WO2022226851A1 - 信号收发方法和装置、信号接收方法和装置 - Google Patents

信号收发方法和装置、信号接收方法和装置 Download PDF

Info

Publication number
WO2022226851A1
WO2022226851A1 PCT/CN2021/090775 CN2021090775W WO2022226851A1 WO 2022226851 A1 WO2022226851 A1 WO 2022226851A1 CN 2021090775 W CN2021090775 W CN 2021090775W WO 2022226851 A1 WO2022226851 A1 WO 2022226851A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ranging
terminal
frequency
discovery
Prior art date
Application number
PCT/CN2021/090775
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180001168.2A priority Critical patent/CN115943690A/zh
Priority to PCT/CN2021/090775 priority patent/WO2022226851A1/zh
Publication of WO2022226851A1 publication Critical patent/WO2022226851A1/zh
Priority to US18/384,225 priority patent/US20240057054A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a signal transceiving method, a signal receiving method, a signal transceiving device, a signal receiving device, a communication device, and a computer-readable storage medium.
  • Ranging-based services may utilize relative distances and/or relative angles between two devices to provide services.
  • the devices When performing ranging, the devices must first discover each other, and then send ranging signals, and then determine the relative distance based on the sending and receiving time of the ranging signals.
  • embodiments of the present disclosure propose a signal transceiving method, a signal receiving method, a signal transceiving device, a signal receiving device, a communication device, and a computer-readable storage medium to solve the technical problems in the related art.
  • a method for transmitting and receiving a signal is proposed, which is applicable to a first terminal.
  • the method includes: transmitting and receiving a discovery signal used for device discovery on a first frequency; A discovery control signal for controlling device discovery; wherein the first frequency and the second frequency are different.
  • a signal receiving method is provided, which is applicable to a network-side device.
  • the method includes: receiving, at a first frequency, a discovery signal sent by a first terminal for device discovery; A discovery control signal sent by a first terminal for controlling device discovery is received; wherein the first frequency and the second frequency are different.
  • a signal transceiving method which is applicable to a first terminal.
  • the method includes: transceiving, on a third frequency, a ranging signal for determining a distance between terminals; A ranging control signal for controlling the determination of the distance is transmitted and received; wherein the third frequency and the fourth frequency are different.
  • a signal receiving method is provided, which is applicable to a network-side device.
  • the method includes: receiving, at a third frequency, a ranging signal sent by a first terminal for determining a distance between terminals;
  • the ranging control signal sent by the first terminal for controlling the determination of the distance is received at a fourth frequency; wherein the third frequency and the fourth frequency are different.
  • a signal transceiving apparatus suitable for a first terminal, the apparatus comprising: a discovery signal transceiving module configured to transmit and receive a discovery signal for device discovery on a first frequency; The first control signal transceiving module is configured to transmit and receive a discovery control signal for controlling device discovery on a second frequency; wherein the first frequency and the second frequency are different.
  • a signal receiving apparatus which is applicable to network-side devices, the apparatus includes: a discovery signal receiving module configured to receive a signal sent by a first terminal for device discovery at a first frequency
  • the first control signal receiving module is configured to receive, at the second frequency, the discovery control signal sent by the first terminal for controlling device discovery; wherein the first frequency and the second frequency are different .
  • a signal transceiving apparatus applicable to a first terminal, the apparatus comprising: a ranging signal transceiving module configured to transmit and receive on a third frequency for determining a distance between terminals the distance measurement signal; the first control signal transceiver module is configured to transmit and receive the distance measurement control signal used to control the determination of the distance on a fourth frequency; wherein the third frequency and the fourth frequency are different .
  • a signal receiving apparatus which is applicable to a network side device.
  • the apparatus includes: a ranging signal receiving module, configured to receive, at a third frequency, a signal sent by a first terminal for determining a ranging signal for the distance between terminals; the first control signal receiving module is configured to receive, at a fourth frequency, a ranging control signal sent by the first terminal for controlling the determination of the distance; wherein the third The frequency is different from the fourth frequency.
  • a communication device comprising: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to execute the above method for transmitting and receiving signals.
  • a communication device comprising: a processor; a memory for storing instructions executable by the processor; wherein the processor is configured to execute the above method for transmitting and receiving signals.
  • a computer-readable storage medium for storing a computer program, and when the program is executed by a processor, the steps in the above-mentioned method for transmitting and receiving signals are implemented.
  • a computer-readable storage medium for storing a computer program, and when the program is executed by a processor, the steps in the above-mentioned signal transceiving method are implemented.
  • the discovery signal can be transceived on the first frequency
  • the discovery control signal can be transceived on the second frequency, so that the discovery signal and the discovery control signal can be respectively transceived on different frequencies. Accordingly, it is convenient to separately control the transmission of the discovery signal and the discovery control signal, and to a certain extent, the transmission and reception of one of the signals can be prevented from being interfered by the other signal.
  • FIG. 1 is a schematic flowchart of a method for transmitting and receiving signals according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of another method for transmitting and receiving signals according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a signal receiving method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for transmitting and receiving signals according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of another method for transmitting and receiving signals according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a signal receiving method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of a signal transceiver apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram of a signal transceiving apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic block diagram of an apparatus for signal reception according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic block diagram of an apparatus for signal transceiving according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than”, “higher than” or “lower than” are used herein when characterizing the relationship of magnitude. But for those skilled in the art, it can be understood that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “greater than” covers “greater than or equal to” ", and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 is a schematic flowchart of a method for transmitting and receiving signals according to an embodiment of the present disclosure.
  • the signal sending and receiving method shown in this embodiment may be applicable to a first terminal, where the first terminal includes but is not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the first terminal can be used as user equipment and network side equipment.
  • the network side equipment includes but is not limited to base stations and core networks.
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal transceiving method may include the following steps:
  • step S101 a discovery signal for device discovery is sent and received on a first frequency
  • step S102 a discovery control signal for controlling device discovery is sent and received on the second frequency
  • the first frequency and the second frequency are different.
  • execution order of the above-mentioned steps S101 and S102 is in no particular order, and the execution order may be set as required, and may also be executed simultaneously.
  • the first terminal may send a discovery signal as a discovered terminal, for example, by broadcasting the discovery signal, so that a second terminal (terminals other than the first terminal) near the first terminal The first terminal can be found.
  • the first terminal may also receive a discovery signal as a discovery terminal, for example, by receiving a discovery signal broadcast by a second terminal near the first terminal, thereby discovering the second terminal.
  • the first terminal and the second terminal may communicate, for example, the relative ranging between the first terminal and the second terminal may be determined through the communication.
  • the embodiments of the present disclosure will be exemplarily described below mainly in the case that the first terminal is used as the discovered terminal and the second terminal is used as the discovery terminal.
  • the first terminal and the second terminal do not specifically refer to some terminals, but refer to any two different terminals.
  • the discovery signal may carry information that can characterize the identity of the first terminal and information that the first terminal needs to perform device discovery.
  • the discovery signal may carry the identity of the first terminal and the first terminal. An identifier of the application that the terminal triggers the device to discover.
  • the second terminal After receiving the discovery signal, the second terminal can determine that the first terminal needs to communicate according to the identification of the first terminal, and can determine what kind of service the first terminal needs to perform according to the identification of the application, and then the second terminal can determine whether to perform communication according to its own needs. communicate with the first terminal. If it is determined to communicate with the first terminal, a direct communication method or an indirect communication method can be used for the communication, wherein the direct communication method includes but is not limited to sidelink communication based on a direct link, and the indirect communication method includes but is not limited to using a network side device (for example, base station, core network) communication.
  • a network side device for example, base station, core network
  • the first terminal may also send a discovery control signal, for example, to the network side device, so as to negotiate with the network side device about the identifier used by the first terminal in the discovery process .
  • the discovery signal and the discovery control signal are sent and received on the same frequency, but the content and function of the discovery signal and the discovery control signal are very different, and the transmission requirements to be met by the two are also different.
  • sending and receiving the discovery signal and the discovery control signal on the same frequency is inconvenient to control the transmission of the two, and may cause the transmission and reception of one signal to be interfered by another signal.
  • some of the multiple terminals send a discovery signal, and some terminals send a discovery control signal. If the first terminal receives the discovery signal and the discovery control signal on the same frequency, the discovery signal and the discovery control channel may arrive at the same time. The first terminal can only receive one signal at a time, so that the first terminal discards one signal among the multiple signals arriving at the same time.
  • the discovery signal can be transceived on the first frequency
  • the discovery control signal can be transceived on the second frequency, so that the discovery signal and the discovery control signal can be respectively transceived on different frequencies. Accordingly, it is convenient to separately control the transmission of the discovery signal and the discovery control signal, and to a certain extent, the transmission and reception of one of the signals can be prevented from being interfered by the other signal.
  • the discovery signal is transceived based on a direct communication technique. For example, you can send and receive discovery signals based on sidelink (direct link), V2X (vehicle to everything, vehicle-to-everything communication), WiFi direct (direct connection), UWB (Ultra Wide Band, ultra-bandwidth), Bluetooth, etc. Based on the direct communication technology to send and receive the discovery signal, it can be ensured that after the discovered terminal sends the discovery signal, the discovery terminal can receive the discovery signal as soon as possible.
  • the discovery signal is a first signal sequence of the physical layer.
  • the first signal sequence includes but is not limited to Zadoff-Chu sequence.
  • the first signal sequence is used to carry part or all of the L1 identification of the discovered terminal.
  • the first signal sequence itself may carry some information, for example, may carry part or all of the L1 identification of the discovered terminal, and the specific amount of information that may be carried may depend on the number of signal sequences.
  • L1 refers to layer 1, which mainly includes the physical layer
  • L2 refers to layer 2, which mainly includes the data link layer.
  • the first signal sequence has a first payload (payload), and the first payload is used to carry at least one of the following: an identifier of an application (application) corresponding to device discovery, an identifier of a discovered terminal, The ID of the discovered terminal at L1 and the ID of the discovered terminal at L2.
  • the second terminal may determine the service to be performed by the first terminal for device discovery, that is, the service corresponding to the application, and accordingly may determine whether to communicate with the first terminal.
  • the identity of the discovered terminal may be the unique identity of the terminal, such as IMSI (International Mobile Subscriber Identity, International Mobile Subscriber Identity), TMSI (Temporary Mobile Subscriber Identity, Temporary Mobile Subscriber Identity), S-TMSI, C-RNTI (Radio Network Tempory Identity, wireless network temporary identity), I-RNTI, can also be a unique temporary identity within a specified period of time and/or within a specified area that is configured by the network-side device for the discovered terminal.
  • IMSI International Mobile Subscriber Identity, International Mobile Subscriber Identity
  • TMSI Temporary Mobile Subscriber Identity
  • S-TMSI Temporary Mobile Subscriber Identity
  • C-RNTI Radio Network Tempory Identity, wireless network temporary identity
  • I-RNTI can also be a unique temporary identity within a specified period of time and/or within a specified area that is configured by the network-side device for the discovered terminal.
  • the first payload is physical layer information, or a control plane data packet, or a user plane data packet, such as a MAC PDU (Media Access Control Layer Protocol Data Unit).
  • MAC PDU Media Access Control Layer Protocol Data Unit
  • the discovery signal is a control plane packet or a user plane packet.
  • the control plane data packets include but are not limited to RRC (Radio Access Control) messages, NAS (Non-Access Stratum) messages, ProSe (Proximity Services) messages and other dedicated control protocol messages, such as discovery request messages and discovery response messages.
  • RRC Radio Access Control
  • NAS Non-Access Stratum
  • ProSe Proximity Services
  • other dedicated control protocol messages such as discovery request messages and discovery response messages.
  • the discovery signal is a control plane data packet or a user plane data packet, the discovery signal is still sent on the first frequency as normal data (not control information).
  • the sending and receiving a discovery control signal for controlling device discovery on the second frequency includes: sending the discovery control signal to the network-side device on the second frequency.
  • the first terminal may send the discovery control signal to the network side device, and based on the specific function of the discovery control signal, the content carried in the discovery control signal may be different.
  • the discovery control signal is only used to negotiate the information used to control the device discovery process with the network side device, so it is not necessary to carry the identifier of the second terminal, and the network side device does not need to send the discovery control information to the second terminal;
  • the signal is used to negotiate with the second terminal the information used to control the device discovery process, then it needs to carry the identifier of the second terminal, and the network side device needs to further send the discovery control information to the second terminal.
  • the information used to control the device discovery process may be, for example, an identifier used by the discovered terminal in the device discovery process, resources used in the device discovery process, and resources communicated after the device discovery process.
  • the discovery control signal is used to request the network-side device to assign an identifier to the discovered terminal.
  • the network side device After the network side device receives the discovery control signal, on the one hand, it can assign an identifier to the first terminal for the terminal to use in the device discovery process, and on the other hand, it can choose to notify the second terminal of the identifier assigned to the first terminal, Or the second terminal may know the identifier in advance.
  • the discovery control signal further carries a reason for requesting the network-side device to assign an identifier to the discovered terminal.
  • the network-side device may assign an identifier to the first terminal based on the reason, for example, may assign different identifiers to the first terminal based on different reasons, including but not limited to performing device discovery, needing to be assigned a user equipment identifier, and the like.
  • the discovery control signal is carried in a radio access control message or in a non-access stratum message.
  • the discovery control signal carries a mapping relationship between an identifier of a discovered terminal in a device discovery process and an application layer identifier of the discovered terminal.
  • the identifier of the discovered terminal may be the user equipment identifier, or may be the L1 identifier, the L2 identifier, or the like of the discovered terminal.
  • the application layer identifier of the discovered terminal may correspond to the identifier of the application that triggers device discovery in the discovered terminal. After receiving the discovery control signal carrying the mapping relationship, the network side device or the discovery terminal only needs to receive the identifier of the discovered terminal. and one of the application layer identifiers of the discovered terminal, another identifier can be determined according to the mapping relationship.
  • the first frequency is a frequency on a licensed frequency band or a frequency on an unlicensed frequency band. Since the discovery signal generally requires less communication resources, it can be sent using the unlicensed frequency band, and the time occupied by the unlicensed frequency band will be relatively small, and it will not easily affect the communication of other devices that need to use the unlicensed frequency band. Among them, in order to use the unlicensed frequency band, it is necessary to perform LBT (Listen Before Talk, listen first and then talk) on the unlicensed frequency band.
  • LBT Listen Before Talk, listen first and then talk
  • FIG. 2 is a schematic flowchart of another method for transmitting and receiving signals according to an embodiment of the present disclosure. As shown in Figure 2, the method further includes:
  • step S201 a ranging signal for determining the distance between terminals is sent and received on a third frequency
  • step S202 a ranging control signal for controlling the determination of the distance is sent and received on a fourth frequency
  • the third frequency and the fourth frequency are different.
  • the first terminal and the second terminal determine that a ranging-based service is required, further ranging may be performed.
