WO2014188832A1 - 無線端末がアクセスポイントを発見するシステム、プログラム及び方法 - Google Patents

無線端末がアクセスポイントを発見するシステム、プログラム及び方法 Download PDF

Info

Publication number
WO2014188832A1
WO2014188832A1 PCT/JP2014/061095 JP2014061095W WO2014188832A1 WO 2014188832 A1 WO2014188832 A1 WO 2014188832A1 JP 2014061095 W JP2014061095 W JP 2014061095W WO 2014188832 A1 WO2014188832 A1 WO 2014188832A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
wireless terminal
pointer signal
specific channel
pointer
Prior art date
Application number
PCT/JP2014/061095
Other languages
English (en)
French (fr)
Inventor
克夫 柚木
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Priority to EP14801741.1A priority Critical patent/EP3001734B1/en
Priority to EP17191455.9A priority patent/EP3297337B1/en
Priority to US14/785,917 priority patent/US9961620B2/en
Priority to CN201480024449.XA priority patent/CN105165070B/zh
Publication of WO2014188832A1 publication Critical patent/WO2014188832A1/ja
Priority to US15/663,350 priority patent/US10341944B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication sequence technique for a wireless terminal to find an access point for a wireless LAN (WLAN, “Wireless Local Area Network”).
  • WLAN Wireless Local Area Network
  • FIG. 1 is a system configuration diagram including a wireless terminal and an access point.
  • the access point 1 is connected to the Internet via an access network on the one hand and communicates with the wireless terminal 2 via air on the other hand.
  • the wireless terminal 2 located in the WLAN area around the access point can connect to the Internet (upper network) via the access point 1.
  • the wireless terminal 2 is located at a place where it can communicate with the three access points 1. For example, the wireless terminal 2 discovers an access point AP2 for connection purpose, and then tries to connect to the Internet via the access point AP2.
  • WLAN employs MAC (Media Access Control) layer technology for controlling packet transmission between a wireless terminal and an access point.
  • MAC Media Access Control
  • the MAC frame exchanged between the wireless stations by the MAC layer is defined by, for example, the IEEE 802.11 standard.
  • a wireless terminal broadcasts a probe request to an access point and receives a probe response from the access point, thereby discovering the access point.
  • the “passive scan method” an access point periodically transmits a beacon in a broadcast manner, and a wireless terminal receives the beacon, thereby discovering the access point.
  • a beacon, a probe request, and a probe response are a type of management control signal exchanged between an access point and a wireless terminal.
  • Wireless terminals generally have both active scan and passive scan functions.
  • a wireless terminal that has found an access point by one of these two methods executes a connection sequence for the access point to be connected.
  • FIG. 2 is a sequence diagram based on the active scan method.
  • the wireless terminal 2 transmits a probe request in a broadcast manner.
  • the power consumption of the wireless terminal 2 increases.
  • the probe request transmitted by the wireless terminal 2 is received by all the access points 1 (AP1, AP2, AP3) that exist within the reachable range of the radio wave and operate on the same channel.
  • each access point 1 In response, each access point 1 returns a probe response to the wireless terminal 2. At this time, according to the WLAN MAC layer technology, each access point 1 controls the transmission timing so that probe responses transmitted to each other do not collide.
  • a WLAN employs a CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) method in which the same channel is temporally transferred to establish communication between a plurality of terminals.
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • the wireless terminal 2 waits for a probe response for a relatively short time with relatively small power consumption.
  • the wireless terminal 2 receives the probe response from the access point AP2 for connection within the standby time, the wireless terminal 2 executes a connection sequence for the access point AP2.
  • FIG. 3 is a sequence diagram based on the passive scan method.
  • each access point 1 transmits a beacon periodically and in a broadcast manner.
  • the wireless terminal 2 waits for a beacon with a relatively small power consumption and at least for a relatively long time equal to or longer than the beacon cycle time.
  • the wireless terminal 2 executes a connection sequence for the access point AP2.
  • the access point broadcasts a beacon constantly (for example, at an interval of about 100 ms) in the 2.4 GHz band, for example.
  • the wireless terminal needs to sense (search) whether or not there is a beacon notification from an access point that is a connection partner for each of the 10 channels of the 2.4 GHz band, for example.
  • the wireless terminal needs to wait for a beacon for at least 100 ms in each channel.
  • the wireless terminal 2 is a mobile phone or a smartphone that operates on a battery, it is important from the viewpoint of suppressing power consumption to shorten such a standby time as much as possible.
  • the probe response standby time is relatively short.
  • the passive scan method although power consumption is relatively small, the beacon standby time is relatively long.
  • the active scan method that can find an access point in a relatively short time consumes less overall energy than the passive scan method.
  • an “active scan method” that can detect an access point in a relatively short time with a relatively small amount of energy consumption is usually used.
  • Patent Document 1 discloses a technique of switching between an active scan method and a passive scan method based on whether a wireless terminal is within or out of service area in order to find an access point. ing.
  • Non-Patent Document 1 it is a problem that a wireless terminal requires a relatively long time to discover an access point via a WLAN.
  • an access point installed in a public area can be freely connected from a general user's wireless terminal.
  • the wireless terminal cannot grasp the channel used and the installation location of the access point. Therefore, it is necessary for the wireless terminal to periodically search all channels that may be used to check whether or not there is an access point for connection. Such a sequence requires a considerable amount of time.
  • the “active scan method” it is common for a wireless terminal to transmit one probe request by broadcast without specifying a network identifier of an access point to be connected.
  • the probe request is received by all access points located in the vicinity of the probe request, and probe responses are returned from all access points including those not intended for connection.
  • the wireless terminal connects only to the access point that has returned the probe response including the network identifier of the access point to be connected. That is, a probe response transmitted by an access point other than the connection purpose is only ignored by the wireless terminal, and wireless resources are wasted.
  • the time required to find an access point can be calculated as follows.
  • 2.4 GHz active scan per channel approx. 15 ms 5 GHz band
  • passive scan per channel approx. 100 ms
  • the passive scan method needs to wait for a beacon for a long time, and has a problem that it is inferior to the active scan method from the viewpoint of reducing the amount of energy consumption.
  • the energy amount 4000 [ ⁇ J] consumed in the passive scan method is larger than the energy amount 680 [ ⁇ J] consumed in the active scan method.
  • Patent Document 1 in general, when a wireless terminal recognizes that it is located under an access point (or when operated by a user or requested by a data transmission / reception application), an active scan is performed. Execute the method and send a probe request. On the contrary, when it is recognized that it is not located under the access point, a passive scan is executed, and a beacon standby state is set.
  • an active scan method that further consumes radio resources is executed in spite of having to save radio resources as much as possible.
  • a passive scan method is executed in which the amount of energy consumption increases with a relatively long standby time. In the first place, the wireless terminal cannot know whether it is located under the access point.
  • an object of the present invention is to provide a system, a program, and a method by which a wireless terminal can find an access point with a relatively small energy consumption and a relatively short standby time.
  • the access point WLAN communication means for communicating with a wireless terminal using a predetermined use channel in the first frequency band of WLAN;
  • Pointer signal generation means for generating a pointer signal including channel information and network identifier used in the first frequency band;
  • Pointer signal communication means for transmitting the pointer signal to the wireless terminal using a specific channel in the second frequency band;
  • Wireless terminal Specific channel storage means for storing in advance a specific channel of the pointer signal;
  • Pointer signal communication means for receiving a pointer signal via a specific channel in the second frequency band;
  • WLAN communication means for performing control to wait for a beacon from a connection-purpose access point in the first frequency band or a probe response after transmitting a probe request based on used channel information and the network identifier included in the pointer signal It is characterized by having.
  • the first frequency band is a 5 GHz band or a 2.4 GHz band based on IEEE802.11.
  • the second frequency band is preferably a 2.4 GHz band or a 5 GHz band based on IEEE802.11.
  • About access points It further has time difference calculation means for calculating time difference information including a time difference from the current time to the next beacon transmission time in the used channel
  • the pointer signal generation means further includes time difference information in the pointer signal
  • About wireless terminals It is also preferable that the pointer signal communication unit waits for the beacon sense of the used channel at the timing when the time difference elapses after reception of the pointer signal based on the time difference information included in the pointer signal.
  • the wireless terminal When the wireless terminal includes a plurality of pairs of channel information and network identifiers in the pointer signal and time difference information is associated with each pair, the wireless terminal sequentially uses the channel with the shortest time difference until the next beacon. It is also preferable to further include reception standby control means for performing control to wait for the sense of the beacon of the used channel.
  • the access point periodically transmits a pointer signal, or transmits a pointer signal when receiving a pointer request for the access point from the wireless terminal, It is also preferable that the wireless terminal always waits for reception of a pointer signal or waits for reception of a pointer signal after transmitting a pointer request to the access point. At this time, the wireless terminal waits for reception of a pointer signal or transmits a pointer request only on a specific channel stored by the specific channel storage means.
  • the WLAN communication means senses the beacon of all the channels in the first frequency band or the probe response after transmitting the probe request. Is also preferable.
  • the specific channel storage means stores an expiration date for each specific channel information, It is also preferable that the wireless terminal does not receive the pointer signal in the specific channel for which the expiration date has passed and senses the beacon of all the channels in the first frequency band or the probe response after transmitting the probe request.
  • the access point includes the specific channel information of the pointer signal in the second frequency band in the beacon transmitted using each used channel in the first frequency band or the probe response after receiving the probe request.
  • the wireless terminal detects a beacon for all channels in the first frequency band or a probe response after transmitting a probe request and then finds an access point for connection, the beacon or probe received from the access point It is also preferable to update the specific channel storage means with the specific channel information included in the response.
  • the system further includes a pointer management server that stores location information and a specific channel for each access point,
  • the access point further has a specific channel change detection means for transmitting to the pointer management server that the specific channel is changed to another specific channel when detecting a state in which the specific channel cannot be used for transmitting the pointer signal.
  • the pointer management server receives a change of a specific channel from the access point, the pointer management server preferably instructs the access point located within a predetermined range from the access point to change to another specific channel.
  • the wireless terminal further includes specific channel inquiry means for transmitting an inquiry request including a network identifier of an access point to be connected to the pointer management server in order to acquire a specific channel to receive the pointer signal. It is also preferable that the pointer management server returns an inquiry response including specific channel information of the pointer signal of the access point corresponding to the network identifier to the wireless terminal.
  • the system further includes a base station that communicates with a wireless terminal via a wireless WAN (WWAN, Wireless Wide Area Network) and broadcasts including its own base station identifier in a control signal, Wireless terminal WWAN communication means for receiving a control signal including a base station identifier from a base station via the WWAN;
  • a specific channel inquiry means for transmitting an inquiry request including a base station identifier to the pointer management server, It is also preferable that the pointer management server returns an inquiry response including specific channel information of a pointer signal of an access point located around the base station corresponding to the base station identifier to the wireless terminal.
  • the system further includes a base station that communicates with the wireless terminal via the WWAN and that broadcasts including its own base station identifier in the control signal,
  • the base station acquires the specific channel information of the pointer signal of the access point located around the base station corresponding to the base station identifier from the pointer management server, broadcasts the specific channel information included in the control signal
  • the wireless terminal preferably further includes WWAN communication means for receiving a control signal including specific channel information from the base station via the WWAN.
  • the specific channel storage means stores the specific channel information in association with a base station identifier
  • the pointer signal communication means preferably specifies the specific channel in the second frequency band using the specific channel storage means from the base station identifier included in the control signal from the base station.
  • WLAN communication means for communicating with a wireless terminal using a predetermined use channel in the first frequency band of WLAN;
  • Pointer signal generation means for generating a pointer signal including channel information and network identifier used in the first frequency band;
  • pointer signal communication means for transmitting the pointer signal to the wireless terminal using a specific channel in the second frequency band.
  • Specific channel storage means for storing in advance a specific channel of the pointer signal;
  • Pointer signal communication means for receiving a pointer signal via a specific channel in the second frequency band;
  • WLAN communication means for controlling to wait for a beacon from a connection-purpose access point in the first frequency band or a probe response after transmitting a probe request based on the used channel information and the network identifier included in the pointer signal It is characterized by having.
  • WLAN communication means for communicating with a wireless terminal using a predetermined use channel in the first frequency band of WLAN;
  • Pointer signal generation means for generating a pointer signal including channel information and network identifier used in the first frequency band;
  • the computer is caused to function as pointer signal communication means for transmitting a pointer signal to a wireless terminal using a specific channel in the second frequency band.
  • Specific channel storage means for storing in advance a specific channel of the pointer signal;
  • Pointer signal communication means for receiving a pointer signal via a specific channel in the second frequency band;
  • a computer serving as a WLAN communication means for controlling to wait for a beacon from a connection-purpose access point in the first frequency band or a probe response after transmitting a probe request on the basis of the used channel information and the network identifier included in the pointer signal Is made to function.
  • an access point discovery method in which a wireless terminal discovers an access point via a WLAN, The wireless terminal stores a specific channel of the pointer signal in advance, A first step in which the access point generates a pointer signal including channel usage information and network identifier in the first frequency band of the WLAN; A second step of transmitting the pointer signal to the wireless terminal using a specific channel in the second frequency band; A third step in which the wireless terminal receives the pointer signal via the specific channel in the second frequency band; A fourth step of controlling to wait for a beacon from a connection-purpose access point in the first frequency band or a probe response after transmitting a probe request based on the used channel information and the network identifier included in the pointer signal; It is characterized by having.
  • a wireless terminal can find an access point with a relatively small power consumption and a relatively short standby time.
  • 1 is a system configuration diagram including a wireless terminal and an access point. It is a sequence diagram based on an active scan system. It is a sequence diagram based on a passive scan system. It is a sequence diagram which shows one Embodiment of the access point discovery method in this invention. It is a 1st functional block block diagram of the access point in this invention. It is a 2nd functional block block diagram of the access point in this invention. It is a functional block block diagram of the radio
  • wireless terminal which updates a specific channel automatically by inquiring a specific channel via WWAN communication.
  • FIG. 4 is a sequence diagram showing an embodiment of an access point discovery method according to the present invention.
  • the access point 1 and the wireless terminal 2 are communicating via wireless.
  • at least two frequency bands are used between the access point 1 and the wireless terminal 2.
  • At least one frequency band (first frequency band) is based on an infrastructure mode of WLAN (Wireless Local Area Network) conforming to IEEE 802.11, and a use channel for transmitting and receiving user data is established.
  • the other frequency band (second frequency band) transmits and receives the “pointer signal” of the present invention, and may or may not be based on the WLAN.
  • Pointer signal is a control signal including “used channel information” and “SSID (Service (Set ID, network identifier)” in the first frequency band.
  • the wireless terminal 2 can immediately know the channel used in the first frequency band by receiving the pointer signal via the second frequency band.
  • [4A] in FIG. 4 is the one to which the active scan method is applied, as in FIG. 2 described above.
  • the access point 1 always broadcasts a pointer signal using the second frequency band.
  • the wireless terminal 2 knows the used channel information and the SSID in the first frequency band. After that, the sequence is the same as the existing active scan method.
  • the wireless terminal 2 transmits a probe request using the first frequency band and receives a probe response from the access point 1. As a result, the wireless terminal 2 can find the access point 1 for connection in the first frequency band and execute a connection sequence with the access point 1.
  • [4B] in FIG. 4 is the one to which the passive scan method is applied, as in FIG. 3 described above.
  • the access point 1 always broadcasts a pointer signal using the second frequency band.
  • the wireless terminal 2 knows the used channel information and the SSID in the first frequency band. After that, the sequence is the same as the existing passive scan method.
  • the wireless terminal 2 waits for reception of a beacon using the first frequency band. By receiving the beacon from the access point 1, the wireless terminal 2 can discover the access point 1 for connection in the first frequency band and execute a connection sequence with the access point 1.
  • FIG. 5 is a first functional block configuration diagram of the access point in the present invention.
  • the access point 1 includes, as hardware, two antennas 121 and 122 that wirelessly communicate with the wireless terminal 2, a first modem unit 131 connected to the antenna 121, and a second modem unit 132 connected to the antenna 122. And an access network side communication interface 14.
  • the antenna 121 and the first modulation / demodulation unit 131 correspond to the first frequency band, and are based on at least the IEEE802.11 communication method.
  • the antenna 122 and the second modulation / demodulation unit 132 correspond to the second frequency band, and may be based on the IEEE802.11 communication method or not. Note that the first modem 131 and the second modem 132 share one antenna by separating signals in two frequency bands using a bandpass filter or the like. Good.
  • the access point 1 includes a WLAN communication unit 101, a probe response return unit 102, a beacon transmission unit 103, a pointer signal communication unit 111, a pointer signal generation unit 112, and a time difference calculation unit 113. These functional components are realized by executing a program that causes a computer mounted on the access point to function.
  • the WLAN communication unit 101 executes protocol control based on IEEE802.11 between the first modem unit 131 and the access network side communication interface 14. That is, the WLAN communication unit 101 communicates with the wireless terminal 2 using a predetermined use channel in the first frequency band of WLAN.
  • the WLAN communication unit 101 detects a probe request based on the active scan method, the WLAN communication unit 101 outputs a message to that effect to the probe response return unit 102. Further, the WLAN communication unit 101 transmits the probe response output from the probe response return unit 102 and the beacon output from the beacon transmission unit 103 to the wireless terminal 2.
