WO2014188718A1 - 光走査デバイスおよび光ビームの走査方法 - Google Patents

光走査デバイスおよび光ビームの走査方法 Download PDF

Info

Publication number
WO2014188718A1
WO2014188718A1 PCT/JP2014/002672 JP2014002672W WO2014188718A1 WO 2014188718 A1 WO2014188718 A1 WO 2014188718A1 JP 2014002672 W JP2014002672 W JP 2014002672W WO 2014188718 A1 WO2014188718 A1 WO 2014188718A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
irradiation
scanning
fiber
Prior art date
Application number
PCT/JP2014/002672
Other languages
English (en)
French (fr)
Inventor
篤義 嶋本
西村 淳一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015518079A priority Critical patent/JP6270829B2/ja
Publication of WO2014188718A1 publication Critical patent/WO2014188718A1/ja
Priority to US14/947,248 priority patent/US20160143515A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres

Definitions

  • the present invention relates to an optical scanning device and a light beam scanning method.
  • Optical scanning devices such as medical or industrial optical scanning endoscope apparatuses and optical scanning microscopes are required to have not only image observation of an object but also a plurality of functions.
  • treatments such as laser ablation (ESD) in addition to imaging can be performed with one apparatus without reinserting the insertion part of the endoscope.
  • ESD laser ablation
  • an industrial optical scanning endoscope it is desirable that laser measurement can be performed with a single device in addition to imaging.
  • the optical scanning microscope can observe not only a biological sample but also a light stimulus.
  • FIG. 15 is a time chart for explaining the temporal change of the beam scanning method when imaging and treatment are performed in parallel in the optical scanning device according to the prior art.
  • frame i and frame i + 2 are frames for imaging. With these frames, laser scanning is performed while the radius of the laser beam gradually increases (t 1 ) while drawing a spiral trajectory from the center, and the laser beam is stopped when the radius of the orbit reaches the maximum. As a result, the amplitude returns to zero. At this time, in order to return the amplitude to 0, settling time (t 2 ) is required.
  • Such spiral scanning enables image observation of a circular area.
  • the treatment laser is irradiated to the treatment region in the circular region. Since the treatment area is deviated from the center of the circular area of the spiral scan, the optical scanning device applies an offset signal (DC signal) to offset the laser irradiation position when performing the treatment scan (t 3 ). .
  • DC signal an offset signal
  • the laser irradiation position is offset, a periodic signal (AC signal) with a small amplitude is added with the offset signal added, and the laser irradiation position is spirally scanned around the offset position (t 4 ).
  • AC signal a periodic signal with a small amplitude
  • the offset signal also stops and the laser irradiation position returns to the origin (t 5 ).
  • the irradiation time (t 4 ) of the therapeutic laser cannot be secured sufficiently long in the frames i + 1 and i + 3 between the imaging frame i, the frame i + 2, and the like.
  • the therapeutic laser could not be irradiated efficiently, and the irradiation intensity per frame was weak.
  • Such a problem similarly applies to an industrial optical scanning endoscope and an optical scanning microscope.
  • the object of the present invention which has been made by paying attention to these points, is to irradiate irradiation light for treatment, measurement, light stimulation, etc. to a designated area in the imaging area during repeated scanning of irradiation light for imaging. Is to provide an optical scanning device and a light beam scanning method.
  • An invention of an optical scanning device that achieves the above object is as follows.
  • the optical scanning device includes a detection unit that detects light obtained from the object by irradiation of light from the light source, The designated region is configured to be selected based on the output of the detection unit in the first irradiation mode.
  • the drive mechanism spirally scans the object.
  • the light source unit includes a light source for imaging and a light source for specific application, and only the light source for imaging is used in the first irradiation mode, and at least the light source for specific application is used in the second irradiation mode.
  • the object is a living tissue
  • the light source for the specific application can be a therapeutic light source.
  • the light source for specific use may be a measurement light source, for example, near infrared light for laser measurement, and various measurement objects may be used in addition to living tissue.
  • the irradiation fiber may be a multi-core fiber having a plurality of cores for guiding light from the imaging light source and light from the specific application light source, respectively.
  • the drive mechanism can include a magnet attached to the optical fiber and a plurality of electromagnetic coils arranged around the magnet.
  • the drive mechanism may include a piezoelectric drive device that drives the optical fiber.
  • the optical scanning device displays the target object as an image based on the output of the detection unit, and designates the designated area on the image displayed on the display unit And an input unit configured to calculate the offset signal based on the designated area designated by the input unit.
  • the invention of a scanning method of a light beam that achieves the above object is as follows: Driving the irradiation fiber whose emission end is swingably held, and repeatedly scanning light from the first light source on a desired region of the object, By scanning light from the first light source, detecting light obtained from the object to generate image information, Select a designated area from the desired area based on the image information, Displace the scanning center by the irradiation fiber to the designated area, A scanning method of a light beam that irradiates the designated area with light from a second light source during each scan of the desired area by the first light source, The displacement of the scanning center is maintained while repeatedly irradiating the designated area with the second light source.
  • the scanning is spiral scanning.
  • the first light source may be an imaging light source
  • the second light source may include a specific use light source.
  • the object is a living tissue
  • the light source for the specific application can be a therapeutic light source.
  • the specific application light source may be a measurement light source.
  • the irradiation fiber may be a multi-core fiber having a plurality of cores for guiding light from the first light source and light from the second light source, respectively.
  • the scanning center can be displaced by the irradiation fiber by driving the optical fiber with electromagnetic force.
  • the scanning center may be displaced by the irradiation fiber by driving the optical fiber using a piezoelectric driving device.
  • an offset signal for irradiating the designated region is given to the drive mechanism, and the offset signal is maintained while irradiation in the second irradiation mode is repeated.
  • the irradiation time per unit irradiation of irradiation light for treatment, measurement, light stimulation, etc. is lengthened to the designated area in the imaging area between adjacent scanning for each time. Can be irradiated efficiently.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an optical scanning endoscope apparatus that is an example of an optical scanning device according to a first embodiment.
  • FIG. FIG. 2 is an external view schematically showing the optical scanning endoscope main body of FIG. 1. It is sectional drawing which shows the front-end
  • FIG. 4 is an enlarged perspective view showing the drive mechanism of FIG. 3. It is a figure which shows schematic structure of the light source part of the optical scanning type endoscope apparatus of FIG. It is a figure which shows schematic structure of the detection part of the optical scanning endoscope apparatus of FIG.
  • FIG. 1 is a diagram schematically showing a schematic configuration of an optical scanning endoscope apparatus 10 which is an example of an optical scanning device according to the first embodiment of the present invention.
  • the optical scanning endoscope apparatus 10 includes an optical scanning endoscope body 20, a light source unit 30, a detection unit 40, a drive current generation unit 50, a control unit 60, a display unit 61, and an input unit 62. It is comprised including.
  • the light source unit 30 and the optical scanning endoscope body 20 are optically connected by an irradiation fiber 11 that is a single mode fiber, and the detection unit 40 and the optical scanning endoscope body 20 are multimode. It is optically connected by a plurality of detection fibers 12 constituted by fibers.
  • the detection unit 40, the drive current generation unit 50, the display unit 61, and the input unit 62 Are connected by a wiring cable.
  • the irradiation cable 11, the detection fiber 12, and the drive current generator 50 and the wiring cable 13 that connects the optical scanning endoscope main body 20 are guided through the optical scanning endoscope main body 20 to the tip.
  • the irradiation fiber 11 is held in a distal end portion of the optical scanning endoscope main body 20 so that an emission end portion of the irradiation light (a distal end portion that emits light from the light source portion 30 of the irradiation fiber 11) can swing. .
  • the irradiation fiber 11 can irradiate the observation object 100 (object) with the laser light from the light source unit 30.
  • the wiring cable 13 is connected to a drive mechanism 21 in the distal end portion of the optical scanning endoscope body 20.
  • the drive mechanism 21 can vibrate the tip of the irradiation fiber 11.
  • the detection fiber 12 is arranged so that light from the observation object 100 is incident on the surface of the distal end portion of the optical scanning endoscope body 20 at the incident end, and the received light from the observation object 100 is received. The light is guided to the detection unit 40.
  • FIG. 2 is a schematic view schematically showing the optical scanning endoscope main body 20.
  • the optical scanning endoscope body 20 includes an operation unit 22 and an insertion unit 23 extending from one end of the operation unit 22.
  • the operation unit 22 is connected to the irradiation fiber 11 from the light source unit 30, the detection fiber 12 from the detection unit 40, and the wiring cable 13 from the drive current generation unit 50.
  • the irradiation fiber 11, the detection fiber 12, and the distribution cable 13 are guided through the operation unit 22 to the distal end portion 24 (the portion in the broken line portion in FIG. 2) located at the distal end of the insertion portion 23 through the insertion portion 23. ing.