  • the first terminal may transmit and receive ranging signals for determining the distance between terminals on the third frequency, and transmit and receive ranging control signals for controlling the determination of the distance on the fourth frequency.
  • the ranging signal and the ranging control signal can be respectively sent and received on different frequencies. Accordingly, it is convenient to separately control the transmission of the ranging signal and the ranging control signal, and to a certain extent, the transmission and reception of one of the signals can be prevented from being interfered by the other signal.
  • FIG. 3 is a schematic flowchart of a signal receiving method according to an embodiment of the present disclosure.
  • the signal receiving method shown in this embodiment can be applied to network-side devices, and the network-side devices can communicate with terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and IoT devices.
  • the network side devices include but are not limited to base stations and core networks, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal receiving method may include the following steps:
  • step S301 a discovery signal for device discovery sent by a first terminal is received at a first frequency
  • step S302 a discovery control signal for controlling device discovery and sent by the first terminal is received at the second frequency
  • the first frequency and the second frequency are different.
  • the first terminal may send a discovery signal on a first frequency and a discovery control signal on a second frequency. Accordingly, the network-side device may receive the discovery signal on the first frequency and receive the discovery signal on the second frequency. Find control signals.
  • steps S301 and S302 may be selectively performed by the network side device, not both steps.
  • step S302 may only be performed to receive a discovery control signal without receiving a discovery signal.
  • the discovery signal and the discovery control signal are respectively received on different frequencies. Accordingly, it is convenient to separately control the transmission of the discovery signal and the discovery control signal, and the reception of one of the signals can be prevented from being interfered by the other signal to a certain extent.
  • the method further includes transmitting the discovery signal to a second terminal on the first frequency.
  • the network-side device may send the discovery signal to the second terminal on the first frequency, so that the second terminal can discover the first terminal.
  • the method further comprises: feeding back a response signal of the discovery control signal to the first terminal on the second frequency.
  • the first terminal may send a discovery control signal to the network-side device on the second frequency to negotiate with the network-side device for information used to control the device discovery process.
  • the network-side device may feed back to the first terminal
  • the response signal of the discovery control signal may carry a negotiation result, such as a temporary identifier allocated to the first terminal and used in the device discovery process.
  • FIG. 4 is a schematic flowchart of a method for transmitting and receiving signals according to an embodiment of the present disclosure.
  • the signal sending and receiving method shown in this embodiment may be applicable to a first terminal, where the first terminal includes but is not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the first terminal can be used as user equipment and network side equipment.
  • the network side equipment includes but is not limited to base stations and core networks.
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal transceiving method may include the following steps:
  • step S401 a ranging signal for determining the distance between terminals is sent and received on a third frequency
  • step S402 a ranging control signal for controlling the determination of the distance is sent and received on a fourth frequency
  • the third frequency and the fourth frequency are different.
  • execution order of the above-mentioned steps S401 and S402 is in no particular order, and the execution order may be set as required, and may also be executed simultaneously.
  • the first terminal can be used as the starting terminal of ranging
  • the second terminal can be used as the target terminal of ranging.
  • the second terminal can be used as the starting terminal of ranging.
  • a terminal can be used as a target terminal for ranging, where the initiating terminal refers to a terminal that initiates ranging, and can send a ranging signal to the target terminal.
  • the embodiments of the present disclosure will be exemplarily described below mainly in the case that the first terminal is used as the starting terminal and the second terminal is used as the target terminal.
  • the first terminal and the second terminal do not specifically refer to some terminals, but refer to any two different terminals.
  • the ranging signal may carry information that can characterize the identity of the first terminal, for example, the identity of the first terminal at L1 or L2.
  • the second terminal may determine that ranging needs to be performed with the first terminal, and may further perform ranging based on a corresponding ranging algorithm.
  • the ranging algorithms include but are not limited to unilateral ranging and bilateral ranging.
  • the first terminal sends a ranging signal to the second terminal, and the second terminal sends a response signal (which may also be a ranging signal) to the first terminal after receiving the ranging signal.
  • the first terminal can calculate the distance between the first terminal and the first terminal according to the time from sending the ranging signal to receiving the response signal, and the time from the second terminal receiving the ranging signal to sending the response signal to the first terminal.
  • the round-trip time between the two terminals, and then the distance between the first terminal and the second terminal is calculated based on the round-trip time and the propagation speed of the signal (eg, the speed of light).
  • the receiving and sending of the ranging signal and the response signal can be performed on the third frequency.
  • the ranging signal in all embodiments of the present disclosure may be one or more reference signals.
  • the first terminal may send the first ranging signal to the second terminal within a predetermined time window, and the second terminal may receive the first ranging signal within the predetermined time window;
  • the second terminal After the second terminal receives the first ranging signal, it returns the second ranging signal to the first terminal, wherein it can be calculated that the time between the second terminal receiving the first ranging signal and the return of the second ranging signal to the first terminal The time interval is used as the first time information;
  • the first terminal After the first terminal receives the second ranging signal, it replies to the second terminal with a third ranging signal, wherein it can be calculated that the first terminal receives the second ranging signal and the third ranging signal is returned to the second terminal.
  • the time interval is used as the second time information, and the time interval from sending the first ranging signal to receiving the second ranging signal by the first terminal is calculated as the third time information;
  • the second terminal may calculate a time interval from sending the second ranging signal to receiving the third ranging signal as the fourth time information.
  • the second terminal can send the first time information and the fourth time information to the first terminal; if the second terminal needs to calculate the ranging result, the first terminal can send the second time information and the fourth time information to the first terminal.
  • the third time information is sent to the second terminal.
  • the first terminal and/or the second terminal may calculate the round-trip time between the first terminal and the second terminal according to the first time information, the second time information, the third time information and the fourth time information, and then based on the round-trip time and the signal the speed of propagation (eg the speed of light) to calculate the distance between the first terminal and the second terminal.
  • the first terminal may also send a ranging control signal, for example, send a ranging control signal to the network side device, so as to negotiate with the network side device.
  • the first terminal The identifier used may also send a ranging control signal to the second terminal to send a ranging result, indicating a ranging failure, and the like.
  • the ranging signal and the ranging control signal are sent and received on the same frequency, but for the ranging signal and the ranging control signal, the content and function of the two are very different. The requirements are also different. Sending and receiving the ranging signal and the ranging control signal on the same frequency is inconvenient to control the transmission of the two, and may cause the sending and receiving of one signal to be interfered by another signal. For example, some terminals in multiple terminals send ranging signals, and some terminals send ranging control signals. If the first terminal receives ranging signals and ranging control signals on the same frequency, ranging signals and ranging control channels may appear. In the case of arriving at the same time, the first terminal can only receive one signal at the same time, so that the first terminal discards one of the multiple signals that arrive at the same time.
  • ranging signals can be sent and received on the third frequency, and ranging control signals can be sent and received on the fourth frequency, so that ranging signals and ranging control signals can be respectively sent and received on different frequencies. Accordingly, it is convenient to separately control the transmission of the ranging signal and the ranging control signal, and to a certain extent, the transmission and reception of one of the signals can be prevented from being interfered by the other signal.
  • the third frequency and the first frequency in the above embodiments may be the same or different; the fourth frequency and the second frequency in the above embodiments may be the same or different, and can be set as required.
  • the ranging signal is transceived based on direct communication techniques.
  • ranging signals can be sent and received based on sidelink (direct link), V2X (vehicle to everything, vehicle-to-everything communication), WiFi direct (direct connection), UWB (Ultra Wide Band, ultra-bandwidth), Bluetooth, etc.
  • Sending and receiving ranging signals based on the direct communication technology can ensure that after the originating terminal sends the ranging signals, the target terminal can receive the ranging signals as soon as possible.
  • the ranging signal is a second signal sequence of the physical layer.
  • the second signal sequence includes but is not limited to Zadoff-Chu sequence.
  • the second signal sequence is used to carry part or all of the L1 identification of the terminal sending the ranging signal.
  • the first signal sequence itself may carry some information, for example, may carry part or all of the L1 identification of the terminal sending the ranging signal, and the specific amount of information that may be carried may depend on the number of signal sequences.
  • the second signal sequence has a second load for carrying at least one of the following:
  • the identifier of the terminal sending the ranging signal the identifier of the terminal sending the ranging signal at L1, the identifier of the terminal sending the ranging signal at L2, the first time information based on bilateral ranging, second time information of distance, third time information based on bilateral ranging;
  • the first time information represents the time interval from when the target terminal receives the first ranging signal of the initiating terminal to returning the second ranging signal to the initiating terminal;
  • the second time information represents that the initiating terminal receives the first ranging signal.
  • the third time information represents the time from when the originating terminal sends the first ranging signal to when it receives the first ranging signal. 2.
  • the time interval of the ranging signal represents the time interval from when the target terminal receives the first ranging signal of the initiating terminal to returning the second ranging signal to the initiating terminal;
  • the second time information represents that the initiating terminal receives the first ranging signal.
  • the third time information represents the time from when the originating terminal sends the first ranging signal to when it receives the first ranging signal. 2.
  • the time interval of the ranging signal is the time interval from when
  • the identifier of the terminal sending the ranging signal may be the unique identifier of the terminal, such as IMSI (International Mobile Subscriber Identity, International Mobile Subscriber Identity), TMSI (Temporary Mobile Subscriber Identity, Temporary Mobile Subscriber Identity), S- TMSI, C-RNTI (Radio Network Tempory Identity, wireless network temporary identity), I-RNTI, can also be configured by the network side device for the terminal sending the ranging signal, within a specified period of time and/or within a specified area Unique temporary identifier.
  • IMSI International Mobile Subscriber Identity, International Mobile Subscriber Identity
  • TMSI Temporary Mobile Subscriber Identity
  • S- TMSI S- TMSI
  • C-RNTI Radio Network Tempory Identity, wireless network temporary identity
  • I-RNTI can also be configured by the network side device for the terminal sending the ranging signal, within a specified period of time and/or within a specified area Unique temporary identifier.
  • the second terminal may calculate the time interval from sending the second ranging signal to receiving the third ranging signal as the fourth time information.
  • the ranging signal will still be exchanged between the first terminal and the second terminal.
  • the communication between the first terminal and the second terminal There will be no interaction of ranging signals between them.
  • the first time information, the second time information, and the third time information can all be calculated before the second terminal receives the third ranging signal, so they can be carried in the load of the ranging signal and sent, while the fourth The time information is calculated after the second terminal receives the third ranging signal, so it may not be sent through the load of the ranging signal, but sent through the ranging control information.
  • the second payload is physical layer information, or a control plane data packet, or a user plane data packet, such as a MAC PDU (Media Access Control Layer Protocol Data Unit).
  • MAC PDU Media Access Control Layer Protocol Data Unit
  • the sending and receiving the ranging control signal for controlling the determination of the distance on the fourth frequency includes: sending the ranging control signal on the fourth frequency to the network-side device or A second terminal, wherein the distance is a distance between the first terminal and the second terminal.
  • the first terminal may send the ranging control signal to the network side device or the second terminal, and based on the specific function of the ranging control signal, the ranging control signal may be sent to the network side device to obtain the second terminal.
  • the ranging control signal is used to negotiate with the network side device, then the ranging control signal can be sent to the network side device; for example, the ranging control signal is used to carry the ranging result, then the ranging control signal can be sent to the second terminal .
  • the ranging control signal includes at least one of the following: ranging request information, ranging response information, ranging failure information, and ranging result information. These ranging control information can be sent using the Uu interface, or other interfaces can be selected for sending as required.
  • the ranging request information carries at least one of the following:
  • the identifier of the terminal that receives the ranging request information (that is, the identifier of the terminal that sends the ranging signal, so that the network-side device can send the request information to the corresponding terminal based on the identifier), and the identifier that sends the ranging request information.
  • the ranging capability information of the terminal for example, the supported bandwidth, the number of antennas, etc.
  • the identifier of the ranging session for example, the identifier of the ranging session, the identifier of the ranging signal at L1, the identifier of the ranging signal at L2, the ranging bandwidth, the Time information (it may be the time window for the originating terminal to receive the ranging signal, or it may be the time window for the target terminal to receive the ranging signal).
  • the ranging response information carries at least one of the following:
  • the identifier of the terminal that receives the ranging response information, the ranging capability information of the terminal that sends the ranging response information for example, the supported bandwidth, the number of antennas, etc.
  • the identifier of the ranging signal at L1 the ranging signal at L1
  • the identifier of L2 the ranging bandwidth, and the time information for receiving the ranging signal (may be the time window for the originating terminal to receive the ranging signal, or the time window for the target terminal to receive the ranging signal).
  • the ranging failure information carries at least one of the following:
  • the identifier of the terminal receiving the ranging failure information, ranging session identifier, ranging signal quality, and the reason for ranging failure for example, ranging signal sending and receiving time is earlier than ranging response information receiving time, ranging signal is not received, No ranging response information received, etc.).
  • the failure of ranging may be caused by one or more of the following situations: the sending and receiving time of the ranging signal is earlier than the receiving time of the ranging response information, the ranging signal is not received within the agreed time period for receiving the ranging signal, and the ranging signal is received at the appointed time.
  • the ranging response information is not received within the period of the ranging response information, and the ranging signal quality is less than the threshold value.
  • the ranging result information carries at least one of the following:
  • Result information based on unilateral ranging result information based on bilateral ranging, angle of arrival information, angle of departure information, the distance.
  • the result information based on bilateral ranging includes at least one of the following:
  • First time information based on bilateral ranging second time information based on bilateral ranging, third time information based on bilateral ranging, and fourth time information based on bilateral ranging;
  • the first time information represents the time interval from when the target terminal receives the first ranging signal of the initiating terminal to returning the second ranging signal to the initiating terminal;
  • the second time information represents that the initiating terminal receives the first ranging signal.
  • the third time information represents the time from when the originating terminal sends the first ranging signal to when it receives the first ranging signal.
  • the time interval of the ranging signal; the fourth time information represents the time interval from when the target terminal sends the second ranging signal to receiving the third ranging signal.
  • the second terminal may calculate the time interval from sending the second ranging signal to receiving the third ranging signal as the fourth time information.
  • the ranging signal will still be exchanged between the first terminal and the second terminal.
  • the communication between the first terminal and the second terminal There will be no interaction of ranging signals between them.
  • the first time information, the second time information, and the third time information can all be calculated before the second terminal receives the third ranging signal, so you can choose to carry it in the load of the ranging signal and send it, or you can The selection is carried in the result information of the ranging control information and sent; and the fourth time information is calculated after the second terminal receives the third ranging signal, so it can be sent not through the load of the ranging signal, but through Ranging control information is sent.
  • the third frequency is a frequency on a licensed frequency band or a frequency on an unlicensed frequency band. Since the ranging signal (usually a reference signal) requires less communication resources, it can be sent using the unlicensed frequency band, and the time occupied by the unlicensed frequency band will be relatively small, and it will not easily affect the communication of other devices that need to use the unlicensed frequency band. . Among them, in order to use the unlicensed frequency band, it is necessary to perform LBT (Listen Before Talk, listen first and then talk) on the unlicensed frequency band.
  • LBT Listen Before Talk, listen first and then talk
  • FIG. 5 is a schematic flowchart of another method for transmitting and receiving signals according to an embodiment of the present disclosure. As shown in Figure 5, the method further includes:
  • step S501 a discovery signal for device discovery is sent and received on the first frequency
  • step S502 a discovery control signal for controlling device discovery is sent and received on the second frequency
  • the first frequency and the second frequency are different.
  • the first terminal may send and receive a discovery signal for device discovery on a first frequency, and send and receive a discovery signal on a second frequency for device discovery. Controls the discovery control signal.
  • the discovery signal and the discovery control signal can be respectively sent and received on different frequencies. Accordingly, it is convenient to separately control the transmission of the discovery signal and the discovery control signal, and to a certain extent, the transmission and reception of one of the signals can be prevented from being interfered by the other signal.
  • FIG. 6 is a schematic flowchart of a signal receiving method according to an embodiment of the present disclosure.
  • the signal receiving method shown in this embodiment can be applied to network-side devices, and the network-side devices can communicate with terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and IoT devices.
  • the network side devices include but are not limited to base stations and core networks, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal receiving method may include the following steps:
  • step S601 a ranging signal sent by a first terminal for determining a distance between terminals is received at a third frequency
  • step S602 a ranging control signal for controlling the determination of the distance and sent by the first terminal is received at the fourth frequency;
  • the third frequency and the fourth frequency are different.
  • the first terminal may send a ranging signal on a third frequency, and send a ranging control signal on a fourth frequency.
  • the network side device may receive the ranging signal on the third frequency, and on the fourth frequency The ranging control signal is received on the frequency.
  • steps S601 and S602 may be selectively performed by the network side device, not both steps.
  • step S602 may only be performed to receive the ranging control signal, but not the ranging signal.
  • the ranging signal and the ranging control signal are respectively received on different frequencies. Accordingly, it is convenient to separately control the transmission of the ranging signal and the ranging control signal, and the reception of one of the signals can be prevented from being interfered by the other signal to a certain extent.
  • the method further includes transmitting the ranging signal to a second terminal on the third frequency.
  • the network-side device may send the ranging signal to the second terminal on the third frequency, so that the second terminal can perform ranging with the first terminal.
  • the method further includes: feeding back a response signal of the ranging control signal to the first terminal on the fourth frequency.
  • the first terminal may send a ranging control signal to the network side device on the fourth frequency to negotiate with the network side device for information used to control the ranging process.
  • the network side device may send a ranging control signal to the first terminal.
  • the terminal feeds back a response signal of the ranging control signal, and the response signal may carry a negotiation result, such as a temporary identifier used in the ranging process allocated to the first terminal.
  • the present disclosure also provides embodiments of the signal transceiving apparatus and the signal receiving apparatus.
  • FIG. 7 is a schematic block diagram of a signal transceiver apparatus according to an embodiment of the present disclosure.
  • the signal transceiving apparatus shown in this embodiment may be applicable to a first terminal, where the first terminal includes but is not limited to communication apparatuses such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the first terminal can be used as user equipment and network side equipment.
  • the network side equipment includes but is not limited to base stations and core networks.
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal transceiving apparatus may include:
  • the first control signal transceiving module 702 is configured to transmit and receive, on the second frequency, a discovery control signal for controlling device discovery;
  • the first frequency and the second frequency are different.
  • the discovery signal is transceived based on a direct communication technique.
  • the discovery signal is a first signal sequence of the physical layer.
  • the first signal sequence is used to carry part or all of the L1 identification of the discovered terminal.
  • the first signal sequence has a first load, and the first load is used to carry at least one of the following: an identifier of an application corresponding to device discovery, an identifier of a discovered terminal, an identifier of the discovered terminal in L1 ID, the ID of the discovered terminal at L2.
  • the first payload is physical layer information, or a control plane data packet, or a user plane data packet.
  • the discovery signal is a control plane packet or a user plane packet.
  • control signal transceiving module is configured to send the discovery control signal to the network-side device on the second frequency.
  • the discovery control signal is used to request the network-side device to assign an identifier to the discovered terminal.
  • the discovery control signal further carries a reason for requesting the network-side device to assign an identifier to the discovered terminal.
  • the discovery control signal is carried in a radio access control message or in a non-access stratum message.
  • the discovery control signal carries a mapping relationship between an identifier of a discovered terminal in a device discovery process and an application layer identifier of the discovered terminal.
  • the first frequency is a frequency on a licensed frequency band or a frequency on an unlicensed frequency band.
  • the apparatus further includes: a ranging signal transceiving module configured to transmit and receive ranging signals used to determine the distance between terminals on a third frequency; a second control signal transceiving module configured to A ranging control signal for controlling the determination of the distance is transmitted and received on a fourth frequency; wherein the third frequency and the fourth frequency are different.
  • FIG. 8 is a schematic block diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • the signal receiving apparatus shown in this embodiment can be applied to network-side equipment, and the network-side equipment can communicate with terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the network side devices include but are not limited to base stations and core networks, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal receiving apparatus may include:
  • a discovery signal receiving module 801 configured to receive a discovery signal sent by a first terminal for device discovery at a first frequency
  • the first control signal receiving module 802 is configured to receive, at the second frequency, a discovery control signal sent by the first terminal for controlling device discovery;
  • the first frequency and the second frequency are different.
  • the apparatus further includes: a discovery signal sending module configured to send the discovery signal to the second terminal on the first frequency.
  • the apparatus further includes: a response signal sending module configured to feed back a response signal of the discovery control signal to the first terminal on the second frequency.
  • Fig. 9 is a schematic block diagram of a signal transceiving apparatus according to an embodiment of the present disclosure.
  • the signal transceiving apparatus shown in this embodiment may be applicable to a first terminal, where the first terminal includes but is not limited to communication apparatuses such as a mobile phone, a tablet computer, a wearable device, a sensor, and an Internet of Things device.
  • the first terminal can be used as user equipment and network side equipment.
  • the network side equipment includes but is not limited to base stations and core networks.
  • the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • a ranging signal transceiving module 901 configured to transmit and receive on a third frequency a ranging signal for determining the distance between terminals;
  • a first control signal transceiving module 902 configured to transceive, on a fourth frequency, a ranging control signal for controlling the determination of the distance;
  • the third frequency and the fourth frequency are different.
  • the ranging signal is transceived based on direct communication techniques.
  • the ranging signal is a second signal sequence of the physical layer.
  • the second signal sequence is used to carry part or all of the L1 identification of the terminal sending the ranging signal.
  • the second signal sequence has a second load, and the second load is used to carry at least one of the following: an identifier of a terminal that sends the ranging signal, a terminal that sends the ranging signal in The identifier of L1, the identifier of the terminal sending the ranging signal at L2, the first time information based on bilateral ranging, the second time information based on bilateral ranging, and the third time information based on bilateral ranging;
  • the first time information represents the time interval from when the target terminal receives the first ranging signal of the initiating terminal to returning the second ranging signal to the initiating terminal;
  • the second time information represents that the initiating terminal receives the first ranging signal.
  • the third time information represents the time from when the originating terminal sends the first ranging signal to when it receives the first ranging signal. 2.
  • the time interval of the ranging signal represents the time interval from when the target terminal receives the first ranging signal of the initiating terminal to returning the second ranging signal to the initiating terminal;
  • the second time information represents that the initiating terminal receives the first ranging signal.
  • the third time information represents the time from when the originating terminal sends the first ranging signal to when it receives the first ranging signal. 2.
  • the time interval of the ranging signal is the time interval from when
  • the second payload is physical layer information, or a control plane data packet, or a user plane data packet.
  • the first control signal transceiving module is configured to send the discovery control signal to the network-side device or the second terminal on the fourth frequency, wherein the distance is the first The distance between a terminal and the second terminal.
  • the ranging control signal includes at least one of the following: ranging request information, ranging response information, ranging failure information, and ranging result information.
  • the ranging request information carries at least one of the following: an identifier of a terminal that receives the ranging request information, ranging capability information of a terminal that sends the ranging request information, a ranging session The identifier, the identifier of the ranging signal at L1, the identifier of the ranging signal at L2, the ranging bandwidth, and the time information for receiving the ranging signal.
  • the ranging response information carries at least one of the following: an identifier of a terminal that receives the ranging response information, ranging capability information of a terminal that sends the ranging response information, a ranging signal
  • the identifier at L1 the identifier of the ranging signal at L2, the ranging bandwidth, and the time information for receiving the ranging signal.
  • the ranging failure information carries at least one of the following: an identifier of a terminal receiving the ranging failure information, a ranging session identifier, a ranging signal quality, and a ranging failure reason.
  • the ranging result information carries at least one of the following: result information based on unilateral ranging, result information based on bilateral ranging, angle of arrival information, information on departure angle, and the distance.
  • the result information based on bilateral ranging includes at least one of the following: first time information based on bilateral ranging, second time information based on bilateral ranging, and third time information based on bilateral ranging , the fourth time information based on bilateral ranging;
  • the first time information represents the time interval from when the target terminal receives the first ranging signal of the initiating terminal to returning the second ranging signal to the initiating terminal;
  • the second time information represents that the initiating terminal receives the first ranging signal.
  • the third time information represents the time from when the originating terminal sends the first ranging signal to when it receives the first ranging signal.
  • the time interval of the ranging signal; the fourth time information represents the time interval from when the target terminal sends the second ranging signal to receiving the third ranging signal.
  • the third frequency is a frequency on a licensed frequency band or a frequency on an unlicensed frequency band.
  • the apparatus further includes: a discovery signal transceiving module configured to transmit and receive a discovery signal for device discovery on a first frequency; a second control signal transceiving module configured to transmit and receive on a second frequency A discovery control signal for controlling device discovery; wherein the first frequency and the second frequency are different.
  • FIG. 10 is a schematic block diagram of a signal receiving apparatus according to an embodiment of the present disclosure.
  • the signal receiving apparatus shown in this embodiment can be applied to network-side equipment, and the network-side equipment can communicate with terminals, and the terminals include but are not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the network side devices include but are not limited to base stations and core networks, and the base stations include but are not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the signal receiving apparatus may include:
  • a ranging signal receiving module 1001 configured to receive a ranging signal sent by a first terminal at a third frequency for determining a distance between terminals;
  • the first control signal receiving module 1002 is configured to receive, at a fourth frequency, a ranging control signal sent by the first terminal for controlling the determination of the distance;
  • the third frequency and the fourth frequency are different.
  • the apparatus further includes: a ranging signal sending module configured to send the ranging signal to the second terminal on the third frequency.
  • the apparatus further includes: a response signal sending module configured to feed back a response signal of the ranging control signal to the first terminal on the fourth frequency.
  • Embodiments of the present disclosure further provide a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the signal transceiving method described in any of the foregoing embodiments is implemented .
  • Embodiments of the present disclosure further provide a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the signal receiving method described in any of the foregoing embodiments is implemented .
  • Embodiments of the present disclosure further provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a processor, implements the steps in the signal transceiving method described in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a processor, implements the steps in the signal receiving method described in any of the foregoing embodiments.
  • FIG. 11 is a schematic block diagram of an apparatus 1100 for signal reception according to an embodiment of the present disclosure.
  • the apparatus 1100 may be provided as a base station. 11, apparatus 1100 includes a processing component 1122, a wireless transmit/receive component 1124, an antenna component 1126, and a signal processing portion specific to a wireless interface, and the processing component 1122 may further include one or more processors.
  • One of the processors in the processing component 1122 may be configured to implement the signal receiving method described in any of the foregoing embodiments.
  • FIG. 12 is a schematic block diagram of an apparatus 1200 for signal transceiving according to an embodiment of the present disclosure.
  • apparatus 1200 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • an apparatus 1200 may include one or more of the following components: a processing component 1202, a memory 1204, a power supply component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1214, And the communication component 1216.
  • the processing component 1202 generally controls the overall operation of the device 1200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include one or more processors 1220 to execute the instructions to complete all or part of the steps of the above-described method for transmitting and receiving signals.
  • processing component 1202 may include one or more modules that facilitate interaction between processing component 1202 and other components.
  • processing component 1202 may include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
  • Memory 1204 is configured to store various types of data to support operations at device 1200 . Examples of such data include instructions for any application or method operating on device 1200, contact data, phonebook data, messages, pictures, videos, and the like. Memory 1204 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 1206 provides power to various components of device 1200.
  • Power supply components 1206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1200 .
  • Multimedia component 1208 includes a screen that provides an output interface between the device 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 1208 includes a front-facing camera and/or a rear-facing camera. When the device 1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 1210 is configured to output and/or input audio signals.
  • audio component 1210 includes a microphone (MIC) that is configured to receive external audio signals when device 1200 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 1204 or transmitted via communication component 1216 .
  • audio component 1210 also includes a speaker for outputting audio signals.
  • the I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 1214 includes one or more sensors for providing status assessment of various aspects of device 1200 .
  • the sensor assembly 1214 can detect the open/closed state of the device 1200, the relative positioning of components, such as the display and keypad of the device 1200, and the sensor assembly 1214 can also detect a change in the position of the device 1200 or a component of the device 1200 , the presence or absence of user contact with the device 1200 , the orientation or acceleration/deceleration of the device 1200 and the temperature change of the device 1200 .
  • Sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1216 is configured to facilitate wired or wireless communication between apparatus 1200 and other devices.
  • Device 1200 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 1216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1216 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1200 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for implementing the above-mentioned signal transceiving method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented for implementing the above-mentioned signal transceiving method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1204 including instructions, is also provided, and the instructions can be executed by the processor 1220 of the apparatus 1200 to complete the signal transceiving method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种信号收发方法,适用于第一终端,所述方法包括:在第一频率上收发用于设备发现的发现信号;在第二频率上收发用于对设备发现进行控制的发现控制信号;其中,所述第一频率和所述第二频率不同。根据本公开,可以在第一频率上收发发现信号,在第二频率上收发发现控制信号,从而实现了在不同频率上分别收发发现信号和发现控制信号。据此,便于对发现信号和发现控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。

Description

信号收发方法和装置、信号接收方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及信号收发方法、信号接收方法、信号收发装置、信号接收装置、通信装置和计算机可读存储介质。
背景技术
基于测距的服务可以利用两个设备之间的相对距离和/或相对角度来提供服务。在进行测距时,设备之间首先要发现对方,然后发送测距信号,进而基于测距信号的收发时间来确定相对距离。
为了确保发现过程和测距过程的顺利进行,还需要通过发现控制信号对发现过程进行合理控制,以及通过测距控制信号对测距过程进行合理控制。
发明内容
有鉴于此,本公开的实施例提出了信号收发方法、信号接收方法、信号收发装置、信号接收装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种信号收发方法,适用于第一终端,所述方法包括:在第一频率上收发用于设备发现的发现信号;在第二频率上收发用于对设备发现进行控制的发现控制信号;其中,所述第一频率和所述第二频率不同。
根据本公开实施例的第二方面,提出一种信号接收方法,适用于网络侧设备,所述方法包括:在第一频率接收第一终端发送的用于设备发现的发现信号;在第二频率接收第一终端发送的用于对设备发现进行控制的发现控制信号;其中,所述第一频率和所述第二频率不同。
根据本公开实施例的第三方面,提出一种信号收发方法,适用于第一终端,所述方法包括:在第三频率上收发用于确定终端之间距离的测距信号;在第四频率上收发用于对确定所述距离进行控制的测距控制信号;其中,所述第三频率和所述第四频率不同。
根据本公开实施例的第四方面,提出一种信号接收方法,适用于网络侧设备, 所述方法包括:在第三频率接收第一终端发送的用于确定终端之间距离的测距信号;在第四频率接收第一终端发送的用于对确定所述距离进行控制的测距控制信号;其中,所述第三频率和所述第四频率不同。
根据本公开实施例的第五方面,提出一种信号收发装置,适用于第一终端,所述装置包括:发现信号收发模块,被配置为在第一频率上收发用于设备发现的发现信号;第一控制信号收发模块,被配置为在第二频率上收发用于对设备发现进行控制的发现控制信号;其中,所述第一频率和所述第二频率不同。
根据本公开实施例的第六方面,提出一种信号接收装置,适用于网络侧设备,所述装置包括:发现信号接收模块,被配置为在第一频率接收第一终端发送的用于设备发现的发现信号;第一控制信号接收模块,被配置为在第二频率接收第一终端发送的用于对设备发现进行控制的发现控制信号;其中,所述第一频率和所述第二频率不同。
根据本公开实施例的第七方面,提出一种信号收发装置,适用于第一终端,所述装置包括:测距信号收发模块,被配置为在第三频率上收发用于确定终端之间距离的测距信号;第一控制信号收发模块,被配置为在第四频率上收发用于对确定所述距离进行控制的测距控制信号;其中,所述第三频率和所述第四频率不同。
根据本公开实施例的第八方面,提出一种信号接收装置,适用于网络侧设备,所述装置包括:测距信号接收模块,被配置为在第三频率接收第一终端发送的用于确定终端之间距离的测距信号;第一控制信号接收模块,被配置为在第四频率接收第一终端发送的用于对确定所述距离进行控制的测距控制信号;其中,所述第三频率和所述第四频率不同。
根据本公开实施例的第九方面,提出一种通信装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述信号收发方法。
根据本公开实施例的第十方面,提出一种通信装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述信号收发方法。
根据本公开实施例的第十一方面,提出一种计算机可读存储介质,用于存储计算机程序,所述程序被处理器执行时实现上述信号收发方法中的步骤。
根据本公开实施例的第十二方面,提出一种计算机可读存储介质,用于存储计算机程序,所述程序被处理器执行时实现上述信号收发方法中的步骤。
根据本公开的实施例,可以在第一频率上收发发现信号,在第二频率上收发发现控制信号,从而实现了在不同频率上分别收发发现信号和发现控制信号。据此,便于对发现信号和发现控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。
还可以在第三频率上收发测距信号,在第四频率上收发测距控制信号,从而实现了在不同频率上分别收发测距信号和测距控制信号。据此,便于对测距信号和测距控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种信号收发方法的示意流程图。
图2是根据本公开的实施例示出的另一种信号收发方法的示意流程图。
图3是根据本公开的实施例示出的一种信号接收方法的示意流程图。
图4是根据本公开的实施例示出的一种信号收发方法的示意流程图。
图5是根据本公开的实施例示出的另一种信号收发方法的示意流程图。
图6是根据本公开的实施例示出的一种信号接收方法的示意流程图。
图7是根据本公开的实施例示出的一种信号收发装置的示意框图。
图8是根据本公开的实施例示出的一种信号接收装置的示意框图。
图9是根据本公开的实施例示出的一种信号收发装置的示意框图。
图10是根据本公开的实施例示出的一种信号接收装置的示意框图。
图11是根据本公开的实施例示出的一种用于信号接收的装置的示意框图。
图12是根据本公开的实施例示出的一种用于信号收发的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
图1是根据本公开的实施例示出的一种信号收发方法的示意流程图。本实施例所示的信号收发方法可以适用于第一终端,所述第一终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述第一终端可以作为用户设备与网络侧设备,所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图1所示,所述信号收发方法可以包括以下步骤:
在步骤S101中,在第一频率上收发用于设备发现的发现信号;
在步骤S102中,在第二频率上收发用于对设备发现进行控制的发现控制信号;
其中,所述第一频率和所述第二频率不同。
需要说明的是,上述步骤S101和步骤S102的执行顺序是不分先后的,可以根 据需要设置执行顺序,还可以同时执行。
在一个实施例中,在发现过程中,第一终端可以作为被发现终端发送发现信号,例如以广播的方式发送发现信号,以使第一终端附近的第二终端(第一终端以外的终端)可以发现第一终端。第一终端也可以作为发现终端接收发现信号,例如接收第一终端附近的第二终端广播的发现信号,从而发现第二终端。进而第一终端和第二终端可以进行通信,例如可以通过通信确定第一终端和第二终端之间的相对测距。
以下主要在第一终端作为被发现终端,第二终端作为发现终端的情况下,对本公开的实施例进行示例性说明。第一终端和第二终端并非特指某些终端,而是指任意两个不同的终端。
在一个实施例中,在发现信号中可以携带有能够表征第一终端身份的信息,以及第一终端进行设备发现所要进行业务的信息,例如在发现信号中携带有第一终端的标识,以及第一终端触发设备发现的应用的标识。
第二终端在接收到发现信号后,根据第一终端的标识可以确定第一终端需要进行通信,根据应用的标识可以确定第一终端需要进行何种业务,进而第二终端可以根据自身需要确定是否与第一终端通信。若确定与第一终端通信,通信时可以采用直接通信方式或间接通信方式,其中,直接通信方式包括但不限于基于直连链路sidelink通信,间接通信方式包括但不限于通过网络侧设备(例如基站、核心网)通信。
在一个实施例中,为了使得发现过程顺利进行,第一终端还可以发送发现控制信号,例如向网络侧设备发送发现控制信号,以与网络侧设备协商在发现过程中第一终端所使用的标识。
在相关技术中,发现信号和发现控制信号在相同频率上收发,但是对于发现信号和发现控制信号而言,两者的内容和功能存在很大区别,两者所需满足的传输要求也有所不同,在同一频率上收发发现信号和发现控制信号,不便于对两者的传输进行控制,并且可能导致一个信号的收发受到另一个信号的干扰。例如多个终端中有的终端发送发现信号,有的终端发送发现控制信号,若第一终端在同一频率上接收发现信号和发现控制信号,可能出现发现信号和发现控制信道同时到达的情况,而第一终端同一时刻只能接收一个信号,从而导致第一终端舍弃掉同时到达的多个信号中的一个信号。
根据本公开的实施例,可以在第一频率上收发发现信号,在第二频率上收发发 现控制信号,从而实现了在不同频率上分别收发发现信号和发现控制信号。据此,便于对发现信号和发现控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。
在一个实施例中,所述发现信号基于直接通信技术收发。例如可以基于sidelink(直连链路)、V2X(vehicle to everything,车与外界通信)、WiFi direct(直连)、UWB(Ultra Wide Band,超带宽)、蓝牙等方式收发发现信号。基于直接通信技术收发发现信号,可以确保被发现终端发出发现信号后,发现终端能够尽快接收到发现信号。
在一个实施例中,所述发现信号为物理层的第一信号序列。其中,第一信号序列包括但不限于Zadoff-Chu序列。
在一个实施例中,所述第一信号序列用于携带被发现终端在L1标识的部分或全部。第一信号序列自身可以携带一些信息,例如可以携带被发现终端在L1标识的部分或全部,具体可以携带的信息量可以取决于信号序列的数量。
需要说明的是,在本公开所有实施例中,L1是指层1,主要包括物理层,L2是指层2,主要包括数据链路层。
在一个实施例中,所述第一信号序列具有第一负载(payload),所述第一负载用于携带以下至少之一:进行设备发现对应应用(application)的标识、被发现终端的标识、被发现终端在L1的标识、被发现终端在L2的标识。
通过为第一信号序列添加第一负载,可以通过第一负载携带更多信息。例如基于应用的标识,第二终端可以确定第一终端进行设备发现所要进行的业务,也即该应用对应的业务,据此可以确定是否要与第一终端通信。
其中,被发现终端的标识可以是终端的唯一标识,例如IMSI(International Mobile Subscriber Identity,国际移动用户识别码),TMSI(Temporary Mobile Subscriber Identity,临时移动用户识别码),S-TMSI,C-RNTI(Radio Network Tempory Identity,无线网络临时标识),I-RNTI,也可以是网络侧设备为被发现终端配置的,在指定时段内和/或指定区域内的唯一临时标识。
在一个实施例中,所述第一负载为物理层信息、或控制面数据包、或用户面数据包,例如可以是MAC PDU(介质访问控制层协议数据单元)。
在一个实施例中,所述发现信号为控制面数据包或用户面数据包。
其中,控制面数据包包括但不限于RRC(无线接入控制层)消息、NAS(非接入层)消息、ProSe(邻近业务)消息等专用控制协议消息,例如发现请求消息、发现响应消息。在发现信号为控制面数据包或用户面数据包的情况下,发现信号仍然作为普通数据(而非控制信息)在所述第一频率上发送。
在一个实施例中,所述在第二频率上收发用于对设备发现进行控制的发现控制信号包括:在所述第二频率上将所述发现控制信号发送至网络侧设备。
第一终端可以将发现控制信号发送给网络侧设备,基于发现控制信号的具体功能,发现控制信号中所携带的内容可以有所不同。例如发现控制信号仅用于与网络侧设备协商用于控制设备发现过程的信息,那么可以不必携带第二终端的标识,网络侧设备也不必将发现控制信息发送给第二终端;而若发现控制信号用于与第二终端协商用于控制设备发现过程的信息,那么需要携带第二终端的标识,网络侧设备需要进一步将发现控制信息发送给第二终端。
其中,用于控制设备发现过程的信息,例如可以是被发现终端在设备发现过程中所用的标识、设备发现过程所用的资源、设备发现过程后通信的资源等。
在一个实施例中,所述发现控制信号用于请求所述网络侧设备为被发现终端分配标识。网络侧设备接收到该发现控制信号后,一方面可以为第一终端分配标识,以供终端在设备发现过程中使用,另一方面还可以选择将分配给第一终端的标识告知第二终端,或者第二终端可以预先得知该标识。
在一个实施例中,所述发现控制信号中还携带有请求所述网络侧设备为被发现终端分配标识的原因。网络侧设备可以基于该原因为第一终端分配标识,例如基于不同的原因可以为第一终端分配不同的标识,所述原因包括但不限于进行设备发现、需要被分配用户设备标识等。
在一个实施例中,所述发现控制信号携带在无线接入控制消息中或携带在非接入层消息中。
在一个实施例中,所述发现控制信号中携带有在设备发现过程中被发现终端的标识,与被发现终端的应用层标识之间的映射关系。
其中,被发现终端的标识可以是用户设备标识,也可以是被发现终端的L1标识、L2标识等。被发现终端的应用层标识,可以对应于被发现终端中触发设备发现的应用的标识,网络侧设备或者发现终端在接收到携带该映射关系的发现控制信号后, 只需接收被发现终端的标识和被发现终端的应用层标识中的一个标识,就能够根据映射关系确定另一个标识。
在一个实施例中,所述第一频率为授权频段上的频率,或非授权频段上的频率。由于发现信号一般所需通信资源较少,所以可以使用非授权频段发送,对于非授权频段占用的时长也会相对较少,不易影响其他需要使用非授权频段设备的通信。其中,为了使用非授权频段,需要对非授权频段进行LBT(Listen Before Talk,先听后说)。
图2是根据本公开的实施例示出的另一种信号收发方法的示意流程图。如图2所示,所述方法还包括:
在步骤S201中,在第三频率上收发用于确定终端之间距离的测距信号;
在步骤S202中,在第四频率上收发用于对确定所述距离进行控制的测距控制信号;
其中,所述第三频率和所述第四频率不同。
在一个实施例中,在第一终端被第二终端发现后,或者发现第二终端后,若第一终端和第二终端确定需要进行基于测距的服务,那么可以进一步进行测距。
在测距过程中,第一终端可以在第三频率上收发用于确定终端之间距离的测距信号,以及在第四频率上收发用于对确定所述距离进行控制的测距控制信号。
由于第三频率和第四频率不同,从而实现了在不同频率上分别收发测距信号和测距控制信号。据此,便于对测距信号和测距控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。
图3是根据本公开的实施例示出的一种信号接收方法的示意流程图。本实施例所示的信号接收方法可以适用于网络侧设备,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图3所示,所述信号接收方法可以包括以下步骤:
在步骤S301中,在第一频率接收第一终端发送的用于设备发现的发现信号;
在步骤S302中,在第二频率接收第一终端发送的用于对设备发现进行控制的发现控制信号;
其中,所述第一频率和所述第二频率不同。
在一个实施例中,第一终端可以在第一频率上发送发现信号,在第二频率上发送发现控制信号,相应地,网络侧设备可以在第一频率接收发现信号,在第二频率上接收发现控制信号。
需要说明的是,上述步骤S301和步骤S302,网络侧设备可以选择性执行,并非两步都要执行,例如可以只执行步骤S302接收发现控制信号,而不接收发现信号。
由于第一频率和第二频率不同,实现了在不同频率上分别接收发现信号和发现控制信号。据此,便于对发现信号和发现控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的接收受到另一个信号的干扰。
在一个实施例中,所述方法还包括:在所述第一频率上将所述发现信号发送至第二终端。网络侧设备在接收到发现信号后,可以在第一频率上将发现信号发送给第二终端,以供第二终端发现第一终端。
在一个实施例中,所述方法还包括:在所述第二频率上向所述第一终端反馈所述发现控制信号的响应信号。第一终端可以在第二频率上向网络侧设备发送发现控制信号,以与网络侧设备协商用于控制设备发现过程的信息,网络侧设备在接收到发现控制信号后,可以向第一终端反馈发现控制信号的响应信号,响应信号中可以携带有协商结果,例如为第一终端分配的在设备发现过程中所用的临时标识。
图4是根据本公开的实施例示出的一种信号收发方法的示意流程图。本实施例所示的信号收发方法可以适用于第一终端,所述第一终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述第一终端可以作为用户设备与网络侧设备,所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图4所示,所述信号收发方法可以包括以下步骤:
在步骤S401中,在第三频率上收发用于确定终端之间距离的测距信号;
在步骤S402中,在第四频率上收发用于对确定所述距离进行控制的测距控制信号;
其中,所述第三频率和所述第四频率不同。
需要说明的是,上述步骤S401和步骤S402的执行顺序是不分先后的,可以根 据需要设置执行顺序,还可以同时执行。
在一个实施例中,在测距过程中,第一终端可以作为测距的起始终端,第二终端可以作为测距的目标终端,反之,第二终端可以作为测距的起始终端,第一终端可以作为测距的目标终端,其中,起始终端是指发起测距的终端,可以向目标终端发送测距信号。
以下主要在第一终端作为起始终端,第二终端作为目标终端的情况下,对本公开的实施例进行示例性说明。第一终端和第二终端并非特指某些终端,而是指任意两个不同的终端。
在一个实施例中,在测距信号中可以携带有能够表征第一终端身份的信息,例如第一终端在L1或L2的标识。
第二终端在接收到测距信号后,可以确定需要与第一终端进行测距,进而可以基于相应的测距算法进行测距。其中,测距算法包括但不限于单边测距、双边测距。
基于单边测距,第一终端向第二终端发送测距信号,第二终端接收到该测距信号后向第一终端发送响应信号(也可以是一个测距信号)。第一终端可以根据从发送测距信号到接收到响应信号的时长,以及第二终端从接收到测距信号到向第一终端发送响应信号的时长,来计算测距信号在第一终端和第二终端之间的往返时间,进而基于往返时间和信号的传播速度(例如光速)来计算第一终端和第二终端的距离。其中,测距信号和响应信号的接收和发送,都可以在第三频率上进行。
需要说明的是,本公开所有实施例中的测距信号可以是一个或多个参考信号。
基于双边测距,第一终端可以在约定的时间窗内向第二终端发送第一测距信号,第二终端在约定的时间窗口内接收第一测距信号;
第二终端接收到第一测距信号后,向第一终端回复第二测距信号,其中,可以计算第二终端接收到第一测距信号,到向第一终端回复第二测距信号的时间间隔作为第一时间信息;
第一终端接收到第二测距信号后,向第二终端回复第三测距信号,其中,可以计算第一终端接收到第二测距信号,到向第二终端回复第三测距信号的时间间隔作为第二时间信息,以及计算第一终端从发送第一测距信号,到接收到第二测距信号的时间间隔作为第三时间信息;
第二终端接收到第三测距信号后,可以计算从发送第二测距信号,到接收到第三测距信号的时间间隔作为第四时间信息。
若需要第一终端计算测距结果,第二终端可以将第一时间信息和第四时间信息发送给第一终端;若需要第二终端计算测距结果,第一终端可以将第二时间信息和第三时间信息发送给第二终端。第一终端和/或第二终端可以根据第一时间信息、第二时间信息、第三时间信息和第四时间信息计算第一终端和第二终端之间的往返时间,进而基于往返时间和信号的传播速度(例如光速)来计算第一终端和第二终端的距离。
在一个实施例中,为了使得测距过程顺利进行,第一终端还可以发送测距控制信号,例如向网络侧设备发送测距控制信号,以与网络侧设备协商在测距过程中第一终端所使用的标识,也可以向第二终端发送测距控制信号,以发送测距结果,指示测距失败等。
在相关技术中,测距信号和测距控制信号在相同频率上收发,但是对于测距信号和测距控制信号而言,两者的内容和功能存在很大区别,两者所需满足的传输要求也有所不同,在同一频率上收发测距信号和测距控制信号,不便于对两者的传输进行控制,并且可能导致一个信号的收发受到另一个信号的干扰。例如多个终端中有的终端发送测距信号,有的终端发送测距控制信号,若第一终端在同一频率上接收测距信号和测距控制信号,可能出现测距信号和测距控制信道同时到达的情况,而第一终端同一时刻只能接收一个信号,从而导致第一终端舍弃掉同时到达的多个信号中的一个信号。
根据本公开的实施例,可以在第三频率上收发测距信号,在第四频率上收发测距控制信号,从而实现了在不同频率上分别收发测距信号和测距控制信号。据此,便于对测距信号和测距控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。
需要说明的是,第三频率和上述实施例中的第一频率可以相同,也可以不同;第四频率和上述实施例中的第二频率可以相同,也可以不同,具体可以根据需要设置。
在一个实施例中,所述测距信号基于直接通信技术收发。例如可以基于sidelink(直连链路)、V2X(vehicle to everything,车与外界通信)、WiFi direct(直连)、UWB(Ultra Wide Band,超带宽)、蓝牙等方式收发测距信号。基于直接通信技术收发测距信号,可以确保起始终端发出测距信号后,目标终端能够尽快接收到测距信号。
在一个实施例中,所述测距信号为物理层的第二信号序列。其中,第二信号序列包括但不限于Zadoff-Chu序列。
在一个实施例中,所述第二信号序列用于携带有发送所述测距信号的终端在L1标识的部分或全部。第一信号序列自身可以携带一些信息,例如可以携带发送所述测距信号的终端在L1标识的部分或全部,具体可以携带的信息量可以取决于信号序列的数量。
在一个实施例中,所述第二信号序列具有第二负载,所述第二负载用于携带以下至少之一:
发送所述测距信号的终端的标识、发送所述测距信号的终端在L1的标识、发送所述测距信号的终端在L2的标识、基于双边测距的第一时间信息、基于双边测距的第二时间信息、基于双边测距的第三时间信息;
其中,所述第一时间信息表征目标终端接收到起始终端的第一测距信号,到向起始终端回复第二测距信号的时间间隔;所述第二时间信息表征起始终端接收到所述第二测距信号,到所述目标终端回复第三测距信号的时间间隔;所述第三时间信息表征所述起始终端从发送所述第一测距信号,到接收到所述第二测距信号的时间间隔。
通过为第一信号序列添加第一负载,可以通过第一负载携带更多信息。其中,发送所述测距信号的终端的标识可以是终端的唯一标识,例如IMSI(International Mobile Subscriber Identity,国际移动用户识别码),TMSI(Temporary Mobile Subscriber Identity,临时移动用户识别码),S-TMSI,C-RNTI(Radio Network Tempory Identity,无线网络临时标识),I-RNTI,也可以是网络侧设备为发送所述测距信号的终端配置的,在指定时段内和/或指定区域内的唯一临时标识。
在双边测距中,当第二终端接收到第三测距信号后,可以计算从发送第二测距信号,到接收到第三测距信号的时间间隔作为第四时间信息。在第二终端接收到第三测距信号之前,第一终端和第二终端之间仍会交互测距信号,在第二终端接收到第三测距信号之前,第一终端和第二终端之间就不会交互测距信号了。
而第一时间信息、第二时间信息、第三时间信息都是在第二终端接收到第三测距信号之前就能计算得到的,因此可以携带在测距信号的负载中发送,而第四时间信息则是在第二终端接收到第三测距信号之后计算得到的,因此可以不通过测距信号的负载中发送,而通过测距控制信息发送。
在一个实施例中,所述第二负载为物理层信息、或控制面数据包、或用户面数据包,例如可以是MAC PDU(介质访问控制层协议数据单元)。
在一个实施例中,所述在第四频率上收发用于对确定所述距离进行控制的测距控制信号包括:在所述第四频率上将所述测距控制信号发送至网络侧设备或第二终端,其中,所述距离为所述第一终端与所述第二终端之间的距离。
第一终端可以将测距控制信号发送给网络侧设备或第二终端,基于测距控制信号的具体功能,测距控制信号可以被发送至网络侧设备获第二终端。例如测距控制信号用于与网络侧设备协商,那么可以将测距控制信号发送至网络侧设备;例如测距控制信号用于携带测距结果,那么可以将测距控制信号发送至第二终端。
在一个实施例中,所述测距控制信号包括以下至少之一:测距请求信息、测距响应信息、测距失败信息、测距结果信息。这些测距控制信息可以使用Uu接口发送,也可以根据需要选择其他接口发送。
在一个实施例中,所述测距请求信息中携带有以下至少之一:
接收所述测距请求信息的终端的标识(也即发送所述测距信号的终端的标识,以供网络侧设备基于该标识将请求信息发送给对应终端)、发送所述测距请求信息的终端的测距能力信息(例如所支持的带宽、天线数量等)、测距会话标识、测距信号在L1的标识、测距信号在L2的标识、测距带宽、接收所述测距信号的时间信息(可以是起始终端接收测距信号的时间窗、也可以是目标终端接收测距信号的时间窗)。
在一个实施例中,所述测距响应信息中携带有以下至少之一:
接收所述测距响应信息的终端的标识、发送所述测距响应信息的终端的测距能力信息(例如所支持的带宽、天线数量等)、测距信号在L1的标识、测距信号在L2的标识、测距带宽、接收所述测距信号的时间信息(可以是起始终端接收测距信号的时间窗、也可以是目标终端接收测距信号的时间窗)。
在一个实施例中,所述测距失败信息中携带有以下至少之一:
接收所述测距失败信息的终端的标识、测距会话标识、测距信号质量、测距失败原因(例如测距信号收发时间早于测距响应信息的接收时间、未收到测距信号、未收到测距响应信息等)。
其中,测距失败可以由以下一种或多种情况导致:测距信号收发时间早于测距 响应信息接收时间,在约定接收测距信号的时段内未收到测距信号,在约定接收测距响应信息的时段内未收到测距响应信息,测距信号质量小于门限值。
在一个实施例中,所述测距结果信息中携带有以下至少之一:
基于单边测距的结果信息、基于双边测距的结果信息、到达角信息、离开角信息、所述距离。
在一个实施例中,所述基于双边测距的结果信息包括以下至少之一:
基于双边测距的第一时间信息、基于双边测距的第二时间信息、基于双边测距的第三时间信息、基于双边测距的第四时间信息;
其中,所述第一时间信息表征目标终端接收到起始终端的第一测距信号,到向起始终端回复第二测距信号的时间间隔;所述第二时间信息表征起始终端接收到所述第二测距信号,到所述目标终端回复第三测距信号的时间间隔;所述第三时间信息表征所述起始终端从发送所述第一测距信号,到接收到所述第二测距信号的时间间隔;所述第四时间信息表征所述目标终端从发送所述第二测距信号,到接收到所述第三测距信号的时间间隔。
在双边测距中,当第二终端接收到第三测距信号后,可以计算从发送第二测距信号,到接收到第三测距信号的时间间隔作为第四时间信息。在第二终端接收到第三测距信号之前,第一终端和第二终端之间仍会交互测距信号,在第二终端接收到第三测距信号之前,第一终端和第二终端之间就不会交互测距信号了。
而第一时间信息、第二时间信息、第三时间信息都是在第二终端接收到第三测距信号之前就能计算得到的,因此可以选择携带在测距信号的负载中发送,也可以选择携带在测距控制信息的结果信息中发送;而第四时间信息则是在第二终端接收到第三测距信号之后计算得到的,因此可以不通过测距信号的负载中发送,而通过测距控制信息发送。
在一个实施例中,所述第三频率为授权频段上的频率,或非授权频段上的频率。由于测距信号(一般是一个参考信号)所需通信资源较少,所以可以使用非授权频段发送,对于非授权频段占用的时长也会相对较少,不易影响其他需要使用非授权频段设备的通信。其中,为了使用非授权频段,需要对非授权频段进行LBT(Listen Before Talk,先听后说)。
图5是根据本公开的实施例示出的另一种信号收发方法的示意流程图。如图5 所示,所述方法还包括:
在步骤S501中,在第一频率上收发用于设备发现的发现信号;
在步骤S502中,在第二频率上收发用于对设备发现进行控制的发现控制信号;
其中,所述第一频率和所述第二频率不同。
在一个实施例中,在进行测距之前或之后,若需要进行发现操作,第一终端可以在第一频率上收发用于设备发现的发现信号,在第二频率上收发用于对设备发现进行控制的发现控制信号。
由于第一频率和第二频率不同,从而实现了在不同频率上分别收发发现信号和发现控制信号。据此,便于对发现信号和发现控制信号的传输进行分别控制,并且可以在一定程度上避免其中一个信号的收发受到另一个信号的干扰。
图6是根据本公开的实施例示出的一种信号接收方法的示意流程图。本实施例所示的信号接收方法可以适用于网络侧设备,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图6所示,所述信号接收方法可以包括以下步骤:
在步骤S601中,在第三频率接收第一终端发送的用于确定终端之间距离的测距信号;
在步骤S602中,在第四频率接收第一终端发送的用于对确定所述距离进行控制的测距控制信号;
其中,所述第三频率和所述第四频率不同。
在一个实施例中,第一终端可以在第三频率上发送测距信号,在第四频率上发送测距控制信号,相应地,网络侧设备可以在第三频率接收测距信号,在第四频率上接收测距控制信号。
需要说明的是,上述步骤S601和步骤S602,网络侧设备可以选择性执行,并非两步都要执行,例如可以只执行步骤S602接收测距控制信号,而不接收测距信号。
由于第三频率和第四频率不同,实现了在不同频率上分别接收测距信号和测距控制信号。据此,便于对测距信号和测距控制信号的传输进行分别控制,并且可以在 一定程度上避免其中一个信号的接收受到另一个信号的干扰。
在一个实施例中,所述方法还包括:在所述第三频率上将所述测距信号发送至第二终端。网络侧设备在接收到测距信号后,可以在第三频率上将测距信号发送给第二终端,以供第二终端与第一终端进行测距。
在一个实施例中,所述方法还包括:在所述第四频率上向所述第一终端反馈所述测距控制信号的响应信号。第一终端可以在第四频率上向网络侧设备发送测距控制信号,以与网络侧设备协商用于控制测距过程的信息,网络侧设备在接收到测距控制信号后,可以向第一终端反馈测距控制信号的响应信号,响应信号中可以携带有协商结果,例如为第一终端分配的在测距过程中所用的临时标识。
与前述的信号收发方法和信号接收方法的实施例相对应,本公开还提供了信号收发装置和信号接收装置的实施例。
图7是根据本公开的实施例示出的一种信号收发装置的示意框图。本实施例所示的信号收发装置可以适用于第一终端,所述第一终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述第一终端可以作为用户设备与网络侧设备,所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图7所示,所述信号收发装置可以包括:
发现信号收发模块701,被配置为在第一频率上收发用于设备发现的发现信号;
第一控制信号收发模块702,被配置为在第二频率上收发用于对设备发现进行控制的发现控制信号;
其中,所述第一频率和所述第二频率不同。
在一个实施例中,所述发现信号基于直接通信技术收发。
在一个实施例中,所述发现信号为物理层的第一信号序列。
在一个实施例中,所述第一信号序列用于携带被发现终端在L1标识的部分或全部。
在一个实施例中,所述第一信号序列具有第一负载,所述第一负载用于携带以下至少之一:进行设备发现对应应用的标识、被发现终端的标识、被发现终端在L1的标识、被发现终端在L2的标识。
在一个实施例中,所述第一负载为物理层信息、或控制面数据包、或用户面数据包。
在一个实施例中,所述发现信号为控制面数据包或用户面数据包。
在一个实施例中,所述控制信号收发模块,被配置为在所述第二频率上将所述发现控制信号发送至网络侧设备。
在一个实施例中,所述发现控制信号用于请求所述网络侧设备为被发现终端分配标识。
在一个实施例中,所述发现控制信号中还携带有请求所述网络侧设备为被发现终端分配标识的原因。
在一个实施例中,所述发现控制信号携带在无线接入控制消息中或携带在非接入层消息中。
在一个实施例中,所述发现控制信号中携带有在设备发现过程中被发现终端的标识,与被发现终端的应用层标识之间的映射关系。
在一个实施例中,所述第一频率为授权频段上的频率,或非授权频段上的频率。
在一个实施例中,所述装置还包括:测距信号收发模块,被配置为在第三频率上收发用于确定终端之间距离的测距信号;第二控制信号收发模块,被配置为在第四频率上收发用于对确定所述距离进行控制的测距控制信号;其中,所述第三频率和所述第四频率不同。
图8是根据本公开的实施例示出的一种信号接收装置的示意框图。本实施例所示的信号接收装置可以适用于网络侧设备,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图8所示,所述信号接收装置可以包括:
发现信号接收模块801,被配置为在第一频率接收第一终端发送的用于设备发现的发现信号;
第一控制信号接收模块802,被配置为在第二频率接收第一终端发送的用于对设备发现进行控制的发现控制信号;
其中,所述第一频率和所述第二频率不同。
在一个实施例中,所述装置还包括:发现信号发送模块,被配置为在所述第一频率上将所述发现信号发送至第二终端。
在一个实施例中,所述装置还包括:响应信号发送模块,被配置为在所述第二频率上向所述第一终端反馈所述发现控制信号的响应信号。
图9是根据本公开的实施例示出的一种信号收发装置的示意框图。本实施例所示的信号收发装置可以适用于第一终端,所述第一终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述第一终端可以作为用户设备与网络侧设备,所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图9所示,所述信号收发装置可以包括:
测距信号收发模块901,被配置为在第三频率上收发用于确定终端之间距离的测距信号;
第一控制信号收发模块902,被配置为在第四频率上收发用于对确定所述距离进行控制的测距控制信号;
其中,所述第三频率和所述第四频率不同。
在一个实施例中,所述测距信号基于直接通信技术收发。
在一个实施例中,所述测距信号为物理层的第二信号序列。
在一个实施例中,所述第二信号序列用于携带有发送所述测距信号的终端在L1标识的部分或全部。
在一个实施例中,所述第二信号序列具有第二负载,所述第二负载用于携带以下至少之一:发送所述测距信号的终端的标识、发送所述测距信号的终端在L1的标识、发送所述测距信号的终端在L2的标识、基于双边测距的第一时间信息、基于双边测距的第二时间信息、基于双边测距的第三时间信息;
其中,所述第一时间信息表征目标终端接收到起始终端的第一测距信号,到向起始终端回复第二测距信号的时间间隔;所述第二时间信息表征起始终端接收到所述第二测距信号,到所述目标终端回复第三测距信号的时间间隔;所述第三时间信息表征所述起始终端从发送所述第一测距信号,到接收到所述第二测距信号的时间间隔。
在一个实施例中,所述第二负载为物理层信息、或控制面数据包、或用户面数据包。
在一个实施例中,所述第一控制信号收发模块,被配置为在所述第四频率上将所述发现控制信号发送至网络侧设备或第二终端,其中,所述距离为所述第一终端与所述第二终端之间的距离。
在一个实施例中,所述测距控制信号包括以下至少之一:测距请求信息、测距响应信息、测距失败信息、测距结果信息。
在一个实施例中,所述测距请求信息中携带有以下至少之一:接收所述测距请求信息的终端的标识、发送所述测距请求信息的终端的测距能力信息、测距会话标识、测距信号在L1的标识、测距信号在L2的标识、测距带宽、接收所述测距信号的时间信息。
在一个实施例中,所述测距响应信息中携带有以下至少之一:接收所述测距响应信息的终端的标识、发送所述测距响应信息的终端的测距能力信息、测距信号在L1的标识、测距信号在L2的标识、测距带宽、接收所述测距信号的时间信息。
在一个实施例中,所述测距失败信息中携带有以下至少之一:接收所述测距失败信息的终端的标识、测距会话标识、测距信号质量、测距失败原因。
在一个实施例中,所述测距结果信息中携带有以下至少之一:基于单边测距的结果信息、基于双边测距的结果信息、到达角信息、离开角信息、所述距离。
在一个实施例中,所述基于双边测距的结果信息包括以下至少之一:基于双边测距的第一时间信息、基于双边测距的第二时间信息、基于双边测距的第三时间信息、基于双边测距的第四时间信息;
其中,所述第一时间信息表征目标终端接收到起始终端的第一测距信号,到向起始终端回复第二测距信号的时间间隔;所述第二时间信息表征起始终端接收到所述第二测距信号,到所述目标终端回复第三测距信号的时间间隔;所述第三时间信息表征所述起始终端从发送所述第一测距信号,到接收到所述第二测距信号的时间间隔;所述第四时间信息表征所述目标终端从发送所述第二测距信号,到接收到所述第三测距信号的时间间隔。
在一个实施例中,所述第三频率为授权频段上的频率,或非授权频段上的频率。
在一个实施例中,所述装置还包括:发现信号收发模块,被配置为在第一频率上收发用于设备发现的发现信号;第二控制信号收发模块,被配置为在第二频率上收发用于对设备发现进行控制的发现控制信号;其中,所述第一频率和所述第二频率不同。
图10是根据本公开的实施例示出的一种信号接收装置的示意框图。本实施例所示的信号接收装置可以适用于网络侧设备,所述网络侧设备可以与终端通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述网络侧设备包括但不限于基站、核心网,所述基站包括但不限于4G基站、5G基站、6G基站等通信系统中的基站。
如图10所示,所述信号接收装置可以包括:
测距信号接收模块1001,被配置为在第三频率接收第一终端发送的用于确定终端之间距离的测距信号;
第一控制信号接收模块1002,被配置为在第四频率接收第一终端发送的用于对确定所述距离进行控制的测距控制信号;
其中,所述第三频率和所述第四频率不同。
在一个实施例中,所述装置还包括:测距信号发送模块,被配置为在所述第三频率上将所述测距信号发送至第二终端。
在一个实施例中,所述装置还包括:响应信号发送模块,被配置为在所述第四频率上向所述第一终端反馈所述测距控制信号的响应信号。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的 存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的信号收发方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的信号接收方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的信号收发方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的信号接收方法中的步骤。
如图11所示,图11是根据本公开的实施例示出的一种用于信号接收的装置1100的示意框图。装置1100可以被提供为一基站。参照图11,装置1100包括处理组件1122、无线发射/接收组件1124、天线组件1126、以及无线接口特有的信号处理部分,处理组件1122可进一步包括一个或多个处理器。处理组件1122中的其中一个处理器可以被配置为实现上述任一实施例所述的信号接收方法。
图12是根据本公开的实施例示出的一种用于信号收发的装置1200的示意框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1220来执行指令,以完成上述的信号收发方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在装置1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只 读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理系统,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当装置1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到装置1200的打开/关闭状态,组件的相对定位,例如所述组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器, 压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述信号收发方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述信号收发方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方 法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (43)

  1. 一种信号收发方法,其特征在于,适用于第一终端,所述方法包括:
    在第一频率上收发用于设备发现的发现信号;
    在第二频率上收发用于对设备发现进行控制的发现控制信号;
    其中,所述第一频率和所述第二频率不同。
  2. 根据权利要求1所述的方法,其特征在于,所述发现信号基于直接通信技术收发。
  3. 根据权利要求1所述的方法,其特征在于,所述发现信号为物理层的第一信号序列。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信号序列用于携带被发现终端在L1标识的部分或全部。
  5. 根据权利要求3所述的方法,其特征在于,所述第一信号序列具有第一负载,所述第一负载用于携带以下至少之一:
    进行设备发现对应应用的标识、被发现终端的标识、被发现终端在L1的标识、被发现终端在L2的标识。
  6. 根据权利要求5所述的方法,其特征在于,所述第一负载为物理层信息、或控制面数据包、或用户面数据包。
  7. 根据权利要求1所述的方法,其特征在于,所述发现信号为控制面数据包或用户面数据包。
  8. 根据权利要求1所述的方法,其特征在于,所述在第二频率上收发用于对设备发现进行控制的发现控制信号包括:
    在所述第二频率上将所述发现控制信号发送至网络侧设备。
  9. 根据权利要求8所述的方法,其特征在于,所述发现控制信号用于请求所述网络侧设备为被发现终端分配标识。
  10. 根据权利要求9所述的方法,其特征在于,所述发现控制信号中还携带有请求所述网络侧设备为被发现终端分配标识的原因。
  11. 根据权利要求8所述的方法,其特征在于,所述发现控制信号携带在无线接入控制消息中或携带在非接入层消息中。
  12. 根据权利要求8所述的方法,其特征在于,所述发现控制信号中携带有在设备发现过程中被发现终端的标识,与被发现终端的应用层标识之间的映射关系。
  13. 根据权利要求1所述的方法,其特征在于,所述第一频率为授权频段上的频 率,或非授权频段上的频率。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    在第三频率上收发用于确定终端之间距离的测距信号;
    在第四频率上收发用于对确定所述距离进行控制的测距控制信号;
    其中,所述第三频率和所述第四频率不同。
  15. 一种信号接收方法,其特征在于,适用于网络侧设备,所述方法包括:
    在第一频率接收第一终端发送的用于设备发现的发现信号;
    在第二频率接收第一终端发送的用于对设备发现进行控制的发现控制信号;
    其中,所述第一频率和所述第二频率不同。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述第一频率上将所述发现信号发送至第二终端。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述第二频率上向所述第一终端反馈所述发现控制信号的响应信号。
  18. 一种信号收发方法,其特征在于,适用于第一终端,所述方法包括:
    在第三频率上收发用于确定终端之间距离的测距信号;
    在第四频率上收发用于对确定所述距离进行控制的测距控制信号;
    其中,所述第三频率和所述第四频率不同。
  19. 根据权利要求18所述的方法,其特征在于,所述测距信号基于直接通信技术收发。
  20. 根据权利要求18所述的方法,其特征在于,所述测距信号为物理层的第二信号序列。
  21. 根据权利要求20所述的方法,其特征在于,所述第二信号序列用于携带有发送所述测距信号的终端在L1标识的部分或全部。
  22. 根据权利要求20所述的方法,其特征在于,所述第二信号序列具有第二负载,所述第二负载用于携带以下至少之一:
    发送所述测距信号的终端的标识、发送所述测距信号的终端在L1的标识、发送所述测距信号的终端在L2的标识、基于双边测距的第一时间信息、基于双边测距的第二时间信息、基于双边测距的第三时间信息;
    其中,所述第一时间信息表征目标终端接收到起始终端的第一测距信号,到向起始终端回复第二测距信号的时间间隔;所述第二时间信息表征起始终端接收到所述第二测距信号,到所述目标终端回复第三测距信号的时间间隔;所述第三时间信息表征 所述起始终端从发送所述第一测距信号,到接收到所述第二测距信号的时间间隔。
  23. 根据权利要求22所述的方法,其特征在于,所述第二负载为物理层信息、或控制面数据包、或用户面数据包。
  24. 根据权利要求18所述的方法,其特征在于,所述在第四频率上收发用于对确定所述距离进行控制的测距控制信号包括:
    在所述第四频率上将所述发现控制信号发送至网络侧设备或第二终端,其中,所述距离为所述第一终端与所述第二终端之间的距离。
  25. 根据权利要求24所述的方法,其特征在于,所述测距控制信号包括以下至少之一:
    测距请求信息、测距响应信息、测距失败信息、测距结果信息。
  26. 根据权利要求25所述的方法,其特征在于,所述测距请求信息中携带有以下至少之一:
    接收所述测距请求信息的终端的标识、发送所述测距请求信息的终端的测距能力信息、测距会话标识、测距信号在L1的标识、测距信号在L2的标识、测距带宽、接收所述测距信号的时间信息。
  27. 根据权利要求26所述的方法,其特征在于,所述测距响应信息中携带有以下至少之一:
    接收所述测距响应信息的终端的标识、发送所述测距响应信息的终端的测距能力信息、测距信号在L1的标识、测距信号在L2的标识、测距带宽、接收所述测距信号的时间信息。
  28. 根据权利要求26所述的方法,其特征在于,所述测距失败信息中携带有以下至少之一:
    接收所述测距失败信息的终端的标识、测距会话标识、测距信号质量、测距失败原因。
  29. 根据权利要求26所述的方法,其特征在于,所述测距结果信息中携带有以下至少之一:
    基于单边测距的结果信息、基于双边测距的结果信息、到达角信息、离开角信息、所述距离。
  30. 根据权利要求29所述的方法,其特征在于,所述基于双边测距的结果信息包括以下至少之一:
    基于双边测距的第一时间信息、基于双边测距的第二时间信息、基于双边测距的 第三时间信息、基于双边测距的第四时间信息;
    其中,所述第一时间信息表征目标终端接收到起始终端的第一测距信号,到向起始终端回复第二测距信号的时间间隔;所述第二时间信息表征起始终端接收到所述第二测距信号,到所述目标终端回复第三测距信号的时间间隔;所述第三时间信息表征所述起始终端从发送所述第一测距信号,到接收到所述第二测距信号的时间间隔;所述第四时间信息表征所述目标终端从发送所述第二测距信号,到接收到所述第三测距信号的时间间隔。
  31. 根据权利要求18所述的方法,其特征在于,所述第三频率为授权频段上的频率,或非授权频段上的频率。
  32. 根据权利要求18至31中任一项所述的方法,其特征在于,所述方法还包括:
    在第一频率上收发用于设备发现的发现信号;
    在第二频率上收发用于对设备发现进行控制的发现控制信号;
    其中,所述第一频率和所述第二频率不同。
  33. 一种信号接收方法,其特征在于,适用于网络侧设备,所述方法包括:
    在第三频率接收第一终端发送的用于确定终端之间距离的测距信号;
    在第四频率接收第一终端发送的用于对确定所述距离进行控制的测距控制信号;
    其中,所述第三频率和所述第四频率不同。
  34. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    在所述第三频率上将所述测距信号发送至第二终端。
  35. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    在所述第四频率上向所述第一终端反馈所述测距控制信号的响应信号。
  36. 一种信号收发装置,其特征在于,适用于第一终端,所述装置包括:
    发现信号收发模块,被配置为在第一频率上收发用于设备发现的发现信号;
    第一控制信号收发模块,被配置为在第二频率上收发用于对设备发现进行控制的发现控制信号;
    其中,所述第一频率和所述第二频率不同。
  37. 一种信号接收装置,其特征在于,适用于网络侧设备,所述装置包括:
    发现信号接收模块,被配置为在第一频率接收第一终端发送的用于设备发现的发现信号;
    第一控制信号接收模块,被配置为在第二频率接收第一终端发送的用于对设备发现进行控制的发现控制信号;
    其中,所述第一频率和所述第二频率不同。
  38. 一种信号收发装置,其特征在于,适用于第一终端,所述装置包括:
    测距信号收发模块,被配置为在第三频率上收发用于确定终端之间距离的测距信号;
    第一控制信号收发模块,被配置为在第四频率上收发用于对确定所述距离进行控制的测距控制信号;
    其中,所述第三频率和所述第四频率不同。
  39. 一种信号接收装置,其特征在于,适用于网络侧设备,所述装置包括:
    测距信号接收模块,被配置为在第三频率接收第一终端发送的用于确定终端之间距离的测距信号;
    第一控制信号接收模块,被配置为在第四频率接收第一终端发送的用于对确定所述距离进行控制的测距控制信号;
    其中,所述第三频率和所述第四频率不同。
  40. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至14和/或权利要求18至32中任一项所述的信号收发方法。
  41. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求15至17和/或权利要求33至35中任一项所述的信号接收方法。
  42. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至14和/或权利要求18至32中任一项所述的信号收发方法中的步骤。
  43. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求15至17和/或权利要求33至35中任一项所述的信号接收方法中的步骤。
PCT/CN2021/090775 2021-04-28 2021-04-28 信号收发方法和装置、信号接收方法和装置 WO2022226851A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001168.2A CN115943690A (zh) 2021-04-28 2021-04-28 信号收发方法和装置、信号接收方法和装置
PCT/CN2021/090775 WO2022226851A1 (zh) 2021-04-28 2021-04-28 信号收发方法和装置、信号接收方法和装置
US18/384,225 US20240057054A1 (en) 2021-04-28 2023-10-26 Signal transmitting/receiving method and apparatus, and signal receiving method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090775 WO2022226851A1 (zh) 2021-04-28 2021-04-28 信号收发方法和装置、信号接收方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/384,225 Continuation US20240057054A1 (en) 2021-04-28 2023-10-26 Signal transmitting/receiving method and apparatus, and signal receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2022226851A1 true WO2022226851A1 (zh) 2022-11-03