  • the probe response reply unit 102 When receiving a probe request based on the active scan method, the probe response reply unit 102 outputs to the WLAN communication unit 101 that a probe response is returned to the wireless terminal 2. Specifically, the MAC address of the wireless terminal 2 that is the source of the probe request is included as the destination MAC address of the probe response. The probe response reply unit 102 returns a probe response when the connection-target SSID included in the received probe request matches the SSID of the access point 1. Even if the received probe request does not include an SSID, a probe response is returned. The probe response includes the SSID of the access point 1 concerned. Then, the probe response is transmitted from the antenna 121 via the WLAN communication unit 101 and the first modulation / demodulation unit 131 in a CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) method.
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • the beacon transmission unit 103 broadcasts a beacon based on the passive scan method.
  • the beacon includes at least the SSID of the access point 1.
  • the beacon is periodically transmitted from the antenna 121 via the WLAN communication unit 101 and the first modulation / demodulation unit 131 by the CSMA / CA method about every 100 ms.
  • the pointer signal generation unit 112 generates a pointer signal including used channel information and SSID in the first frequency band.
  • the pointer signal is not limited to the use channel and SSID of the access point itself, but may include the use channel information and SSID of another access point.
  • the generated pointer signal is output to the pointer signal communication unit 111.
  • the pointer signal communication unit 111 transmits the pointer signal to the wireless terminal 2 via the second modulation / demodulation unit 132 and the antenna 122 using a specific channel in the second frequency band. Similarly to the beacon, the pointer signal is also transmitted by the CSMA / CA method periodically about every 100 ms.
  • the access point 1 may optionally further include a time difference calculation unit 113.
  • the time difference calculation unit 113 calculates time difference information including a time difference from the current time to the next beacon transmission time in the used channel.
  • the calculated time difference information is output to the pointer signal generation unit 112.
  • the point signal generation unit 112 includes the time difference information in the pointer signal
  • the time difference information is transmitted to the wireless terminal 2.
  • the wireless terminal 2 can know the timing to wait for (wait for) the next beacon reception on the used channel.
  • FIG. 6 is a second functional block configuration diagram of the access point in the present invention.
  • the access point 1 uses two frequency bands in the WLAN.
  • the first frequency band is a 5 GHz band (or 2.4 GHz band) based on IEEE 802.11
  • the second frequency band is a 2.4 GHz band (or 5 GHz band) based on IEEE 802.11. Therefore, it is not necessary to use a separate radio carrier for transmitting the pointer signal.
  • the pointer signal generation unit 112 transmits the pointer signal to the wireless terminal 2 via the second WLAN communication unit.
  • the pointer signal generation unit 112 may transmit the pointer signal to the wireless terminal 2 by another communication method for transmitting and receiving user data.
  • the access point 1 transmits a pointer signal to the wireless terminal 2 in the 2.4 GHz band, so that the wireless terminal 2 can recognize the channel used in the 5 GHz band. As a result, it is possible to shorten the time until the wireless terminal 2 executes the connection sequence using the 5 GHz band use channel in the access point 1.
  • the access point 1 includes two WLAN communication units, but of course, it may include three or more.
  • the pointer signal may include used channel information and SSID (and time difference information) for each WLAN communication unit.
  • the pointer signal generation unit 112 periodically transmits a pointer signal to the wireless terminal 2.
  • the pointer from the wireless terminal 2 is similar to the active scan method in WLAN.
  • a pointer signal may be transmitted. That is, the access point 1 periodically transmits a pointer signal or transmits a pointer signal when a pointer request for the access point 1 is received from the wireless terminal 2.
  • the wireless terminal 2 always waits for reception of a pointer signal (waits) or waits for reception of a pointer signal after transmitting a pointer request to the access point 1 (waits).
  • FIG. 7 is a functional block configuration diagram of a wireless terminal according to the present invention.
  • the wireless terminal 2 includes, as hardware, two antennas 221 and 222 that wirelessly communicate with the access point 1, a first modulation / demodulation unit 231 that is connected to the antenna 221, and a second antenna that is connected to the antenna 222. 2 modulation / demodulation units 232.
  • the antenna 221 and the first modem unit 231 correspond to the first frequency band of the access point 1
  • the antenna 222 and the second modem unit 232 correspond to the second frequency band of the access point 1. Is. Even if the first modem 231 and the second modem 232 share one antenna by separating signals in two frequency bands using a bandpass filter or the like. Good.
  • the wireless terminal 2 includes a WLAN communication unit 201, a probe request transmission unit 202, a beacon standby unit 203, a pointer signal communication unit 211, a specific channel storage unit 212, a reception standby control unit 213, and data transmission / reception.
  • Application 24 These functional components are realized by executing a program that causes a computer installed in the wireless terminal to function.
  • the WLAN communication unit 201 executes protocol control based on IEEE802.11 between the first modem unit 231 and the application 24.
  • the probe request transmission unit 202 transmits a probe request based on the active scan method and receives a probe response from the wireless terminal 2 by the WLAN communication unit 101.
  • the beacon standby unit 203 performs control to wait for a beacon based on the passive scan method.
  • the specific channel storage unit 212 stores a specific channel of the pointer signal in advance. That is, the frequency channel of the pointer signal is known to the wireless terminal 2.
  • the specific channel storage unit 212 preferably stores an expiration date for each specific channel information.
  • the pointer signal communication unit 211 receives the pointer signal via the specific channel in the second frequency band stored in the specific channel storage unit 212. It is preferable that the pointer signal communication unit 211 does not receive a pointer signal in a specific channel for which the expiration date has passed.
  • the wireless terminal 2 only needs to detect a pointer signal transmitted only on a specific channel. This is because the access point 1 periodically transmits a pointer signal through the specific channel. Since it is unclear which frequency channel the access point can connect to, the conventional wireless terminal needs to search for the access point in all frequency channels. That is, the wireless terminal has to search while switching the channel used by the WLAN communication unit. On the other hand, the wireless terminal 2 of the present invention does not require such processing.
  • the reception standby control unit 213 controls to wait for a beacon from a connection-purpose access point in the first frequency band or a probe response after transmitting a probe request based on the used channel information and the SSID included in the pointer signal. I do.
  • the reception standby control unit 213 can know the used channel information and the SSID, and thus can determine whether or not the wireless terminal 2 is the SSID that is the connection purpose. If the SSID is not for connection, the pointer signal is ignored and discarded. If the SSID is a connection purpose, the reception of a beacon can be awaited by switching to the channel used for the WLAN communication unit and the modem unit. Alternatively, the probe request can be transmitted to the access point 1 through the use channel and the probe response can be received.
  • the reception standby control unit 213 suppresses energy consumption by shifting to the sleep mode if the pointer signal cannot be received despite waiting for the pointer signal through a specific channel for a predetermined time. You can also. Further, after a predetermined time elapses, it is possible to return from the sleep mode and operate again to wait for a pointer signal.
  • the reception standby control unit 213 waits for the beacon sense of the used channel at the timing when the time difference elapses after the pointer signal is received (described later). (See FIG. 8). On the other hand, other than the timing, the amount of energy consumption can be reduced by shifting the wireless terminal 2 to the sleep state.
  • the reception standby control unit 213 uses the shortest time difference until the next beacon when the pointer signal includes a plurality of sets of used channel information and SSID and time difference information is associated with each set. In order from the channel, control is performed to wait for the beacon sense of the used channel (see FIG. 8 described later). As a result, even if there are a plurality of connection-purpose access points, all beacons can be received as efficiently as possible in the shortest possible time.
  • reception standby control unit 213 performs control so as to sense beacons of all channels in the first frequency band when the expiration date of the specific channel information in the area has elapsed.
  • the WLAN communication function must be kept activated for the time to search all the used channels (maximum 2,095 ms).
  • the mode can be shifted to the sleep mode.
  • the wireless terminal can receive a pointer signal by transmitting a pointer request to the access point, and in this case as well, can shift to the sleep mode in about 15 ms. Such processing is also effective from the viewpoint of reducing the amount of energy consumption in the wireless terminal.
  • the wireless terminal 2 when the wireless terminal 2 cannot receive the pointer signal from the access point 1 corresponding to the connection-target SSID, it does not transmit a probe request thereafter. In addition, the wireless terminal 2 transmits a probe request only on the channel used in the access point 1 for connection in the received pointer signal. As a result, congestion of the wireless environment due to transmission of useless probe requests and probe responses is suppressed.
  • the 2.4 GHz band in WLAN for example, setting from 1 channel to 13 channels is possible. However, if setting is made so as not to cause interchannel interference, only three channels such as channels 1, 6, and 11 can be set. Therefore, in the present invention, when the 2.4 GHz band is used for the specific channel of the pointer signal, it is also preferable to use, for example, any one of the 1, 6, and 11 channels.
  • the pointer signal includes the used channel information and SSID in the 5 GHz band. Therefore, the wireless terminal 2 can know the channel used by the access point in the 5 GHz band only by receiving the pointer signal using only the 1, 6 and 11 channels in the 2.4 GHz band, for example.
  • the wireless terminal performs active scanning of all 13 channels in the 2.4 GHz band and passive scanning of all 19 channels in the 5 GHz band with respect to the access point.
  • the amount of energy consumption of the present invention is one-tenth compared with the prior art.
  • the energy consumption is calculated as follows.
  • Pointer request data size 300 bytes (assumed: same as probe request)
  • Pointer signal standby time 15 ms
  • the energy consumption is extremely reduced as compared with the amount of energy consumption of 84,840 ⁇ J in the prior art.
  • FIG. 8 is a sequence diagram between a plurality of access points and wireless terminals in the present invention.
  • each access point transmits a pointer signal every 100 ms via the specific channel CH-X.
  • the wireless terminal 2 can receive pointer signals from all access points of AP1, AP2, and AP3 at a time interval of 100 ms. .
  • the wireless terminal 2 can receive the beacon from the access points AP2 and AP3 by switching the frequency channel and receiving the signal as shown in FIG.
  • the reception waiting time of the pointer signal in the frequency channels CH-B and CH-C is 100 ms, respectively, but the beacon standby can be switched to the next used channel at the timing when the beacon is received. Since the beacon is transmitted every 100 ms, the total signal reception waiting time in the channels CH-X, CH-B, and CH-C is 300 ms at maximum.
  • the pointer signal when the pointer signal includes “time difference information” up to the next beacon transmission time, it is preferable to change the switching order of the used channels in order from the beacon with the short time difference. For example, according to FIG. 8, it means that the time difference between the CH-B beacons is shorter than the time difference between the CH-C beacons. Conversely, if the time difference between the CH-C beacons is shorter than the time difference between the CH-B beacons, reception of the CH-C beacons is waited first.
  • the search for an access point can be completed in a maximum of 200 ms as follows.
  • Pointer signal reception waiting time 100 ms
  • the amount of energy consumption can be reduced by shifting to the sleep mode during that time.
  • the access point search time can be further shortened.
  • the wireless terminal stores in advance a specific channel of the pointer signal.
  • the specific channel of the pointer signal may be uniquely determined by the communication carrier that has installed the access point and set in each wireless terminal 2. For example, it can be set by the user himself or by a control signal from the carrier.
  • the access point may have to change the specific channel of the pointer signal.
  • the specific channel is changed in this way, the wireless terminal 2 cannot recognize the pointer signal through the predetermined specific channel, and thus recognizes that there is no access point for connection in the vicinity.
  • the wireless terminal 2 shifts to the normal scan operation when the pointer signal cannot be received even after waiting for the reception of the pointer signal continuously for a predetermined number of times (N times). .
  • the access point transmits a beacon or probe response transmitted using each channel in the first frequency band of the WLAN in the second frequency band. It is also preferable to include specific channel information of the pointer signal.
  • the wireless terminal 2 fails to receive the pointer signal of the specific channel for a predetermined number of times or for a predetermined time, the wireless terminal 2 shifts from the pointer signal scan to the normal scan and senses the beacons of all the channels in the first frequency band.
  • the wireless terminal 2 finds an access point for connection, the wireless terminal 2 updates the specific channel storage unit with the specific channel information included in the beacon received from the access point or the probe response after transmitting the probe request. Thereby, from the next time, it is possible to immediately search for the access point to be connected by the pointer signal scan. Note that if a connection-purpose access point cannot be found, the previously stored specific channel is not updated.
  • the pointer signal scan can be successful again after executing the normal scan.
  • FIG. 9 is a system configuration diagram further including a pointer management server and a base station for WWAN (Wireless Wide Area Network) communication.
  • WWAN Wireless Wide Area Network
  • the pointer management server 3 that can communicate with the access point 1 and the wireless terminal 2 via the network is further arranged.
  • the “pointer management server” 3 stores position information and a specific channel for each access point.
  • the access point 1 may detect a state where the specific channel cannot be used.
  • the frequency is shared with other systems such as radar in the 5 GHz band.
  • the access point 1 monitors the frequency channel for a time of about 30 minutes, for example, and confirms that there is no other system that may affect the frequency channel.
  • the access point 1 must determine whether or not there is no problem even if radio waves are transmitted through the frequency channel. That is, in the 5 GHz band, the wireless terminal 2 cannot use active scan as a method for confirming the presence of the access point 1.
  • the wireless terminal 2 in order to connect to the access point, the wireless terminal 2 must monitor the frequency channel and search for a beacon for all the channels transmitted from the access point 1. The problem of needing occurred. Accordingly, when the pointer signal is transmitted on a specific channel of 5 GHz band, the access point 1 indicates that the specific channel is changed to another specific channel when detecting an interference wave such as radar. Transmit to the management server 3.
  • the pointer management server 3 when the pointer management server 3 receives the change of the specific channel from the access point 1, the pointer management server 3 instructs the access point located within a predetermined range from the access point to change to another specific channel. To do.
  • the specific channel of the pointer signal is set to be common in the area of the predetermined range.
  • an instruction to change a specific channel from CH-X to CH-Y is given to a plurality of access points located within a predetermined range.
  • the wireless terminal 2 sends an “inquiry request” (request) including the network identifier of the access point to be connected to the pointer management server 3 in order to acquire a specific channel for receiving the pointer signal.
  • request an “inquiry request”
  • the pointer management server 3 returns an “inquiry response” (response) including specific channel information of the pointer signal of the access point corresponding to the network identifier to the wireless terminal 2.
  • the wireless terminal 2 can know the specific channel in which the pointer signal is updated.
  • FIG. 10 is a functional block configuration diagram of an access point capable of changing a specific channel.
  • the access point 1 has a specific channel change detection unit 114 and a specific channel change reception unit 115.
  • the specific channel change detection unit 114 detects an interference wave for the specific channel of the second modulation / demodulation unit 132
  • the specific channel change detection unit 114 transmits to the pointer management server 3 that the specific channel is changed to another specific channel.
  • the specific channel change receiving unit 115 sets the updated specific channel received from the pointer management server 3 in the second modem unit 132.
  • FIG. 11 is a system configuration diagram in which a specific channel is inquired using an identifier of a base station of a WWAN communication network.
  • this system is provided with a base station 4 of the WWAN communication network, and the wireless terminal 2 can communicate with the base station 4 via the WWAN.
  • the WWAN may be 3G, WiMAX, or LTE, for example.
  • the base station 4 includes its own base station ID (identifier) in the “control signal” and broadcasts it to the wireless terminal 2.
  • the wireless terminal 2 transmits an inquiry request (request) including the base station ID to the pointer management server 3 via the base station 4.
  • the pointer management server 3 returns an inquiry response (response) including the specific channel information of the pointer signal of the access point located in the vicinity of the base station corresponding to the base station ID to the wireless terminal 2.
  • the wireless terminal 2 makes an inquiry request (request) only when the specific channel information is not stored in the specific channel storage unit 212 or when the specific channel information is stored but the expiration date has expired. May be transmitted to the pointer management server 3.
  • FIG. 12 is a system configuration diagram for recognizing a specific channel using a control signal from a base station of a WWAN communication network.
  • the base station 4 acquires the specific channel information of the pointer signal of the access point around the base station corresponding to the base station identifier from the pointer management server 3. Then, the base station 4 broadcasts the specific channel information included in the “control signal”.
  • the wireless terminal 2 that has received the control signal can know a specific channel from the access point 1 in the vicinity.
  • the wireless terminal 2 automatically updates the specific channel information in the specific channel storage unit 212 according to the control signal that is always broadcast from the base station 4 without inquiring about the specific channel information. be able to.
  • FIG. 13 is a system configuration diagram showing updating of a specific channel based on movement of a wireless terminal.
  • the specific channel storage unit 212 of the wireless terminal 2 stores the base station ID in association with the specific channel information.
  • the wireless terminal 2 refers to the specific channel storage unit 212 in response to the fact that the base station ID included in the control signal broadcast from the base station 4 in which the wireless terminal 2 moves moves,
  • the specific channel information associated with the base station ID of the station 4 is referred to.
  • the wireless terminal 2 transmits an inquiry request (request) including the base station ID to the pointer management server 3. To do.
  • the pointer management server 3 returns an inquiry response (response) including the specific channel information of the pointer signal of the access point around the base station corresponding to the base station ID to the wireless terminal 2.
  • the specific channel is also automatically updated.
  • the wireless terminal 2 uses the specific channel information stored in the specific channel storage unit 212 without making an inquiry request to the pointer management server 3. It is also preferable to update.
  • FIG. 14 is a functional block configuration diagram of a wireless terminal that automatically updates a specific channel.
  • the wireless terminal 2 further includes a WWAN antenna 223 and a third modulation / demodulation unit 233, a specific channel inquiry unit 214, and a WWAN communication unit 215.
  • the specific channel inquiry unit 214 may transmit an inquiry request (request) including a base station identifier to the pointer management server 3 via the WWAN communication unit 215 and receive an inquiry response (response) including specific channel information. it can.
  • the WWAN communication unit 215 outputs the specific channel information to the specific channel inquiry unit 214.
  • the specific channel information acquired by the specific channel inquiry unit 214 is output to the specific channel storage unit 212.
  • a wireless terminal can find an access point with a relatively small energy consumption and a relatively short standby time.
  • a useless signal is not transmitted, it can be expected to reduce congestion in the wireless environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 比較的小さい消費エネルギー量で且つ比較的短い待受時間となるべく、無線端末がアクセスポイントを発見することができるシステム、プログラム及び方法を提供する。本システムでのアクセスポイントは、WLANの第1の周波数帯域における所定の使用チャネルを用いて通信するWLAN通信手段と、第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、ポインタ信号を、第2の周波数帯域における特定チャネルを用いて無線端末へ送信するポインタ信号通信手段とを有する。一方、無線端末は、第2の周波数帯域における特定チャネルを介して、ポインタ信号を受信し、ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのプローブレスポンス又はビーコンを待ち受けるべく制御を行う。