  • FIG. 3 is a cross-sectional view of the distal end portion 24 of the optical scanning endoscope body 20 of FIG.
  • the irradiation fiber 11 that has passed through the insertion portion 23 is attached to the inner wall of the distal end portion 24 of the optical scanning endoscope body 20 together with the rectangular tube 71 that is disposed so as to surround the irradiation fiber 11. 26 is fixed and held.
  • the irradiation fiber 11 is held in a cantilevered state by the fixing portion 11a by the mounting ring 26 (see FIG. 4), and from here to the emission end portion 11c that emits irradiation light, the oscillating portion in the square tube 71 It is a possible swinging part 11b.
  • a projection lens 25 is provided in front of the emission end portion 11 c of the irradiation fiber 11 so that the light emitted from the irradiation fiber 11 is condensed on the observation object 100.
  • the plurality of detection fibers 12 are arranged so as to pass through the outer periphery of the insertion portion 23 of the optical scanning endoscope main body 20, and the incident end portion 12 a is around the projection lens 25 at the distal end of the distal end portion 24. Is arranged.
  • the square tube 71 is formed in a quadrangular prism side surface shape, and sheet-like electromagnetic coils 72a to 72d for generating a deflection magnetic field are arranged on each side surface.
  • the electromagnetic coils 72 a to 72 d constitute a part of the drive mechanism 21.
  • FIG. 4 is an enlarged perspective view showing the drive mechanism 21 of FIG.
  • a permanent magnet 73 magnetized in the longitudinal direction of the irradiation fiber 11 is attached to the swinging portion 11 b of the irradiation fiber 11.
  • the permanent magnet 73 is provided with a through hole for allowing the irradiation fiber 11 to penetrate along the axis of the cylindrical magnet.
  • the above-described electromagnetic coils 72 a to 72 d are arranged to face one pole of the permanent magnet 73.
  • FIG. 4 only the electromagnetic coils 72a and 72b are displayed, but electromagnetic coils 72c and 72d are arranged on the surface of the rectangular tube 71 opposite to the surface where the electromagnetic coils 72a and 72b are arranged, respectively. Yes.
  • FIG. 5 is a diagram showing a schematic configuration of the light source unit 30 of the optical scanning endoscope apparatus 10 of FIG.
  • the light source unit 30 includes a red light source 31, a green light source 32, and a blue light source 33 that emit CW (continuous oscillation) laser light of three primary colors of red, green, and blue, and a treatment light source 34 (specific identification) for performing laser treatment, respectively.
  • a light source for use a combining unit 35 that combines the light from each light source, and a main body connecting unit 36 that guides the light combined by the combining unit to the irradiation fiber 11.
  • the red light source 31, the green light source 32, and the blue light source 33 constitute a first light source
  • the treatment light source 34 constitutes a second light source.
  • the red light source 31 the green light source 32, and the blue light source 33
  • semiconductor lasers having respective wavelengths of 640 nm, 532 nm, and 445 nm can be used.
  • the therapeutic light source 34 is a light source that emits light having a wavelength different from the above, and is, for example, an ultraviolet ( ⁇ 405 nm) laser.
  • the multiplexing unit 35 includes a dichroic mirror, a fiber combiner, and the like. Further, the main body connecting portion 36 is configured using a fiber connector (FC), a fiber coupling lens, or the like.
  • the red light source 31, the green light source 32, the blue light source 33, and the treatment light source 34 are connected to the control unit 60 by a wiring cable.
  • FIG. 6 is a diagram showing a schematic configuration of the detection unit 40 of the optical scanning endoscope apparatus 10 of FIG.
  • the detection unit 40 includes a red light receiver 41, a green light receiver 42, and a blue light receiver 43 that detect light of red, green, and blue wavelengths, and a demultiplexing unit that demultiplexes the detected light into light of each color. 45 and a main body connection portion 46 that guides light to be detected from the detection fiber 12 into the detection portion 40.
  • a photodiode provided with a filter corresponding to the wavelength of each color can be used.
  • the demultiplexing unit 45 can be configured using a dichroic mirror, a diffraction grating, or the like.
  • the main body connecting portion 46 can be configured using a fiber connector (FC connector) or a fiber coupling lens. Note that the outputs of the red light receiver 41, the green light receiver 42, and the blue light receiver 43 are connected to the control unit 60 through a wiring cable.
  • control unit 60 in FIG. 1 controls the light source unit 30, the detection unit 40, and the drive current generation unit 50 synchronously, processes the electrical signal output by the detection unit 40, synthesizes an image, and displays the display unit 61. To display. Further, various settings such as the scanning speed and the brightness of the display image can be performed on the optical scanning endoscope apparatus 10 from the input unit 62.
  • the light from the red light source 31, the green light source 32, and the blue light source 33 is combined by the combining unit 35 in the light source unit 30 under the control of the control unit 60.
  • the light is guided to the distal end portion 24 of the optical scanning endoscope body 20 by the irradiation fiber 11.
  • the drive current generator 50 applies current to the electromagnetic coils 72 a to 72 d constituting the drive mechanism 21 via the wiring cable 13.
  • the irradiation fiber 11 vibrates so that the tip end portion 11c draws a spiral, and the light emitted from the irradiation fiber 11 spirally scans the surface of the observation object 100 (first irradiation mode).
  • FIG. 7A and 7B are diagrams for explaining a scanning waveform when imaging is performed, where FIG. 7A shows a waveform in the x-axis direction and FIG. 7B shows a waveform in the y-axis direction.
  • the direction in which the electromagnetic coils 72a and 72c face each other is the y-axis direction
  • the direction in which the electromagnetic coils 72b and 72d face each other is the x-axis direction.
  • the waveform in the x-axis direction and the waveform in the y-axis direction are driven so that the phases are shifted from each other by about 90 degrees.
  • the amplitude of the emission end portion 11c of the irradiation fiber 11 gradually oscillates greatly, so that the scanning waveform on the observation object 100 also expands with time.
  • the light source unit 30 stops emitting the irradiation light, and the drive current from the drive current generation unit 50 also rapidly returns to 0 (the broken line portions in FIGS. 7A and 7B). Corresponding to).
  • the scanning trajectory on the observation object 100 becomes as shown in FIG. Reference numeral 81 in FIG. 8 indicates the scanning center.
  • the detection fiber 12 By irradiation of the irradiation light on the observation object 100, reflected light, scattered light, or light such as fluorescence generated from the observation object 100 (detected light) is generated, and a part of the light is detected by the detection fiber 12.
  • the light enters the incident end 12 a directed to the object 100.
  • the light to be detected is guided to the detection unit 40 by the detection fiber 12, and is demultiplexed by the demultiplexing unit 45 in the detection unit 40. For each wavelength component, the red light receiver 41, the green light receiver 42, and the blue light receiver. 43.
  • the control unit 60 calculates information on the scanning position on the scanning path from the waveform, intensity, phase, and the like of the current applied by the drive current generation unit 50, and from the electrical signal output from the detection unit 40, Pixel data of the observation object 100 is obtained.
  • the control unit 60 sequentially stores information on the scanning position and pixel data in a storage unit (not shown), and generates an image of the observation object 100 by performing necessary processing such as interpolation processing after the scanning is completed or during the scanning. And displayed on the display unit 61. By repeatedly scanning the observation object 100, data as a moving image is obtained. This makes it possible to confirm the affected area to be treated on the display unit 61, and to designate the designated area to be treated from the spiral scanned area.
  • the designated area 82 can be designated from the scanning range by the irradiation light of FIG.
  • the designation of the designated area 82 may be designated by the user of the optical scanning microscope apparatus 10 while looking at the display unit 61, or the control unit 60 may automatically specify the image by analyzing the image. It is.
  • FIG. 9 is a time chart of the drive currents of the electromagnetic coils 72b and 72d that apply the magnetic field in the x-axis direction when the designated region to be treated is in the x-axis direction of the scanning center 81.
  • FIG. 9 is an imaging frame for performing imaging in a state before treatment is started.
  • the length of one imaging frame is 1/30 seconds, for example.
  • This imaging frame is repeatedly executed when the therapeutic laser is not irradiated.
  • a treatment frame for performing treatment is executed after frame i at the same length as the imaging frame (that is, 1/30 second). Thereafter, imaging and treatment are performed. And are performed alternately. That is, in FIG. 9, frames i and i + 2 are imaging frames, and frames i + 1 and i + 3 are treatment frames.
  • a settling time (t 2 ) for converging the amplitude to 0 is required.
  • a direct current (offset signal (I 0 )) is applied to the electromagnetic coils 72b and 72d in order to displace the vibration center of the irradiation fiber 11 in the frame i + 1 to the direction in which the designated region 82 in the x-axis direction is irradiated.
  • treatment laser irradiation is performed from the treatment light source 34 of the light source unit 30 (t 4 ).
  • an alternating current having a smaller amplitude than that in the case of the imaging frame is applied to the electromagnetic coils 72a to 72d of the drive mechanism 21 to irradiate a partial region (designated region) in a desired region to be observed ( Second irradiation mode).
  • no alternating current is applied to the drive mechanism 21 between the treatment frames, and therefore, only a single spot in the designated region 82 may be irradiated (in FIG. 9, the current applied to the drive mechanism 21 during treatment). Is shown as a straight line for simplicity).