Family

ID=83847721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090775 WO2022226851A1 (zh) 2021-04-28 2021-04-28 信号收发方法和装置、信号接收方法和装置

Country Status (3)

Country Link
US (1) US20240057054A1 (zh)
CN (1) CN115943690A (zh)
WO (1) WO2022226851A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578792A (zh) * 2007-01-13 2009-11-11 三星电子株式会社 无线通信系统中利用多个频带发送及接收信号的方法和系统
US20150139213A1 (en) * 2013-11-18 2015-05-21 Qualcomm Incorporated Wireless discovery location and ranging
CN105165070A (zh) * 2013-05-23 2015-12-16 Kddi株式会社 无线终端发现接入点的系统、程序和方法
CN110221243A (zh) * 2018-03-02 2019-09-10 阿里巴巴集团控股有限公司 一种通信网络的定位方法和系统
CN112219437A (zh) * 2020-09-04 2021-01-12 北京小米移动软件有限公司 通信方法、终端、通信节点、通信设备及存储介质
CN112673339A (zh) * 2018-09-28 2021-04-16 苹果公司 移动设备之间的测距

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578792A (zh) * 2007-01-13 2009-11-11 三星电子株式会社 无线通信系统中利用多个频带发送及接收信号的方法和系统
CN105165070A (zh) * 2013-05-23 2015-12-16 Kddi株式会社 无线终端发现接入点的系统、程序和方法
US20150139213A1 (en) * 2013-11-18 2015-05-21 Qualcomm Incorporated Wireless discovery location and ranging
CN110221243A (zh) * 2018-03-02 2019-09-10 阿里巴巴集团控股有限公司 一种通信网络的定位方法和系统
CN112673339A (zh) * 2018-09-28 2021-04-16 苹果公司 移动设备之间的测距
CN112219437A (zh) * 2020-09-04 2021-01-12 北京小米移动软件有限公司 通信方法、终端、通信节点、通信设备及存储介质

Also Published As

Publication number Publication date
CN115943690A (zh) 2023-04-07
US20240057054A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2021026824A1 (zh) 非活动定时器的控制方法和装置
WO2022000361A1 (zh) Ue之间的定位方法及装置、通信设备及存储介质
WO2022126345A1 (zh) Drx配置方法及装置、通信设备和存储介质
EP4145864A1 (en) Prs configuration processing method and apparatus, and communication device and storage medium
WO2022236748A1 (zh) 随机接入方法和装置、通信装置和计算机可读存储介质
WO2021138914A1 (zh) 传输数据的指示方法、装置、通信设备及存储介质
WO2022021326A1 (zh) 带宽资源复用方法及装置、通信设备及存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021248284A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022226851A1 (zh) 信号收发方法和装置、信号接收方法和装置
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022193191A1 (zh) 资源配置方法、装置、终端设备、接入网设备及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2021077266A1 (zh) 网络接入方法、装置、通信设备及存储介质
CN113383596A (zh) 网络分配向量的确定方法、装置及存储介质
WO2023206504A1 (zh) 系统消息处理方法及装置、通信设备及存储介质
WO2022126642A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2023212959A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022227075A1 (zh) 原因确定方法和装置、原因指示方法和装置
WO2022133645A1 (zh) 信息发送方法和装置、关系确定方法和装置
WO2023206090A1 (zh) QoS信息处理方法、装置、通信设备及存储介质
WO2024016194A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2023206037A1 (zh) 定位参考信号发送、定位参考信号接收方法和装置
WO2024031391A1 (zh) 测距或侧行链路定位方法、装置、通信设备及存储介质
WO2023206027A1 (zh) 能力信息发送、能力确定方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938336

Country of ref document: EP

Kind code of ref document: A1