Description

無線端末がアクセスポイントを発見するシステム、プログラム及び方法
 本発明は、無線LAN(WLAN, Wireless Local Area Network)について、無線端末がアクセスポイントを発見する通信シーケンスの技術に関する。
 本出願は、パリ条約の下、2013年5月23日に出願された日本国特許出願JP2013-108475についての優先権の利益を主張しており、その日本国特許出願は、PCT規則第20.6の規定によって、引用によりその全体が本明細書に組み込まれる。
 図1は、無線端末及びアクセスポイントを含むシステム構成図である。
 図1によれば、アクセスポイント1は、一方でアクセスネットワークを介してインターネットに接続し、他方でエアを介して無線端末2と通信する。アクセスポイント周辺のWLANのエリアに在圏する無線端末2は、そのアクセスポイント1を経由してインターネット(上位ネットワーク)に接続することができる。図1によれば、無線端末2は、3つのアクセスポイント1と通信可能な場所に位置している。例えば、無線端末2は、接続目的のアクセスポイントAP2を発見し、その後、アクセスポイントAP2を経由して、インターネットに接続しようとする。
 WLANには、無線端末とアクセスポイントとの間でパケット送信を制御するためのMAC(Media Access Control:媒体アクセス制御)レイヤ技術が採用されている。MACレイヤによって無線局間で交換されるMACフレームは、例えばIEEE802.11の標準規格によって規定されている。
 IEEE802.11のインフラストラクチャモードによれば、無線端末がWLANを介してアクセスポイントを発見するために、「アクティブスキャン方式」及び「パッシブスキャン方式」の2つがある。
 「アクティブスキャン方式」では、無線端末が、プローブリクエストをアクセスポイントへ向けて同報的に送信し、アクセスポイントからプローブレスポンスを受信することによって、アクセスポイントを発見する。一方、
 「パッシブスキャン方式」では、アクセスポイントが、ビーコンを周期的に同報的に送信し、無線端末がそのビーコンを受信することによって、アクセスポイントを発見する。
 尚、ビーコン、プローブリクエスト及びプローブレスポンスは、アクセスポイントと無線端末との間でやりとりされる管理用制御信号の一種である。
 無線端末は、一般に、アクティブスキャン方式及びパッシブスキャン方式の両方式の機能を搭載している。これら2つの方式のいずれかによって、アクセスポイントを発見した無線端末は、接続目的のアクセスポイントに対して接続シーケンスを実行する。
 図2は、アクティブスキャン方式に基づくシーケンス図である。
 図2によれば、最初に、無線端末2が、プローブリクエストを同報的に送信する。このようなフレームの送信時には、無線端末2の消費電力が大きくなる。無線端末2によって送信されたプローブリクエストは、その電波が到達可能な範囲に存在し、且つ同一チャネルで運用する全てのアクセスポイント1(AP1,AP2,AP3)によって受信される。
 これに対し、各アクセスポイント1は、プローブレスポンスを無線端末2へ返信する。このとき、WLANのMACレイヤの技術によれば、各アクセスポイント1は、互いに送信するプローブレスポンスが衝突しないように送信タイミングを制御する。例えば、WLANでは、同一チャネルを時間的に譲り合って複数端末間の通信を成立させるCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)方式が採用されている。
 一方、無線端末2は、比較的小さい消費電力で且つ比較的短い時間、プローブレスポンスを待ち受ける。無線端末2は、その待受時間の範囲で、接続目的のアクセスポイントAP2からのプローブレスポンスを受信した際、そのアクセスポイントAP2に対して接続シーケンスを実行する。
 図3は、パッシブスキャン方式に基づくシーケンス図である。
 図3によれば、各アクセスポイント1は、ビーコンを周期的且つ同報的に送信する。このとき、無線端末2は、比較的小さい消費電力で、且つ少なくともビーコンの周期時間以上の比較的長い時間、ビーコンを待ち受ける。無線端末2は、その待受時間の範囲で、接続目的のアクセスポイントAP2からのビーコンを受信した際、そのアクセスポイントAP2に対して接続シーケンスを実行する。
 アクセスポイントは、例えば2.4GHz帯で、ビーコンを常時(例えば100ms程度の間隔で)報知している。無線端末は、その2.4GHz帯の例えば10チャネルの各々について、接続する相手であるアクセスポイントからのビーコンの報知があるかどうかをセンス(探索)する必要がある。ここで、無線端末は、各チャネルで少なくとも100ms以上、ビーコンを待ち受ける必要がある。そうすると、全チャネルをセンスするのに、以下のように少なくとも約1秒の待受時間を要する。
   100msec×10チャネル=1sec
 無線端末2が、電池で動作する携帯電話機やスマートフォンである場合、このような待受時間をできる限り短くすることは、消費電力を抑制する観点から重要となる。
 前述したように、アクティブスキャン方式では、プローブリクエストを送信するために消費電力が一時的に大きくなるものの、プローブレスポンスの待受時間が比較的短い。一方で、パッシブスキャン方式では、消費電力が比較的小さいものの、ビーコンの待受時間が比較的長い。結果的に、比較的短い時間でアクセスポイントを発見することができるアクティブスキャン方式は、パッシブスキャン方式よりも、全体的な消費エネルギー量が小さくなる。そのため、無線端末では、消費エネルギー量が比較的小さく且つ比較的短い時間でアクセスポイントを発見することができる「アクティブスキャン方式」が、通常使用される。無線端末は、接続目的のアクセスポイントのエリアに入った際、アクティブスキャン方式におけるプローブリクエストを送信し、これに対するプローブレスポンスを受信することによって、アクセスポイントを発見する。
 また、従来技術として、例えば特許文献1には、アクセスポイントを発見するために、無線端末が、圏内か又は圏外かに基づいて、アクティブスキャン方式又はパッシブスキャン方式のいずれかに切り替える技術が開示されている。
日本国特開2005-12539号公報
IEEE802.11-10/0922r2, "Achievable Gains in AP Discovery"、[online]、[平成25年5月13日検索]、インターネット<URL: https://mentor.ieee.org/802.11/dcn/10/11-10-0922-02-0fia-achievable-gains-in-ap-discovery.pptx>
 しかしながら、例えば非特許文献1に指摘されているように、無線端末が、WLANを介してアクセスポイントを発見する際に、比較的長い時間を必要とすることが問題とされている。特に、公衆エリアに設置されたアクセスポイントは、一般利用者の無線端末から自由に接続することができる。一方で、無線端末からは、そのアクセスポイントの使用チャネルや設置場所が把握できない場合が多い。そのため、無線端末は、利用する可能性のある全チャネルを周期的にサーチし、接続目的のアクセスポイントが存在するか否かを確認する必要がある。このようなシーケンスには相当の時間が必要となる。
 「アクティブスキャン方式」では、無線端末は、接続目的のアクセスポイントのネットワーク識別子を指定せずに、1つのプローブリクエストをブロードキャストで送信することが一般的である。そのプローブリクエストは、その周辺に在圏する全てのアクセスポイントによって受信され、接続目的でないものも含む全てのアクセスポイントから、プローブレスポンスが応答される。これに対し、無線端末は、接続目的のアクセスポイントのネットワーク識別子を含むプローブレスポンスを返信したアクセスポイントとしか接続しない。即ち、接続目的以外のアクセスポイントが送信したプローブレスポンスは、無線端末に無視されるだけであり、無線リソースを無駄に消費してしまう。
 具体的に、非特許文献1によれば、アクセスポイント発見に要する時間は以下のように算出できる。
   2.4GHz帯の1チャネル当たりのアクティブスキャン=約15ms
   5GHz帯の1チャネル当たりのパッシブスキャン=約100ms
   2.4GHz帯の全13チャネルと5GHz帯の全19チャネルのサーチ時間
      =(15ms×13ch)+(100ms×19ch)=2,095ms
 一方、「パッシブスキャン方式」では、無線端末からプローブリクエストを送信する必要がないので、接続目的以外のアクセスポイントからプローブレスポンスを受信することもなく、無線リソースを無駄に消費することはない。
 しかしながら、前述のとおりパッシブスキャン方式は、長い時間ビーコンを待ち受ける必要があり、消費エネルギー量低減の観点からはアクティブスキャン方式よりも劣るという問題があった。
 具体的に、アクティブスキャン方式(図2参照)について、「プローブリクエストの送信に要するエネルギー量」は、以下のように算出される。
   無線端末における信号の送信電力=200mW(仮定値)
   無線端末における信号の受信電力=40mW(仮定値)
   プローブリクエストのデータサイズ=300byte(仮定値)
   プローブリクエストのデータレート=6Mbps(仮定値)
   送信に要する時間=(300byte×8bit)÷(6×106bps)=400×10-6s
   プローブリクエストの送信に要するエネルギー量
     =200mW×(送信に要する時間)
     =200mW×(400×10-6s)
     =80×10-6[J]
 また、「プローブレスポンスの待受受信に要するエネルギー量」は、以下のように算出される。
   プローブレスポンスの待受受信に要するエネルギー量
     =40mW×15ms
     =600×10-6[J]
 最終的に、アクティブスキャン方式では、「1チャネル当たりのエネルギー量」は、以下のように算出される。
   アクティブスキャン方式の1チャネル当たりのエネルギー量
     =80+600
     =680[μJ]
 一方で、パッシブスキャン方式(図3参照)について、「ビーコンの待受受信に要するエネルギー量」は、以下のように算出される。
   ビーコンの待受時間(1チャネル当たり)=100ms
   ビーコンの待受受信に要するエネルギー量
     =40mW×100ms
     =4000[μJ]
 結果的に、パッシブスキャン方式で消費されるエネルギー量4000[μJ]は、アクティブスキャン方式で消費されるエネルギー量680[μJ]よりも大きいということが理解される。
 特許文献1によれば、無線端末は、一般に、アクセスポイント配下に在圏していることを認識した際(又はユーザによって操作された際、若しくはデータ送受信アプリケーションが要求した際)には、アクティブスキャン方式を実行し、プローブリクエストを送信する。逆に、アクセスポイント配下に在圏していないことを認識した際には、パッシブスキャンを実行し、ビーコンの待受状態になる。
 しかしながら、本来、アクセスポイント配下のエリアでは、無線リソースをできる限り節約しなければならないにも拘わらず、それに反して、無線リソースを更に消費するようなアクティブスキャン方式が実行されている。一方で、無線リソースの浪費が比較的問題とならないような、アクセスポイント配下に在圏しないような場所では、比較的長い待受時間によって消費エネルギー量が大きくなるパッシブスキャン方式が実行されている。また、そもそも、無線端末は、アクセスポイント配下に在圏しているかどうかを知り得ない。
 そこで、本発明は、比較的小さい消費エネルギー量で、且つ比較的短い待受時間で、無線端末がアクセスポイントを発見することができるシステム、プログラム及び方法を提供することを目的とする。
 本発明によれば、無線端末が、WLAN(Wireless Local Area Network)を介してアクセスポイントと通信するシステムにおいて、
 アクセスポイントは、
 WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末と通信するWLAN通信手段と、
 第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、
 ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、無線端末へ送信するポインタ信号通信手段と
を有し、
 無線端末は、
 ポインタ信号の特定チャネルを予め記憶する特定チャネル記憶手段と、
 第2の周波数帯域における特定チャネルを介して、ポインタ信号を受信するポインタ信号通信手段と、
 ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御を行うWLAN通信手段と
を有することを特徴とする。
 本発明のシステムにおける他の実施形態によれば、
 第1の周波数帯域は、IEEE802.11に基づく5GHz帯又は2.4GHz帯であり、
 第2の周波数帯域は、IEEE802.11に基づく2.4GHz帯又は5GHz帯である
ことも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 アクセスポイントについて、
 現時刻から、使用チャネルにおける次回のビーコンの送信時刻までの時間差を含む時間差情報を算出する時間差算出手段を更に有し、
 ポインタ信号生成手段は、時間差情報をポインタ信号に更に含め、
 無線端末について、