  • the imaging frame i + 2 is entered again after the treatment frame i + 1, irradiation light is emitted from the red light source 31, the green light source 32, and the blue light source 33 of the light source unit 30, and spiral scanning of the observation object 100 is started.
  • the direct current applied to the electromagnetic coils 72b and 72d is maintained as it is, and accordingly, the state where the position of the scanning center 81 on the observation object 100 is displaced is also maintained as it is.
  • FIG. 10 is a diagram for explaining the scanning waveform of the frame i + 2 in FIG. 9, where (a) shows the waveform in the x-axis direction and (b) shows the waveform in the y-axis direction.
  • the vibration center is displaced by the direct current component of the electromagnetic force acting between the electromagnetic coils 72 b and 72 d and the permanent magnet 73. Therefore, the scanning trajectory on the observation object 100 is a spiral scan centered on the scanning center 81 that coincides with the designated area 82 as shown in FIG. For this reason, the display image by the display part 61 is also displayed centering on the designated area 82 for treatment.
  • the amplitude of the spiral scan for imaging in the frame i + 2 is smaller than the size of the designated area 82 (that is, while the scanning position is inside the designated area 82 in FIG. 11), simultaneously with imaging, Irradiation can be continued.
  • sampling is denser in the vicinity of the scanning center 81 having a small amplitude than in the peripheral portion.
  • a part of the pixels in the vicinity of the scanning center is not used and is wasted, but the scanning at a position having a small amplitude can be effectively used in the irradiation with the therapeutic laser. Accordingly, as shown in FIG.
  • the treatment time (t 4 ) by the treatment laser partially overlaps the imaging time (t 1 ) from the offset of frame i + 1 to the initial stage of spiral scanning of frame i + 2. It can be carried out. As a result, it is possible to lengthen the irradiation time of the therapeutic laser as compared with the prior art.
  • the irradiation of the therapeutic laser is started when the vibration of the irradiation fiber 11 converges to some extent during the settling time (t 2 ) for returning the amplitude to zero. Can do.
  • a longer treatment time t 4 can be secured, so that the irradiation intensity of the treatment laser as a whole can be increased.
  • the electromagnetic coil 72b of the driving mechanism 21 is stopped until the treatment is stopped by an instruction from the input unit 62 by the user or by determination from the image data acquired by the control unit 60 by imaging. , 72d (the offset signal (I 0 )) is maintained.
  • a desired region of the observation object 100 is repeatedly scanned for imaging by the irradiation light from the red light source 31, the green light source 32, and the blue light source 33 of the light source unit 30.
  • the designated region 82 selected from the desired region is treated with the treatment from the treatment light source 34 during each scan for temporally adjacent imaging.
  • an offset signal (I 0) due to a direct current is applied to the electromagnetic coil of the drive mechanism 21 for irradiation of the designated region 82.
  • the scanning center 81 and the center of the designated area 82 to be treated coincide with each other. Therefore, when the amplitude of the spiral scanning for imaging is small, the treatment laser Since irradiation can be performed, the irradiation time of the therapeutic laser can be further increased. This makes it possible to increase the total irradiation energy of the therapeutic laser per unit frame while keeping the frame rate of the imaging frame high.
  • the direction of the designated area 82 for displacing the scanning center 81 is the x-axis direction, which is a direction in which a pair of electromagnetic coils 72b and 72d are opposed to each other. Any direction on the xy plane may be used.
  • the scanning center 81 can be displaced in a desired direction.
  • the drive mechanism 21 is not limited to the one using a square tube, and various configurations are possible.
  • the electromagnetic coil can be arranged using a cylindrical tube instead of the square tube.
  • the red light source 31, the green light source 32, and the blue light source 33 for imaging may be stopped during the time other than the imaging time (t 1 ), or may be constantly lit. Further, in order to detect light obtained from the observation object 100, for example, an element for light detection is provided at the distal end portion 24 of the optical scanning endoscope body 20 instead of the detection fiber 12 and the detection unit 40. The output signal may be transmitted to the control unit via a wiring cable.
  • FIG. 12 is a cross-sectional view of the irradiation multi-core fiber of the optical scanning endoscope apparatus according to the second embodiment.
  • an irradiation multi-core fiber 91 is used instead of the irradiation fiber 11 that is a single core fiber in the first embodiment.
  • the irradiation multi-core fiber 91 has an imaging core 92 and four therapeutic cores 93a to 93d.
  • the imaging core 92 is positioned at the center of the irradiation multi-core fiber 91, and the treatment cores 93a to 93d are arranged at 90 degrees apart from each other at positions approximately equidistant from the imaging core 92.
  • the light source unit in this case is different from the light source unit 30 shown in FIG. 5, and the red light source 31, the green light source 32, and the blue light source 33 are combined by the combining unit 35 and connected to the imaging core 92.
  • four treatment light sources 34 are prepared, and each is connected to the treatment cores 93a to 93d. Since other configurations are the same as those of the first embodiment, the same or corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 13 is a diagram showing scanning of the observation object 100 by the irradiation multi-core fiber 91 of FIG. According to this, the imaging region 94 centering on the scanning center of the imaging core 92 is scanned by spiral scanning of the irradiation multi-core fiber 91.
  • FIG. 14 is a diagram for explaining a state in which the irradiation position 93a ′ of the therapeutic laser is displaced to the center of the designated region 95 using the irradiation multi-core fiber 91 of FIG.
  • a therapeutic laser is irradiated to the designated region 95 by applying an alternating current having a small amplitude to the driving mechanism.
  • spiral scanning is performed. Thereafter, until the irradiation of the therapeutic laser is stopped, the therapeutic laser is irradiated between the imaging frames adjacent in time, and the offset signal applied to the drive mechanism 21 is maintained during that time.
  • the scanning center at the time of imaging does not coincide with the designated area 95.
  • the position of the scan center is switched between the imaging frame and the treatment frame (The time required to turn on / off the offset becomes unnecessary, and the time for irradiating the treatment laser can be lengthened. Therefore, it is possible to efficiently irradiate the designated region 82 in the imaging region with the treatment light. become. Furthermore, since the irradiation position closest to the designated area 82 can be selected from the four treatment cores 93a to 93d, the distance for displacing the scanning center by the direct current (offset signal) applied to the drive mechanism 21 can be reduced. Can do. Therefore, the drive current can be reduced compared to the case where a single core fiber is used, and more stable scanning is possible.
  • the number and arrangement of the imaging core 92 and the treatment cores 93a to 93d of the irradiation multi-core fiber 91 are merely examples, and many other core arrangements are possible. Further, it is not necessary to fix the imaging core 92 and the therapeutic cores 93a to 93d, and the light source unit 30 can switch between the imaging light source and the therapeutic light source. Alternatively, only one treatment light source 34 may be prepared and connected to one of the treatment cores 93a to 93d to be used.
  • the drive mechanism is not limited to one using an electromagnetic coil and a magnet, and may be one using a piezoelectric element (piezoelectric drive device).
  • piezoelectric drive device For example, four piezoelectric elements that can be expanded and contracted in the direction along the axis of the irradiation fiber are arranged facing the x direction and the y direction of the swinging portion of the irradiation fiber, respectively, and vibrations in the opposite phase to the opposing piezoelectric elements.
  • the irradiation fiber can be driven to vibrate.
  • a drive voltage generation unit that supplies a drive voltage to the piezoelectric element by control from the control unit is provided.
  • the scanning method for performing imaging is not limited to spiral scanning, and can be applied to raster scanning and Lissajous scanning. Also in this case, it is not necessary to shift the scanning position each time between the first irradiation mode and the second irradiation mode for imaging, so that efficient irradiation in the second irradiation mode becomes possible.
  • spiral scanning since the irradiation direction of the irradiation light always returns to the origin at the end of scanning, if the scanning center is shifted to the designated area by applying the present invention, the designated area can be observed as it is. So it is more efficient.
  • the first irradiation mode in addition to or in place of light from the blue, green, and red light sources for imaging, light having a wavelength suitable for NBI observation and fluorescence observation (light for measurement) is used. ), And by visually observing or analyzing an image of an object, for example, an affected part of a human body, it is possible to identify a site to be treated and determine a designated region for performing the treatment. .
  • the second irradiation mode in addition to the treatment light, or in place of the treatment light, the measurement wavelength can be irradiated to irradiate the designated region. good.
  • the present invention can be applied not only to the treatment use but also to the measurement use, and it is also possible to perform only the measurement or both the measurement and the treatment.
  • the present invention is not limited to a therapeutic optical scanning endoscope apparatus, but also in an industrial optical scanning endoscope, when imaging and measuring a specific area, or in an optical scanning microscope, imaging and a specific area.
  • the present invention can be applied to various devices, for example, when light stimulation is given to the device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Surgery Devices (AREA)
  • Endoscopes (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

