影の前に心電計(動き情報計測器7)により計測した心電情報に基づいて心拍周期の逆数である心拍数を算出し、動き周期分布71として記録する。ここでいう心拍数は、息止め練習期間全体の心拍の回数という意味ではなく、単位時間当りの心拍数(単位;[beats per minute、bpm])、すなわち心拍の周期の逆数である。
 心拍の計測は、息止め練習期間に限らず、本撮影の開始前であればいつでもよい。例えば、撮影直前のディレー中に計測してもよい。
 図4は動き周期分布71の一例である。図4に示す例では、息止め練習期間中、心拍数は常に一定ではなく、65~71[bpm]の範囲で変動する。
 動き周期の頻度算出部52は、動き周期分布71に基づいて動き周期の頻度分布72を算出する。また、頻度分布72から最頻の動き周期(以下、最頻周期という)を算出する。画像処理装置40のCPU401は動き周期分布71から各心拍数の頻度をカウントし、心拍数の頻度分布72を求める。例えば図4に示す動き周期分布71からは、図5に示す頻度分布72が得られる。図5の頻度分布72では、最小心拍数(最小周期)が65[bpm]、最大周期(最大心拍数)が71[bpm]、最頻周期(最頻心拍数)が68[bpm]となる。
 動き周期別特定位相時間算出部53は、各心拍数(動き周期)について特定位相範囲に該当する時間位置である特定位相時間を求める。特定位相範囲とは、1心拍周期のうち画像の再構成に使用するデータを得るのに好適な位相範囲である。特定位相範囲は、動きが最も少ない静止位相とすることが望ましい。例えば、心拍であれば「R波から75%」というように、特定位相の位置はR波からR波までを100%とした場合の割合で決定される。特定位相は、入力装置409から操作者により指定された値としてもよいし、演算により求めてもよい。
 図6は、心拍数と特定位相時間74との関係を示している。上述したように、特定位相範囲はR波からR波までの期間を100%として割合で位置が指定される。そのため、心拍周期(心拍数)によって特定位相時間74の時間位置は異なることとなる。図6(a)は高心拍の心電図73a、図6(b)が低心拍の心電図73bの例である。高心拍と低心拍とを同一の時間軸で比較すると、高心拍の特定位相時間74aは低心拍の特定位相時間74bより早い位置にある。
 X線変調曲線算出部54は、動き周期の特定の位相範囲でX線量が通常のレベルとなり、特定の位相範囲以外の位相でX線量が通常のレベルより低くなるようにX線変調のタイミング及びX線量を指定するX線変調曲線を算出する。以下の説明では、通常のX線量のレベルを高X線量L1、再構成に必要な最小限のレベルのX線量を低X線量L2と呼ぶ。
本発明では、X線変調曲線算出部54は、動き周期の頻度算出部52により求めた最頻の動き周期と、動き周期分布取得部51により求めた動き周期分布71とに基づいてX線変調曲線を算出する。
 まず、一般的なX線変調の方法について説明する。心電情報を用いた撮影中のX線変調では、図7に示すように、ある特定の心位相のときは高X線量L1を照射し、特定の心位相以外の位相のときは低X線量L2を照射する。高X線量照射と低X線量照射を心拍の1周期内で切り替えることによって特定位相以外でX線量の照射を抑え、撮影全体の被曝を低減している。
 X線量の切り替えタイミングを予め指定する曲線をX線変調曲線と呼ぶ。
 上述したように被検者の心拍数には変動がある。このため心周期における特定位相の時間位置は心拍数毎に異なる。したがって、例えば特定位相をR波から75%の位置というように設定しても、図6に示すように心拍数によってその時間位置が異なる。
 この心拍数の変動(動き周期の変動)に対応するため、従来は、図7に示すように、心拍変動の最大心拍数における特定位相時間の開始時刻T1から最小心拍数における特定位相時間の終了時刻T2までの時間範囲を高X線量L1とし、その他の時間を低X線量L2として、X線変調曲線75aを作成する。
 また、X線量の切り替えには時間を要する。低X線量から高X線量への切り替え、またはその逆の切り替えは、被曝低減の観点からは瞬時に行われることが望ましい。しかし実際は、X線を照射するX線管やX線管に高電圧を供給する高電圧発生器の制限上、切り替えに時間を要する。そして、切り替えの速度はX線管と高電圧発生器との組み合わせによって求めることができる。したがって、予め切り替え速度の限界値を計測してデータ記録装置(記憶部)403に保持しておき、画像処理装置40がX線変調曲線を算出する際は、切り替え時間を考慮してX線量の切り替え動作を開始する。