 ポインタ信号通信手段は、ポインタ信号に含まれた時間差情報に基づいて、当該ポインタ信号の受信後その時間差が経過するタイミングで、当該使用チャネルのビーコンのセンスを待機することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 無線端末は、ポインタ信号に、使用チャネル情報及びネットワーク識別子の組が複数含まれていると共に、各組に時間差情報が対応付けられている場合、次回のビーコンまでの時間差が最も短い使用チャネルから順に、当該使用チャネルのビーコンのセンスを待機するべく制御を行う受信待機制御手段を更に有することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 アクセスポイントは、ポインタ信号を周期的に送信するか、又は、無線端末から当該アクセスポイントに対するポインタリクエストを受信した際にポインタ信号を送信し、
 無線端末は、ポインタ信号を常に受信待機するか、又は、アクセスポイントへポインタリクエストを送信した後にポインタ信号を受信待機することも好ましい。この際、無線端末は、特定チャネル記憶手段によって記憶されている特定チャネルでのみ、ポインタ信号を受信待機するか、又は、ポインタリクエストを送信する。
 本発明のシステムにおける他の実施形態によれば、
 無線端末について、所定回数又は所定時間、ポインタ信号を受信できなかった場合、WLAN通信手段は、第1の周波数帯域における全てのチャネルのビーコン、又は、プローブリクエストの送信後のプローブレスポンスをセンスすることも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 無線端末について、
 特定チャネル記憶手段は、特定チャネル情報毎に、有効期限を付与して記憶しており、
 無線端末は、有効期限が経過した特定チャネルにおけるポインタ信号を受信せず、第1の周波数帯域における全てのチャネルのビーコン、又は、プローブリクエストの送信後のプローブレスポンスをセンスすることも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 アクセスポイントは、第1の周波数帯域における各使用チャネルを用いて送信するビーコン、又は、プローブリクエストの受信後のプローブレスポンスに、第2の周波数帯域におけるポインタ信号の特定チャネル情報を含め、
 無線端末は、第1の周波数帯域における全てのチャネルのビーコン、又は、プローブリクエストの送信後のプローブレスポンスをセンスした後、接続目的のアクセスポイントを発見した場合、当該アクセスポイントから受信したビーコン又はプローブレスポンスに含まれる特定チャネル情報で、特定チャネル記憶手段を更新することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 システムは、アクセスポイント毎にその位置情報及び特定チャネルを蓄積したポインタ管理サーバを更に有し、
 アクセスポイントは、特定チャネルをポインタ信号の送信に使用できない状態を検出した際に、当該特定チャネルを他の特定チャネルへ変更する旨をポインタ管理サーバへ送信する特定チャネル変更検出手段を更に有し、
 ポインタ管理サーバは、当該アクセスポイントから特定チャネルの変更を受信した際に、当該アクセスポイントから所定範囲に位置するアクセスポイントに対して、他の特定チャネルへ変更するべく指示することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 無線端末は、ポインタ信号を受信すべき特定チャネルを取得するために、接続目的のアクセスポイントのネットワーク識別子を含む問合せ要求を、ポインタ管理サーバへ送信する特定チャネル問合せ手段を更に有し、
 ポインタ管理サーバは、ネットワーク識別子に対応するアクセスポイントのポインタ信号の特定チャネル情報を含む問合せ応答を、無線端末へ返信することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 システムは、無線WAN(WWAN, Wireless Wide Area Network)を介して無線端末と通信すると共に、制御信号に自らの基地局識別子を含めて放送する基地局を更に有し、
 無線端末は、
 WWANを介して基地局から、基地局識別子を含む制御信号を受信するWWAN通信手段と、
 基地局識別子を含む問合せ要求を、ポインタ管理サーバへ送信する特定チャネル問合せ手段と
を更に有し、
 ポインタ管理サーバは、基地局識別子に対応する基地局の周辺に位置するアクセスポイントのポインタ信号の特定チャネル情報を含む問合せ応答を、無線端末へ返信することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 システムは、WWANを介して無線端末と通信すると共に、制御信号に自らの基地局識別子を含めて放送する基地局を更に有し、
 基地局は、基地局識別子に対応する基地局の周辺に位置するアクセスポイントのポインタ信号の特定チャネル情報を、ポインタ管理サーバから取得し、当該特定チャネル情報を制御信号に含めて放送し、
 無線端末は、WWANを介して基地局から、特定チャネル情報を含む制御信号を受信するWWAN通信手段を更に有することも好ましい。
 本発明のシステムにおける他の実施形態によれば、
 無線端末について、
 特定チャネル記憶手段は、特定チャネル情報に、更に基地局識別子を対応付けて記憶しており、
 ポインタ信号通信手段は、基地局からの制御信号に含まれる基地局識別子から、特定チャネル記憶手段を用いて、第2の周波数帯域における特定チャネルを特定することも好ましい。
 本発明によれば、無線端末と、WLANを介して通信するアクセスポイントにおいて、
 WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末と通信するWLAN通信手段と、
 第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、
 ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、無線端末へ送信するポインタ信号通信手段と
を有することを特徴とする。
 本発明によれば、前述のアクセスポイントと、WLANを介して通信する無線端末において、
 ポインタ信号の特定チャネルを予め記憶する特定チャネル記憶手段と、
 第2の周波数帯域における特定チャネルを介して、ポインタ信号を受信するポインタ信号通信手段と、
 ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御するWLAN通信手段と
を有することを特徴とする。
 本発明によれば、無線端末と、WLANを介して通信するアクセスポイントに搭載されたコンピュータを機能させるプログラムにおいて、
 WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末と通信するWLAN通信手段と、
 第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、
 ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、無線端末へ送信するポインタ信号通信手段と
してコンピュータを機能させることを特徴とする。
 本発明によれば、前述のアクセスポイントと、WLANを介して通信する無線端末に搭載されたコンピュータを機能させるプログラムにおいて、
 ポインタ信号の特定チャネルを予め記憶する特定チャネル記憶手段と、
 第2の周波数帯域における特定チャネルを介して、ポインタ信号を受信するポインタ信号通信手段と、
 ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御するWLAN通信手段と
してコンピュータを機能させることを特徴とする。
 本発明によれば、無線端末が、WLANを介してアクセスポイントを発見するアクセスポイント発見方法において、
 無線端末は、ポインタ信号の特定チャネルを予め記憶しており、
 アクセスポイントが、WLANの第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成する第1のステップと、
 ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、無線端末へ送信する第2のステップと、
 無線端末が、第2の周波数帯域における特定チャネルを介して、ポインタ信号を受信する第3のステップと、
 ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御する第4のステップと
を有することを特徴とする。
 本発明のシステム、プログラム及び方法によれば、比較的小さい消費電力で、且つ比較的短い待受時間で、無線端末がアクセスポイントを発見することができる。
無線端末及びアクセスポイントを含むシステム構成図である。 アクティブスキャン方式に基づくシーケンス図である。 パッシブスキャン方式に基づくシーケンス図である。 本発明におけるアクセスポイント発見方法の一実施形態を示すシーケンス図である。 本発明におけるアクセスポイントの第1の機能ブロック構成図である。 本発明におけるアクセスポイントの第2の機能ブロック構成図である。 本発明における無線端末の機能ブロック構成図である。 本発明における複数のアクセスポイントと無線端末との間のシーケンス図である。 ポインタ管理サーバ及びWWAN通信用基地局を更に有するシステム構成図である。 特定チャネルの変更が可能なアクセスポイントの機能ブロック構成図である。 WWAN通信用基地局の識別子を用いて特定チャネルを問い合わせるシステム構成図である。 WWAN通信用基地局からの制御信号を用いて特定チャネルを認識するシステム構成図である。 無線端末の移動に基づく特定チャネルの更新を表すシステム構成図である。 WWAN通信を介して特定チャネルを問い合せることによって特定チャネルを自動的に更新する無線端末の機能ブロック構成図である。
 以下では、本発明の実施の形態について、図面を用いて詳細に説明する。
 図4は、本発明におけるアクセスポイント発見方法の一実施形態を示すシーケンス図である。
 図4によれば、アクセスポイント1と無線端末2とが無線を介して通信している。ここで、アクセスポイント1と無線端末2との間では、少なくとも2つの周波数帯域が用いられる。少なくとも一方の周波数帯域(第1の周波数帯域)は、IEEE802.11に準拠するWLAN(Wireless Local Area Network)のインフラストラクチャモードに基づくものであって、ユーザデータの送受信のための使用チャネルが確立される。また、他方の周波数帯域(第2の周波数帯域)は、本発明の「ポインタ信号」を送受信するものであって、WLANに基づくものであってもよいし、そうでなくてもよい。
 「ポインタ信号」とは、第1の周波数帯域における「使用チャネル情報」及び「SSID(Service Set ID、ネットワーク識別子)」を含む制御信号である。無線端末2は、ポインタ信号を第2の周波数帯域を介して受信することによって、第1の周波数帯域の使用チャネルを即座に知ることができる。
 図4の[4A]は、前述した図2と同様に、アクティブスキャン方式を適用したものである。アクセスポイント1は、第2の周波数帯域を用いてポインタ信号を、常時報知している。無線端末2は、ポインタ信号を受信した際、第1の周波数帯域における使用チャネル情報及びSSIDを知る。その後は、既存のアクティブスキャン方式と同様のシーケンスとなる。無線端末2は、第1の周波数帯域を用いてプローブリクエストを送信し、アクセスポイント1からプローブレスポンスを受信する。これによって、無線端末2は、第1の周波数帯域における接続目的のアクセスポイント1を発見し、アクセスポイント1との間で接続シーケンスを実行することができる。
 一方、図4の[4B]は、前述した図3と同様に、パッシブスキャン方式を適用したものである。アクセスポイント1は、第2の周波数帯域を用いてポインタ信号を、常時報知している。無線端末2は、ポインタ信号を受信した際、第1の周波数帯域における使用チャネル情報及びSSIDを知る。その後は、既存のパッシブスキャン方式と同様のシーケンスとなる。無線端末2は、第1の周波数帯域を用いてビーコンの受信を待機する。アクセスポイント1からビーコンを受信することによって、無線端末2は、第1の周波数帯域における接続目的のアクセスポイント1を発見し、アクセスポイント1との間で接続シーケンスを実行することができる。
 図5は、本発明におけるアクセスポイントの第1の機能ブロック構成図である。
 アクセスポイント1は、ハードウェアとして、無線端末2と無線通信する2本のアンテナ121及び122と、アンテナ121に接続する第1の変復調部131と、アンテナ122に接続する第2の変復調部132と、アクセスネットワーク側通信インタフェース14とを有する。アンテナ121及び第1の変復調部131は、第1の周波数帯域に対応したものであり、少なくともIEEE802.11の通信方式に基づくものである。アンテナ122及び第2の変復調部132は、第2の周波数帯域に対応したものであり、IEEE802.11の通信方式に基づくものであってもよいし、そうでないものであってもよい。尚、バンドパスフィルタ等を用いて、2つの周波数帯域の信号を分離することによって、第1の変復調部131及び第2の変復調部132で1つのアンテナを共用して利用するものであってもよい。
 また、アクセスポイント1は、WLAN通信部101と、プローブレスポンス返信部102と、ビーコン送信部103と、ポインタ信号通信部111と、ポインタ信号生成部112と、時間差算出部113とを有する。これら機能構成部は、アクセスポイントに搭載されたコンピュータを機能させるプログラムを実行することによって実現される。
[WLAN通信部101]