 光走査型内視鏡装置は、出射端部が揺動可能に保持され、光源部からの光を対象物に照射する照射用ファイバと、照射用ファイバの出射端部を駆動し、光源からの光を対象物に照射させる駆動機構とを備え、光源からの光により対象物の所望の領域を繰り返し走査するイメージング用の第1の照射モード(t1に対応)と、対象物の所望の領域から選択された指定領域を、時間的に隣接する各前記第1の照射モードの走査の間に照射する第2の照射モード(t4に対応)とを有し、第2の照射モードが開始されると、駆動機構に指定領域を照射するオフセット信号(I0)を与え、第2の照射モードによる照射が繰り返される間は、オフセット信号を維持する。

Description

光走査デバイスおよび光ビームの走査方法 関連出願の相互参照
 本出願は、2013年5月21日に出願された日本国特許出願2013-107307号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、光走査デバイスおよび光ビームの走査方法に関する。
 医療用または工業用の光走査型内視鏡装置や光走査型顕微鏡などの、光走査デバイスでは、対象物の画像観察のみならず、複数の機能を併せ持った装置が求められている。例えば、医療用の光走査型内視鏡の分野では、イメージングに加えてレーザーアブレーション(ESD)等の治療が、内視鏡の挿入部を挿入し直さずに一つの装置でできることが望まれている。また、工業用の光走査型内視鏡では、イメージングに加えレーザ計測を一つの装置でできることが望ましい。さらに、光走査型顕微鏡では、生体試料を顕微鏡観察するだけではなく、光刺激を与えて観察できることが望ましい。
 このため、特許文献1に開示されている光走査デバイスでは、先端部が揺動可能に保持されたファイバを用い、イメージングのためのレーザのスパイラル走査と治療用レーザの照射との双方を行うことが記載されている。図15は、従来技術による光走査デバイスにおいて、イメージングと治療とを並行して行う場合のビーム走査方法の時間変化を説明するタイムチャートである。この図において、フレームiとフレームi+2とはイメージングのためのフレームである。これらのフレームで、レーザの照射位置が、中心かららせん状の軌跡を描きながら半径を徐々に拡大する間(t1)レーザ走査を行い、軌道の半径が最大となったところでレーザの照射を停止して振幅が0に戻る。このとき振幅を0に戻すために、整定時間(t2)が必要となる。このようなスパイラル走査によって、円形領域の画像観察が可能になる。
 一方、フレームi+1およびi+3では、円形領域内の治療領域に治療用レーザを照射する。治療領域は、スパイラル走査の円形領域の中心からはずれているため、光走査デバイスは、治療用の走査を行う場合は、オフセット信号(直流信号)を印加しレーザ照射位置をオフセットさせる(t3)。レーザ照射位置がオフセットされると、オフセット信号を加えた状態で、小さい振幅での周期信号(交流信号)を加え、レーザ照射位置を、オフセット位置を中心に小さくスパイラル走査させる(t4)。これによって、円形領域内の任意の位置への治療用レーザの照射が可能となる。治療用レーザの照射が終了すると、オフセット信号も停止しレーザ照射の位置は原点に戻る(t5)。
特表2009-516568号公報
 しかしながら、特許文献1に記載の光走査デバイスによれば、各イメージングフレームの間に、治療用レーザの走査中心の位置を、イメージング用の円形領域の中心からオフセットさせ、さらに、治療用レーザの照射が終了するとオフセットを停止して、レーザの照射位置を原点に戻している。このため、各イメージングフレームの間で、オフセットをオン・オフさせる時間(t3,t5)が、その都度かかってくる。また、オフセットのオン・オフの直後には、ファイバの先端に不所望な振動が発生し、この振動を収束させる時間が必要となるため、オフセットのオン・オフにかかる時間(t3,t5)を簡単には短くすることはできない。
 以上のようなことから、従来技術では、イメージングフレームi、フレームi+2等の間のフレームi+1,i+3で、治療用のレーザの照射時間(t4)を十分に長く確保することができなかった。その結果、治療用レーザを効率的に照射することができず、1フレーム当たりの照射強度が弱かった。このような課題は、工業用の光走査型内視鏡や光走査型顕微鏡においても、同様に当てはまる。
 したがって、これらの点に着目してなされた本発明の目的は、イメージング用の照射光の繰り返し走査の間に、イメージング領域内の指定領域へ、治療用、計測用、光刺激用等の照射光を効率よく照射できる光走査デバイスおよび光ビームの走査方法を提供することにある。
 上記目的を達成する光走査デバイスの発明は、
 出射端部が揺動可能に保持され、光源部からの光を対象物に照射する照射用ファイバと、
 前記照射用ファイバの前記出射端部を駆動し、前記光源からの光を前記対象物に照射させる駆動機構とを備え、
 前記光源からの光により前記対象物の所望の領域を繰り返し走査するイメージング用の第1の照射モードと、前記対象物の前記所望の領域から選択された指定領域を、時間的に隣接する各前記第1の照射モードの走査の間に照射する第2の照射モードとを有し、前記第2の照射モードが開始されると、前記駆動機構に前記指定領域を照射するためのオフセット信号を与え、前記第2の照射モードによる照射が繰り返される間は、前記オフセット信号を維持するように構成されていることを特徴とするものである。
 また、好適には、前記光走査デバイスは、前記光源からの光の照射により、前記対象物から得られる光を検出する検出部を備え、
 前記指定領域は、前記第1の照射モードによる前記検出部の出力に基づいて選択されるように構成されている。
 また、前記第1の照射モードにおいて、前記駆動機構は前記対象物をスパイラル走査することが好ましい。
 さらに、前記光源部は、イメージング用の光源と特定用途用の光源とを備え、前記第1の照射モードではイメージング用の光源のみを用い、前記第2の照射モードでは少なくとも前記特定用途用の光源を用いることができる。ここで、前記対象物は生体組織であり、前記特定用途用の光源は治療用光源とすることができる。あるいは、前記特定用途用の光源は、計測用光源、例えば、レーザ計測用の近赤外光を用い、対象物としては生体組織の他、種々の計測対象物を用いることができる。
 また、前記照射用ファイバは、それぞれ前記イメージング用の光源からの光と前記特定用途用の光源からの光とを導光する複数のコアを有するマルチコアファイバとしても良い。
 また、前記駆動機構は、前記光ファイバに取り付けられた磁石と、該磁石の周りに配置された複数の電磁コイルを含んで構成することができる。あるいは、前記駆動機構は、前記光ファイバを駆動する圧電駆動デバイスを含んで構成しても良い。
 さらに、光走査デバイスは、前記第1の照射モードにおいて、前記検出部の出力に基づいて前記対象物を画像として表示する表示部と、該表示部に表示された画像上で前記指定領域を指定するための入力手段とを備え、前記入力手段により指定された前記指定領域に基づいて、前記オフセット信号を算出するように構成されていても良い。
 上記目的を達成する光ビームの走査方法の発明は、
 出射端部が揺動可能に保持された照射用ファイバを振動駆動して、第1の光源からの光を対象物の所望の領域に繰り返し走査させ、
 前記第1の光源からの光の走査により、前記対象物から得られる光を検出して画像情報を生成し、
 前記画像情報に基づいて前記所望の領域から指定領域を選択し、
 前記指定領域に前記照射用ファイバによる走査中心を変位させ、
 前記第1の光源による前記所望の領域の各走査の間に、第2の光源からの光により前記指定領域を照射する光ビームの走査方法であって、
 前記第2の光源により前記指定領域の照射を繰り返し行う間は、前記走査中心の変位を維持することを特徴とするものである。
 好適には、前記走査はスパイラル走査である。
 また、前記第1の光源は、イメージング用の光源であり、前記第2の光源は特定用途用の光源を含むことができる。また、前記対象物は生体組織であり、前記特定用途用の光源は治療用光源とすることができる。あるいは、前記特定用途用の光源は、計測用光源とすることができる。
 さらに、前記照射用ファイバは、それぞれ前記第1の光源からの光と前記第2の光源からの光とを導光する複数のコアを有するマルチコアファイバとしても良い。
 また、前記照射用ファイバによる前記走査中心の変位は、前記光ファイバを電磁力で駆動することにより行うことができる。あるいは、前記照射用ファイバによる前記走査中心の変位は、前記光ファイバを、圧電駆動デバイスを用いて駆動することにより行っても良い。
 本発明によれば、第2の照射モードが開始されると、駆動機構に指定領域を照射するためのオフセット信号を与え、第2の照射モードによる照射が繰り返される間は、オフセット信号を維持するようにしたので、各時間的に隣接するイメージング用の走査の間に、イメージング領域内の指定領域へ、治療用、計測用、光刺激用等の照射光の単位照射当たりの照射時間を長くし、効率よく照射することができる。
第1実施の形態に係る光走査デバイスの一例である光走査型内視鏡装置の概略構成を示すブロック図である。 図1の光走査型内視鏡本体を概略的に示す外観図である。 図1の光走査型内視鏡本体の先端部を示す断面図である。 図3の駆動機構を拡大して示す斜視図である。 図1の光走査型内視鏡装置の光源部の概略構成を示す図である。 図1の光走査型内視鏡装置の検出部の概略構成を示す図である。 イメージングを行う場合の走査波形を説明する図であり、(a)はx軸方向の波形を、(b)はy軸方向の波形を示す。 イメージングを行う場合の走査軌跡を示す図である。 イメージングと治療とを並行して行う場合の駆動機構に印加する駆動電流を示すタイムチャートである。 図9のフレームi+2の走査波形を説明する図であり、(a)はx軸方向の波形を、(b)はy軸方向の波形を示す。 図9のフレームi+2におけるxy平面内での走査軌跡を示す図である。 第2実施の形態に係る光走査型内視鏡装置の照射用マルチコアファイバの断面図である。 図12の照射用マルチコアファイバを用いた場合の走査位置のオフセットを説明する図である。 図12の照射用マルチコアファイバを用い治療用レーザの走査位置を指定領域にオフセットした状態を説明する図である。 従来技術において、イメージングと治療とを並行して行う場合のビーム走査を説明するタイムチャートである。
 以下、本発明の実施の形態について、図面を参照して説明する。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る光走査デバイスの一例である光走査型内視鏡装置10の概略構成を模式的に示す図である。光走査型内視鏡装置10は、光走査型内視鏡本体20と、光源部30と、検出部40と、駆動電流生成部50と、制御部60と、表示部61と入力部62とを含んで構成される。光源部30と光走査型内視鏡本体20との間はシングルモードファイバである照射用ファイバ11により光学的に接続され、検出部40と光走査型内視鏡本体20との間はマルチモードファイバにより構成される複数の検出用ファイバ12により光学的に接続されている。また、駆動電流生成部50と光走査型顕微鏡本体20との間、並びに、制御部60と光源部30、検出部40、駆動電流生成部50、表示部61及び入力部62のそれぞれとの間は、配線ケーブルにより接続されている。
 照射用ファイバ11、検出用ファイバ12および駆動電流生成部50と光走査型内視鏡本体20とを接続する配線ケーブル13は、光走査型内視鏡本体20内を先端部まで導かれる。照射用ファイバ11は、光走査型内視鏡本体20の先端部内に照射光の出射端部(照射用ファイバ11の光源部30からの光を出射させる先端部)が揺動可能に保持される。この照射用ファイバ11は、観察対象物100(対象物)に光源部30からのレーザ光を照射することができる。また、配線ケーブル13は、光走査型内視鏡本体20の先端部内の駆動機構21に接続される。駆動機構21は、照射用ファイバ11の先端を振動駆動させることができる。検出用ファイバ12は、入射端部を光走査型内視鏡本体20の先端部の表面上に観察対象物100からの光を入射させるように配列され、受光した観察対象物100からの光を検出部40へ導光する。