 具体的には、従来のX線変調曲線75bは、図8に示すように、高心拍の特定位相時間74aの開始位置T1から低心拍の特定位相時間74bの終了位置T2までの範囲で高X線量L1とする。また、切り替え時間を考慮して、時刻T1aを低X線量L2から高X線量L1への切り替え開始位置とする。また、高X線量L1から低X線量L2への切り替えは低心拍の特定位相時間74bの終了位置T2を切り替え開始時刻とすると、時刻T2aで低X線量L2へ到達する。
 しかしながら、上述したように最大心拍数における特定位相時間の開始時刻T1から最小心拍数における特定位相時間の終了時刻T2までの時間範囲を高X線量L1とすると、心拍変動が大きく、かつ最大心拍数または最小心拍数が頻度の少ない特異な心拍数である場合に特定位相時間を長くとる必要が生じる。そのため、被曝量低減の効果が少なくなる。
 そこで本発明では、画像処理装置40がX線変調曲線を決定する際、心拍変動における心拍数の頻度を考慮する。X線変調曲線の具体的な算出方法については以下の実施例1~実施例4で説明する。
 撮影制御部55は、X線変調曲線算出部54において決定されたX線変調曲線に従ってX線量を変調しながら本撮影を行う。X線量とは被検体に照射されるX線量(照射X線量)である。照射X線量を変調するには、X線管電流を変調することが一般的であるが、X線管電圧を変調して行ってもよい。また別の方法として、X線源と被検体との間のX線照射空間に照射X線量に応じたフィルタを適宜挿入することにより照射X線量を調整することも考えられる。
 データ記録装置(記憶部)403は、予め計測されたX線量を切り替える速度(変調速度)の限界値を保持する。X線変調曲線算出部54は、X線量を切り替える速度の限界値を超えないようにX線変調曲線を決定することが望ましい。
 次に、X線CT装置1の動作について説明する。
 まず、図9を参照して撮影処理全体の流れについて説明する。
 本発明に係るX線CT装置1の画像処理装置40のCPUは、主メモリ402から図9に示す撮影処理に関するプログラム及びデータを読み出し、このプログラム及びデータに基づいて処理を実行する。
 X線CT装置1は、本撮影の前に、動き情報計測器7により動き情報の計測を行う(ステップS101)。例えば、本撮影の前に行われる息止め練習期間に、心電計7により心電情報を取得する。心電計7は、取得した心電情報を画像処理装置40へ送出する。
 次に画像処理装置40は、計測した動き情報に基づきX線量変調曲線を算出する(ステップS102)。X線量変調曲線算出処理の詳細については後述する。
 その後、画像処理装置40は、X線変調曲線に従って照射X線量を制御しながら本撮影を実行する(ステップS103)。本撮影では、撮影制御部20のX線制御器202は、X線源201に電力信号及びX線発生タイミング信号を供給する。ガントリ制御器208は、撮影条件に従ってガントリ2上の構成要素の回転速度及び位置を制御する。またテーブル制御器207は、撮影条件に従って画像処理装置40により決定された位置に寝台テーブル3を移動し、また所定の移動速度となるように寝台テーブル3を制御する。被検体6を透過し、X線検出器205に入射したX線はDAS206によりデジタル信号に変換され、透過X線データとして画像処理装置40へ送られる。画像処理装置40は、取得した透過X線データを再構成演算器43に送出する。
 再構成演算器43は、画像処理装置40から取得した透過Xデータに対して補正処理等、所定の前処理を施して投影データセットを作成し、画像を再構成する(ステップS104)。再構成された画像は画像処理装置40のデータ記録装置403に記憶されるとともに、表示装置407に表示される。
 以下、ステップS102におけるX線変調曲線の算出例を説明する。
 (実施例1)
 画像処理装置40のX線変調曲線算出部54は、動き周期分布71から各動き周期の頻度を算出し、最頻の動き周期(最頻心拍数)の特定位相時間でX線量が第1レベル(高X線量L1)となり、最頻の動き周期以外の各動き周期の特定位相時間では、頻度に応じたX線量となるようにX線変調曲線を算出する。
 実施例1におけるX線変調曲線の算出手順を図10のフローチャートを参照して説明する。X線CT装置1の画像処理装置40のCPU401は、主メモリ402から図10に示す撮影処理に関するプログラム及びデータを読み出し、このプログラム及びデータに基づいて処理を実行する。
 まず、画像処理装置40は、図9のステップS101で計測した動き情報を取得する(ステップS201)。心拍であれば心電情報を取得する。次に、画像処理装置40は、ステップS201で取得した心電情報に基づいて動き周期分布71を算出する(ステップS202)。ステップS202の処理により、例えば図4に示すような動き周期分布71を得る。また画像処理装置40は、ステップS202で得た動き周期分布71に基づいて動き周期(心拍数)の頻度分布72を求め、最頻周期(最頻心拍数)を算出する(ステップS203)。更に、画像処理装置40は、最頻心拍数を100%とした時の各心拍数の頻度の割合を算出する(ステップS204)。