 WLAN通信部101は、第1の変復調部131とアクセスネットワーク側通信インタフェース14との間で、IEEE802.11に基づくプロトコル制御を実行する。即ち、WLAN通信部101は、WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末2と通信する。また、WLAN通信部101は、アクティブスキャン方式に基づくプローブリクエストを検出した場合、その旨を、プローブレスポンス返信部102へ出力する。更に、WLAN通信部101は、プローブレスポンス返信部102から出力されたプローブレスポンスと、ビーコン送信部103から出力されたビーコンとを、無線端末2へ送信する。
 プローブレスポンス返信部102は、アクティブスキャン方式に基づくプローブリクエストを受信した際、無線端末2へプローブレスポンスを返信する旨をWLAN通信部101へ出力する。具体的には、プローブリクエストの送信元の無線端末2のMACアドレスを、プローブレスポンスの宛先MACアドレスとして含める。尚、プローブレスポンス返信部102は、受信したプローブリクエストに含まれる接続目的のSSIDが、当該アクセスポイント1のSSIDと一致する場合に、プローブレスポンスを返信する。また、受信したプローブリクエストにSSIDが含まれていない場合であっても、プローブレスポンスを返信する。プローブレスポンスには、当該アクセスポイント1のSSIDが含まれる。そして、プローブレスポンスは、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)方式で、WLAN通信部101及び第1の変復調部131を介してアンテナ121から送信される。
 ビーコン送信部103は、パッシブスキャン方式に基づいて、ビーコンを同報送信する。ビーコンは、少なくとも当該アクセスポイント1のSSIDを含む。ビーコンは、約100ms毎に周期的に、CSMA/CA方式で、WLAN通信部101及び第1の変復調部131を介してアンテナ121から送信される。
[ポインタ信号生成部112]
 ポインタ信号生成部112は、第1の周波数帯域における使用チャネル情報及びSSIDを含むポインタ信号を生成する。尚、ポインタ信号は、アクセスポイント自身の使用チャネル及びSSIDに限らず、他のアクセスポイントの使用チャネル情報及びSSIDを含むものであってもよい。生成されたポインタ信号は、ポインタ信号通信部111へ出力される。
[ポインタ信号通信部111]
 ポインタ信号通信部111は、ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、第2の変復調部132及びアンテナ122を介して、無線端末2へ送信する。ポインタ信号も、ビーコンと同様に、約100ms毎に周期的に、CSMA/CA方式で送信される。
[時間差算出部113]
 アクセスポイント1は、オプション的に、時間差算出部113を更に含むものであってもよい。時間差算出部113は、現時刻から、使用チャネルにおける次回のビーコンの送信時刻までの時間差を含む時間差情報を算出する。算出された時間差情報は、ポインタ信号生成部112へ出力される。ポイント信号生成部112が、その時間差情報をポインタ信号に含めることによって、その時間差情報は、無線端末2へ送信される。これによって、無線端末2は、使用チャネルにおける次回のビーコン受信を待機すべき(待ち受けるべき)タイミングを知ることができる。
 図6は、本発明におけるアクセスポイントの第2の機能ブロック構成図である。
 図6によれば、アクセスポイント1は、図5とは異なり、WLANにおける2つの周波数帯域を用いている。第1の周波数帯域は、IEEE802.11に基づく5GHz帯(又は2.4GHz帯)であり、第2の周波数帯域は、IEEE802.11に基づく2.4GHz帯(又は5GHz帯)である。そのため、ポインタ信号を送信するために、別途の無線キャリアを用いる必要がない。図6によれば、ポインタ信号生成部112は、ポインタ信号を、第2のWLAN通信部を介して、無線端末2へ送信する。勿論、ポインタ信号生成部112は、ユーザデータを送受信する他の通信方式によって、ポインタ信号を無線端末2へ送信するものであってもよい。
 一般的なWLANによれば、2.4GHz帯での利用が多いために、他のアクセスポイントや無線端末からの干渉の影響が大きい。そのために、5GHz帯を利用した方が、良好な通信品質で通信をすることが可能となる場合が多い。図6によれば、アクセスポイント1は、2.4GHz帯でポインタ信号を無線端末2へ送信することによって、無線端末2は、5GHz帯の使用チャネルを認識することができる。これによって、無線端末2が、アクセスポイント1における5GHz帯の使用チャネルを用いて接続シーケンスを実行するまでの時間を短縮することができる。
 図6によれば、アクセスポイント1は、2つのWLAN通信部を備えているが、勿論、3つ以上を備えたものであってもよい。この場合、ポインタ信号は、各WLAN通信部について使用チャネル情報及びSSID(並びに時間差情報)を含むものであってもよい。
 また、図5及び図6について、ポインタ信号生成部112は、ポインタ信号を周期的に無線端末2へ送信するものであると説明したが、WLANにおけるアクティブスキャン方式と同様に、無線端末2からポインタリクエストを受信した際に、ポインタ信号を送信するものであってもよい。即ち、アクセスポイント1は、ポインタ信号を周期的に送信するか、又は、無線端末2から当該アクセスポイント1に対するポインタリクエストを受信した際にポインタ信号を送信する。一方で、無線端末2は、常時、ポインタ信号の受信を待機するか(待ち受けるか)、又は、アクセスポイント1へポインタリクエストを送信した後にポインタ信号の受信を待機する(待ち受ける)。
 図7は、本発明における無線端末の機能ブロック構成図である。
 図7によれば、無線端末2は、ハードウェアとして、アクセスポイント1と無線通信する2本のアンテナ221及び222と、アンテナ221に接続する第1の変復調部231と、アンテナ222に接続する第2の変復調部232とを有する。アンテナ221及び第1の変復調部231は、アクセスポイント1の第1の周波数帯域に対応したものであり、アンテナ222及び第2の変復調部232は、アクセスポイント1の第2の周波数帯域に対応したものである。尚、バンドパスフィルタ等を用いて、2つの周波数帯域の信号を分離することによって、第1の変復調部231及び第2の変復調部232で1つのアンテナを共用して利用するものであってもよい。
 また、無線端末2は、WLAN通信部201と、プローブリクエスト送信部202と、ビーコン待受部203と、ポインタ信号通信部211と、特定チャネル記憶部212と、受信待機制御部213と、データ送受信アプリケーション24とを有する。これら機能構成部は、無線端末に搭載されたコンピュータを機能させるプログラムを実行することによって実現される。
 WLAN通信部201は、第1の変復調部231とアプリケーション24との間で、IEEE802.11に基づくプロトコル制御を実行する。プローブリクエスト送信部202は、WLAN通信部101によって、アクティブスキャン方式に基づくプローブリクエストを送信し、無線端末2からプローブレスポンスを受信する。ビーコン待受部203は、パッシブスキャン方式に基づくビーコンを待ち受けるべく制御を行う。
[特定チャネル記憶部212]
 特定チャネル記憶部212は、ポインタ信号の特定チャネルを予め記憶している。即ち、ポインタ信号の周波数チャネルは、無線端末2にとって既知である。尚、特定チャネル記憶部212は、特定チャネル情報毎に、有効期限を付与して記憶することも好ましい。
[ポインタ信号通信部211]
 ポインタ信号通信部211は、特定チャネル記憶部212に記憶された第2の周波数帯域における特定チャネルを介して、ポインタ信号を受信する。尚、ポインタ信号通信部211は、有効期限が経過した特定チャネルにおけるポインタ信号を受信しないようにすることも好ましい。
 無線端末2は、特定チャネルでのみ送信されるポインタ信号を検出すればよい。アクセスポイント1が、その特定チャネルを介してポインタ信号を周期的に送信しているためである。従来技術の無線端末は、アクセスポイントがいずれの周波数チャネルで接続可能であるのかが不明であるために、全ての周波数チャネルでアクセスポイントを探索する必要があった。即ち、無線端末は、WLAN通信部の使用チャネルを切り替えながら探索する必要があった。これに対し、本発明の無線端末2は、このような処理を要しない。
[受信待機制御部213]
 受信待機制御部213は、ポインタ信号に含まれる使用チャネル情報及びSSIDに基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御を行う。
 また、受信待機制御部213は、ポインタ信号を受信した際、使用チャネル情報及びSSIDを知ることができるので、当該無線端末2にとって接続目的となるSSIDか否かを判別することができる。接続目的のSSIDでなければ、ポインタ信号を無視して破棄する。接続目的のSSIDであれば、WLAN通信部及び変復調部についてその使用チャネルに切り替えることによって、ビーコンの受信を待ち受けることができる。又は、当該使用チャネルでプローブリクエストをアクセスポイント1へ送信し、そのプローブレスポンスを受信することができる。
 更に、受信待機制御部213は、所定時間、特定チャネルを介してポインタ信号を待ち受けたにも拘わらず、ポインタ信号を受信することができなければ、スリープモードに移行することによって消費エネルギーを抑制することもできる。更に所定時間経過後、スリープモードから復帰して、再度、ポインタ信号を待ち受けるべく動作することもできる。
 更に、受信待機制御部213は、ポインタ信号に「時間差情報」が含まれている場合、当該ポインタ信号の受信後その時間差が経過するタイミングで、当該使用チャネルのビーコンのセンスを待機する(後述する図8参照)。一方、そのタイミング以外では、無線端末2をスリープ状態へ移行させることによって、消費エネルギー量を低減させることができる。
 更に、受信待機制御部213は、ポインタ信号に使用チャネル情報及びSSIDの組が複数含まれていると共に、各組に時間差情報が対応付けられている場合、次回のビーコンまでの時間差が最も短い使用チャネルから順に、当該使用チャネルのビーコンのセンスを待機するべく制御を行う(後述する図8参照)。これによって、接続目的のアクセスポイントが複数あっても、できる限り短時間で効率的に全てのビーコンを受信することができる。
 更に、受信待機制御部213は、当該エリアにおける特定チャネル情報の有効期限が経過している場合、第1の周波数帯域における全てのチャネルのビーコンをセンスするように制御を行う。
[接続目的のアクセスポイントを発見するまでに要する時間]
   アクセスポイントからのポインタ信号の送信周期=100ms毎
   アクセスポイントからのビーコンの送信周期=100ms毎
 従来技術によれば、アクセスポイントを発見するまでに要する時間は以下のように算出される。
   全ての使用チャネルを探索する時間=最大2,095ms
   接続目的のアクセスポイントを発見する平均時間=2,095ms÷2=1047.5ms
 これに対し、本発明によれば、当該時間は以下のように算出される。
   接続目的のアクセスポイントを発見する最大時間=100ms+100ms=200ms
 尚、本発明について、ポインタリクエスト及びプローブリクエストを用いた場合、アクセスポイントから5msでそれぞれの応答がされるとすると、5ms+5ms=10msとなる。
[接続目的のアクセスポイントを発見できないとするまでの時間]
 従来技術によれば、全ての使用チャネルを探索する時間(最大2,095ms)は、WLAN通信機能を起動状態を維持しなければならない。
 これに対し、本発明によれば、100msだけポインタ信号通信部を起動させ、その間に、接続目的となるアクセスポイントからポインタ信号を受信できなかった場合、スリープモードへ移行することができる。又は、無線端末は、ポインタリクエストをアクセスポイントへ送信することによって、ポインタ信号を受信することができ、この場合にも、15ms程度でスリープモードへ移行することができる。このような処理は、無線端末における消費エネルギー量低減の観点からも有効である。
 更に、無線端末2は、接続目的のSSIDに対応するアクセスポイント1からのポインタ信号が受信できない場合、その後、プローブリクエストを送信することもない。また、無線端末2は、受信したポインタ信号の中で、接続目的のアクセスポイント1における使用チャネルでしかプローブリクエストを送信しない。その結果、無駄なプローブリクエスト及びプローブレスポンスの送信によって無線環境を混雑させることが抑制される。
[ポインタ信号の特定チャネルの設定]
 WLANにおける2.4GHz帯では、例えば1チャネルから13チャネルまでの設定が可能である。しかしながら、チャネル間干渉が生じないように設定しようとすると、チャネル1、6、11のように3チャネルのみしか設定できない。従って、本発明では、ポインタ信号の特定チャネルに2.4GHz帯を用いる場合、例えば1、6、11チャネルのいずれかを用いることも好ましい。ここで、ポインタ信号には、5GHz帯における使用チャネル情報及びSSIDが含まれている。従って、無線端末2は、2.4GHz帯の例えば1、6、11チャネルのみでポインタ信号を受信するだけで、5GHz帯のアクセスポイントの使用チャネルを知ることができる。
[消費エネルギー量の低減化]
 従来技術において、無線端末が、アクセスポイントに対して、2.4GHz帯の全13チャネルをアクティブスキャンし、5GHz帯の全19チャネルをパッシブスキャンするとする。この場合、全てのチャネルのスキャンにおける消費エネルギー量は、以下のように算出される。
   680μJ×13ch+4,000μJ×19ch=84,840μJ
 これに対し、本発明によれば、ポインタの待受受信に100ms、ビーコンの待受受信に100msしか要しないために、消費エネルギー量は、以下のように算出される。
   40mW×200ms=8,000μJ