 図2は、光走査型内視鏡本体20を概略的に示す概観図である。光走査型内視鏡本体20は、操作部22および操作部22の一端から延びる挿入部23を備える。操作部22には、光源部30からの照射用ファイバ11、検出部40からの検出用ファイバ12、および、駆動電流生成部50からの配線ケーブル13が、それぞれ接続されている。これら照射用ファイバ11、検出用ファイバ12および配線ケーブル13は、操作部22を通り、挿入部23内部を通じて挿入部23の先端に位置する先端部24(図2における破線部内の部分)まで導かれている。
 図3は、図2の光走査型内視鏡本体20の先端部24の断面図である。挿入部23を通ってきた照射用ファイバ11は、照射用ファイバ11を囲むように配置された角型チューブ71とともに、光走査型内視鏡本体20の先端部24の内壁に取り付けられた取付環26に固定され保持される。照射用ファイバ11は、取付環26により固定部11aで片持ち状態で保持され(図4参照)、ここから、照射光を出射する出射端部11cまでが、角型チューブ71内で揺動部可能な揺動部11bとなっている。照射用ファイバ11の出射端部11cの前方には、照射用ファイバ11を出射した光が観察対象物100に集光されるように投影用レンズ25が設けられている。また、複数の検出用ファイバ12は、光走査型内視鏡本体20の挿入部23の外周を通るように配置され、その入射端部12aは、先端部24の先端の投影用レンズ25の周りに配列されている。一方、角型チューブ71は、四角柱の側面形状に形成され、各側面には、偏向磁場発生用のシート状の電磁コイル72a~72dがそれぞれ配置されている。この電磁コイル72a~72dは、駆動機構21の一部を構成するものである。
 図4は、図3の駆動機構21を拡大して示す斜視図である。照射用ファイバ11の揺動部11bには、照射用ファイバ11の長手方向に着磁された永久磁石73が取り付けられている。永久磁石73は、円柱状の磁石の軸に沿って照射用ファイバ11を貫通させるための貫通孔を設けたものである。また、上述の電磁コイル72a~72dは、永久磁石73の一方の極と対向して配置されている。図4では、電磁コイル72aと72bのみが表示されているが、角型チューブ71の電磁コイル72a、72bの配置された面と対向する面には、それぞれ、電磁コイル72c、72dが配置されている。
 図5は、図1の光走査型内視鏡装置10の光源部30の概略構成を示す図である。光源部30は、それぞれ、赤、緑および青の三原色のCW(連続発振)レーザ光を射出する赤色光源31、緑色光源32および青色光源33と、レーザ治療を行うための治療用光源34(特定用途用の光源)と、各光源からの光を合波する合波部35と、合波部で合波された光を照射用ファイバ11に導光するための本体接続部36とを備える。ここで、赤色光源31、緑色光源32および青色光源33は第1の光源を構成し、治療用光源34は第2の光源を構成する。赤色光源31、緑色光源32および青色光源33としては、例えば、それぞれの波長が640nm、532nmおよび445nmの半導体レーザを使用することができる。また、治療用光源34は、上記と異なる波長の光を射出する光源であり、例えば紫外線(~405nm)レーザである。また、合波部35は、ダイクロイックミラーやファイバコンバイナ等を含んで構成される。さらに、本体接続部36は、ファイバコネクタ(FC)またはファイバカップリングレンズ等を用いて構成される。なお、赤色光源31、緑色光源32、青色光源33および治療用光源34は、配線ケーブルにより制御部60と接続されている。
 図6は、図1の光走査型内視鏡装置10の検出部40の概略構成を示す図である。検出部40は、それぞれ赤、緑および青の波長の光を検出する赤色受光器41、緑色受光器42、青色受光器43と、被検出光を各色の光に分波するための分波部45と、検出用ファイバ12からの被検出光を検出部40内に導光する本体接続部46とを備える。赤色受光器41、緑色受光器42及び青色受光器43としては、例えば、各色の波長に対応したフィルタを備えたフォトダイオードを用いることができる。また、分波部45は、ダイクロイックミラーや回折格子等を用いて構成することができる。また、本体接続部46は、ファイバコネクタ(FCコネクタ)やファイバカップリングレンズを用いて構成することができる。なお、赤色受光器41、緑色受光器42および青色受光器43の出力は、制御部60と配線ケーブルで接続されている。
 さらに、図1の制御部60は、光源部30、検出部40および駆動電流生成部50を同期制御するとともに、検出部40により出力された電気信号を処理して、画像を合成し表示部61に表示する。また、入力部62から、光走査型内視鏡装置10に、走査速度や表示画像の明るさ等、種々の設定を行うことができる。
 次に、光走査型内視鏡装置10による、生体組織である観察対象物100の所望の領域のイメージングおよび治療について説明する。まず、観察対象物100のイメージングのために、制御部60の制御の下で、光源部30において、赤色光源31、緑色光源32および青色光源33からの光が合波部35で合波され、照射用ファイバ11により光走査形内視鏡本体20の先端部24に導光される。これとともに、駆動電流生成部50が配線ケーブル13を介して駆動機構21を構成する電磁コイル72a~72dに電流を印加する。ここで、電磁コイル72a,72cと電磁コイル72b,72dとの間には、位相が90度異なり振幅が時間とともに拡大する電流を与える。これにより、照射用ファイバ11は先端部11cがらせんを描くように振動し、照射用ファイバ11を出射した光は、観察対象物100の表面上をスパイラル走査する(第1の照射モード)。
 図7は、イメージングを行う場合の走査波形を説明する図であり、(a)はx軸方向の波形を、(b)はy軸方向の波形を示す。ここでは、電磁コイル72aと72cとが対向する方向をy軸方向、電磁コイル72bと72dとが対向する方向をx軸方向とする。x軸方向の波形とy軸方向の波形とは、互いに位相を約90度ずらすように駆動される。電磁コイル72a~72dへの電流の印加により、照射用ファイバ11の出射端部11cの振幅が徐々に大きく振動するため、観察対象物100上の走査波形も時間と共に拡大する。そして、振幅が最大値に達すると、光源部30は照射光の射出を停止し、駆動電流生成部50からの駆動電流も急速に0に戻る(図7(a),(b)の破線部に対応する)。これにより、観察対象物100上での走査軌跡は図8のようになる。図8の81は走査中心を示している。
 観察対象物100上への照射光の照射により、反射光、散乱光または観察対象物100から発生する蛍光等の光(被検出光)が発生し、その一部は検出用ファイバ12の観察対象物100に向けられた入射端部12aに入射する。この被検出光は、検出用ファイバ12により検出部40に導かれ、検出部40内で、分波部45によって分波され波長成分ごとに、赤色受光器41、緑色受光器42および青色受光器43により検出される。
 制御部60は、駆動電流生成部50により印加する電流の波形、強度および位相等から走査経路上の走査位置の情報を算出するとともに、検出部40から出力された電気信号から、当該走査位置における観察対象物100の画素データを得る。制御部60は、走査位置と画素データの情報を順次記憶部(図示せず)に記憶し、走査終了後または走査中に補間処理等の必要な処理を行って観察対象物100の画像を生成し、表示部61に表示する。観察対象物100の走査を繰り返し行うことにより、動画像としてのデータが得られる。これによって、表示部61上で治療すべき患部を確認することが可能になり、スパイラル走査された領域の中から治療すべき指定領域を指定することができる。例えば、図8の照射光による走査範囲から、指定領域82を指定できる。なお、この指定領域82の指定は、光走査型顕微鏡装置10の使用者が表示部61を見ながら指定しても良いし、制御部60が画像を分析して自動的に特定することも可能である。
 次に、指定領域82について制御部60から治療が指示されると、各時間的に隣接するイメージングのための繰り返し走査の間に、光源部30の治療用光源34を用いた治療用のレーザ照射が行われ、イメージングと治療とが並行して行われる。以下に、イメージングと治療とを並行して行う場合の駆動機構21に印加する駆動電流を、図9を用いて説明する。ここで、図9は、治療を行う指定領域が走査中心81のx軸方向にあるとした場合の、x軸方向に磁場を印加する電磁コイル72b、72dの駆動電流のタイムチャートである。
 図9のフレームiは、治療が開始される前の状態のイメージングを行うイメージングフレームである。一つのイメージングフレームの長さは、例えば、1/30秒である。治療用レーザの照射が行われないときは、このイメージングフレームが繰り返し実行される。次に、治療用のレーザの照射が指示されると、フレームiの次にイメージングフレームと同じ長さ(すなわち、1/30秒)で、治療を行う治療フレームを実行し、以降はイメージングと治療とが交互に行われる。すなわち、図9において、フレームi,i+2はイメージングフレームであり、フレームi+1,i+3は治療フレームである。
 フレームiでは、スパイラル走査によるイメージング(t1)の後、振幅を0に収束させるための整定時間(t2)が必要となる。振幅の最大値から振幅を急峻に0に戻すと、照射用ファイバ11に不所望な振動が発生する。この振動の減衰にかかる時間のため、整定時間(t2)にはある程度の無視できない時間が必要となる。次に、フレームi+1で、照射用ファイバ11の振動中心をx軸方向の指定領域82を照射する方向まで変位させるために、電磁コイル72b,72dに直流電流(オフセット信号(I0))を印加する。この振動中心の変位(オフセット)が完了するまでの時間(t3)の後、光源部30の治療用光源34から治療用レーザの照射が行われる(t4)。
 治療用レーザの照射時には、駆動機構21の電磁コイル72a~72dにイメージングフレームの場合よりも振幅の小さい交流電流を与え、観察対象の所望の領域内の一部分の領域(指定領域)を照射する(第2の照射モード)。あるいは、治療用フレームの間で駆動機構21に交流電流を印加せず、したがって、指定領域82の単一スポットのみに照射しても良い(図9では、治療時の駆動機構21に印加する電流を簡単のために直線で示している)。
 治療フレームi+1の後、再びイメージングフレームi+2に入ると、光源部30の赤色光源31、緑色光源32、青色光源33より照射光が出射されるとともに、観察対象物100のスパイラル走査が開始される。ここで、電磁コイル72b,72dに印加されている直流電流はそのまま維持され、従って、観察対象物100上の走査中心81の位置が変位した状態もそのまま維持される。
 図10は、図9のフレームi+2の走査波形を説明する図であり、(a)はx軸方向の波形を、(b)はy軸方向の波形を示す。x軸方向には電磁コイル72b、72dと永久磁石73との間に働く電磁力の直流成分により、振動中心が変位している。このため、観察対象物100上の走査軌跡は、図11のように指定領域82に走査中心81が一致し、これを中心とするスパイラル走査となる。このため、表示部61による表示画像も治療を行う指定領域82が中心に表示される。
 また、フレームi+2におけるイメージング用のスパイラル走査の振幅が、指定領域82の大きさよりも小さい間(すなわち、図11で走査位置が指定領域82の内側にある間)、イメージングと同時に、治療用レーザの照射を継続して行うことができる。スパイラル走査では、振幅の小さい走査中心81の近傍では周辺部に比べてサンプリングが密になる。イメージングのみの場合は、この走査中心の近傍の画素の一部が使用されないで無駄になるが、治療用レーザの照射では振幅の小さい位置での走査を有効に利用できる。したがって、図9に示すように、治療用レーザによる治療時間(t4)はフレームi+1のオフセット後から、フレームi+2のスパイラル走査の初期段階まで、イメージングの時間(t1)と一部重複して行うことができる。その結果、従来技術に比べ治療用レーザの照射時間を長くすることができる。
 また、イメージングフレームi+2の後、フレームi+3の治療フレームに移る際も、振動中心を変位させる必要が無いので、駆動機構21の電磁コイル72b,72dに印加する直流電流(オフセット信号(I0))を変化させる必要が無い。したがって、フレームi+1で必要とされたオフセットを駆動する時間(t3)は不要となる。本発明者らが、オフセット信号後の照射用ファイバ11の収束にかかる時間を、運動方程式から算出したところによれば、約20msかかることがわかっている。したがって、例えば、1フレームのフレーム長を約33ms(30fps)とするとき、本発明は治療時間(t4)を確保するのに極めて有効である。さらに、スパイラル走査によるイメージング時間(t1)の後、振幅を0に戻すための整定時間(t2)中で照射用ファイバ11の振動がある程度収束したところで、治療用レーザの照射を開始することができる。これにより、フレームi+3では、さらに長い治療時間t4を確保することがでるので、全体としての治療用レーザの照射強度を高めることができる。
 フレームi+3以降においても、使用者が入力部62を通じて指示することにより、あるいは、制御部60がイメージングで取得した画像データから判断することにより、治療が停止されるまで、駆動機構21の電磁コイル72b,72dに印加される直流電流(オフセット信号(I0))は維持される。
 以上説明したように、本実施の形態によれば、光源部30の赤色光源31、緑色光源32および青色光源33からの照射光により観察対象物100の所望の領域をイメージングのために繰り返し走査する第1の照射モードと、出力された信号に基づいて、所望の領域から選択された指定領域82を、時間的に隣接するイメージングのための各走査の間に、治療用光源34からの治療用レーザで照射する第2の照射モードとを有し、第2の照射モードの開始が指示されると、指定領域82の照射のために駆動機構21の電磁コイルに直流電流によるオフセット信号(I0)を与え、第2の照射モードの繰り返しの間は、このオフセット信号(I0)を維持するようにしたので、イメージングのための走査と治療用のレーザ照射との間で、走査中心の位置の切り替え(オフセットのオン・オフ)にかかる時間が不要になり、単位フレーム当たりの治療用のレーザ光を照射する時間を長くすることが出来るので、イメージング領域内の指定領域82へ、治療用の光を効率よく照射することが可能になる。
 さらに、オフセット信号(I0)を維持することにより、走査中心81と治療対象である指定領域82の中心とが一致するので、イメージング用のスパイラル走査の振幅が小さいときは、同時に治療用レーザの照射を行うことができるので、さらに治療用レーザの照射時間を長くすることができる。これによって、イメージングフレームのフレームレートを高く保ったまま、単位フレームあたりの治療用レーザの照射総エネルギーを強くすることができる。
 なお、本実施の形態において、走査中心81を変位させる指定領域82の方向を、一組の電磁コイル72b、72dが対向する方向であるx軸方向としたが、走査中心を変位させる方向は、xy平面の何れの方向でも良い。y軸方向の電磁コイル72a、72cおよびx軸方向の電磁コイル72b、72dに、変位方向に応じた直流成分を印加することにより、所望の方向へ走査中心81を変位させることが可能である。また、駆動機構21は角型チューブを用いたものに限られず、種々の構成が可能である。例えば、角型チューブに代えて円筒型のチューブを用いて電磁コイルを配置することも可能である。さらに、イメージング用の赤色光源31、緑色光源32および青色光源33は、イメージング時間(t1)以外の時間は停止していても良く、あるいは、常時点灯していても良い。また、観察対象物100から得られる光を検出するために、検出用ファイバ12と検出部40とに代えて、例えば、光走査型内視鏡本体20の先端部24に光検出用の素子を配置して、その出力信号を配線ケーブルにより制御部に伝達するようにしても良い。
(第2実施の形態)
 図12は、第2実施の形態に係る光走査型内視鏡装置の照射用マルチコアファイバの断面図である。第2実施の形態では、第1実施の形態において、シングルコアファイバである照射用ファイバ11に代えて、照射用マルチコアファイバ91を用いる。照射用マルチコアファイバ91は、イメージング用コア92と4つの治療用コア93a~93dとを有する。イメージング用コア92は、照射用マルチコアファイバ91の中心に位置し、治療用コア93a~93dは、イメージング用コア92から略等距離離れた位置に、互いに90度ずつ離れて配置される。
 また、この場合の光源部は、図5で示した光源部30とは異なり、赤色光源31、緑色光源32および青色光源33を合波部35で合波して、イメージング用コア92に接続するとともに、治療用光源34を4つ用意し、それぞれを治療用コア93a~93dに接続する。その他の構成は、第1実施の形態と同様であるので、同一または対応する構成要素には同一参照符号を付して説明を省略する。
 次に、図12の照射用マルチコアファイバ91を用いて観察対象物100を照射する場合の観察および治療の手順について説明する。まず、イメージングフレームでは、イメージング用コア92を用いて、図9と同様に照射光を観察対象物100上で走査させる。図13は、図12の照射用マルチコアファイバ91による観察対象物100の走査を示す図である。これによれば、照射用マルチコアファイバ91のスパイラル走査により、イメージング用コア92の走査中心を中心とするイメージング領域94が走査される。(92’,93a’~93d’は、それぞれ、イメージング用コア92、治療用コア93a~93dからの静止時の光の照射位置を示す。)これによって、イメージング領域94の各走査位置の画素データが検出部40により検出され、制御部60で画像生成され、表示部61に表示される。そして、入力部62からの使用者の選択により、あるいは、制御部60が取得した画像データから判断することによって治療すべき指定領域95が指定される。
 次に、時間的に隣接するイメージングフレームの間に、指定領域95に治療用レーザを照射する場合を説明する。この場合は、照射用マルチコアファイバ91の中心に位置するイメージング用コア92ではなく、走査が停止しているときに指定領域95に最も近い位置を照射する治療用コア93a~93dの一つが選択される。図13の例では、指定領域95に最も近い位置を照射するのは治療用コア93aなので、イメージングフレームにおけるスパイラル走査の整定時間の後の治療用フレームでは、治療用コア93aが指定領域95を照射するように、駆動機構21に直流電流(オフセット信号)が印加される。図14は、図12の照射用マルチコアファイバ91を用い、治療用レーザの照射位置93a’を指定領域95の中心に変位させた状態を説明する図である。このオフセット信号を印加した状態で、さらに駆動機構に小さい振幅の交流電流を印加することによって、指定領域95に治療用レーザの照射を行う。
 治療用レーザの照射後、再びイメージングフレームに戻ると、駆動機構21の直流信号を維持したまま、イメージング用コア92からイメージング用の照射光を照射するとともに、スパイラル走査を行う。以降、治療用レーザの照射が中止されるまで、各時間的に隣接するイメージングフレームの間で治療用レーザの照射を行い、その間は駆動機構21に印加されるオフセット信号が維持される。この場合、第1実施の形態とは異なり、イメージングの際の走査中心は、指定領域95と一致しない。
 本実施の形態によれば、第1実施の形態と同様に、最初の治療用フレームで走査位置を変位させた後は、イメージングフレームと治療用フレームとの間で、走査中心の位置の切り替え(オフセットのオン・オフ)にかかる時間が不要になり、治療用レーザを照射する時間を長くすることが出来るので、イメージング領域内の指定領域82へ、治療用の光を効率良く照射することが可能になる。さらに、4つの治療用コア93a~93dのうち照射位置が指定領域82に最も近いものを選択できるので、駆動機構21に印加する直流電流(オフセット信号)により走査中心を変位させる距離を小さくすることができる。したがって、シングルコアファイバを用いた場合に比べ、駆動電流を小さくすることができ、より安定した走査が可能になる。
 なお、本実施の形態において、照射用マルチコアファイバ91のイメージング用コア92および治療用コア93a~93dの数および配置は例示に過ぎず、これ以外に幾多のコアの配置が可能である。また、イメージング用コア92と治療用コア93a~93dとを固定する必要は無く、イメージング用の光源と治療用の光源とを光源部30で切り替えることも可能である。また、治療用光源34は1台のみ用意し、使用する治療用コア93a~93dの一つに切り替えて接続するようにしても良い。
 また、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、駆動機構は、電磁コイルと磁石を用いたものに限られず、圧電素子(圧電駆動デバイス)を用いたものでも良い。例えば、照射用ファイバの軸に沿う方向に伸縮可能な4つの圧電素子を、照射用ファイバの揺動部のx方向およびy方向にそれぞれ対向して配置し、対抗する圧電素子に逆位相の振動電圧を印加することにより、照射用ファイバを振動駆動することができる。その場合、駆動電流生成部に代えて、制御部からの制御により圧電素子に駆動電圧を供給する駆動電圧生成部を設ける。
 また、イメージングを行う走査方法はスパイラル走査に限られず、ラスター走査やリサージュ走査に適用することも可能である。その場合も、イメージング用の第1の照射モードと第2の照射モードとの間で、その都度走査位置をシフトしないで良いので、第2の照射モードによる効率的な照射が可能になる。しかし、スパイラル走査の場合は、走査終了時に照射光の照射方向が必ず原点に戻る走査方法であるから、本発明を適用して走査中心を指定領域にシフトさせると、そのまま指定領域の観察が可能になるので、より効率的である。
 さらに、第1の照射モードとしては、イメージング用の青色、緑色、赤色の各光源からの光に加え、あるいは、それらに代えて、NBI観察、蛍光観察に適した波長の光(計測用の光)を照射し、対象物、例えば、人体の患部の画像を目視観察ないしは、画像分析することにより、治療すべき部位を特定し、治療を実施するための指定領域を決定することも可能である。また、第2の照射モードとして、治療用の光に加え、あるいは、治療用の光に代えて上記のような計測用の波長の光を照射して、指定領域の計測を行えるようにしても良い。このように、本発明では、治療用途に限らず、計測用途にも応用が可能であり、計測のみ、或いは計測と治療の両方を行うことも可能である。
 また、本発明は治療用の光走査型内視鏡装置のみならず、工業用の光走査型内視鏡において、イメージングおよび特定領域の計測を行う場合や、光走査型顕微鏡においてイメージングおよび特定領域に光刺激を与える場合など、種々の装置に適用することが可能である。
 10  光走査型内視鏡装置
 11  照射用ファイバ
 12  検出用ファイバ
 13  配線ケーブル
 20  光走査型内視鏡本体
 21  駆動機構
 22  操作部
 23  挿入部
 24  先端部
 25  投影用レンズ
 30  光源部
 40  検出部
 50  駆動電流生成部
 60  制御部
 61  表示部
 62  入力部
 71  角型チューブ
 72a~72d  電磁コイル
 73  永久磁石
 81  走査中心
 82  指定領域
 91  照射用マルチコアファイバ
 92  イメージング用コア
 93a~93d  治療用コア
 94  イメージング領域
 95  指定領域
 100  観察対象物

Claims (18)

  1.  出射端部が揺動可能に保持され、光源部からの光を対象物に照射する照射用ファイバと、
     前記照射用ファイバの前記出射端部を駆動し、前記光源からの光を前記対象物に照射させる駆動機構とを備え、
     前記光源からの光により前記対象物の所望の領域を繰り返し走査するイメージング用の第1の照射モードと、前記対象物の前記所望の領域から選択された指定領域を、時間的に隣接する各前記第1の照射モードの走査の間に照射する第2の照射モードとを有し、前記第2の照射モードが開始されると、前記駆動機構に前記指定領域を照射するためのオフセット信号を与え、前記第2の照射モードによる照射が繰り返される間は、前記オフセット信号を維持するように構成されることを特徴とする光走査デバイス。
  2.  前記光源からの光の照射により、前記対象物から得られる光を検出する検出部を備え、
     前記指定領域は、前記第1の照射モードによる前記検出部の出力に基づいて選択されることを特徴とする請求項1に記載の光走査デバイス。
  3.  前記第1の照射モードにおいて、前記駆動機構は前記対象物をスパイラル走査することを特徴とする請求項1または2に記載の光走査デバイス。
  4.  前記光源部は、イメージング用の光源と特定用途用の光源とを備え、前記第1の照射モードではイメージング用の光源のみを用い、前記第2の照射モードでは少なくとも前記特定用途用の光源を用いるとことを特徴とする請求項1から3の何れか一項に記載の光走査デバイス。
  5.  前記対象物は生体組織であり、前記特定用途用の光源は治療用光源であることを特徴とする請求項4に記載の光走査デバイス。
  6.  前記特定用途用の光源は、計測用光源であることを特徴とする請求項4に記載の光走査デバイス。
  7.  前記照射用ファイバは、それぞれ前記イメージング用の光源からの光と前記特定用途用の光源からの光とを導光する複数のコアを有するマルチコアファイバであることを特徴とする請求項4~6の何れか一項に記載の光走査デバイス。
  8.  前記駆動機構は、前記光ファイバに取り付けられた磁石と、該磁石の周りに配置された複数の電磁コイルを含んで構成されることを特徴とする請求項1~7の何れか一項に記載の光走査デバイス。
  9.  前記駆動機構は、前記光ファイバを駆動する圧電駆動デバイスを含んで構成されることを特徴とする請求項1~7の何れか一項に記載の光走査デバイス。
  10.  前記第1の照射モードにおいて、前記検出部の出力に基づいて前記対象物を画像として表示する表示部と、該表示部に表示された画像上で前記指定領域を指定するための入力手段とを備え、前記入力手段により指定された前記指定領域に基づいて、前記オフセット信号を算出するように構成されることを特徴とする請求項1~9の何れか一項に記載の光走査デバイス。
  11.  出射端部が揺動可能に保持された照射用ファイバを振動駆動して、第1の光源からの光を対象物の所望の領域に繰り返し走査させ、
     前記第1の光源からの光の走査により、前記対象物から得られる光を検出して画像情報を生成し、
     前記画像情報に基づいて前記所望の領域から指定領域を選択し、
     前記指定領域に前記照射用ファイバによる走査中心を変位させ、
     前記第1の光源による前記所望の領域の各走査の間に、第2の光源からの光により前記指定領域を照射する光ビームの走査方法であって、
     前記第2の光源により前記指定領域の照射を繰り返し行う間は、前記走査中心の変位を維持することを特徴とする走査方法。
  12.  前記走査はスパイラル走査であることを特徴とする請求項11に記載の光ビームの走査方法。
  13.  前記第1の光源は、イメージング用の光源であり、前記第2の光源は特定用途用の光源を含むことを特徴とする請求項11または12に記載の光ビームの走査方法。
  14.  前記対象物は生体組織であり、前記特定用途用の光源は治療用光源であることを特徴とする請求項13に記載の光ビームの走査方法。
  15.  前記特定用途用の光源は、計測用光源であることを特徴とする請求項13に記載の光ビーム走査方法。
  16.  前記照射用ファイバは、それぞれ前記第1の光源からの光と前記第2の光源からの光とを導光する複数のコアを有するマルチコアファイバであることを特徴とする請求項11~15の何れか一項に記載の光走査デバイス。
  17.  前記照射用ファイバによる前記走査中心の変位は、前記光ファイバを電磁力で駆動することにより行うことを特徴とする請求項11~16の何れか一項に記載の光ビームの走査方法。
  18.  前記照射用ファイバによる前記走査中心の変位は、前記光ファイバを圧電駆動デバイスを用いて駆動することにより行うことを特徴とする請求項11~16の何れか一項に記載の光ビームの走査方法。
PCT/JP2014/002672 2013-05-21 2014-05-21 光走査デバイスおよび光ビームの走査方法 WO2014188718A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015518079A JP6270829B2 (ja) 2013-05-21 2014-05-21 光走査デバイスおよび走査型内視鏡の作動方法
US14/947,248 US20160143515A1 (en) 2013-05-21 2015-11-20 Optical scanning device and light beam scanning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107307 2013-05-21
JP2013107307 2013-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/947,248 Continuation US20160143515A1 (en) 2013-05-21 2015-11-20 Optical scanning device and light beam scanning method

Publications (1)

Publication Number Publication Date
WO2014188718A1 true WO2014188718A1 (ja) 2014-11-27

Family

ID=51933285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002672 WO2014188718A1 (ja) 2013-05-21 2014-05-21 光走査デバイスおよび光ビームの走査方法

Country Status (3)

Country Link
US (1) US20160143515A1 (ja)
JP (1) JP6270829B2 (ja)
WO (1) WO2014188718A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116968A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 光走査装置
JP2019017411A (ja) * 2017-07-11 2019-02-07 株式会社日立製作所 光音響型カテーテルシステム及び光音響型カテーテル制御方法
JP2021505314A (ja) * 2017-12-12 2021-02-18 アルコン インコーポレイティド 多重入力結合照光式マルチスポットレーザプローブ
JP2022008882A (ja) * 2017-04-04 2022-01-14 マジック リープ, インコーポレイテッド 視野を増加させるためのファイバスキャナの座屈モードの作動
EP4111938A1 (en) 2021-06-29 2023-01-04 FUJI-FILM Corporation Endoscope system, medical image processing device, and operation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157249A1 (ja) * 2015-03-30 2016-10-06 オリンパス株式会社 光走査装置の駆動条件設定方法および駆動条件設定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516568A (ja) * 2005-11-23 2009-04-23 ユニヴァーシティ オブ ワシントン 中断される走査共振を使用する可変順次フレーミングを用いたビームの走査
JP2011045461A (ja) * 2009-08-26 2011-03-10 Hoya Corp 光走査型内視鏡プロセッサ
JP2011115252A (ja) * 2009-12-01 2011-06-16 Hoya Corp 医療用プローブ、および医療用観察システム
JP2011125404A (ja) * 2009-12-15 2011-06-30 Olympus Corp 光制御装置、制御装置、光学スコープ及び光走査型光学装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920312B2 (en) * 2006-09-14 2011-04-05 Optiscan Pty Ltd. Optical fiber scanning apparatus
KR101333761B1 (ko) * 2012-05-17 2013-11-28 한국생산기술연구원 Pzt를 이용한 oct 프로브

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516568A (ja) * 2005-11-23 2009-04-23 ユニヴァーシティ オブ ワシントン 中断される走査共振を使用する可変順次フレーミングを用いたビームの走査
JP2011045461A (ja) * 2009-08-26 2011-03-10 Hoya Corp 光走査型内視鏡プロセッサ
JP2011115252A (ja) * 2009-12-01 2011-06-16 Hoya Corp 医療用プローブ、および医療用観察システム
JP2011125404A (ja) * 2009-12-15 2011-06-30 Olympus Corp 光制御装置、制御装置、光学スコープ及び光走査型光学装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116968A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 光走査装置
CN107209364A (zh) * 2015-01-23 2017-09-26 奥林巴斯株式会社 光扫描装置
JPWO2016116968A1 (ja) * 2015-01-23 2017-12-07 オリンパス株式会社 光走査装置
JP2022008882A (ja) * 2017-04-04 2022-01-14 マジック リープ, インコーポレイテッド 視野を増加させるためのファイバスキャナの座屈モードの作動
JP7204854B2 (ja) 2017-04-04 2023-01-16 マジック リープ, インコーポレイテッド 視野を増加させるためのファイバスキャナの座屈モードの作動
US11630297B2 (en) 2017-04-04 2023-04-18 Magic Leap, Inc. Buckling mode actuation of fiber scanner to increase field of view
JP7432699B2 (ja) 2017-04-04 2024-02-16 マジック リープ, インコーポレイテッド 視野を増加させるためのファイバスキャナの座屈モードの作動
JP2019017411A (ja) * 2017-07-11 2019-02-07 株式会社日立製作所 光音響型カテーテルシステム及び光音響型カテーテル制御方法
JP2021505314A (ja) * 2017-12-12 2021-02-18 アルコン インコーポレイティド 多重入力結合照光式マルチスポットレーザプローブ
EP4111938A1 (en) 2021-06-29 2023-01-04 FUJI-FILM Corporation Endoscope system, medical image processing device, and operation method therefor

Also Published As

Publication number Publication date
JPWO2014188718A1 (ja) 2017-02-23
US20160143515A1 (en) 2016-05-26
JP6270829B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6270829B2 (ja) 光走査デバイスおよび走査型内視鏡の作動方法
US10151914B2 (en) Optical scanning observation apparatus
WO2015174289A1 (ja) 内視鏡システム
WO2013105329A1 (ja) 光照射装置、走査内視鏡装置、光照射装置の製造方法、及び、走査内視鏡の製造方法
US20160150948A1 (en) Optical scanning unit, optical scanning observation apparatus, and optical fiber scanning apparatus
JP6057743B2 (ja) 光走査装置
US10542865B2 (en) Endoscopic system with speckle reduction unit
WO2015163001A1 (ja) 光走査装置及び走査型内視鏡
JP2013121455A (ja) 走査型内視鏡システム
JP6071591B2 (ja) 光走査型内視鏡
JP5551844B1 (ja) 内視鏡装置及び治療装置
US10126547B2 (en) Optical scanning apparatus
WO2015182198A1 (ja) 光走査型観察装置及び光走査型観察装置の作動方法
JP6006039B2 (ja) 光走査型観察装置
JP2010268972A (ja) 医療用観察システムおよびプロセッサ
JP2014150889A (ja) レーザ治療装置
US20170311779A1 (en) Optical scanning endoscope apparatus
WO2016143160A1 (ja) 走査型内視鏡システム
JP2017086549A (ja) 走査型内視鏡装置
JP2010158414A (ja) 光走査型内視鏡プロセッサおよび光走査型内視鏡装置
JP6173035B2 (ja) 光走査デバイス、光走査型観察装置および光走査型画像表示装置
WO2016017199A1 (ja) 光走査型観察システム
JP2009254464A (ja) 光走査型内視鏡、光走査型内視鏡プロセッサ、および光走査型内視鏡装置
WO2016098139A1 (ja) レーザ走査型観察装置
JP6081678B1 (ja) 走査型内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801246

Country of ref document: EP

Kind code of ref document: A1