 図4に示す動き周期分布71から求めた心拍数の頻度分布72を図5に示す。図5の頻度分布72では、各心拍数の頻度の割合は、65[bpm]:14.3%、66[bpm]:0.0%、67[bpm]:0.0%、68[bpm]:100.0%、69[bpm]:71.4%、70[bpm]:28.6%、71[bpm]:14.3%である。
 次に画像処理装置40は、各動き周期(心拍数)の特定位相時間の開始時刻または終了時刻を求める(ステップS205)。具体的には、最頻心拍数より低い心拍数であれば特定位相時間の終了時刻を算出し、最頻心拍数より高い心拍数であれば特定位相時間の開始時刻を算出する。
 各心拍数の特定位相における開始時刻(Start Time)、終了時刻(End Time)は下記の式(1)、式(2)で求めることができる。
Figure JPOXMLDOC01-appb-I000001
 ここで、HRは心拍数(bpm)、PHは特定位相(%)、TRは時間分解能(ms)とする。図11は、各心拍数における特定位相時間76a~76gを示している。
 画像処理装置40は、各心拍数の特定位相時間で各心拍数の頻度の割合に応じたX線量となるようにX線変調曲線を算出する(ステップS206)。
 ステップS206の処理について具体的に説明する。
 X線量は高X線量L1を100%とし、低X線量L2を0%とする。最頻心拍数より大きい各心拍数では、各々の特定位相時間の開始時刻でX線量がその心拍数の頻度の割合に応じたX線量となるように上昇させる。また、最頻心拍数では特定位相時間の開始時刻から終了時刻までX線量が100%のレベルとなるようにする。最頻心拍数より小さい各心拍数では、各々の特定位相時間の終了時刻でX線量がその心拍数の頻度の割合に応じた割合のX線量となるように低減させる。
 具体的には図12に示すように、最頻心拍数(68[bpm])より大きい心拍数(69[bpm]、70[bpm]、71[bpm])では、各特定位相時間の開始時刻で、頻度の割合に応じたX線量が照射されるようにする。例えば71[bpm]の心拍数では、頻度の割合が最頻心拍数に対して14.3%なので高X線量に対し14.3%のX線量が特定位相時間の開始時刻で照射されるように照射量を増加させる。70[bpm]の心拍数では、頻度の割合が最頻心拍数に対して28.6%の割合なので28.6%のX線量が照射されるように照射量を増加させる。69[bpm]の心拍数では、頻度の割合が最頻心拍数に対して71.4%の割合なので71.4%のX線量が特定位相時間の開始時刻に照射されるように照射量を増加させる。
 最頻心拍数(68[bpm])の特定位相時間76dでは、開始時刻から終了時刻まで100%のX線量とする。
 最頻心拍数より小さい心拍数(67[bpm]、66[bpm]、65[bpm])では、各特定位相時間の終了時刻で、頻度の割合に応じたX線量が照射されるようにする。
 例えば65[bpm]の心拍数では、頻度の割合が最頻心拍数に対して14.3%の割合なので14.3%のX線量が照射されるように照射量を低減させる。なお、心拍数66[bpm]と67[bpm]では、それらより小さい心拍数(65[bpm])よりも頻度が少ないため考慮しないものとする。これはX線変調曲線のカーブを滑らかにするためである。
 実施例1(図12)に示すX線変調曲線81とすることにより、心拍数(動き周期)の頻度に応じてX線を変調する速度を調整できる。このため、最小心拍数や最大心拍数が出現する頻度が少ない場合等、最小心拍数から最大心拍数に渡って特定位相範囲を高X線量L1とする場合と比較して、撮影全体の被曝を低減することが可能となる。
 (実施例2)
 画像処理装置40のX線変調曲線算出部54は、動き周期分布71から各動き周期の頻度を算出し、特徴的な頻度の動き周期を抽出し、抽出した動き周期の特定位相範囲で高X線量とし、その他の動き周期の特定位相範囲でX線量を低減させるように、X線変調曲線を算出するようにしてもよい。
 具体的には、画像処理装置40のCPU401は最頻心拍数の頻度を100%とした場合に頻度の割合が所定の閾値以上となる心拍数(高頻度の心拍数)を抽出する。そして抽出した高頻度の心拍数における特定位相時間では100%(高X線量)のX線量を照射し、閾値未満の頻度の心拍数における特定位相時間では、低X線量となるように変調する。
 例えば、図13に示すX線変調曲線82の例では、画像処理装置40のCPU401は図5に示す頻度分布72を参照し、頻度の割合が例えば50%以上の心拍数(68[bpm]、69[bpm])を抽出する。そして、抽出した心拍数の開始時刻または終了時刻で100%(高X線量)のX線量となるようにする。頻度の割合が50%未満の心拍数は低X線量とする。このとき高X線量から低X線量への切り替え速度が、ハードウエアスペック等に起因する限界値を超えない範囲とすることが望ましい。
 (実施例3)
 画像処理装置40のX線変調曲線算出部54は、図12に示すX線変調曲線81や図13に示すX線変調曲線82をスプライン補間等の高次補間によって滑らかな曲線となるように決定してもよい。図14に示すX線変調曲線83は、図12のX線変調曲線81を各心拍数の特定位相時間の開始時刻または終了時刻でX線量の変化が滑らかになるように補間した例である。
 (実施例4)
 画像処理装置40のX線変調曲線算出部54は、特徴的な頻度の動き周期を削除し、削除後の動き周期の頻度に基づいてX線変調曲線を算出してもよい。また、これと併せて、実施例2と同様に、特徴的な頻度の心拍数を抽出し、抽出した動き周期の頻度に基づいてX線変調曲線を算出してもよい。
 図15(a)は図5と同一の動き周期(心拍数)の頻度分布72である。実施例4ではX線変調曲線算出部54は、図15(a)の頻度分布72のうち、特徴的な頻度である最小頻度の心拍数である65[bpm]と71[bpm]を削除する。つまり頻度0%として扱う。また、所定頻度以上の心拍数である68[bpm]と69[bpm]を抽出し、その頻度の割合を100%とする。特徴的な頻度を削除及び抽出した後の頻度分布72aを図15(b)に示す。
 特徴的な頻度の心拍数を削除及び抽出した後の頻度分布72aでは、図15(b)に示すように、68[bpm]及び69[bpm]の心拍数が100%の頻度に変更される。
70[bpm]は頻度28.6%であるので、そのままの頻度を維持する。最小頻度である71[bpm]及び65[bpm]の頻度は0%に変更される。
 X線変調曲線算出部54は、削除及び抽出後の動き周期の頻度分布72aに基づいてX線変調曲線84を算出する。X線変調曲線84の算出は、実施例1と同様に行えばよい。
 したがって、図16に示すように70[bpm]の心拍数では28.6%のX線量が特定位相時間の開始時刻で照射されるように照射量を増加させる。69[bpm]の心拍数では、頻度の割合が100%の割合なので100%のX線量が特定位相時間の開始時刻に照射されるように照射量を増加させる。最頻心拍数(68[bpm])の特定位相時間では、開始時刻から終了時刻まで100%のX線量とする。
 実施例4では、67[bpm]以下の心拍数が0%の頻度であるので67[bpm]の特定位相時間の終了時刻で0%のX線量が照射されるように照射量を低減させる。なお、高X線量から低X線量への切り替えには所定の時間がかかるため、図16に示すX線変調曲線84では、変調速度が限界値を超えない範囲でX線量を低減させている。
 なお、削除または抽出する特徴的な頻度は、最小頻度や最大頻度等に限定されず、範囲や閾値としてもよい。そして、削除または抽出する特徴的な頻度は、予め設定されて記憶部に保持された値としてもよいし、操作者により設定できるようにしてもよい。また取得した動き周期の頻度分布72に対して削除または抽出等の調整を行う場合は、図15(a)に示すような頻度分布72のグラフを表示して、操作者がグラフを参照しながら閾値や削除する心拍を指定する等の入力指示を受け付けるようにしてもよい。
 実施例4では、頻度が非常に少ない心拍数等を除いてX線変調曲線を算出することにより、被曝線量を低減させることができる。また、最頻心拍数の頻度との差が僅かな心拍数がある場合にはその心拍数の頻度を100%とみなして高X線量を照射することもできるため、最頻心拍数と同等の画質を得ることができる。
 [第2の実施の形態]
 次に、図17、図18を参照して第2の実施の形態のX線CT装置1について説明する。
 第2の実施の形態では、画像処理装置40のX線変調曲線算出部54は、特定位相範囲に該当する時間範囲の開始時刻及び終了時刻を動き周期別に算出し、最頻動き周期及び最大動き周期における各特定位相範囲の開始時刻の時間差、及び最頻動き周期及び最小動き周期における各特定位相範囲の終了時刻の時間差に応じてX線量の変調速度を決定する。
 第2の実施の形態のX線CT装置1のハードウエア構成及び機能構成は、第1の実施の形態と同様である(図1~図3参照)。また、撮影処理の全体の流れは第1の実施の形態と同様である(図9参照)。第2の実施の形態ではX線変調曲線の算出方法が第1の実施の形態と異なる。
 第2の実施の形態におけるX線変調曲線の算出手順を図17のフローチャート及び図18を参照して説明する。X線CT装置1の画像処理装置40のCPU401は、主メモリ402から図17に示すX線変調曲線算出処理に関するプログラム及びデータを読み出し、このプログラム及びデータに基づいて処理を実行する。
 図17のフローチャートに示すように、まず画像処理装置40は、第1の実施の形態の実施例1と同様に、図9のステップS101で計測した動き情報を取得する(ステップS301)。次に、画像処理装置40は、動き周期分布71を算出する(ステップS302)。画像処理装置40は、ステップS302で算出した動き周期分布71に基づいて動き周期の頻度分布72を求め、最頻周期を算出する(ステップS303)。
 次に画像処理装置40のCPU401は、各動き周期(心拍数)の特定位相時間を求める。このとき、最頻心拍数より低い心拍数であれば特定位相時間の終了時間、最頻心拍数より高い心拍数であれば特定位相時間の開始時刻を夫々算出する(ステップS304)。
 各心拍数の特定位相における開始時間(Start Time)、終了時間(End Time)は、第1の実施の形態において説明したように、上述の式(1)、式(2)で求めることができる。
 ステップS301~ステップS304の処理により、図18の上図に示すような心拍数別特定位相時間が求められる。図18の例では、最頻心拍数が70[bpm]、最大心拍数が71[bpm]、最小心拍数は65[bpm]である。
 画像処理装置40のCPU401は、最頻動き周期(最頻心拍数)及び最大動き周期(最大心拍数)における各特定位相時間の開始時刻の時間差に応じたX線変調速度となるように、X線変調曲線85を算出する。また、最頻動き周期(最頻心拍数)及び最小動き周期(最小心拍数)における各特定位相時間の終了時刻の時間差に応じたX線変調速度となるように、X線変調曲線85を算出する(ステップS305)。つまり、上述の時間差が大きい場合はなだらかに変調し、時間差が小さい場合は急峻に変調する。
 具体例を図18の下図に示す。
 (a)低X線量から高X線量への変調
 低X線量から高X線量への切り替え開始時刻T1cは、最大心拍数(71[bpm])における特定位相時間76aの開始時刻T1bを高X線量で照射するために必要な時間tAだけ遡った時刻とする。X線量の変調速度は、切り替え開始時刻T1cから最頻心拍数(70[bpm])における特定位相時間76bの開始時刻T1までの時間全部を使って低X線量から高X線量へ移行する速度とする。
 (b)高X線量から低X線量への変調
 高X線量から低X線量への切り替え開始時刻は、最頻心拍数(70[bpm])における特定位相時間76bの終了時刻T2とする。また、高X線量から低X線量への切り替えに要する時間tBを予め求めておく。変調速度は、最小心拍数(65[bpm])における特定位相時間76gの終了時刻T2bで切り替えを開始したと仮定した場合に低X線量になる時刻T2c(T2c=T2b+tB)を求め、実際の切り替え開始時刻T2から上述の時刻T2cまでの時間で高X線量から低X線量へ移行する速度とする。
 第2の実施の形態のX線変調曲線85では、最小心拍数または最大心拍数と最頻心拍数との時間差が大きい場合は緩やかにX線量を変調することが可能となる。逆に最小心拍数または最大心拍数と最頻心拍数との時間差が小さい場合は急峻なカーブでX線量を変調することが可能となる。
 [第3の実施の形態]
 次に、図19及び図20を参照して第3の実施の形態のX線CT装置1について説明する。
 第3の実施の形態のX線CT装置1の画像処理装置40は、本撮影前に計測した動き情報に基づいて算出したX線変調曲線を、本撮影中に計測した動き情報に基づいて修正する。そして修正されたX線変調曲線に従ってX線量を変調しながら本撮影を行う。
 図19は、第3の実施の形態の画像処理装置40aの機能構成を示す図である。
 第3の実施の形態の画像処理装置40aは、図3に示す画像処理装置40の機能構成に加え、修正部56を備える。
 修正部56は、本撮影前に計測した動き情報に基づいて算出したX線変調曲線を、本撮影中に計測した動き情報に基づいて修正する。なお、本撮影の前に算出するX線変調曲線は、第1の実施の形態の各実施例、または第2の実施の形態において説明した算出方法のうちいずれの方法を用いて算出したものでもよい。
 撮影制御部55は修正部56により修正されたX線変調曲線に従ってX線量を変調しながら本撮影を行う。
 第3の実施の形態のX線CT装置1のハードウエア構成は、第1の実施の形態と同様である(図1~図2参照)。
 第3の実施の形態における撮影処理の手順を図20のフローチャートを参照して説明する。
 X線CT装置1の画像処理装置40は、本撮影の前に、動き情報計測器7により動き情報の計測を行う(ステップS401)。例えば、本撮影の前に行われる息止め練習期間に、心電計7により心電情報を取得する。心電計7は、取得した心電情報を画像処理装置40へ送出する。
 次に画像処理装置40は、動き情報に基づきX線量変調曲線を算出する(ステップS402)。ここで算出するX線量変調曲線は、第1の実施の形態において説明したように、動き周期の頻度に基づいて算出したものでもよいし、第2の実施の形態において説明したように動き周期の変動の時間差に基づいて算出したものでもよい。
 次に、画像処理装置40は本撮影を開始する。本撮影中、画像処理装置40は動き情報計測器7により計測される動き情報を取得し、修正部56に送る(ステップS403)。
 修正部は、本撮影中に取得した動き情報に基づいてX線量変調曲線を修正する(ステップS404)。
 ステップS404の修正処理では、画像処理装置40は、例えば本撮影中に計測した心拍数が取得済みの心拍数の分布よりも広い変動範囲となる場合は、X線変調曲線の変調が緩やかになるように変調速度を変更する。逆に、本撮影中に計測した心拍数が取得済みの心拍数の分布よりも狭い変動範囲となる場合は、X線変調曲線の変調が急になるように変調速度を変更する。
 画像処理装置40は、修正されたX線変調曲線に従って照射X線量を制御しながら本撮影を実行する(ステップS405)。再構成演算器43は、画像処理装置40から取得した透過Xデータに対して所定の補正処理等の前処理を施して投影データセットを作成し、画像を再構成する(ステップS406)。
 第3の実施の形態のX線CT装置1によれば、本撮影前に得た動き情報に基づいて決定したX線変調曲線を、本撮影中に計測した動き情報に基づいて修正しながらX線変調を行うことが可能となる。
 以上、本発明に係るX線CT装置及び撮影方法の好適な実施形態について説明したが、本発明は、上述の実施形態に限定されるものではない。例えば、上述の実施形態では撮影対象を心臓として説明したが、本発明の適用対象は心臓に限定されるものではなく動きのある全ての部位の撮影に適用可能である。また、図12~14、16、18に示したような心拍数別特定位相時間とX線変調曲線とを並べて表示装置407に表示させ、操作者に確認させても良い。さらに、心拍数別特定位相時間と対応させて、頻度分布72を表示させても良い。
 また、操作者が、X線変調曲線とともに表示された心拍数別特定位相時間や頻度分布を確認しながら、入力装置409を用いてX線変調曲線を編集できるようにしても良い。その他、当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 1 X線CT装置、2 ガントリ、20 撮影制御器、201 X線源、202 X線制御器、205 X線検出器、206 DAS、3 寝台テーブル、40 画像処理装置、401 CPU、402 主メモリ、407 表示装置、43 再構成演算器、51 動き周期分布取得部、52 動き周期の頻度算出部、53 動き周期別特定位相時間算出部、54 X線変調曲線算出部、55 撮影制御部、56 修正部、7 動き情報計測器

Claims (11)

  1.  X線を発生するX線源と、
     被検体を透過したX線を検出するX線検出器と、
     前記X線検出器により検出した透過X線データを収集するデータ収集装置と、
     被検体の動き情報を計測する動き情報計測部と、
     本撮影に先立ち、前記動き情報計測部により計測された動き情報に基づいて動き周期分布を取得する動き周期分布取得部と、
     前記動き周期分布から最頻の動き周期を算出する最頻周期算出部と、
     動き周期の特定位相範囲でX線量が第1レベルとなり、前記特定位相範囲以外の位相でX線量が前記第1レベルより低いレベルとなるようにX線変調のタイミング及びX線量を指定するX線変調曲線を、前記最頻の動き周期と前記動き周期分布とに基づいて決定するX線変調曲線算出部と、
     前記X線変調曲線に従ってX線量を変調しながら本撮影を行う撮影制御部と、
     本撮影において前記データ収集装置から得られた透過X線データに基づいて被検体の画像を再構成する再構成演算部と、
     を備えることを特徴とするX線CT装置。
  2.  前記X線変調曲線算出部は、
     前記動き周期の分布から各動き周期の頻度を算出し、
     前記最頻の動き周期の特定位相範囲でX線量が第1レベルとなり、
     前記最頻の動き周期以外の各動き周期の特定位相範囲では、前記頻度に応じたX線量となるように前記X線変調曲線を算出することを特徴とする請求項1に記載のX線CT装置。
  3.  前記X線変調曲線算出部は、
     前記特定位相範囲に該当する時間範囲の開始時刻及び終了時刻を動き周期別に算出し、 前記最頻の動き周期より大きい動き周期の各特定位相範囲の開始時刻でX線量が動き周期の頻度の割合に応じたX線量となり、
     前記最頻の動き周期の前記特定位相範囲に該当する時間範囲でX線量が前記第1レベルとなり、
     前記最頻の動き周期より小さい動き周期の各特定位相範囲の終了時刻でX線量が動き周期の頻度の割合に応じた割合のX線量となるように、前記X線変調曲線を算出することを特徴とする請求項2に記載のX線CT装置。
  4.  前記X線変調曲線算出部は、
     前記頻度のうち特徴的な頻度の動き周期を抽出し、抽出した動き周期の特定位相範囲でX線量が前記第1レベルとなるように前記X線変調曲線を算出することを特徴とする請求項2に記載のX線CT装置。
  5.  前記X線変調曲線算出部は、
     前記頻度のうち特徴的な頻度の動き周期を削除し、削除後の動き周期の頻度に基づいて前記X線変調曲線を算出することを特徴とする請求項2に記載のX線CT装置。
  6.  前記X線変調曲線算出部は、
     前記特定位相範囲に該当する時間範囲の開始時刻及び終了時刻を動き周期別に算出し、 最頻動き周期及び最大動き周期における各特定位相範囲の開始時刻の時間差、または最頻動き周期及び最小動き周期における各特定位相範囲の終了時刻の時間差に応じてX線量の変調速度を決定することを特徴とする請求項1に記載のX線CT装置。
  7.  X線変調速度の限界値を予め保持する記憶部を備え、
     前記X線変調曲線算出部は、前記限界値を超えないように前記X線変調曲線を算出することを特徴とする請求項1に記載のX線CT装置。
  8.  前記動き情報計測部は、本撮影前及び本撮影中の被検体の動き情報を計測し、
     前記本撮影前に計測した動き情報に基づいて前記X線変調曲線算出部により算出されたX線変調曲線を、前記本撮影中に計測した動き情報に基づいて修正する修正部を更に備え、
     前記撮影制御部は、前記修正部により修正されたX線変調曲線に従ってX線量を変調しながら本撮影を行うことを特徴とする請求項1に記載のX線CT装置。
  9.  前記X線変調曲線を、心拍数別に算出された特定位相時間とともに表示することを特徴とする請求項1に記載のX線CT装置。
  10.  前記特定位相時間と対応させて前記動き周期分布を表示することを特徴とする請求項9に記載のX線CT装置。
  11.  X線CT装置による本撮影に先立ち、計測された被検体の動き情報に基づいて動き周期分布を取得するステップと、
     前記動き周期分布から最頻の動き周期を算出するステップと、
     動き周期の特定位相範囲でX線量が第1レベルとなり、前記特定位相範囲以外の位相でX線量が前記第1レベルより低いレベルとなるようにX線変調のタイミング及びX線量を指定するX線変調曲線を、前記最頻の動き周期と前記動き周期分布とに基づいて決定するステップと、
     前記X線変調曲線に従ってX線量を変調しながら前記X線CT装置が本撮影を行うステップと、
     本撮影において得られた透過X線データに基づいて被検体の画像を再構成するステップと、
     を含むことを特徴とする撮影方法。
PCT/JP2014/062901 2013-05-24 2014-05-15 X線ct装置及び撮影方法 WO2014188936A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518206A JPWO2014188936A1 (ja) 2013-05-24 2014-05-15 X線ct装置及び撮影方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109474 2013-05-24
JP2013109474 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014188936A1 true WO2014188936A1 (ja) 2014-11-27

Family

ID=51933496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062901 WO2014188936A1 (ja) 2013-05-24 2014-05-15 X線ct装置及び撮影方法

Country Status (2)

Country Link
JP (1) JPWO2014188936A1 (ja)
WO (1) WO2014188936A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183512A (ja) * 2017-04-27 2018-11-22 キヤノンメディカルシステムズ株式会社 医用画像診断装置及び磁気共鳴イメージング装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122901A1 (ja) * 2004-06-16 2005-12-29 Hitachi Medical Corporation 放射線断層像撮像装置
JP2007117719A (ja) * 2005-09-07 2007-05-17 Toshiba Corp X線コンピュータ断層撮影装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782090B2 (ja) * 1987-09-30 1995-09-06 株式会社島津製作所 核医学データ処理装置
JP4738044B2 (ja) * 2005-04-07 2011-08-03 株式会社東芝 医用画像診断装置及び医用画像診断装置の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122901A1 (ja) * 2004-06-16 2005-12-29 Hitachi Medical Corporation 放射線断層像撮像装置
JP2007117719A (ja) * 2005-09-07 2007-05-17 Toshiba Corp X線コンピュータ断層撮影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183512A (ja) * 2017-04-27 2018-11-22 キヤノンメディカルシステムズ株式会社 医用画像診断装置及び磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JPWO2014188936A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
EP1762176B1 (en) X-ray computed tomography apparatus
US7313215B2 (en) Step-and-shoot cardiac CT imaging
JP4745161B2 (ja) 医用画像撮影方法および装置
JP6618900B2 (ja) X線ct装置及び画像再構成方法
JP6509131B2 (ja) X線ct装置、画像処理装置、及び画像再構成方法
JP2009028065A (ja) X線ct装置
US7831011B2 (en) Computed tomography method and system
US11160523B2 (en) Systems and methods for cardiac imaging
US10561390B2 (en) Dose-reduced CT scan using dynamic collimation
JP5534703B2 (ja) X線診断装置
JP6104166B2 (ja) X線ct装置及び画像補正方法
US7426255B2 (en) X-ray CT device
JP4571429B2 (ja) Ct断層像の生成方法及びその装置
US20180214110A1 (en) Medical image-processing apparatus, x-ray ct apparatus, and medical image-processing method
WO2014188936A1 (ja) X線ct装置及び撮影方法
WO2013187461A1 (ja) X線ct装置及び画像再構成方法
JP5203750B2 (ja) 心電同期スキャン方法及びx線コンピュータ断層撮影装置
JP4649150B2 (ja) 放射線撮像装置及び撮像方法
JP5689925B2 (ja) X線ct装置
JP5931642B2 (ja) X線ct装置
JP2015150208A (ja) X線ct装置及び撮影方法
WO2014024857A1 (ja) X線ct装置およびx線ct装置の撮影方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800395

Country of ref document: EP

Kind code of ref document: A1