 そのように考えると、本発明の消費エネルギー量は、従来技術と比較して、10分の1となる。
 更に、無線端末が、アクティブ方式でポインタ信号を待ち受ける場合、当該消費エネルギー量は以下のように算出される。
   ポインタリクエストのデータサイズ=300byte(仮定:プローブリクエスト同様)
   ポインタ信号の待受時間=15ms
 この場合、アクティブ方式の1チャネル当たりのエネルギー量680μJしか更に消費しない。接続目的のSSIDのアクセスポイントが存在しない場合であって且つ全てのチャネルをスキャンし場合、従来技術における84,840μJの消費エネルギー量と比較して、極めて低減化されていることが理解できる。
 図8は、本発明における複数のアクセスポイントと無線端末との間のシーケンス図である。
 図8に示すように、当初、例えば無線端末2の周辺に、3つのアクセスポイントAP1,AP2,AP3が存在すると想定する。各アクセスポイントは、特定チャネルCH-Xを介して100ms毎に、ポインタ信号を送信している。この場合、無線端末2は、チャネルCH-Xのポインタ信号を任意のタイミングで待ち受けたとしても、100msの時間間隔で、AP1,AP2,AP3全てのアクセスポイントからのポインタ信号を受信することができる。
   (アクセスポイント) (使用チャネル)(SSID)
       AP1        CH-A     ID-AP1
       AP2        CH-B     ID-AP2
       AP3        CH-C     ID-AP3
 また、無線端末2の接続目的のアクセスポイントのSSIDは、ID-AP2及びID-AP3であったとする。このとき、無線端末2は、図8に示すように周波数チャネルを切り替えて信号を受信することでアクセスポイントAP2,AP3からのビーコンを受信することができる。周波数チャネルCH-B,CH-Cにおけるポインタ信号の受信待機時間はそれぞれ100msであるが、ビーコンを受信したタイミングで、ビーコンの待ち受けを次の使用チャネルへ切り替えることができる。ビーコンは100ms毎に送信されるので、チャネルCH-XとCH-BとCH-Cとにおける信号の受信待機時間の合計は、最大300msとなる。
 ここで、ポインタ信号に、次回のビーコンの送信時刻までの「時間差情報」が含まれている場合、使用チャネルの切替順序を、時間差が短いビーコンから順にすることも好ましい。例えば図8によれば、CH-Bのビーコンの時間差が、CH-Cのビーコンの時間差よりも短いことを意味する。逆に、CH-Cのビーコンの時間差が、CH-Bのビーコンの時間差よりも短い場合、先に、CH-Cのビーコンの受信を待機する。
 このように、本発明によれば、パッシブ方式を用いた場合であっても、以下のように最大200msで、アクセスポイントの探索を完了することができる。
   ポインタ信号の受信待機時間=100ms
   ビーコンの受信待機時間=100ms
   100ms+100ms=200ms
 アクセスポイントからのビーコンの送信タイミングまでの時間差(最大100ms)がある場合、その間、スリープモードへ移行することによって消費エネルギー量を低減させることができる。また、アクティブ方式を、ポインタ信号(ポインタリクエストの送信)とプローブレスポンス(プローブリクエストの送信)とに適用することによって、アクセスポイントの探索時間を更に短縮することができる。
[無線端末におけるポインタ信号の特定チャネルの認識]
 無線端末は、ポインタ信号の特定チャネルを予め記憶している。例えば、アクセスポイントを設置した通信事業者によって、ポインタ信号の特定チャネルが一意に決定され、各無線端末2に設定されるものであってもよい。例えば、ユーザ自身によって又は通信事業者からの制御信号によって設定することができる。
 しかしながら、アクセスポイントは、ポインタ信号の特定チャネルを変更しなければならない場合がある。このように特定チャネルが変更された場合、無線端末2は、所定の特定チャネルによってポインタ信号を受信することができないことから、その周辺に接続目的のアクセスポイントが存在しないと認識してしまう。この誤認識を防止するために、無線端末2は、所定回数(N回)連続して、ポインタ信号の受信を待ち受けてもポインタ信号を受信できなかった場合には、通常スキャンの動作へ移行する。
 アクセスポイントは、無線端末2がこのように通常スキャンへ移行することを想定して、WLANの第1の周波数帯域における各使用チャネルを用いて送信するビーコン又はプローブレスポンスに、第2の周波数帯域におけるポインタ信号の特定チャネル情報を含めることも好ましい。そして、無線端末2は、所定回数又は所定時間、特定チャネルのポインタ信号を受信できなかった場合、ポインタ信号スキャンから通常スキャンへ移行し、第1の周波数帯域における全てのチャネルのビーコンをセンスする。
 無線端末2は、接続目的のアクセスポイントを発見した場合、当該アクセスポイントから受信したビーコン、又は、プローブリクエストの送信後のプローブレスポンスに含まれる特定チャネル情報をもって、特定チャネル記憶部を更新する。これにより、次回からは、ポインタ信号スキャンによって、接続目的のアクセスポイントを即座に探索することができる。尚、接続目的のアクセスポイントが発見できなれれば、予め記憶している特定チャネルを更新することはしない。
 このように、ポインタ信号スキャンにN回失敗したとしても、通常スキャンを実行した後に、再びポインタ信号スキャンを成功させることができる。
 図9は、ポインタ管理サーバ及びWWAN(Wireless Wide Area Network)通信用基地局を更に有するシステム構成図である。
 図9のシステムによれば、アクセスポイント1及び無線端末2とネットワークを介して通信可能なポインタ管理サーバ3が更に配置されている。「ポインタ管理サーバ」3は、アクセスポイント毎に、その位置情報及び特定チャネルを蓄積したものである。
 ここで、アクセスポイント1は、特定チャネルを使用できない状態を検出する場合がある。WLANの標準規格によれば、5GHz帯ではレーダ等の他システムと周波数を共用する。そのために、アクセスポイント1は、例えば30分程度の時間、周波数チャネルをモニタし、当該周波数チャネルで影響を与える恐れのある他システムが存在しないことを確認する。その上で、アクセスポイント1は、当該周波数チャネルで電波を送信しても問題が無いか否かを判断しなければならない。即ち、5GHz帯では、アクセスポイント1の存在を確認するための方法として、無線端末2は、アクティブスキャンを用いることができない。結果的に、無線端末2は、アクセスポイントに接続するために、周波数チャネルをモニタして、アクセスポイント1から送信される全てのチャネルについてビーコンを探索しなければならなくなり、そのために相当の時間を要するという問題が生じていた。従って、ポインタ信号を5GHz帯の特定チャネルで送信している場合には、アクセスポイント1は、レーダ等の干渉波を検出した際、当該特定チャネルを同様に他の特定チャネルへ変更する旨をポインタ管理サーバ3へ送信する。
 これに対し、ポインタ管理サーバ3は、当該アクセスポイント1から特定チャネルの変更を受信した際に、当該アクセスポイントから所定範囲に位置するアクセスポイントに対して、他の特定チャネルへ変更する旨を指示する。即ち、所定範囲の地域では、ポインタ信号の特定チャネルは、共通のものに設定される。図9によれば、所定範囲に位置する複数のアクセスポイントに対して、特定チャネルをCH-XからCH-Yへ変更する旨が指示されている。
 また、図9によれば、無線端末2は、ポインタ信号を受信すべき特定チャネルを取得するために、接続目的のアクセスポイントのネットワーク識別子を含む「問合せ要求」(リクエスト)を、ポインタ管理サーバ3へ送信する。これに対し、ポインタ管理サーバ3は、ネットワーク識別子に対応するアクセスポイントのポインタ信号の特定チャネル情報を含む「問合せ応答」(レスポンス)を、無線端末2へ返信する。これによって、無線端末2は、ポインタ信号の更新された特定チャネルを知ることができる。
 図10は、特定チャネルの変更が可能なアクセスポイントの機能ブロック構成図である。
 図10によれば、アクセスポイント1は、図6とは異なり、特定チャネル変更検出部114と、特定チャネル変更受信部115とを有する。特定チャネル変更検出部114は、第2の変復調部132の特定チャネルに対する干渉波を検出した際に、当該特定チャネルを他の特定チャネルへ変更する旨を、ポインタ管理サーバ3へ送信する。また、特定チャネル変更受信部115は、ポインタ管理サーバ3から受信した更新後の特定チャネルを第2の変復調部132へ設定する。
 図11は、WWAN通信網の基地局の識別子を用いて特定チャネルを問い合わせるシステム構成図である。
 図11によれば、本システムは、図9とは異なり、WWAN通信網の基地局4が配置されており、無線端末2は、WWANを介して基地局4と通信可能である。WWANは、例えば3G、WiMAX、LTEであってもよい。また、基地局4は、「制御信号」に自らの基地局ID(識別子)を含めて、無線端末2へ放送する。
 無線端末2は、基地局IDを含む問合せ要求(リクエスト)を、基地局4を介して、ポインタ管理サーバ3へ送信する。これに対し、ポインタ管理サーバ3は、基地局IDに対応する基地局の周辺に位置するアクセスポイントのポインタ信号の特定チャネル情報を含む問合せ応答(レスポンス)を、無線端末2へ返信する。尚、無線端末2は、特定チャネル記憶部212に特定チャネル情報が記憶されていない場合、又は、特定チャネル情報は記憶されているもののその有効期限が切れている場合にのみ、問合せ要求(リクエスト)をポインタ管理サーバ3へ送信するものであってもよい。
 図12は、WWAN通信網の基地局からの制御信号を用いて特定チャネルを認識するシステム構成図である。
 図12によれば、図11とは異なり、基地局4は、基地局識別子に対応する基地局周辺のアクセスポイントのポインタ信号の特定チャネル情報を、ポインタ管理サーバ3から取得する。そして、基地局4は、その特定チャネル情報を「制御信号」に含めて放送する。その制御信号を受信した無線端末2は、その周辺におけるアクセスポイント1からの特定チャネルを知ることができる。図12の実施形態によれば、無線端末2が、特定チャネル情報を問い合わせることなく、基地局4から常に放送されている制御信号によって、特定チャネル記憶部212の特定チャネル情報を自動的に更新することができる。
 図13は、無線端末の移動に基づく特定チャネルの更新を表すシステム構成図である。
 図13において、無線端末2の特定チャネル記憶部212は、特定チャネル情報に、基地局IDを更に対応付けて記憶しているとする。ここで、無線端末2は、移動することによって、在圏する基地局4から放送される制御信号に含まれる基地局IDが変化したことを受けて、特定チャネル記憶部212を参照し、当該基地局4の基地局IDに関連付けられた特定チャネル情報を参照する。当該基地局4の基地局IDに関連付けられた特定チャネル情報が特定チャネル記憶部212に存在しない場合、無線端末2は、当該基地局IDを含む問合せ要求(リクエスト)を、ポインタ管理サーバ3へ送信する。これに対し、ポインタ管理サーバ3は、基地局IDに対応する基地局周辺のアクセスポイントのポインタ信号の特定チャネル情報を含む問合せ応答(レスポンス)を、無線端末2へ返信する。これによって、特定チャネルも自動的に更新される。尚、基地局4が特定チャネル情報を制御信号に含めて放送している場合、無線端末2は、ポインタ管理サーバ3に問合せ要求することなく特定チャネル記憶部212に記憶されている特定チャネル情報を更新することも好ましい。
 図14は、特定チャネルを自動的に更新する無線端末の機能ブロック構成図である。
 図14によれば、無線端末2は、図7とは異なり、WWAN用のアンテナ223及び第3の変復調部233と、特定チャネル問合せ部214と、WWAN通信部215とを更に有する。特定チャネル問合せ部214は、基地局識別子を含む問合せ要求(リクエスト)を、WWAN通信部215を介して、ポインタ管理サーバ3へ送信し、特定チャネル情報を含む問合せ応答(レスポンス)を受信することができる。また、WWAN通信部215は、基地局4から受信した制御信号に特定チャネル情報が含まれている場合、その特定チャネル情報を、特定チャネル問合せ部214へ出力する。特定チャネル問合せ部214によって取得された特定チャネル情報は、特定チャネル記憶部212へ出力される。
 以上、詳細に説明したように、本発明のシステム、プログラム及び方法によれば、比較的小さい消費エネルギー量で、且つ比較的短い待受時間で、無線端末がアクセスポイントを発見することができる。また、無駄な信号を送出しないので、無線環境の混雑を緩和することも期待できる。
 前述した本発明の種々の実施形態について、本発明の技術思想及び見地の範囲の種々の変更、修正及び省略は、当業者によれば容易に行うことができる。前述の説明はあくまで例であって、何ら制約しようとするものではない。本発明は、特許請求の範囲及びその均等物として限定するものにのみ制約される。
 1 アクセスポイント
 101 WLAN通信部
 102 プローブレスポンス返信部
 103 ビーコン送信部
 111 ポインタ信号通信部
 112 ポインタ信号生成部
 113 時間差算出部
 114 特定チャネル変更検出部
 115 特定チャネル変更受信部
 121、122 アンテナ
 131、132 変復調部
 14 アクセスネットワーク側通信インタフェース
 2 無線端末
 201 WLAN通信部
 202 プローブリクエスト送信部
 203 ビーコン待受部
 211 ポインタ信号通信部
 212 特定チャネル記憶部
 213 受信待機制御部
 214 特定チャネル問合せ部
 215 WWAN通信部
 221、222、223 アンテナ
 231、232、233 変復調部
 3 ポインタ管理サーバ
 4 基地局

Claims (18)

  1.  無線端末が、WLAN(Wireless Local Area Network)を介してアクセスポイントと通信するシステムにおいて、
     前記アクセスポイントは、
     WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末と通信するWLAN通信手段と、
     第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、
     前記ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、前記無線端末へ送信するポインタ信号通信手段と
    を有し、
     前記無線端末は、
     前記ポインタ信号の特定チャネルを予め記憶する特定チャネル記憶手段と、
     第2の周波数帯域における特定チャネルを介して、前記ポインタ信号を受信するポインタ信号通信手段と、
     前記ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御を行うWLAN通信手段と
    を有することを特徴とするシステム。
  2.  第1の周波数帯域は、IEEE802.11に基づく5GHz帯又は2.4GHz帯であり、
     第2の周波数帯域は、IEEE802.11に基づく2.4GHz帯又は5GHz帯である
    ことを特徴とする請求項1に記載のシステム。
  3.  前記アクセスポイントについて、
     現時刻から、前記使用チャネルにおける次回のビーコンの送信時刻までの時間差を含む時間差情報を算出する時間差算出手段を更に有し、
     前記ポインタ信号生成手段は、前記時間差情報を前記ポインタ信号に更に含め、
     前記無線端末について、
     前記ポインタ信号通信手段は、前記ポインタ信号に含まれた前記時間差情報に基づいて、当該ポインタ信号の受信後その時間差が経過するタイミングで、当該使用チャネルのビーコンのセンスを待機する
    ことを特徴とする請求項1に記載のシステム。
  4.  前記無線端末は、前記ポインタ信号に、使用チャネル情報及びネットワーク識別子の組が複数含まれていると共に、各組に時間差情報が対応付けられている場合、次回のビーコンまでの時間差が最も短い使用チャネルから順に、当該使用チャネルのビーコンのセンスを待機するべく制御を行う受信待機制御手段を更に有する
    ことを特徴とする請求項3に記載のシステム。
  5.  前記アクセスポイントは、前記ポインタ信号を周期的に送信するか、又は、前記無線端末から当該アクセスポイントに対するポインタリクエストを受信した際に前記ポインタ信号を送信し、
     前記無線端末は、前記ポインタ信号を常に受信待機するか、又は、前記アクセスポイントへポインタリクエストを送信した後に前記ポインタ信号を受信待機する
    ことを特徴とする請求項1に記載のシステム。
  6.  前記無線端末について、所定回数又は所定時間、前記ポインタ信号を受信できなかった場合、前記WLAN通信手段は、第1の周波数帯域における全てのチャネルのビーコン、又は、プローブリクエストの送信後のプローブレスポンスをセンスする
    ことを特徴とする請求項1に記載のシステム。
  7.  前記無線端末について、
     前記特定チャネル記憶手段は、前記特定チャネル情報毎に、有効期限を付与して記憶しており、
     前記無線端末は、前記有効期限が経過した特定チャネルにおけるポインタ信号を受信せず、第1の周波数帯域における全てのチャネルのビーコン、又は、プローブリクエストの送信後のプローブレスポンスをセンスする
    ことを特徴とする請求項1に記載のシステム。
  8.  前記アクセスポイントは、第1の周波数帯域における各使用チャネルを用いて送信するビーコン、又は、ブローブリクエストの受信後のプローブレスポンスに、第2の周波数帯域におけるポインタ信号の特定チャネル情報を含め、
     前記無線端末は、第1の周波数帯域における全てのチャネルのビーコン、又は、プローブリクエストの送信後のプローブレスポンスをセンスした後、接続目的のアクセスポイントを発見した場合、当該アクセスポイントから受信したビーコン又はプローブレスポンスに含まれる特定チャネル情報で、前記特定チャネル記憶手段を更新する
    ことを特徴とする請求項6に記載のシステム。
  9.  前記システムは、アクセスポイント毎にその位置情報及び特定チャネルを蓄積したポインタ管理サーバを更に有し、
     前記アクセスポイントは、前記特定チャネルを前記ポインタ信号の送信に使用できない状態を検出した際に、当該特定チャネルを他の特定チャネルへ変更する旨を前記ポインタ管理サーバへ送信する特定チャネル変更検出手段を更に有し、
     前記ポインタ管理サーバは、当該アクセスポイントから特定チャネルの変更を受信した際に、当該アクセスポイントから所定範囲に位置するアクセスポイントに対して、前記他の特定チャネルへ変更するべく指示する
    ことを特徴とする請求項1に記載のシステム。
  10.  前記無線端末は、ポインタ信号を受信すべき特定チャネルを取得するために、接続目的のアクセスポイントのネットワーク識別子を含む問合せ要求を、前記ポインタ管理サーバへ送信する特定チャネル問合せ手段を更に有し、
     前記ポインタ管理サーバは、前記ネットワーク識別子に対応するアクセスポイントのポインタ信号の特定チャネル情報を含む問合せ応答を、前記無線端末へ返信する
    ことを特徴とする請求項9に記載のシステム。
  11.  前記システムは、WWAN(Wireless Wide Area Network)を介して前記無線端末と通信すると共に、制御信号に自らの基地局識別子を含めて放送する基地局を更に有し、
     前記無線端末は、
     WWANを介して前記基地局から、基地局識別子を含む制御信号を受信するWWAN通信手段と、
     前記基地局識別子を含む問合せ要求を、前記ポインタ管理サーバへ送信する特定チャネル問合せ手段と
    を更に有し、
     前記ポインタ管理サーバは、前記基地局識別子に対応する基地局の周辺に位置するアクセスポイントのポインタ信号の特定チャネル情報を含む問合せ応答を、前記無線端末へ返信する
    ことを特徴とする請求項9に記載のシステム。
  12.  前記システムは、WWANを介して前記無線端末と通信すると共に、制御信号に自らの基地局識別子を含めて放送する基地局を更に有し、
     前記基地局は、前記基地局識別子に対応する基地局の周辺に位置するアクセスポイントのポインタ信号の特定チャネル情報を、前記ポインタ管理サーバから取得し、当該特定チャネル情報を前記制御信号に含めて放送し、
     前記無線端末は、WWANを介して前記基地局から、前記特定チャネル情報を含む制御信号を受信するWWAN通信手段を更に有する
    ことを特徴とする請求項9に記載のシステム。
  13.  前記無線端末について、
     前記特定チャネル記憶手段は、前記特定チャネル情報に、更に前記基地局識別子を対応付けて記憶しており、
     前記ポインタ信号通信手段は、前記基地局からの制御信号に含まれる基地局識別子から、前記特定チャネル記憶手段を用いて、第2の周波数帯域における特定チャネルを特定する
    ことを特徴とする請求項11に記載のシステム。
  14.  無線端末と、WLANを介して通信するアクセスポイントにおいて、
     WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末と通信するWLAN通信手段と、
     第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、
     前記ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、前記無線端末へ送信するポインタ信号通信手段と
    を有することを特徴とするアクセスポイント。
  15.  請求項14に記載のアクセスポイントと、WLANを介して通信する無線端末において、
     前記ポインタ信号の特定チャネルを予め記憶する特定チャネル記憶手段と、
     第2の周波数帯域における特定チャネルを介して、前記ポインタ信号を受信するポインタ信号通信手段と、
     前記ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御するWLAN通信手段と
    を有することを特徴とする無線端末。
  16.  無線端末と、WLANを介して通信するアクセスポイントに搭載されたコンピュータを機能させるプログラムにおいて、
     WLANの第1の周波数帯域における所定の使用チャネルを用いて、無線端末と通信するWLAN通信手段と、
     第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成するポインタ信号生成手段と、
     前記ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、前記無線端末へ送信するポインタ信号通信手段と
    してコンピュータを機能させることを特徴とするアクセスポイント用のプログラム。
  17.  請求項14に記載のアクセスポイントと、WLANを介して通信する無線端末に搭載されたコンピュータを機能させるプログラムにおいて、
     前記ポインタ信号の特定チャネルを予め記憶する特定チャネル記憶手段と、
     第2の周波数帯域における特定チャネルを介して、前記ポインタ信号を受信するポインタ信号通信手段と、
     前記ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御するWLAN通信手段と
    してコンピュータを機能させることを特徴とする無線端末用のプログラム。
  18.  無線端末が、WLANを介してアクセスポイントを発見するアクセスポイント発見方法において、
     前記無線端末は、ポインタ信号の特定チャネルを予め記憶しており、
     前記アクセスポイントが、WLANの第1の周波数帯域における使用チャネル情報及びネットワーク識別子を含むポインタ信号を生成する第1のステップと、
     前記ポインタ信号を、第2の周波数帯域における特定チャネルを用いて、前記無線端末へ送信する第2のステップと、
     前記無線端末が、第2の周波数帯域における特定チャネルを介して、前記ポインタ信号を受信する第3のステップと、
     前記ポインタ信号に含まれる使用チャネル情報及びネットワーク識別子に基づいて、第1の周波数帯域における接続目的のアクセスポイントからのビーコン、又は、プローブリクエストの送信後のプローブレスポンスを待ち受けるべく制御する第4のステップと
    を有することを特徴とするアクセスポイント発見方法。
PCT/JP2014/061095 2013-05-23 2014-04-18 無線端末がアクセスポイントを発見するシステム、プログラム及び方法 WO2014188832A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14801741.1A EP3001734B1 (en) 2013-05-23 2014-04-18 System, program and method for radio terminal to find access point
EP17191455.9A EP3297337B1 (en) 2013-05-23 2014-04-18 Access point, wireless terminal, storage medium and method utilizing pointer signal to communicate in available channel
US14/785,917 US9961620B2 (en) 2013-05-23 2014-04-18 System, program and method where wireless terminal discovers access point
CN201480024449.XA CN105165070B (zh) 2013-05-23 2014-04-18 无线终端发现接入点的系统、程序和方法
US15/663,350 US10341944B2 (en) 2013-05-23 2017-07-28 Access point, wireless terminal, storage medium, and method utilizing pointer signal to communicate in available channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-108475 2013-05-23
JP2013108475A JP2014230110A (ja) 2013-05-23 2013-05-23 無線端末がアクセスポイントを発見するシステム、プログラム及び方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/785,917 A-371-Of-International US9961620B2 (en) 2013-05-23 2014-04-18 System, program and method where wireless terminal discovers access point
US15/663,350 Division US10341944B2 (en) 2013-05-23 2017-07-28 Access point, wireless terminal, storage medium, and method utilizing pointer signal to communicate in available channel

Publications (1)

Publication Number Publication Date
WO2014188832A1 true WO2014188832A1 (ja) 2014-11-27

Family

ID=51933396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061095 WO2014188832A1 (ja) 2013-05-23 2014-04-18 無線端末がアクセスポイントを発見するシステム、プログラム及び方法

Country Status (5)

Country Link
US (2) US9961620B2 (ja)
EP (2) EP3001734B1 (ja)
JP (1) JP2014230110A (ja)
CN (2) CN105165070B (ja)
WO (1) WO2014188832A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405214B2 (en) 2017-03-15 2019-09-03 Kabushiki Kaisha Toshiba Wireless communication system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6203285B2 (ja) * 2013-12-10 2017-09-27 株式会社東芝 無線装置および無線通信方法
KR102135579B1 (ko) * 2014-02-10 2020-08-26 삼성전자주식회사 전자 장치 및 전자 장치의 네트워크 연결 방법
DE112015001086B4 (de) * 2014-03-03 2022-11-10 Mitsubishi Electric Corporation Funkkommunikationssystem und Funkkommunikationsvorrichtung
WO2015162966A1 (ja) * 2014-04-22 2015-10-29 ソニー株式会社 装置及び方法
US9788269B2 (en) * 2015-03-20 2017-10-10 Qualcomm Incorporated Selection of an access point in a wireless communications network
JP6584210B2 (ja) * 2015-08-10 2019-10-02 キヤノン株式会社 通信装置およびその制御方法、プログラム、並びに記憶媒体
US10015740B2 (en) * 2015-09-30 2018-07-03 Apple Inc. Voice and data continuity between wireless devices
CN107920353A (zh) * 2016-10-08 2018-04-17 中兴通讯股份有限公司 一种无线保真连接切换热点的方法和热点接入设备
US11172353B2 (en) 2016-11-23 2021-11-09 Harman Becker Automotive Systems Gmbh Band steering Wi-Fi direct client connections to dual band Wi-Fi direct autonomous group owner
KR102383383B1 (ko) * 2017-08-08 2022-04-06 삼성전자 주식회사 전자 장치 및 전자 장치의 Wi-Fi 다이렉트 그룹 형성 방법
CN109951885B (zh) * 2017-12-21 2021-06-15 深圳Tcl新技术有限公司 无线信道频宽模式自动切换的方法、移动终端及存储介质
EP3864912A4 (en) * 2018-10-10 2022-06-15 ZTE Corporation SENDING AND RECEIVING ACCESS INFORMATION
CN109561066B (zh) * 2018-10-15 2022-02-01 达闼机器人有限公司 数据处理方法、装置、终端及接入点计算机
US11997747B2 (en) 2019-01-08 2024-05-28 Sony Group Corporation Communication device and communication method
CN113453306B (zh) * 2020-03-25 2023-02-03 华为技术有限公司 一种无线网络的接入方法及相关设备
WO2022226851A1 (zh) * 2021-04-28 2022-11-03 北京小米移动软件有限公司 信号收发方法和装置、信号接收方法和装置
US20230232320A1 (en) * 2022-01-14 2023-07-20 Huawei Technologies Co., Ltd. Method and system for enhanced channel map advertisements
WO2024168785A1 (zh) * 2023-02-17 2024-08-22 Oppo广东移动通信有限公司 无线通信的方法、环境能站点和环境能接入点

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054283A2 (en) * 2002-12-11 2004-06-24 Koninklijke Philips Electronics N.V. System and method for performing a fast handoff in a wireless local area network
JP2005012539A (ja) 2003-06-19 2005-01-13 Nec Corp 無線端末装置および基地局探索方法
US20050068928A1 (en) 2003-09-30 2005-03-31 Motorola, Inc. Enhanced passive scanning
JP2005184824A (ja) * 2003-12-16 2005-07-07 Samsung Electronics Co Ltd 移動通信ネットワークと無線近距離ネットワークとの連動情報を提供する方法及びシステム
WO2006017024A2 (en) * 2004-07-12 2006-02-16 Interdigital Technology Corporation Neighbor scanning in wireless local area networks
WO2006107698A2 (en) * 2005-04-01 2006-10-12 Interdigital Technology Corporation Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
JP2007067745A (ja) * 2005-08-30 2007-03-15 Fujitsu Ltd 無線端末、管理装置、無線lanの制御方法、無線lanシステム
WO2007031855A2 (en) * 2005-09-16 2007-03-22 Nokia Corporation Techniques to provide measurement pilot transmission information in wireless networks
US20080123588A1 (en) 2006-04-21 2008-05-29 Interdigital Technology Corporation Wireless communication method and apparatus for providing network advice to mobile stations
US20090323608A1 (en) 2008-06-30 2009-12-31 Kabushiki Kaisha Toshiba Apparatus and method for wireless communication

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310585A1 (de) * 2002-12-20 2004-07-15 Siemens Ag Pumpe-Düse-Einheit
US7286833B2 (en) * 2004-02-27 2007-10-23 Airespace, Inc. Selective termination of wireless connections to refresh signal information in wireless node location infrastructure
US7575681B2 (en) * 2004-07-06 2009-08-18 Schlumberger Technology Corporation Microfluidic separator
US7440418B2 (en) 2004-09-10 2008-10-21 Interdigital Technology Corporation Accelerating discovery of access points in a wireless local area network
US7224970B2 (en) * 2004-10-26 2007-05-29 Motorola, Inc. Method of scanning for beacon transmissions in a WLAN
US20060268756A1 (en) * 2005-05-03 2006-11-30 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for efficient hand-off in wireless networks
US8200169B2 (en) * 2007-02-28 2012-06-12 Ntt Docomo, Inc. Transmitter apparatus, mobile communication system, base station and communication enable signal transmitter apparatus
US20080240017A1 (en) * 2007-03-26 2008-10-02 Oren Kaidar Method and apparatus of establishing connection in wireless local area network
JP5392845B2 (ja) * 2007-07-31 2014-01-22 日本電気株式会社 無線lan端末およびアクセスポイント探索方法
US20090032360A1 (en) * 2007-08-02 2009-02-05 Tetsushi Asano Hydraulic Vehicle Clutch System and Method
JP4497222B2 (ja) * 2008-03-26 2010-07-07 ソニー株式会社 通信装置及び通信方法、並びにコンピュータ・プログラム
CN101399563B (zh) * 2008-10-17 2012-07-04 华为终端有限公司 一种搜索全球移动通讯系统网络的方法、终端和通信系统
CN101984694B (zh) * 2010-10-20 2012-09-05 苏州中科半导体集成技术研发中心有限公司 一种基于IEEE802.11n的无线信道空闲检测方法
CN102739371B (zh) * 2011-04-01 2017-07-18 中兴通讯股份有限公司 信道信息收集方法及装置
US9516510B2 (en) * 2011-05-02 2016-12-06 Lg Electronics Inc. Method for transmitting/receiving a signal in a wireless communication system
US9420396B2 (en) * 2011-07-29 2016-08-16 Blackberry Limited System and method for determining a location for a device in a communication network
US8451733B2 (en) * 2011-08-08 2013-05-28 Amtran Technology Co., Ltd Methods of optimizing scanning parameters for a plurality of channels in a wireless band
HUE049778T2 (hu) * 2012-02-17 2020-10-28 Nokia Technologies Oy Pásztázás vezeték nélküli hálózatokban
US9001806B2 (en) * 2012-03-06 2015-04-07 Intel Corporation Method and apparatus for managing a probe response related to wireless medium access control
US20140177548A1 (en) * 2012-12-26 2014-06-26 Kabushiki Kaisha Toshiba Electronic device, wireless communication device, and communication control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054283A2 (en) * 2002-12-11 2004-06-24 Koninklijke Philips Electronics N.V. System and method for performing a fast handoff in a wireless local area network
JP2005012539A (ja) 2003-06-19 2005-01-13 Nec Corp 無線端末装置および基地局探索方法
US20050068928A1 (en) 2003-09-30 2005-03-31 Motorola, Inc. Enhanced passive scanning
JP2005184824A (ja) * 2003-12-16 2005-07-07 Samsung Electronics Co Ltd 移動通信ネットワークと無線近距離ネットワークとの連動情報を提供する方法及びシステム
WO2006017024A2 (en) * 2004-07-12 2006-02-16 Interdigital Technology Corporation Neighbor scanning in wireless local area networks
WO2006107698A2 (en) * 2005-04-01 2006-10-12 Interdigital Technology Corporation Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
JP2007067745A (ja) * 2005-08-30 2007-03-15 Fujitsu Ltd 無線端末、管理装置、無線lanの制御方法、無線lanシステム
WO2007031855A2 (en) * 2005-09-16 2007-03-22 Nokia Corporation Techniques to provide measurement pilot transmission information in wireless networks
US20080123588A1 (en) 2006-04-21 2008-05-29 Interdigital Technology Corporation Wireless communication method and apparatus for providing network advice to mobile stations
US20090323608A1 (en) 2008-06-30 2009-12-31 Kabushiki Kaisha Toshiba Apparatus and method for wireless communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Achievable Gains in AP Discovery", IEEE802.11-10/0922R2, 13 May 2013 (2013-05-13), Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/10/11-10-0922-02-0fia-achievable-gains-in-ap-discovery.pptx>
See also references of EP3001734A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405214B2 (en) 2017-03-15 2019-09-03 Kabushiki Kaisha Toshiba Wireless communication system

Also Published As

Publication number Publication date
EP3297337A1 (en) 2018-03-21
CN105165070A (zh) 2015-12-16
CN107466090B (zh) 2020-10-16
EP3297337B1 (en) 2021-06-09
CN107466090A (zh) 2017-12-12
EP3001734B1 (en) 2021-06-09
US10341944B2 (en) 2019-07-02
EP3001734A1 (en) 2016-03-30
CN105165070B (zh) 2019-04-16
JP2014230110A (ja) 2014-12-08
US9961620B2 (en) 2018-05-01
EP3001734A4 (en) 2017-04-19
US20170332314A1 (en) 2017-11-16
US20160100352A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2014188832A1 (ja) 無線端末がアクセスポイントを発見するシステム、プログラム及び方法
JP6775668B2 (ja) デバイスの無線通信モジュールをウェイクアップするためのシステムおよび方法
US11758521B2 (en) Method and apparatus of peer link setting, and method and apparatus of channel switching, in wireless mesh network
US9560586B2 (en) Communication method in wireless local area network system
US9445355B2 (en) Multi-interface terminal, and neighbor topology discovery and cooperative communication method therefore
JP5073066B2 (ja) 無線ネットワークにおいてアソシエーションおよび再アソシエーションを実行するための構成
JP5260251B2 (ja) コグニティブ無線システムにおける利用周波数帯調整方法および無線通信装置
US10015646B2 (en) Group owner selection within a peer-to-peer network
US10034162B2 (en) Radio communication system and radio communication apparatus
KR20120100895A (ko) 무선 시스템에서 밀리미터파 무선 채널 상의 애드혹 통신을 위한 방법 및 시스템
US10045285B2 (en) Wireless local area network access point search method, apparatus, and system
WO2014116719A1 (en) Method and access point for selectively responding to a service query from a wireless device
KR102162958B1 (ko) 무선 랜 시스템에서 핸드오버 방법과 장치 및 이를 위한 시스템
JP2013143624A (ja) 複数の無線通信帯域に対する探索時間を短くする無線lan用のアクセスポイント、無線端末及びプログラム
EP2865216B1 (en) System and method for single radio handover
US9301336B2 (en) Communication method in WLAN system
JP5390300B2 (ja) 無線装置、無線装置の動作モード切換え方法
JP5897405B2 (ja) 無線端末がアクセスポイントを探索するタイミングを制御するアクセスポイント発見方法、システム及び無線端末
JP6616805B2 (ja) ビーコンの待ち受けを制御するアクセスポイント、無線端末、プログラム及び方法
JP5858464B2 (ja) 無線通信装置、無線通信装置制御方法、無線通信装置制御プログラム、無線通信システム、無線通信システム制御方法、制御装置、制御装置制御方法、及び、制御装置制御プログラム
WO2014140408A1 (en) Power saving for a mobile station during connection setup
US20170188301A1 (en) System, method and apparatus for backward compatible power reduction FTM responders
JP6452132B2 (ja) 無線通信システム及びその制御方法、基地局装置及び無線通信端末
JP2014236374A (ja) 中継器装置及び中継器のスリープ制御方法
TW202437787A (zh) 用於擴展式個人區域網路(xpan)覆蓋的無瑕疵轉換

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024449.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785917

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014801741

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE