WO2014188714A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2014188714A1
WO2014188714A1 PCT/JP2014/002652 JP2014002652W WO2014188714A1 WO 2014188714 A1 WO2014188714 A1 WO 2014188714A1 JP 2014002652 W JP2014002652 W JP 2014002652W WO 2014188714 A1 WO2014188714 A1 WO 2014188714A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition plate
mixing chamber
communication
heat exchange
header collecting
Prior art date
Application number
PCT/JP2014/002652
Other languages
English (en)
French (fr)
Inventor
正憲 神藤
好男 織谷
拓也 上総
潤一 濱舘
康崇 大谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480027158.6A priority Critical patent/CN105209846B/zh
Priority to EP14801226.3A priority patent/EP3006886A4/en
Priority to AU2014269760A priority patent/AU2014269760B2/en
Priority to BR112015028679A priority patent/BR112015028679A2/pt
Priority to US14/892,962 priority patent/US9518788B2/en
Publication of WO2014188714A1 publication Critical patent/WO2014188714A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Definitions

  • the present invention relates to a heat exchanger that includes a pair of header collecting pipes and a plurality of flat pipes connected to each header collecting pipe, and heat-exchanges refrigerant flowing through the flat pipes with air.
  • a heat exchanger that includes a large number of flat tubes and header collecting pipes connected to the flat tubes, and exchanges heat between the refrigerant flowing inside the flat tubes and the air flowing outside the flat tubes.
  • a large number of flat tubes extending vertically are arranged on the left and right, and a header collecting tube is connected to the lower end of each flat tube.
  • a large number of flat tubes extending in the left and right directions are arranged vertically, and a header collecting tube is connected to an end of each flat tube.
  • the refrigerant supplied to this type of heat exchanger first flows into the header collecting pipe and then flows into a plurality of flat tubes.
  • this type of heat exchanger functions as an evaporator of a refrigeration apparatus, a gas-liquid two-phase refrigerant is supplied to the heat exchanger. That is, in this case, the gas-liquid two-phase refrigerant is distributed to each flat tube through the header collecting tube.
  • JP 09-264663 A Japanese Patent Laid-Open No. 06-074609
  • the gas-liquid two-phase refrigerant when the gas-liquid two-phase refrigerant is distributed to a plurality of flat tubes, it is desirable to make the wetness of the refrigerant flowing into each flat tube as uniform as possible.
  • the gas-liquid two-phase refrigerant flowing into the header collecting tube is homogenized as much as possible before being supplied to the flat tube.
  • a structure for forming a room in the header collecting pipe into which the refrigerant in the gas-liquid two-phase state flows before being distributed to each flat pipe has not been sufficiently studied so far.
  • the present invention has been made in view of such points, and an object thereof is to distribute a refrigerant in a gas-liquid two-phase state to each flat tube in a heat exchanger provided with a pair of header collecting tubes and flat tubes.
  • the room that flows in before is formed in the header collecting pipe, and the wetness of the refrigerant flowing into each flat pipe is averaged.
  • a second header collecting pipe (70) and a plurality of fins (36) joined to the flat pipe (32) are provided, and the refrigerant flowing through the flat pipe (32) is heat-exchanged with air. Intended for functional heat exchangers.
  • the first header collecting pipe (60) and the second header collecting pipe (70) are in an upright state, and the first header collecting pipe (60) includes the first header collecting pipe (60).
  • connection port (66) to which a pipe for introducing a refrigerant in a gas-liquid two-phase state is connected is formed, while the first header collecting pipe (60) is connected to the first header collecting pipe (60 Main transverse partition plates (80a, 80b) that form a plurality of communication chambers (62a to 62c) through which the one or more flat tubes (32) communicate with each other.
  • a vertical partition plate (90) that longitudinally cuts the internal space of the header collecting pipe (60) and forms a mixing chamber (63) communicating with the connection port (66) and all the communication chambers (62a to 62c); It is arranged between the main horizontal partition plates (80a, 80b) that are vertically adjacent to each other, crosses the internal space of the first header collecting pipe (60), and mixes together with the vertical partition plate (90). (63) are those having sub horizontal partition and (85a) to form a.
  • the gas-liquid two-phase refrigerant is supplied to the first header collecting pipe (60). Specifically, the gas-liquid two-phase refrigerant flows into the single mixing chamber (63) through the connection port (66), and is then distributed to the plurality of communication chambers (62a to 62c). The gas-liquid two-phase refrigerant flowing into each communication chamber (62a to 62c) flows into the flat tube (32) communicating with the communication chamber (62a to 62c), and then the second header collecting tube (70). Flow into. The liquid refrigerant contained in the gas-liquid two-phase refrigerant absorbs heat from the air while passing through the flat tube (32), and part or all of it evaporates.
  • the first header collecting pipe (60) of the first invention is provided with a main horizontal partition plate (80a, 80b), a vertical partition plate (90), and a sub horizontal partition plate (85a).
  • the main horizontal partition plates (80a, 80b) arranged to cross the internal space of the first header collecting pipe (60) form a plurality of communication chambers (62a to 62c).
  • the partition plate (85a) forms a mixing chamber (63).
  • the sub horizontal partition plate (85a) is disposed between the main horizontal partition plates (80a, 80b) adjacent to each other in the vertical direction.
  • the height of the mixing chamber (63) is the same as that of the main horizontal partition plate (80a, 80b). It becomes the same as the interval.
  • the vertical partition plate (90) and the sub-lateral partition plate (85a) form a mixing chamber (63). For this reason, the height of the mixing chamber (63) can be set regardless of the interval between the main horizontal partition plates (80a, 80b).
  • the height of the mixing chamber (63) is the same as that of the communication chamber (62b) adjacent to the mixing chamber (63) across the vertical partition plate (90). It is lower than the height.
  • the mixing chamber (63) of the second invention has a lower height than the communication chamber (62b) adjacent to the mixing chamber (63) across the vertical partition plate (90). That is, in this invention, the height of the mixing chamber (63) is lower than the interval between the main horizontal partition plates (80a, 80b) forming the communication chamber (62b).
  • the vertical partition plate (90) includes the flat pipe (32) and the flat pipe (32) on the basis of the central axis (64) of the first header collecting pipe (60). Is arranged on the opposite side.
  • the vertical partition plate (90) forming the mixing chamber (63) is disposed on the opposite side of the flat tube (32) with respect to the central axis (64) of the first header collecting tube (60). Is done. For this reason, the width of the mixing chamber (63) in the direction orthogonal to the central axis (64) of the first header collecting pipe (60) is shorter than half of the inner diameter of the first header collecting pipe (60).
  • the mixing chamber (63) includes the vertical partition plate (90) and one of an upper side and a lower side of the mixing chamber (63).
  • the communication chamber (62a) is constituted by one main horizontal partition plate (80a) disposed on the upper side and one lower horizontal partition plate (85a) disposed on the other of the upper side and the lower side of the mixing chamber (63).
  • the mixing chamber (63) is connected to the communication chambers (62a to 62c) by the vertical partition plate (90), one main horizontal partition plate (80a), and one sub horizontal partition plate (85a). Partitioned from.
  • One of the main horizontal partition plate (80a) and the sub horizontal partition plate (85a) that divides the mixing chamber (63) from the communication chamber (62a to 62c) is placed above the mixing chamber (63), and the other is mixed Arranged below the chamber (63).
  • Each of the partition plates (85a) has communication through holes (81a, 86a, 95) for distributing the refrigerant in the mixing chamber (63) to the communication chambers (62a to 62c) at a predetermined ratio. It is what is done.
  • the vertical partition plate (90), the main horizontal partition plate (80a), and the sub-horizontal partition plate (85a) that partition the mixing chamber (63) from the communication chamber (62a to 62c) are communicated with each other. Holes (81a, 86a, 95) are formed. By adjusting the size of these communication through holes (81a, 86a, 95), the ratio of the flow rate of the refrigerant flowing from the mixing chamber (63) into each of the communication chambers (62a to 62c) becomes a predetermined value.
  • the mixing chamber (63) is a pair of the vertical partition plate (90) and a pair disposed above and below the mixing chamber (63).
  • the sub horizontal partition plates (85a, 85b) are partitioned from the communication chambers (62a to 62d).
  • the mixing chamber (63) is partitioned from the communication chambers (62a to 62d) by the vertical partition plate (90) and the pair of sub-lateral partition plates (85a, 85b).
  • the sub-lateral partition plates (85a, 85b) that partition the mixing chamber (63) from the communication chambers (62a to 62d) are arranged one above and below the mixing chamber (63).
  • the pair of sub-lateral partition plates (85a, 85b) and the vertical partition plate (90) that partition the mixing chamber (63) from the communication chambers (62a to 62d).
  • Each is formed with a through-hole for communication (86a, 86b, 95a, 95b) for distributing the refrigerant in the mixing chamber (63) to each of the communication chambers (62a to 62d) at a predetermined ratio. It is.
  • each of the pair of auxiliary horizontal partition plates (85a, 85b) and the vertical partition plate (90) partitioning the mixing chamber (63) from the communication chambers (62a to 62d) is provided with a communication through hole (86a, 86b, 95a, 95b) are formed.
  • a communication through hole 86a, 86b, 95a, 95b
  • the eighth invention is the invention according to any one of the first to third inventions, wherein the mixing chamber (63) has one or two communication chambers (62b, 62c) sandwiching the vertical partition plate (90). ).
  • the mixing chamber (63) is adjacent to one or two communication chambers (62b, 62c) with the vertical partition plate (90) interposed therebetween.
  • the vertical partition plate (90) communicates with the mixing chamber (63) adjacent to the vertical partition plate (90).
  • a communication through hole (95) for communicating the chamber (62b) with the mixing chamber (63) is formed.
  • a through hole (95) for communication is formed in the vertical partition plate (90).
  • the refrigerant in the mixing chamber (63) flows into the communication chamber (62b) adjacent to the mixing chamber (63) across the vertical partition plate (90) through the communication through hole (95).
  • connection port (66) is formed on a side wall of the first header collecting pipe (60) and faces the vertical partition plate (90).
  • the communication through hole (95) of (90) is provided at a position deviated from the front of the connection port (66).
  • connection port (66) faces the vertical partition plate (90). Therefore, the gas-liquid two-phase refrigerant flowing into the mixing chamber (63) through the connection port (66) collides with the vertical partition plate (90) facing the connection port (66).
  • the communication through hole (95) is provided at a position deviated from the front of the connection port (66). For this reason, the refrigerant flowing into the mixing chamber (63) from the connection port (66) does not intensively flow into the communication through hole (95) of the vertical partition (90).
  • the main heat exchange area (51) and the auxiliary heat exchange area (52) each having a plurality of the flat tubes (31, 32).
  • the auxiliary heat exchange area (52) is positioned below the main heat exchange area (51), while the auxiliary heat exchange area (52) has a plurality of flat tubes (32).
  • the main heat exchange area (51) communicates with the communication chambers (62a to 62c) corresponding to the auxiliary heat exchange parts (52a to 52c), and each of the main heat exchange regions (51) includes a plurality of flat tubes (31).
  • the auxiliary heat exchange unit (52a to 52c) corresponding to the exchange unit (51a to 51c) communicates with the flat tube (32) through the second header collecting pipe (70).
  • the heat exchanger (23) is divided into a main heat exchange region (51) and an auxiliary heat exchange region (52).
  • the main heat exchange area (51) is divided into a plurality of main heat exchange sections (51a to 51c), and the auxiliary heat exchange area (52) is divided into a plurality of auxiliary heat exchange sections (52a to 52c).
  • the main heat exchange units (51a to 51c) and the auxiliary heat exchange units (52a to 52c) correspond one to one.
  • the refrigerant in the mixing chamber (63) is distributed to the plurality of communication chambers (62a to 62c) and flows into the flat tube (32) of the auxiliary heat exchange section (52a to 52c) corresponding to each communication chamber (62a to 62c). To do.
  • the refrigerant that has passed through the flat tube (32) of each auxiliary heat exchange section (52a to 52c) passes through the second header collecting pipe (70) and the flat tube (31) of the corresponding main heat exchange section (51a to 51c). Flow into.
  • the first header collecting pipe (60) is constituted by the main horizontal partition plates (80a, 80b), the vertical partition plates (90), and the sub horizontal partition plates (85a) provided in the first header collecting pipe (60). ), One mixing chamber (63) and a plurality of communication chambers (62a to 62c) are formed. Then, in a state where the heat exchanger (23) functions as an evaporator, if the gas-liquid two-phase refrigerant supplied to the first header collecting pipe (60) is introduced into the mixing chamber (63) and stirred, The wetness of the refrigerant distributed to the plurality of communication chambers (62a to 62c) can be averaged. Therefore, according to the present invention, the wetness of the refrigerant flowing into each flat tube (32) can be averaged.
  • the auxiliary horizontal partition plate (85a) that forms the mixing chamber (63) together with the vertical partition plate (90) is disposed between the main horizontal partition plates (80a, 80b) adjacent to each other in the vertical direction.
  • the height of the mixing chamber (63) can be set regardless of the interval between the main horizontal partition plates (80a, 80b). Therefore, according to the present invention, it is possible to keep the height of the mixing chamber (63) low by arranging the sub-lateral partition plate (85a) at an appropriate position. As a result, the gas-liquid two-phase refrigerant in the mixing chamber (63) can be homogenized, and the wetness of the refrigerant flowing into each flat tube can be averaged.
  • the height of the mixing chamber (63) is lower than the height of the communication chamber (62b) adjacent to the mixing chamber (63) with the vertical partition plate (90) interposed therebetween. For this reason, the height of the mixing chamber (63) is kept low, and the gas-liquid two-phase refrigerant existing in the mixing chamber (63) can be homogenized.
  • the vertical partition plate (90) which forms a mixing chamber (63) is on the opposite side to a flat pipe (32) with respect to the central axis (64) of a 1st header collecting pipe (60). Be placed.
  • the width of the mixing chamber (63) can be made shorter than half of the inner diameter of the first header collecting pipe (60), and the volume of the mixing chamber (63) can be reduced to be present in the mixing chamber (63).
  • the gas-liquid two-phase refrigerant can be homogenized.
  • the gas-liquid two-phase refrigerant flowing into the mixing chamber (63) through the connection port (66) collides with the vertical partition plate (90). For this reason, the refrigerant flowing into the mixing chamber (63) from the connection port (66) is vigorously disturbed by colliding with the vertical partition plate (90). Therefore, according to the present invention, the mixing of the gas refrigerant and the liquid refrigerant contained in the refrigerant in the mixing chamber (63) is promoted, and the homogenization of the gas-liquid two-phase refrigerant in the mixing chamber (63) is promoted. be able to.
  • the communication through hole (95) is provided at a position deviated from the front of the connection port (66). For this reason, it can avoid that the refrigerant
  • FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of an air conditioner including the outdoor heat exchanger according to the first embodiment.
  • FIG. 2 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the first embodiment.
  • FIG. 3 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the outdoor heat exchanger showing a part of the PP cross section of FIG. 3 in an enlarged manner.
  • FIG. 5 is an enlarged cross-sectional view illustrating the front of the main part of the outdoor heat exchanger according to the first embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing the main part of the outdoor heat exchanger of Embodiment 1, wherein (A) shows a part of the QQ cross section of FIG. 5, and (B) shows (A). (C) shows the SS cross section of (A), and (D) shows the TT cross section of (A).
  • FIG. 7 is a plan view of a vertical partition plate provided in the outdoor heat exchanger of the first embodiment.
  • FIG. 8 is an enlarged cross-sectional view showing the front of the main part of an outdoor heat exchanger according to a modification of the first embodiment.
  • FIG. 9 is an enlarged cross-sectional view illustrating the front of the main part of the outdoor heat exchanger according to the second embodiment.
  • FIG. 10 is a cross-sectional view showing a part of the UU cross section of FIG.
  • FIG. 11 is a cross-sectional view of the main part of the outdoor heat exchanger of Embodiment 2, wherein (A) shows a VV cross section of FIG. 10, (B) shows a WW cross section of FIG. (C) shows the XX section of FIG. 10, (D) shows the YY section of FIG. 10, and (E) shows the ZZ section of FIG.
  • FIG. 12 is a plan view of a vertical partition provided in the outdoor heat exchanger of the second embodiment.
  • FIG. 13 is sectional drawing of the principal part of the outdoor heat exchanger of Embodiment 1 to which the 1st modification of other embodiment is applied, Comprising: (A) shows the cross section corresponding to FIG.6 (B), FIG. 6B shows a cross section corresponding to FIG.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • the heat exchanger of this embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10).
  • an air conditioner (10) is demonstrated first, and the outdoor heat exchanger (23) is demonstrated in detail after that.
  • the air conditioner (10) includes an outdoor unit (11) and an indoor unit (12).
  • the outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
  • a refrigerant circuit (20) is formed by the outdoor unit (11), the indoor unit (12), the liquid side communication pipe (13), and the gas side communication pipe (14).
  • the refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing.
  • the compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11).
  • the outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23).
  • the indoor heat exchanger (25) is accommodated in the indoor unit (12).
  • the indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).
  • the refrigerant circuit (20) is a closed circuit filled with refrigerant.
  • the compressor (21) has a discharge pipe connected to the first port of the four-way switching valve (22) and a suction pipe connected to the second port of the four-way switching valve (22).
  • the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (22). (25) and are arranged.
  • Compressor (21) is a scroll type or rotary type hermetic compressor.
  • the four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port.
  • the expansion valve (24) is a so-called electronic expansion valve.
  • the outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger (23) will be described later.
  • the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.
  • the air conditioner (10) selectively performs a cooling operation and a heating operation. In each of the cooling operation and the heating operation, the refrigerant circuit (20) of the air conditioner (10) performs a refrigeration cycle by circulating the refrigerant.
  • the four-way switching valve (22) is set to the first state.
  • the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser.
  • the indoor heat exchanger (25) functions as an evaporator.
  • the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24).
  • the four-way switching valve (22) is set to the second state.
  • the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser.
  • the outdoor heat exchanger (23) functions as an evaporator.
  • the refrigerant that has expanded into the gas-liquid two-phase state flows into the outdoor heat exchanger (23) when passing through the expansion valve (24).
  • the refrigerant that has flowed into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21).
  • the outdoor heat exchanger (23) includes one first header collecting pipe (60), one second header collecting pipe (70), and many flat tubes (31, 31). 32) and a large number of fins (36).
  • the first header collecting pipe (60), the second header collecting pipe (70), the flat pipe (31, 32) and the fin (35) are all made of an aluminum alloy and are joined to each other by brazing. Yes.
  • the outdoor heat exchanger (23) is divided into a main heat exchange region (51) and an auxiliary heat exchange region (52).
  • some flat tubes (32) constitute an auxiliary heat exchange region (52)
  • the remaining flat tubes (31) constitute a main heat exchange region (51). .
  • the first header collecting pipe (60) and the second header collecting pipe (70) are both formed in an elongated cylindrical shape whose both ends are closed. 2 and 3, the first header collecting pipe (60) stood up at the left end of the outdoor heat exchanger (23), and the second header collecting pipe (70) stood up at the right end of the outdoor heat exchanger (23). It is installed in a state. That is, the first header collecting pipe (60) and the second header collecting pipe (70) are installed in a state where the respective axial directions are in the vertical direction.
  • the flat tubes (31, 32) are heat transfer tubes whose cross-sectional shape is a flat oval.
  • the plurality of flat tubes (31, 32) are arranged in a state in which the extending direction is the left-right direction and the flat side surfaces face each other.
  • the plurality of flat tubes (31, 32) are arranged side by side at regular intervals and are substantially parallel to each other.
  • Each flat tube (31, 32) has one end inserted into the first header collecting tube (60) and the other end inserted into the second header collecting tube (70).
  • each fluid passage (34) is a passage extending in the extending direction of the flat tube (31, 32).
  • the plurality of fluid passages (34) are arranged in a line in the width direction of the flat tube (31, 32) (that is, the direction orthogonal to the longitudinal direction).
  • One end of each of the plurality of fluid passages (34) formed in each flat tube (31, 32) communicates with the internal space of the first header collecting pipe (60), and the other end of each fluid passage (34) is the second header collecting pipe. It communicates with the internal space of (70).
  • the refrigerant supplied to the outdoor heat exchanger (23) exchanges heat with air while flowing through the fluid passage (34) of the flat tubes (31, 32).
  • the fin (36) is a vertically long plate-like fin formed by pressing a metal plate.
  • the fin (36) is formed with a number of elongated notches (45) extending in the width direction of the fin (36) from the front edge of the fin (36) (that is, the windward edge).
  • a large number of notches (45) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (36).
  • the portion closer to the lee of the notch (45) constitutes the tube insertion portion (46).
  • the tube insertion portion (46) has a vertical width substantially equal to the thickness of the flat tube (31, 32) and a length substantially equal to the width of the flat tube (31, 32).
  • the flat tubes (31, 32) are inserted into the tube insertion portion (46) of the fin (36) and joined to the peripheral portion of the tube insertion portion (46) by brazing. Moreover, the louver (40) for promoting heat transfer is formed in the fin (36).
  • the plurality of fins (36) are arranged in the extending direction of the flat tubes (31, 32) so that the air flows between the adjacent flat tubes (31, 32) into the plurality of ventilation paths (38). It is partitioned.
  • the outdoor heat exchanger (23) is divided into two heat exchange regions (51, 52) in the vertical direction.
  • the upper heat exchange region is the main heat exchange region (51)
  • the lower heat exchange region is the auxiliary heat exchange region (52).
  • Each heat exchange area (51, 52) is divided into three heat exchange sections (51a to 51c, 52a to 52c). That is, in the outdoor heat exchanger (23), each of the main heat exchange region (51) and the auxiliary heat exchange region (52) is divided into a plurality of heat exchange portions (51a to 51c, 52a to 52c). ing.
  • the number of heat exchanging portions (51a to 51c, 52a to 52c) formed in each heat exchanging region (51, 52) may be two, or four or more.
  • the first main heat exchange unit (51a), the second main heat exchange unit (51b), and the third main heat exchange unit are sequentially arranged from the bottom to the top. (51c) is formed.
  • a first auxiliary heat exchange unit (52a), a second auxiliary heat exchange unit (52b), and a third auxiliary heat exchange unit (52c) Is formed.
  • Each of the main heat exchange units (51a to 51c) and each of the auxiliary heat exchange units (52a to 52c) includes a plurality of flat tubes (31, 32). Further, as shown in FIG.
  • the number of flat tubes (31) constituting each main heat exchange section (51a to 51c) is equal to the number of flat tubes (32) constituting each auxiliary heat exchange section (52a to 52c). More than the number. Therefore, the number of flat tubes (31) constituting the main heat exchange region (51) is larger than the number of flat tubes (32) constituting the auxiliary heat exchange region (52).
  • the number of flat tubes (32) constituting the first auxiliary heat exchange section (52a) is three, and the second auxiliary heat exchange section (52b)
  • the number of the flat tubes (32) which comprise is three, and the number of the flat tubes (32) which comprise the 3rd auxiliary heat exchange part (52c) is five.
  • the internal space of the first header collecting pipe (60) is vertically divided by a partition plate (39a).
  • the space above the partition plate (39a) is the upper space (61), and the space below the partition plate (39a) is the lower space (62).
  • the upper space (61) constitutes a main communication space corresponding to the main heat exchange area (51).
  • the upper space (61) is a single space communicating with all of the flat tubes (31) constituting the main heat exchange region (51). That is, the upper space (61) communicates with the flat tube (31) of each main heat exchange section (51a to 51c).
  • the lower space (62) constitutes an auxiliary communication space corresponding to the auxiliary heat exchange region (52). Although details will be described later, the lower space (62) is partitioned into the same number (three in the present embodiment) of communication chambers (62a to 62c) as the auxiliary heat exchange sections (52a to 52c).
  • the lowermost first communication chamber (62a) communicates with all the flat tubes (32) constituting the first auxiliary heat exchange section (52a).
  • the second communication chamber (62b) located above the first communication chamber (62a) communicates with all the flat tubes (32) constituting the second auxiliary heat exchange section (52b).
  • the uppermost third communication chamber (62c) communicates with all the flat tubes (32) constituting the third auxiliary heat exchange section (52c).
  • the internal space of the second header collecting pipe (70) is divided into a main communication space (71) corresponding to the main heat exchange area (51) and an auxiliary communication space (72) corresponding to the auxiliary heat exchange area (52). Has been.
  • the main communication space (71) is divided up and down by two partition plates (39c).
  • the partition plate (39c) divides the main communication space (71) into the same number (three in this embodiment) of partial spaces (71a to 71c) as the main heat exchange portions (51a to 51c).
  • the lowermost first partial space (71a) communicates with all the flat tubes (31) constituting the first main heat exchange part (51a).
  • the second partial space (71b) located above the first partial space (71a) communicates with all the flat tubes (31) constituting the second main heat exchange section (51b).
  • the uppermost third partial space (71c) communicates with all the flat tubes (31) constituting the third main heat exchange section (51c).
  • the auxiliary communication space (72) is vertically divided by two partition plates (39d).
  • the partition plate (39d) divides the auxiliary communication space (72) into the same number (three in this embodiment) of partial spaces (72a to 72c) as the auxiliary heat exchange parts (52a to 52c).
  • the lowermost fourth partial space (72a) communicates with all the flat tubes (32) constituting the first auxiliary heat exchange section (52a).
  • the fifth partial space (72b) located above the fourth partial space (72a) communicates with all the flat tubes (32) constituting the second auxiliary heat exchange section (52b).
  • the sixth partial space (72c) located at the uppermost position communicates with all the flat tubes (32) constituting the third auxiliary heat exchange section (52c).
  • connection pipes (76, 77) are attached to the second header collecting pipe (70). These connection pipes (76, 77) are all circular pipes.
  • the first connection pipe (76) has one end connected to the second partial space (71b) corresponding to the second main heat exchange part (51b) and the other end corresponding to the first auxiliary heat exchange part (52a). Connected to the fourth partial space (72a).
  • the second connection pipe (77) has one end connected to the third partial space (71c) corresponding to the third main heat exchange part (51c) and the other end corresponding to the second auxiliary heat exchange part (52b). Connected to the fifth partial space (72b).
  • a sixth partial space (72c) corresponding to the third auxiliary heat exchange section (52c) and a first partial space corresponding to the first main heat exchange section (51a) ( 71a) form one continuous space.
  • the 1st main heat exchange part (51a) and the 3rd auxiliary heat exchange part (52c) are connected in series, and the 2nd main heat exchange part (51b ) And the first auxiliary heat exchanger (52a) are connected in series, and the third main heat exchanger (51c) and the second auxiliary heat exchanger (52b) are connected in series.
  • the outdoor heat exchanger (23) is provided with a liquid side connection pipe (55) and a gas side connection pipe (57).
  • the liquid side connecting pipe (55) and the gas side connecting pipe (57) are aluminum alloy members formed in a circular tube shape.
  • the liquid side connection pipe (55) and the gas side connection pipe (57) are joined to the first header collecting pipe (60) by brazing.
  • liquid side connection pipe (55) which is a tubular member, is connected to the lower part of the first header collecting pipe (60) and communicates with the lower space (62).
  • the other end of the liquid side connection pipe (55) is connected to a copper pipe (17) connecting the outdoor heat exchanger (23) and the expansion valve (24) via a joint (not shown).
  • One end of the gas side connection pipe (57) is connected to the upper part of the first header collecting pipe (60) and communicates with the upper space (61).
  • the other end of the gas side connection pipe (57) is connected to a copper pipe (18) connecting the outdoor heat exchanger (23) and the third port of the four-way switching valve (22) via a joint (not shown). It is connected.
  • a first main horizontal partition plate (80a), a second main horizontal partition plate (80b), a sub horizontal partition plate (85a), One partition plate (90) is installed (see FIG. 5).
  • This lower space (62) is divided into three communication chambers (two communication walls (80a, 80b), one auxiliary horizontal partition plate (85a), and one vertical partition plate (90)).
  • the material of the first main horizontal partition plate (80a), the second main horizontal partition plate (80b), the sub horizontal partition plate (85a), and the vertical partition plate (90) is an aluminum alloy.
  • Each of the first main horizontal partition plate (80a), the second main horizontal partition plate (80b), and the sub-horizontal partition plate (85a) is a substantially disk-shaped member that crosses the lower space (62). It is provided to do. That is, the first main horizontal partition plate (80a), the second main horizontal partition plate (80b), and the sub horizontal partition plate (85a) partition the lower space (62) vertically.
  • the first main horizontal partition plate (80a), the second main horizontal partition plate (80b), and the sub horizontal partition plate (85a) are joined to the first header collecting pipe (60) by brazing.
  • the first main horizontal partition plate (80a) is disposed at the boundary between the first auxiliary heat exchange section (52a) and the second auxiliary heat exchange section (52b), and is connected to the first communication chamber (62a) and the second communication chamber (62b).
  • the second main horizontal partition plate (80b) is disposed at the boundary between the second auxiliary heat exchange section (52b) and the third auxiliary heat exchange section (52c), and is connected to the second communication chamber (62b) and the third communication chamber (62c).
  • the sub-lateral partition plate (85a) is disposed between the second and third tubes from the bottom among the three flat tubes (32) constituting the second auxiliary heat exchange section (52b). That is, the sub horizontal partition plate (85a) is disposed between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b).
  • One slit hole (82a, 82b, 87a) is formed in each of the first main horizontal partition plate (80a), the second main horizontal partition plate (80b), and the sub horizontal partition plate (85a). (See FIGS. 5 and 6).
  • the slit holes (82a, 82b, 87a) are elongated rectangular holes, and penetrate the horizontal partition plates (80a, 80b, 85a) in the thickness direction.
  • the long sides of the slit holes (82a, 82b, 87a) are substantially parallel to the end face of the flat tube (32).
  • the slit holes (82a, 82b, 87a) are formed in the first header collecting pipe (60 ) Is located closer to the back surface of the first header collecting pipe (60) than the central axis (64).
  • the width of the slit holes (82a, 82b, 87a) is substantially the same as the thickness of the vertical partition plate (90), and the length thereof is substantially the same as the width of the vertical partition plate (90).
  • the first main horizontal partition plate (80a) has one flow rate adjusting hole (81a).
  • the flow rate adjusting hole (81a) is a circular hole penetrating the first main horizontal partition plate (80a) in the thickness direction.
  • the flow rate adjusting hole (81a) is disposed closer to the back surface of the first header collecting pipe (60) than the slit hole (82a).
  • connection holes (83b) are formed in the second main horizontal partition plate (80b).
  • Each connection hole (83b) is a circular hole penetrating the second main horizontal partition plate (80b) in the thickness direction.
  • the three connection holes (83b) are disposed closer to the back surface of the first header collecting pipe (60) than the slit holes (82a).
  • the sub-lateral partition plate (85a) has one flow rate adjusting hole (86a) and three connection holes (88a).
  • Each of the flow rate adjusting hole (86a) and each connection hole (88a) is a circular hole penetrating the sub-lateral partition plate (85a) in the thickness direction.
  • the flow rate adjusting hole (86a) is disposed closer to the back surface of the first header collecting pipe (60) than the slit hole (87a).
  • the three connection holes (88a) are arranged closer to the front surface of the first header collecting pipe (60) than the slit holes (87a).
  • the vertical partition plate (90) is formed in a vertically long rectangular plate shape (see FIG. 7).
  • the vertical partition plate (90) includes a slit hole (82a) in the first main horizontal partition plate (80a), a slit hole (82b) in the second main horizontal partition plate (80b), and a sub horizontal partition plate (85a). It is passed through the slit hole (87a) (see FIGS. 5 and 6).
  • the vertical partition (90) cuts through the lower space (62) in the first header collecting pipe (60). Further, the vertical partition plate (90) faces the end face of the flat tube (32) inserted into the first header collecting tube (60).
  • the lower end of the vertical partition plate (90) is in contact with the bottom of the first header collecting pipe (60), and the upper end is in contact with the partition plate (39a).
  • the vertical partition plate (90) is in contact with the inner peripheral surface of the first header collecting pipe (60) at both sides in the width direction (left and right direction in FIG. 6).
  • the vertical partition plate (90) is not joined to other members.
  • This vertical partition plate (90) is inserted into the slit hole (82a, 82b, 87a) of each main horizontal partition plate (80a, 80b), and at the bottom of the partition plate (39a) and the first header collecting pipe (60). The posture is maintained by the contact.
  • the upper portion of the second main horizontal partition plate (80b) is the upper portion (91), and the second main horizontal partition plate (80b) and the first main horizontal partition plate (80a)
  • the intermediate portion is the intermediate portion (92), and the lower portion of the first main horizontal partition plate (80a) is the lower portion (93) (see FIGS. 5 and 6).
  • the intermediate portion (92) of the vertical partition plate (90) is a portion of the lower space (62) sandwiched between the second main horizontal partition plate (80b) and the first main horizontal partition plate (80a).
  • the header collecting pipe (60) is divided into a front side and a back side.
  • the space located on the front side of the first header collecting pipe (60) with respect to the intermediate portion (92) of the vertical partition plate (90) is the second communication chamber (62b).
  • the space located on the back side of the first header collecting pipe (60) with respect to the intermediate portion (92) of the vertical partition plate (90) is the back space (67).
  • the back space (67) is divided up and down by the sub horizontal partition plate (85a).
  • the upper part of the sub horizontal partition plate (85a) is the intermediate chamber (68), and the lower part of the sub horizontal partition plate (85a) is the mixing chamber (63). That is, the sub-lateral partition plate (85a) partitions the rear space (67) into the mixing chamber (63) and the intermediate chamber (68).
  • the mixing chamber (63) includes the intermediate portion (92) of the vertical partition plate (90), the first main horizontal partition plate (80a), the sub horizontal partition plate (85a), and the first header collecting pipe. (60) is surrounded by the side wall. That is, in the first header collecting pipe (60), the mixing chamber (63) is adjacent to the second communication chamber (62b) with the intermediate portion (92) of the vertical partition plate (90) interposed therebetween.
  • the sub horizontal partition plate (85a) is disposed between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b). Therefore, the height of the mixing chamber (63) sandwiched between the first main horizontal partition plate (80a) and the sub horizontal partition plate (85a) is the same as the first main horizontal partition plate (80a) and the second main horizontal partition plate. It is lower than the height of the second communication chamber (62b) sandwiched between (80b).
  • the vertical partition plate (90) has two rectangular openings (94a, 94b) and two circular flow rate adjusting holes (95, 95). Each opening (94a, 94b) and each flow rate adjustment hole (95, 95) penetrate the vertical partition plate (90) in the thickness direction.
  • One opening (94a, 94b) is formed in each of the upper part (91) and the lower part (93) of the vertical partition plate (90).
  • the upper opening (94b) occupies most of the upper part (91) of the vertical partition (90). Accordingly, in the third communication chamber (62c) located above the second main horizontal partition plate (80b), the portions on both sides of the vertical partition plate (90) are substantially one space.
  • the lower opening (94a) occupies most of the lower part (93) of the vertical partition (90). Accordingly, in the first communication chamber (62a) located on the lower side of the first main horizontal partition plate (80a), the portions on both sides of the vertical partition plate (90) are substantially one space.
  • the two flow rate adjustment holes (95) are circular holes that penetrate the vertical partition plate (90) in the thickness direction.
  • Each flow rate adjusting hole (95) has a portion between the first main horizontal partition plate (80a) and the sub horizontal partition plate (85a) in the intermediate portion (92) of the vertical partition plate (90) (that is, the mixing chamber ( 63).
  • the two flow rate adjusting holes (95) are arranged side by side along the center line in the width direction of the vertical partition plate (90). That is, one of the two flow rate adjusting holes (95) is disposed in the vicinity of the sub horizontal partition plate (85a), and the other is disposed in the vicinity of the first main horizontal partition plate (80a).
  • a connection port (66) for inserting the liquid side connection pipe (55) is formed in the side wall portion of the first header collecting pipe (60).
  • the connection port (66) is a circular through hole.
  • the connection port (66) is formed in a portion of the first header collecting pipe (60) between the first main horizontal partition plate (80a) and the sub horizontal partition plate (85a) and communicates with the mixing chamber (63). ing.
  • the center of the connection port (66) is located at the center in the height direction of the mixing chamber (63).
  • the liquid side connection pipe (55) has a shape in which the connection end (56) inserted into the connection port (66) of the first header collecting pipe (60) is narrowed.
  • the flow rate adjusting holes (95) of the vertical partition plate (90) are arranged one by one near the upper end and the lower end of the portion facing the mixing chamber (63) of the vertical partition plate (90).
  • the center of the connection port (66) is located at the center in the height direction of the mixing chamber (63). That is, in the vertical partition plate (90), the flow rate adjusting hole (95) is arranged in a portion that is off the front of the connection port (66).
  • the first main horizontal partition plate (80a), the sub horizontal partition plate (85a), and the vertical partition plate (90) are formed with flow rate adjusting holes (81a, 86a, 95).
  • These flow rate control holes (81a, 86a, 95) are communication through holes for distributing the refrigerant in the mixing chamber (63) to the communication chambers (62a to 62c) at a predetermined ratio.
  • the flow rate adjusting holes (81a, 86a, 95) constitute a distribution passage (65) that distributes the refrigerant in the mixing chamber (63) to each communication chamber (62a to 62c) at a predetermined ratio.
  • the flow rate adjustment hole (81a) of the first main horizontal partition (80a) allows the mixing chamber (63) to communicate with the first communication chamber (62a).
  • the diameter of the flow rate adjusting hole (81a) is, for example, about 2 mm.
  • the flow rate adjusting hole (86a) of the sub horizontal partition plate (85a) communicates the mixing chamber (63) with the third communication chamber (62c) through the intermediate chamber (68).
  • the flow rate adjusting hole (86a) is slightly larger in diameter than the flow rate adjusting hole (81a) of the first main horizontal partition plate (80a).
  • the two flow rate adjusting holes (95) of the vertical partition (90) connect the mixing chamber (63) with the second communication chamber (62b).
  • the sum of the cross-sectional areas of these two flow rate adjusting holes (95) is substantially equal to the cross-sectional area of the flow rate adjusting hole (81a) of the first main transverse partition plate (80a).
  • connection holes (83b) are formed in the second main horizontal partition plate (80b).
  • the connection hole (83b) of the second main horizontal partition (80b) communicates the intermediate chamber (68) with the third communication chamber (62c).
  • Each connecting hole (83b) has a significantly larger diameter than the flow rate adjusting hole (86a) of the sub-lateral partition plate (85a).
  • the sum of the cross-sectional areas of the three connection holes (83b) is sufficiently larger (for example, 10 times or more) than the cross-sectional area of the flow rate adjusting hole (86a) formed in the sub-lateral partition plate (85a).
  • the intermediate chamber (68) communicates with the third communication chamber (62c) via the connection hole (83b) having a large cross-sectional area, and is substantially a space integral with the third communication chamber (62c). .
  • the sub horizontal partition plate (85a) is disposed between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b). That is, the sub-lateral partition plate (85a) crosses the second communication chamber (62b). On the other hand, three connecting holes (88a) are formed in the sub-lateral partition plate (85a). For this reason, the upper and lower portions of the sub-lateral partition plate (85a) in the second communication chamber (62b) communicate with each other through the connection hole (88a).
  • Each connecting hole (88a) of the sub horizontal partition plate (85a) has a significantly larger diameter than the flow rate adjusting hole (95) of the vertical partition plate (90).
  • the total cross-sectional area of the three connection holes (88a) is sufficiently larger than the total cross-sectional area of the two flow rate adjusting holes (95) formed in the vertical partition plate (90) (for example, 10 times or more). ). Therefore, the sub-lateral partition plate (85a) is disposed so as to cross the second communication chamber (62b), but the second communication chamber (62b) is substantially one space.
  • the gas refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23).
  • the gas refrigerant sent from the compressor (21) flows into the upper space (61) of the first header collecting pipe (60) via the gas side connection pipe (57), and then flows into the main heat exchange region (51). It is distributed to each flat tube (31).
  • the refrigerant flowing into the fluid passage (34) of the flat tube (31) dissipates heat to the outdoor air while flowing through the fluid passage (34). Then, it condenses and then flows into the corresponding partial spaces (71a to 71c) of the second header collecting pipe (70).
  • the refrigerant that has flowed into the partial spaces (71a to 71c) of the main communication space (71) is sent to the corresponding partial spaces (72a to 72c) of the auxiliary communication space (72).
  • the refrigerant flowing into the first partial space (71a) of the main communication space (71) flows down and flows into the sixth partial space (72c) of the auxiliary communication space (72).
  • the refrigerant flowing into the second partial space (71b) of the main communication space (71) flows into the fourth partial space (72a) of the auxiliary communication space (72) through the first connection pipe (76).
  • the refrigerant that has flowed into the third partial space (71c) of the main communication space (71) flows into the fifth partial space (72b) of the auxiliary communication space (72) through the second connection pipe (77).
  • the refrigerant that has flowed into the partial spaces (72a to 72c) of the auxiliary communication space (72) is distributed to the flat tubes (32) of the corresponding auxiliary heat exchange sections (52a to 52c).
  • the refrigerant flowing through the fluid passage (34) of each flat tube (32) dissipates heat to the outdoor air and becomes supercooled liquid, and then the corresponding communication chamber in the lower space (62) of the first header collecting pipe (60). Flows into (62a-62c). Thereafter, the refrigerant flows into the liquid side connecting pipe (55) through the mixing chamber (63) and flows out of the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) is supplied with a refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24).
  • the gas-liquid two-phase refrigerant flowing from the expansion valve (24) passes through the liquid side connection pipe (55) inserted into the connection port (66), and is mixed in the mixing chamber (60) in the first header collecting pipe (60). 63).
  • the refrigerant passes through the connection end (56) of the liquid side connection pipe (55)
  • the flow rate rises, and the high flow rate refrigerant ejected from the liquid side connection pipe (55) becomes the vertical partition plate (90 ).
  • the mixing chamber (63) the refrigerant is vigorously disturbed, and the gas refrigerant and liquid refrigerant in the refrigerant are mixed. That is, the refrigerant in the mixing chamber (63) is homogenized, and the wetness of the refrigerant in the mixing chamber (63) becomes substantially uniform.
  • the refrigerant in the mixing chamber (63) is distributed to each communication chamber (62a to 62c). As described above, the gas-liquid two-phase refrigerant in the mixing chamber (63) is homogenized. For this reason, the wetness of the refrigerant flowing into the communication chambers (62a to 62c) from the mixing chamber (63) is substantially equal.
  • the refrigerant in the mixing chamber (63) passes through the flow rate adjusting hole (81a) of the first main horizontal partition (80a) and flows into the first communication chamber (62a). Further, the refrigerant in the mixing chamber (63) passes through the flow rate adjusting hole (95) of the vertical partition plate (90), and is lower than the sub horizontal partition plate (85a) in the second communication chamber (62b). Flows into the part. Part of the refrigerant that has flowed into the portion below the sub-lateral partition plate (85a) in the second communication chamber (62b) passes through the connection hole (88a) of the sub-lateral partition plate (85a), and the second It flows into a part of the communication chamber (62b) above the sub-lateral partition plate (85a).
  • the refrigerant that has passed through the flow rate adjusting hole (95) of the vertical partition plate (90) reaches the entire second communication chamber (62b).
  • the refrigerant in the mixing chamber (63) passes through the flow rate adjusting hole (86a) of the sub-lateral partition plate (85a) and once flows into the intermediate chamber (68), and then the second main horizontal partition plate (80b ) Through the connection hole (83b) and flow into the third communication chamber (62c).
  • the distribution passage (65) is configured so that the distribution ratio of the refrigerant from the mixing chamber (63) to each of the communication chambers (62a to 62c) is a predetermined ratio.
  • the size of the flow rate adjusting holes (81a, 86a, 95) is set.
  • the mass flow rates of the refrigerant flowing into the flat tubes (32) constituting the auxiliary heat exchange units (52a to 52c) are substantially equal.
  • the distribution ratio of the refrigerant from the mixing chamber (63) to the communication chambers (62a to 62c) is set.
  • the mass flow rate of the refrigerant flowing from the mixing chamber (63) to the second communication chamber (62b) is changed from the mixing chamber (63) to the first communication chamber (62a).
  • the mass flow rate of the refrigerant flowing into the third communication chamber (62c) from the mixing chamber (63) flows into the first communication chamber (62a) from the mixing chamber (63). More than the mass flow rate of the refrigerant.
  • the refrigerant that has flowed into the communication chambers (62a to 62c) of the first header collecting pipe (60) is distributed to the flat tubes (32) of the corresponding auxiliary heat exchange sections (52a to 52c).
  • the refrigerant flowing into the fluid passage (34) of each flat tube (32) absorbs heat from the outdoor air while flowing through the fluid passage (34), and a part of the liquid refrigerant evaporates.
  • the refrigerant that has passed through the fluid passage (34) of the flat tube (32) flows into the corresponding partial spaces (72a to 72c) of the auxiliary communication space (72) of the second header collecting pipe (70).
  • the refrigerant that has flowed into the partial spaces (72a to 72c) still remains in a gas-liquid two-phase state.
  • the refrigerant that has flowed into the partial spaces (72a to 72c) of the auxiliary communication space (72) is sent to the corresponding partial spaces (71a to 71c) of the main communication space (71).
  • the refrigerant flowing into the fourth partial space (72a) of the auxiliary communication space (72) flows into the second partial space (71b) of the main communication space (71) through the first connection pipe (76).
  • the refrigerant that has flowed into the fifth partial space (72b) of the auxiliary communication space (72) flows into the third partial space (71c) of the main communication space (71) through the second connection pipe (77).
  • the refrigerant flowing into the sixth partial space (72c) of the auxiliary communication space (72) flows upward and flows into the first partial space (71a) of the main communication space (71).
  • the refrigerant that has flowed into the partial spaces (71a to 71c) of the main communication space (71) is distributed to the flat tubes (31) of the corresponding main heat exchange sections (51a to 51c).
  • the refrigerant flowing through the fluid passageway (34) of each flat tube (31) absorbs heat from the outdoor air and evaporates to substantially become a gas single-phase state, and then the upper space of the first header collecting pipe (60) ( 61). Thereafter, the refrigerant flows out of the outdoor heat exchanger (23) through the gas side connection pipe (57).
  • the first header collecting pipe (60) is provided with a main horizontal partition plate (80a, 80b), a sub horizontal partition plate (85a), and a vertical partition plate (90). These partition plates (80a, 80b, 85a, 90) form one mixing chamber (63) and three communication chambers (62a to 62c) in the first header collecting pipe (60).
  • the gas-liquid two-phase refrigerant supplied to the outdoor heat exchanger (23) functioning as an evaporator flows into the mixing chamber (63) in the first header collecting pipe (60), and the vertical partition plate ( It is agitated by colliding with 90).
  • the wetness of the refrigerant distributed from the mixing chamber (63) to each communication chamber (62a to 62c) can be averaged, and each flat tube communicating with the communication chamber (62a to 62c) ( 32) It becomes possible to average the wetness of the refrigerant flowing into.
  • gravity acts on the gas-liquid two-phase refrigerant flowing into the mixing chamber (63). For this reason, when the height of the mixing chamber (63) exceeds a certain level, the difference in the wetness of the refrigerant near the upper end and the lower end of the mixing chamber (63) may increase to a level that cannot be ignored. Moreover, when the volume of the mixing chamber (63) is large, there is a possibility that the difference in the wetness of the refrigerant in each part of the mixing chamber (63) may be increased to a degree that cannot be ignored.
  • the sub horizontal partition plate (85a) that forms the mixing chamber (63) together with the vertical partition plate (90) has a first main horizontal partition that is adjacent vertically. It arrange
  • the vertical partition plate (90) forming the mixing chamber (63) is a flat tube with respect to the central axis (64) of the first header collecting pipe (60). It is arranged on the opposite side to (32). For this reason, the width of the mixing chamber (63) is kept narrow, and the volume of the mixing chamber (63) is kept small.
  • the mixing chamber (63) into which the refrigerant in the gas-liquid two-phase state flows when the outdoor heat exchanger (23) functions as an evaporator The height can be kept low, and the volume can be kept small. Therefore, according to the present embodiment, it becomes possible to suppress the difference in the wetness of the refrigerant in each part in the mixing chamber (63), and the distribution is distributed from the mixing chamber (63) to each communication chamber (62a to 62c). It becomes possible to make the wetness of the refrigerant uniform.
  • the flow rate adjusting hole (95) is provided at a position away from the front of the connection port (66). For this reason, it can be avoided that the refrigerant flowing into the mixing chamber (63) from the connection port (66) intensively flows into the flow rate adjusting hole (95) of the vertical partition plate (90).
  • the refrigerant can be reliably distributed to the communication chambers (62a to 62c) at a predetermined distribution ratio.
  • a mixing chamber (63) is formed below the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b). However, as shown in FIG. 8, the mixing chamber (63) may be formed on the upper side between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b).
  • the difference of the structure of the first header collecting pipe (60) of the present modification from the structure of the first header collecting pipe (60) shown in FIG. 5 will be described.
  • the first main horizontal partition plate (80a) of this modification is disposed at the boundary between the second auxiliary heat exchange part (52b) and the third auxiliary heat exchange part (52c).
  • the first main horizontal partition plate (80a) partitions the second communication chamber (62b) and the third communication chamber (62c).
  • the second main horizontal partition plate (80b) of the present modification is disposed at the boundary between the first auxiliary heat exchange part (52a) and the second auxiliary heat exchange part (52b).
  • the second main horizontal partition plate (80b) partitions the first communication chamber (62a) and the second communication chamber (62b).
  • the sub horizontal partition plate (85a) of this modification is arranged between the first and second tubes from the bottom among the three flat tubes (32) constituting the second auxiliary heat exchange section (52b). .
  • the upper part of the sub horizontal partition plate (85a) is the mixing chamber (63) and is lower than the sub horizontal partition plate (85a).
  • the side part becomes the intermediate chamber (68).
  • connection port (66) of this modification is formed in a portion between the sub horizontal partition plate (85a) and the first main horizontal partition plate (80a) in the first header collecting pipe (60), and the mixing chamber (63 ).
  • the intermediate portion (92) faces the portion between the sub-horizontal partition plate (85a) and the first main horizontal partition plate (80a) (ie, the mixing chamber (63)).
  • Two flow rate adjusting holes (95) are formed in the portion). The flow rate adjusting hole (95) allows the mixing chamber (63) to communicate with the second communication chamber (62b).
  • the first main horizontal partition plate (80a) of this modification is a member having the same shape as the first main horizontal partition plate (80a) illustrated in FIG.
  • One flow rate adjusting hole (81a) is formed in the first main horizontal partition plate (80a) of this modification.
  • the flow rate adjusting hole (81a) allows the mixing chamber (63) to communicate with the third communication chamber (62c).
  • the second main horizontal partition plate (80b) of this modification is a member having the same shape as the second main horizontal partition plate (80b) illustrated in FIG.
  • Three connection holes (83b) are formed in the second main horizontal partition plate (80b) of this modification.
  • the connection hole (83b) allows the intermediate chamber (68) to communicate with the first communication chamber (62a).
  • the sub horizontal partition plate (85a) of this modification is a member having the same shape as the sub horizontal partition plate (85a) illustrated in FIG.
  • the sub horizontal partition plate (85a) of the present modification is formed with one flow rate adjusting hole (86a) and three connection holes (88a).
  • the flow rate adjusting hole (86a) of the present modification communicates the mixing chamber (63) with the intermediate chamber (68).
  • the connection hole (88a) of the present modification communicates the upper and lower portions of the sub-lateral partition plate (85a) in the second communication chamber (62b).
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described. Here, about the outdoor heat exchanger (23) of this embodiment, a different point from the outdoor heat exchanger (23) of Embodiment 1 is demonstrated.
  • the auxiliary heat exchange region (52) is divided into four auxiliary heat exchange units (52a to 52d).
  • a first auxiliary heat exchange unit (52a), a second auxiliary heat exchange unit (52b), and a third auxiliary heat exchange unit (52c) A fourth auxiliary heat exchange part (52d) is formed.
  • region (51) is divided into four main heat exchange parts.
  • each auxiliary heat exchange part (52a-52d) is connected in series with the corresponding main heat exchange part.
  • the number of flat tubes (32) constituting the first auxiliary heat exchanging portion (52a) is three, and the second auxiliary heat exchanging portion (52b) is constituted.
  • the number of flat tubes (32) is three
  • the number of flat tubes (32) constituting the third auxiliary heat exchange section (52c) is three
  • the number of flat tubes (32) is five.
  • the lower space (62) of the first header collecting pipe (60) there are three main horizontal partition plates (80a to 80c) and two sub horizontal partition plates (85a, 85b). ) And one vertical partition plate (90).
  • the lower space (62) is divided into four communication chambers (62a to 62d) by the main horizontal partition plates (80a to 80c), the sub horizontal partition plates (85a and 85b), and the vertical partition plate (90). It is divided into one mixing chamber (63).
  • the materials of the main horizontal partition plates (80a to 80c), the sub horizontal partition plates (85a and 85b), and the vertical partition plate (90) are aluminum alloys.
  • the three main horizontal partition plates (80a to 80c) and the two secondary horizontal partition plates (85a, 85b) are both substantially disk-shaped members so as to cross the lower space (62). Is provided. That is, the main horizontal partition plates (80a to 80c) and the sub horizontal partition plates (85a, 85b) partition the lower space (62) vertically.
  • the main horizontal partition plates (80a to 80c) and the sub horizontal partition plates (85a, 85b) are joined to the first header collecting pipe (60) by brazing.
  • the first main horizontal partition plate (80a) is disposed at the boundary between the first auxiliary heat exchange section (52a) and the second auxiliary heat exchange section (52b), and is connected to the first communication chamber (62a) and the second communication chamber (62b). ).
  • the second main horizontal partition plate (80b) is disposed at the boundary between the second auxiliary heat exchange section (52b) and the third auxiliary heat exchange section (52c), and is connected to the second communication chamber (62b) and the third communication chamber (62c).
  • the third main horizontal partition plate (80c) is disposed at the boundary between the third auxiliary heat exchanging portion (52c) and the fourth auxiliary heat exchanging portion (52d), and is connected to the third communication chamber (62c) and the fourth communication chamber (62d).
  • the first sub horizontal partition plate (85a) is disposed between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b).
  • the first sub-lateral partition plate (85a) is disposed between the second and third pipes from the bottom among the three flat tubes (32) constituting the second auxiliary heat exchange section (52b).
  • the second sub horizontal partition plate (85b) is disposed between the second main horizontal partition plate (80b) and the third main horizontal partition plate (80c).
  • the second sub-lateral partition plate (85b) is disposed between the first and second tubes from the bottom among the three flat tubes (32) constituting the third auxiliary heat exchange section (52c).
  • One slit hole (82a, 82b, 82c, 87a, 87b) is formed in each of the three main horizontal partition plates (80a to 80c) and the two sub horizontal partition plates (85a, 85b). Yes. As shown in FIG. 11, the slit holes (82a to 82c, 87a, 87b) are elongated rectangular holes, and penetrate the horizontal partition plates (80a to 80c, flanges 85a, 85b) in the thickness direction. . The long sides of the slit holes (82a to 82c, 87a, 87b) are substantially parallel to the end face of the flat tube (32).
  • the slit holes (82a to 82c, 87a and 87b) are formed in the first header collecting pipe (60) Is located closer to the back surface of the first header collecting pipe (60) than the central axis (64).
  • the width of the slit holes (82a to 82c, 87a, 87b) is substantially the same as the thickness of the vertical partition plate (90), and the length thereof is substantially the same as the width of the vertical partition plate (90).
  • connection holes (83a) are formed in the first main horizontal partition plate (80a).
  • Each connection hole (83a) is a circular hole that penetrates the first main horizontal partition plate (80a) in the thickness direction.
  • the three connection holes (83a) are disposed closer to the back surface of the first header collecting pipe (60) than the slit holes (82a).
  • one notch hole (84b) is formed in the second main horizontal partition plate (80b).
  • the notch hole (84b) is a rectangular notch extending from the outer peripheral edge of the second main horizontal partition plate (80b) toward the center thereof.
  • the cutout hole (84b) is disposed closer to the back surface of the first header collecting pipe (60) than the slit hole (82a).
  • the notch hole (84b) has a width in the left-right direction in FIG. 11C that is substantially equal to the diameter of the connection port (66).
  • the third main horizontal partition plate (80c) has three connection holes (83c).
  • Each connection hole (83c) is a circular hole that penetrates the third main horizontal partition plate (80c) in the thickness direction.
  • the three connection holes (83c) are disposed closer to the back surface of the first header collecting pipe (60) than the slit holes (82c).
  • each of the first sub horizontal partition plate (85a) and the second sub horizontal partition plate (85b) has one flow rate adjusting hole (86a, 86b) and three.
  • Two connection holes (88a, 88b) are formed.
  • the flow rate adjustment holes (86a, 86b) and the connection holes (88a) are circular holes that penetrate the sub-lateral partition plates (85a, 85b) in the thickness direction.
  • the flow rate adjusting holes (86a, 86b) are disposed closer to the back surface of the first header collecting pipe (60) than the slit holes (87a, 87b).
  • the three connection holes (88a, 88b) are arranged closer to the front surface of the first header collecting pipe (60) than the slit holes (87a, 87b).
  • the vertical partition plate (90) is formed in a vertically long rectangular plate shape as in the first embodiment (see FIG. 12).
  • the vertical partition plate (90) is passed through the slit holes (82a to 82c) of the main horizontal partition plates (80a to 80c) and the slit holes (87a and 87b) of the sub horizontal partition plates (85a and 85b). (See FIGS. 9 and 11).
  • the vertical partition plate (90) is a flat tube (90) vertically cut through the lower space (62) in the first header collecting pipe (60) and inserted into the first header collecting pipe (60). It faces the end face of 32).
  • the upper portion of the third main horizontal partition plate (80c) is the upper portion (91), and the third main horizontal partition plate (80c) and the first main horizontal partition plate (80a)
  • the intermediate portion is the intermediate portion (92), and the lower portion of the first main horizontal partition plate (80a) is the lower portion (93) (see FIGS. 9 and 10).
  • the middle part (92) of the vertical partition plate (90) is a portion of the lower space (62) sandwiched between the third main horizontal partition plate (80c) and the first main horizontal partition plate (80a).
  • the header collecting pipe (60) is divided into a front side and a back side.
  • the space located on the front side of the first header collecting pipe (60) with respect to the intermediate portion (92) of the vertical partition plate (90) is separated from the second communication chamber (62b) by the second main horizontal partition plate (80b). It is partitioned off into the third communication chamber (62c).
  • the space located on the back side of the first header collecting pipe (60) with respect to the intermediate portion (92) of the vertical partition plate (90) is the back space (67).
  • the rear space (67) is vertically divided by two sub horizontal partition plates (85a, 85b).
  • the lower part of the first sub-lateral partition plate (85a) is the first intermediate chamber (68a)
  • the upper part of the second sub-separate partition plate (85b) is the second intermediate part.
  • a chamber (68b) is formed, and a portion between the first sub-lateral partition plate (85a) and the second sub-lateral partition plate (85b) is the mixing chamber (63). That is, the two sub horizontal partition plates (85a, 85b) partition the back space (67) into one mixing chamber (63) and two intermediate chambers (68a, 68b).
  • the mixing chamber (63) includes the intermediate portion (92) of the vertical partition plate (90), the first sub horizontal partition plate (85a), the second sub horizontal partition plate (85b), and the first header. It is surrounded by the side wall of the collecting pipe (60). That is, in the first header collecting pipe (60), the mixing chamber (63) is connected to the second communication chamber (62b) and the third communication chamber (62c) with the intermediate portion (92) of the vertical partition plate (90) interposed therebetween. Next to each other.
  • the first sub horizontal partition plate (85a) is disposed between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b) and closer to the second main horizontal partition plate (80b),
  • the second sub horizontal partition plate (85b) is disposed between the second main horizontal partition plate (80b) and the third main horizontal partition plate (80c) and closer to the second main horizontal partition plate (80b).
  • the height of the mixing chamber (63) sandwiched between the two auxiliary horizontal partition plates (85a, 85b) is lower than the height of the second communication chamber (62b), and the height of the third communication chamber (62c) Lower than height.
  • the vertical partition plate (90) has two rectangular openings (94a, 94b) and two circular flow rate adjusting holes (95a, 95b). Each opening (94a, 94b) and each flow rate adjustment hole (95a, 95b) penetrate the vertical partition plate (90) in the thickness direction.
  • One opening (94a, 94b) is formed in each of the upper part (91) and the lower part (93) of the vertical partition plate (90).
  • the upper opening (94b) occupies most of the upper part (91) of the vertical partition (90). Accordingly, in the fourth communication chamber (62d) located above the third main horizontal partition plate (80c), both sides of the vertical partition plate (90) are substantially one space.
  • the lower opening (94a) occupies most of the lower part (93) of the vertical partition (90). Accordingly, in the first communication chamber (62a) located on the lower side of the first main horizontal partition plate (80a), the portions on both sides of the vertical partition plate (90) are substantially one space.
  • the two flow rate adjustment holes (95a, 95b) are both circular holes that penetrate the vertical partition plate (90) in the thickness direction.
  • the first flow rate adjusting hole (95a) is formed in a portion between the second main horizontal partition plate (80b) and the first sub horizontal partition plate (85a) in the intermediate portion (92) of the vertical partition plate (90).
  • the second flow rate adjusting hole (95b) is formed in a portion between the second main horizontal partition plate (80b) and the second sub horizontal partition plate (85b) in the intermediate portion (92) of the vertical partition plate (90).
  • the two flow rate adjusting holes (95a, 95b) are arranged vertically along the center line in the width direction of the vertical partition plate (90).
  • connection port (66) is formed in the side wall of the first header collecting pipe (60).
  • the connection port (66) is disposed at the same height as the second main horizontal partition plate (80b) and communicates with the mixing chamber (63).
  • the center of the connection port (66) is located at the center in the height direction of the mixing chamber (63).
  • one flow rate adjusting hole (95a, 95b) is arranged near the upper end and the lower end of the portion facing the mixing chamber (63) of the vertical partition plate (90).
  • the center of the connection port (66) is located at the center in the height direction of the mixing chamber (63).
  • the flow rate adjusting holes (95a, 95b) are arranged in a portion deviated from the front of the connection port (66).
  • the first sub horizontal partition plate (85a), the second sub horizontal partition plate (85b), and the vertical partition plate (90) are formed with flow rate adjusting holes (86a, 86b, 95a, 95b). ing.
  • These flow rate adjusting holes (86a, 86b, 95a, 95b) are communication through holes for distributing the refrigerant in the mixing chamber (63) to the respective communication chambers (62a to 62d) at a predetermined ratio.
  • the flow rate adjusting holes (86a, 86b, 95a, 95b) constitute a distribution passage (65) for distributing the refrigerant in the mixing chamber (63) to each communication chamber (62a to 62d) at a predetermined ratio. .
  • the flow rate adjustment hole (86a) of the first sub-lateral partition plate (85a) communicates the mixing chamber (63) with the first communication chamber (62a) through the first intermediate chamber (68a).
  • the diameter of the flow rate adjusting hole (86a) is, for example, about 2 mm.
  • the flow rate adjusting hole (86b) of the second sub-lateral partition plate (85b) communicates the mixing chamber (63) with the fourth communication chamber (62d) through the second intermediate chamber (68b).
  • the flow rate adjusting hole (86b) is slightly larger in diameter than the flow rate adjusting hole (86a) of the first sub-lateral partition plate (85a).
  • the first flow rate adjustment hole (95a) of the vertical partition plate (90) communicates the mixing chamber (63) with the second communication chamber (62b).
  • the diameter of the first flow rate adjusting hole (95a) is substantially equal to the diameter of the flow rate adjusting hole (86a) of the first sub-lateral partition plate (85a).
  • the second flow rate adjustment hole (95b) of the vertical partition plate (90) communicates the mixing chamber (63) with the third communication chamber (62c).
  • the diameter of the second flow rate adjusting hole (95b) is substantially equal to the diameter of the flow rate adjusting hole (86a) of the first sub-lateral partition plate (85a).
  • the first main horizontal partition plate (80a) has three connection holes (83a).
  • the connection hole (83a) of the first main horizontal partition (80a) communicates the first intermediate chamber (68a) with the first communication chamber (62a).
  • Each connection hole (83a) has a significantly larger diameter than the flow rate adjustment hole (86a) of the first sub-lateral partition plate (85a).
  • the total cross-sectional area of the three connection holes (83a) is sufficiently larger than the cross-sectional area of the flow rate adjusting hole (86a) formed in the first sub-lateral partition plate (85a) (for example, 10 times or more). It has become.
  • the first intermediate chamber (68a) communicates with the first communication chamber (62a) via the connection hole (83a) having a large cross-sectional area, and is substantially a space integral with the first communication chamber (62a). It is.
  • the third main horizontal partition plate (80c) has three connection holes (83c).
  • the connection hole (83c) of the third main horizontal partition plate (80c) communicates the second intermediate chamber (68b) with the fourth communication chamber (62d).
  • Each connection hole (83c) is significantly larger in diameter than the flow rate adjustment hole (86b) of the second sub-lateral partition plate (85b).
  • the total cross-sectional area of the three connection holes (83c) is sufficiently larger than the cross-sectional area of the flow rate adjusting hole (86c) formed in the second sub-lateral partition plate (85b) (for example, 10 times or more). It has become.
  • the second intermediate chamber (68b) communicates with the fourth communication chamber (62d) via the connection hole (83c) having a large cross-sectional area, and is substantially a space integrally formed with the fourth communication chamber (62d). It is.
  • the first sub horizontal partition plate (85a) is disposed between the first main horizontal partition plate (80a) and the second main horizontal partition plate (80b). That is, the first sub-lateral partition plate (85a) crosses the second communication chamber (62b). On the other hand, three connection holes (88a) are formed in the first sub-lateral partition plate (85a). For this reason, the upper and lower portions of the first sub-lateral partition plate (85a) in the second communication chamber (62b) communicate with each other through the connection hole (88a).
  • each connection hole (88a) of the first sub horizontal partition plate (85a) is significantly larger than that of the first flow rate adjustment hole (95a) of the vertical partition plate (90).
  • the sum of the cross-sectional areas of the three connection holes (88a) is sufficiently larger (for example, 10 times or more) than the cross-sectional area of the first flow rate adjusting hole (95a) formed in the vertical partition plate (90). It has become. Accordingly, the first sub-lateral partition plate (85a) is disposed so as to cross the second communication chamber (62b), but the second communication chamber (62b) is substantially one space.
  • the second sub horizontal partition plate (85b) is disposed between the second main horizontal partition plate (80b) and the third main horizontal partition plate (80c). That is, the second auxiliary horizontal partition plate (85b) crosses the third communication chamber (62c).
  • three connection holes (88b) are formed in the second sub-lateral partition plate (85b). For this reason, the upper and lower portions of the second sub-lateral partition plate (85b) in the third communication chamber (62c) communicate with each other through the connection hole (88b).
  • each connection hole (88b) of the second sub horizontal partition plate (85b) is significantly larger than that of the second flow rate adjustment hole (95b) of the vertical partition plate (90).
  • the total cross-sectional area of the three connection holes (88b) is sufficiently larger (for example, 10 times or more) than the cross-sectional area of the second flow rate adjusting hole (95b) formed in the vertical partition plate (90). It has become. Therefore, the second sub-lateral partition plate (85b) is arranged to cross the third communication chamber (62c), but the third communication chamber (62c) is substantially one space.
  • the refrigerant in the gas-liquid two-phase state is supplied to the outdoor heat exchanger (23) functioning as an evaporator.
  • the refrigerant in the gas-liquid two-phase state supplied to the outdoor heat exchanger (23) of the present embodiment is distributed to the four auxiliary heat exchange units (52a to 52d).
  • the flow of the refrigerant supplied to the outdoor heat exchanger (23) of this embodiment functioning as an evaporator will be described.
  • the gas-liquid two-phase refrigerant supplied to the outdoor heat exchanger (23) functioning as an evaporator passes through the liquid side connection pipe (55) and is mixed in the mixing chamber (63) in the first header collecting pipe (60). Flow into.
  • the mixing chamber (63) the high-flow-rate refrigerant ejected from the liquid side connection pipe (55) collides with the vertical partition plate (90), and the gas refrigerant and liquid refrigerant in the refrigerant are mixed. That is, the refrigerant in the mixing chamber (63) is homogenized, and the wetness of the refrigerant in the mixing chamber (63) becomes substantially uniform.
  • the refrigerant in the mixing chamber (63) is distributed to each communication chamber (62a to 62d). As described above, the gas-liquid two-phase refrigerant in the mixing chamber (63) is homogenized. For this reason, the wetness of the refrigerant flowing into the communication chambers (62a to 62d) from the mixing chamber (63) is substantially equal.
  • the refrigerant in the mixing chamber (63) passes through the flow rate adjusting hole (86a) of the first sub-lateral partition plate (85a) and once flows into the first intermediate chamber (68a), and then the first main horizontal partition plate. Passes through the connection hole (83a) of (80a) and flows into the first communication chamber (62a).
  • the refrigerant in the mixing chamber (63) passes through the first flow rate adjusting hole (95a) of the vertical partition plate (90), and from the first sub-lateral partition plate (85a) in the second communication chamber (62b). Also flows into the upper part. A part of the refrigerant that has flowed into the upper part of the second communication chamber (62b) above the first auxiliary horizontal partition plate (85a) passes through the connection hole (88a) of the first auxiliary horizontal partition plate (85a). The second communication chamber (62b) flows into a portion below the first sub-lateral partition plate (85a). That is, the refrigerant that has passed through the first flow rate adjusting hole (95a) of the vertical partition plate (90) reaches the entire second communication chamber (62b).
  • the refrigerant in the mixing chamber (63) passes through the second flow rate adjusting hole (95b) of the vertical partition plate (90), and from the second sub-lateral partition plate (85b) in the third communication chamber (62c). Also flows into the lower part. Part of the refrigerant that has flowed into the lower part of the third communication chamber (62c) below the second auxiliary horizontal partition plate (85b) passes through the connection hole (88b) of the second auxiliary horizontal partition plate (85b). Then, it flows into the upper part of the third communication chamber (62c) above the second sub-lateral partition plate (85b). That is, the refrigerant that has passed through the second flow rate adjustment hole (95b) of the vertical partition plate (90) reaches the entire third communication chamber (62c).
  • the refrigerant in the mixing chamber (63) once flows into the second intermediate chamber (68b) through the flow rate adjusting hole (86b) of the second sub-lateral partition plate (85b), and then the third main horizontal partition. It passes through the connection hole (83c) of the partition plate (80c) and flows into the fourth communication chamber (62d).
  • the distribution passage (65) is configured so that the distribution ratio of the refrigerant from the mixing chamber (63) to each of the communication chambers (62a to 62d) is a predetermined ratio.
  • the size of the flow rate adjusting holes (86a, 86b, 95a, 95b) is set.
  • the mass flow rate of the refrigerant flowing into each flat tube (32) constituting the auxiliary heat exchange section (52a to 52d) is substantially equal.
  • the distribution ratio of the refrigerant from the mixing chamber (63) to each communication chamber (62a to 62d) is set.
  • the mass flow rate of the refrigerant flowing into the mixing chamber and the mass flow rate of the refrigerant flowing into the third communication chamber (62c) from the mixing chamber (63) are substantially equal to each other, and from the mixing chamber (63) to the fourth communication chamber (62d).
  • the mass flow rate of the refrigerant flowing into the first communication chamber (63) is larger than the mass flow rate of the refrigerant flowing into the first communication chamber (62a).
  • the refrigerant that has flowed into the communication chambers (62a to 62d) of the first header collecting pipe (60) is distributed to the flat tubes (32) of the corresponding auxiliary heat exchange sections (52a to 52d). Thereafter, the refrigerant sequentially passes through each auxiliary heat exchange section (52a to 52d) and the main heat exchange section corresponding to the auxiliary heat exchange section (52a to 52d), becomes substantially in a gas single phase state, and flows out of the outdoor heat exchanger (23). Go.
  • Embodiment 2- the same effect as in the first embodiment can be obtained. That is, in the outdoor heat exchanger (23) of this embodiment, the mixing chamber (85 63) is formed, and the gas-liquid two-phase refrigerant flowing into the mixing chamber (63) is stirred by colliding with the vertical partition plate (90). Therefore, according to the present embodiment, the wetness of the refrigerant distributed from the mixing chamber (63) to each communication chamber (62a to 62d) can be averaged, and each flat tube communicating with the communication chamber (62a to 62d) ( 32) It becomes possible to average the wetness of the refrigerant flowing into.
  • the mixing chamber (63) is formed between the two sub-lateral partition plates (85a, 85b), and the height of the mixing chamber (63) Is suppressed to be lower than the height of the second communication chamber (62b) and the third communication chamber (62c). Therefore, according to this embodiment, even when the four communication chambers (62a to 62d) are formed in the first header collecting pipe (60) by the three main horizontal partition plates (80a to 80c), the mixing chamber By keeping the height of (63) low, the gas-liquid two-phase refrigerant in the mixing chamber (63) can be reliably homogenized.
  • connection holes (83a to 83c, 88a, 88b) formed in these horizontal partition plates (80a to 80c, 85a, 85b) are merely examples. That is, the connecting holes (83a to 83c, 88a, 88b) formed in these horizontal partition plates (80a to 80c, 85a, 85b) are connected to the flow rate adjusting holes (81a, 86a, 86b, 95, 95a, 95b). It is sufficient if the through hole has a sufficiently large cross-sectional area. For example, as shown in FIG. 13, one oblong connection hole (83b, 88a) is formed in each of the second main horizontal partition plate (80b) and the sub horizontal partition plate (85a) of the first embodiment. May be.
  • the mass flow rate of the refrigerant flowing into each flat tube (32) constituting the auxiliary heat exchange section (52a to 52d) is substantially equal.
  • the opening area of the flow rate adjusting holes (81a, 86a, 86b, 95, 95a, 95b) is set. However, it is not necessary to make the mass flow rate of the refrigerant flowing into all the flat tubes (32) constituting the auxiliary heat exchange sections (52a to 52d) uniform.
  • the mass flow rate of the refrigerant flowing from the mixing chamber (63) to the first communication chamber (62a) is changed from the mixing chamber (63) to the second communication chamber (
  • the opening area of the flow rate adjusting holes (81a, 95, 86a, 95a) may be set so as to be larger than the mass flow rate of the refrigerant flowing into 62b).
  • three flat tubes (32) communicate with each of the first communication chamber (62a) and the second communication chamber (62b). Therefore, in this case, the mass flow rate of the refrigerant flowing into each flat tube (32) communicating with the first communication chamber (62a) flows into each flat tube (32) communicating with the second communication chamber (62b). More than the mass flow rate of the refrigerant.
  • the outdoor heat exchanger (23) of each embodiment may be provided with corrugated fins instead of the plate-like fins (36).
  • These fins are so-called corrugated fins, and are formed in a wavy waveform that snakes up and down.
  • the corrugated fins are arranged one by one between the flat tubes (31, 32) adjacent in the vertical direction.
  • the present invention is useful for a heat exchanger in which a plurality of flat tubes are connected to a header collecting tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 室外熱交換器(23)の第1ヘッダ集合管(60)には、三つの連通室(62a~62c)と一つの混合室(63)とが形成される。二枚の主横仕切板(80a,80b)の間に一枚の副横仕切板(85a)が設けられる。混合室(63)は、第1主横仕切板(80a)と副横仕切板(85a)の間に形成される。蒸発器として機能する室外熱交換器(23)へ供給された気液二相状態の冷媒は、混合室(63)へ流入し、その後に三つの連通室(62a~62c)へ分配される。その結果、混合室(63)から連通室(62a~62c)へ分配される冷媒の湿り度が均一化される。

Description

熱交換器
 本発明は、一対のヘッダ集合管と、各ヘッダ集合管に接続する複数の扁平管とを備え、扁平管内を流れる冷媒を空気と熱交換させる熱交換器に関する。
 従来より、多数の扁平管と、各扁平管に接続するヘッダ集合管とを備え、扁平管の内部を流れる冷媒を、扁平管の外部を流れる空気と熱交換させる熱交換器が知られている。特許文献1に開示された熱交換器では、上下に延びる多数の扁平管が左右に配列され、各扁平管の下端にヘッダ集合管が接続される。また、特許文献2に開示された熱交換器では、左右に延びる多数の扁平管が上下に配列され、各扁平管の端部にヘッダ集合管が接続される。
 この種の熱交換器へ供給された冷媒は、先ずヘッダ集合管へ流入し、その後に複数の扁平管へ分かれて流入する。また、この種の熱交換器が冷凍装置の蒸発器として機能する場合は、気液二相状態の冷媒が熱交換器へ供給される。つまり、この場合は、気液二相状態の冷媒がヘッダ集合管を通って各扁平管へ分配される。
特開平09-264693号公報 特開平06-074609号公報
 ここで、気液二相状態の冷媒を複数の扁平管に分配する場合は、各扁平管へ流入する冷媒の湿り度をなるべく均一にするのが望ましい。各扁平管へ流入する冷媒の湿り度を均一化するには、ヘッダ集合管へ流入した気液二相状態の冷媒を、できるだけ均質化してから扁平管へ供給するのが望ましい。そうするための手法としては、ヘッダ集合管内に形成した部屋に気液二相状態の冷媒を流入させて撹拌し、その後に各扁平管へ冷媒を分配することが考えられる。しかし、気液二相状態の冷媒が各扁平管へ分配される前に流入する部屋をヘッダ集合管に形成するための構造については、これまで充分に検討されていなかった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、一対のヘッダ集合管と扁平管を備えた熱交換器において、気液二相状態の冷媒が各扁平管へ分配される前に流入する部屋をヘッダ集合管に形成し、各扁平管へ流入する冷媒の湿り度を平均化することにある。
 第1の発明は、複数の扁平管(32)と、各扁平管(32)の一端が接続された第1ヘッダ集合管(60)と、各扁平管(32)の他端が接続された第2ヘッダ集合管(70)と、上記扁平管(32)に接合された複数のフィン(36)とを備え、上記扁平管(32)を流れる冷媒を空気と熱交換させることによって蒸発器として機能し得る熱交換器を対象とする。そして、上記第1ヘッダ集合管(60)及び上記第2ヘッダ集合管(70)は、起立した状態であり、上記第1ヘッダ集合管(60)には、該第1ヘッダ集合管(60)へ気液二相状態の冷媒を導入するための配管が接続される一つの接続口(66)が形成される一方、上記第1ヘッダ集合管(60)は、該第1ヘッダ集合管(60)の内部空間を横断し、一つ又は複数の上記扁平管(32)がそれぞれに連通する複数の連通室(62a~62c)を形成する主横仕切板(80a,80b)と、該第1ヘッダ集合管(60)の内部空間を縦断し、上記接続口(66)と全ての上記連通室(62a~62c)とに連通する混合室(63)を形成する縦仕切板(90)と、上下に隣り合う主横仕切板(80a,80b)の間に配置されて該第1ヘッダ集合管(60)の内部空間を横断し、上記縦仕切板(90)と共に上記混合室(63)を形成する副横仕切板(85a)とを備えるものである。
 第1の発明の第1ヘッダ集合管(60)には、一つの混合室(63)と、複数の連通室(62a~62c)とが形成される。この発明の熱交換器(23)が蒸発器として機能する状態では、気液二相状態の冷媒が第1ヘッダ集合管(60)へ供給される。具体的に、気液二相状態の冷媒は、接続口(66)を通って一つの混合室(63)へ流入し、その後に複数の連通室(62a~62c)へ分配される。各連通室(62a~62c)へ流入した気液二相状態の冷媒は、その連通室(62a~62c)に連通する扁平管(32)へ流入し、その後に第2ヘッダ集合管(70)へ流入する。気液二相状態の冷媒に含まれる液冷媒は、扁平管(32)を通過する間に空気から吸熱し、その一部または全部が蒸発する。
 第1の発明の第1ヘッダ集合管(60)には、主横仕切板(80a,80b)と、縦仕切板(90)と、副横仕切板(85a)とが設けられる。第1ヘッダ集合管(60)の内部空間を横断するように配置された主横仕切板(80a,80b)は、複数の連通室(62a~62c)を形成する。一方、第1ヘッダ集合管(60)の内部空間を縦断するように配置された縦仕切板(90)と、第1ヘッダ集合管(60)の内部空間を横断するように配置された副横仕切板(85a)とは、混合室(63)を形成する。
 第1の発明において、副横仕切板(85a)は、上下に隣り合う主横仕切板(80a,80b)の間に配置される。ここで、混合室(63)を縦仕切板(90)と主横仕切板(80a,80b)によって形成する場合、混合室(63)の高さは、主横仕切板(80a,80b)の間隔と同じになる。一方、第1の発明では、縦仕切板(90)と副横仕切板(85a)とが混合室(63)を形成する。このため、混合室(63)の高さは、主横仕切板(80a,80b)の間隔とは無関係に設定可能となる。
 第2の発明は、上記第1の発明において、上記混合室(63)の高さは、上記縦仕切板(90)を挟んで該混合室(63)と隣り合う上記連通室(62b)の高さよりも低いものである。
 第2の発明の混合室(63)は、縦仕切板(90)を挟んで混合室(63)と隣り合う連通室(62b)に比べて、高さが低い。つまり、この発明では、混合室(63)の高さが、連通室(62b)を形成する主横仕切板(80a,80b)の間隔よりも低くなる。
 第3の発明は、上記第1又は第2の発明において、上記縦仕切板(90)は、上記第1ヘッダ集合管(60)の中心軸(64)を基準に上記扁平管(32)とは逆側に配置されるものである。
 第3の発明では、混合室(63)を形成する縦仕切板(90)が、第1ヘッダ集合管(60)の中心軸(64)に対して扁平管(32)とは逆側に配置される。このため、第1ヘッダ集合管(60)の中心軸(64)と直交する方向における混合室(63)の幅は、第1ヘッダ集合管(60)の内径の半分よりも短くなる。
 第4の発明は、上記第1~第3のいずれか一つの発明において、上記混合室(63)は、上記縦仕切板(90)と、該混合室(63)の上側と下側の一方に配置された一つの上記主横仕切板(80a)と、該混合室(63)の上側と下側の他方に配置された一つの上記副横仕切板(85a)とによって上記連通室(62a~62c)から仕切られるものである。
 第4の発明では、縦仕切板(90)と、一つの主横仕切板(80a)と、一つの副横仕切板(85a)とによって、混合室(63)が連通室(62a~62c)から仕切られる。混合室(63)を連通室(62a~62c)から仕切る主横仕切板(80a)と副横仕切板(85a)は、その一方が混合室(63)の上方に配置され、その他方が混合室(63)の下方に配置される。
 第5の発明は、上記第4の発明において、上記混合室(63)を上記連通室(62a~62c)から仕切る上記縦仕切板(90)と上記主横仕切板(80a)と上記副横仕切板(85a)のそれぞれには、上記混合室(63)の冷媒を上記各連通室(62a~62c)へ所定の割合で分配するための連通用貫通孔(81a,86a,95)が形成されるものである。
 第5の発明では、混合室(63)を連通室(62a~62c)から仕切る縦仕切板(90)と主横仕切板(80a)と副横仕切板(85a)のそれぞれに、連通用貫通孔(81a,86a,95)が形成される。これら連通用貫通孔(81a,86a,95)の大きさを調節すれば、混合室(63)から各連通室(62a~62c)へ流入する冷媒の流量の比が所定の値となる。
 第6の発明は、上記第1~第3のいずれか一つの発明において、上記混合室(63)は、上記縦仕切板(90)と、該混合室(63)の上下に配置された一対の上記副横仕切板(85a,85b)とによって上記連通室(62a~62d)から仕切られるものである。
 第6の発明では、縦仕切板(90)と、一対の副横仕切板(85a,85b)とによって、混合室(63)が連通室(62a~62d)から仕切られる。混合室(63)を連通室(62a~62d)から仕切る副横仕切板(85a,85b)は、混合室(63)の上方と下方に一つずつ配置される。
 第7の発明は、上記第6の発明において、上記混合室(63)を上記連通室(62a~62d)から仕切る一対の上記副横仕切板(85a,85b)と上記縦仕切板(90)のそれぞれには、上記混合室(63)の冷媒を上記各連通室(62a~62d)へ所定の割合で分配するための連通用貫通孔(86a,86b,95a,95b)が形成されるものである。
 第7の発明では、混合室(63)を連通室(62a~62d)から仕切る一対の副横仕切板(85a,85b)と縦仕切板(90)のそれぞれに、連通用貫通孔(86a,86b,95a,95b)が形成される。これら連通用貫通孔(86a,86b,95a,95b)の大きさを調節すれば、混合室(63)から各連通室(62a~62d)へ流入する冷媒の流量の比が所定の値となる。
 第8の発明は、上記第1~第3のいずれか一つの発明において、上記混合室(63)は、上記縦仕切板(90)を挟んで一つ又は二つの上記連通室(62b,62c)と隣り合うものである。
 第8の発明では、縦仕切板(90)を挟んで混合室(63)が一つ又は二つの連通室(62b,62c)と隣り合う。
 第9の発明は、上記第1~第3のいずれか一つの発明において、上記縦仕切板(90)には、該縦仕切板(90)を挟んで上記混合室(63)と隣り合う連通室(62b)を、該混合室(63)と連通させるための連通用貫通孔(95)が形成されるものである。
 第9の発明では、縦仕切板(90)に連通用貫通孔(95)が形成される。縦仕切板(90)を挟んで混合室(63)と隣り合う連通室(62b)へは、混合室(63)の冷媒が連通用貫通孔(95)を通って流入する。
 第10の発明は、上記第9の発明において、上記接続口(66)は、上記第1ヘッダ集合管(60)の側壁に形成されて上記縦仕切板(90)と向かい合い、上記縦仕切板(90)の連通用貫通孔(95)は、上記接続口(66)の正面から外れた位置に設けられるものである。
 第10の発明の第1ヘッダ集合管(60)では、接続口(66)が縦仕切板(90)と向かい合っている。このため、接続口(66)を通って混合室(63)へ流入した気液二相状態の冷媒は、接続口(66)と向かい合った縦仕切板(90)に衝突する。また、この発明の縦仕切板(90)において、連通用貫通孔(95)は、接続口(66)の正面から外れた位置に設けられる。このため、接続口(66)から混合室(63)へ流入した冷媒が縦仕切板(90)の連通用貫通孔(95)へ集中的に流入することはない。
 第11の発明は、上記第1~第10のいずれか一つの発明において、それぞれが複数の上記扁平管(31,32)を有する主熱交換領域(51)と補助熱交換領域(52)に区分され、上記補助熱交換領域(52)が上記主熱交換領域(51)の下方に位置する一方、上記補助熱交換領域(52)は、それぞれが複数の扁平管(32)を有して上記各連通室(62a~62c)に一つずつ対応する複数の補助熱交換部(52a~52c)に区分され、上記各補助熱交換部(52a~52c)の扁平管(32)は、該補助熱交換部(52a~52c)に対応する連通室(62a~62c)に連通し、上記主熱交換領域(51)は、それぞれが複数の扁平管(31)を有して上記各補助熱交換部(52a~52c)に一つずつ対応する複数の主熱交換部(51a~51c)に区分され、上記各主熱交換部(51a~51c)の扁平管(31)は、該主熱交換部(51a~51c)に対応する補助熱交換部(52a~52c)の扁平管(32)と上記第2ヘッダ集合管(70)を介して連通するものである。
 第11の発明では、熱交換器(23)が主熱交換領域(51)と補助熱交換領域(52)に区分される。また、主熱交換領域(51)は複数の主熱交換部(51a~51c)に区分され、補助熱交換領域(52)は複数の補助熱交換部(52a~52c)に区分される。主熱交換部(51a~51c)と補助熱交換部(52a~52c)は、一対一に対応している。熱交換器(23)が蒸発器として機能する状態では、気液二相状態の冷媒が第1ヘッダ集合管(60)の混合室(63)へ流入する。混合室(63)の冷媒は、複数の連通室(62a~62c)へ分配され、各連通室(62a~62c)に対応する補助熱交換部(52a~52c)の扁平管(32)へ流入する。各補助熱交換部(52a~52c)の扁平管(32)を通過した冷媒は、第2ヘッダ集合管(70)を通り、対応する主熱交換部(51a~51c)の扁平管(31)へ流入する。
 本発明では、第1ヘッダ集合管(60)に設けられた主横仕切板(80a,80b)と縦仕切板(90)と副横仕切板(85a)とによって、第1ヘッダ集合管(60)内に一つの混合室(63)と複数の連通室(62a~62c)とが形成される。そして、熱交換器(23)が蒸発器として機能する状態において、第1ヘッダ集合管(60)へ供給された気液二相状態の冷媒を混合室(63)へ導入して撹拌すれば、複数の連通室(62a~62c)へ分配される冷媒の湿り度を平均化できる。従って、本発明によれば、各扁平管(32)へ流入する冷媒の湿り度を平均化することが可能となる。
 ここで、混合室(63)へ流入した気液二相状態の冷媒には、重力が作用する。このため、混合室(63)の高さがある程度以上になると、混合室(63)の上端付近と下端付近における冷媒の湿り度の差が無視できない程度に拡大するおそれがある。
 これに対し、本発明では、縦仕切板(90)と共に混合室(63)を形成する副横仕切板(85a)が、上下に隣り合う主横仕切板(80a,80b)の間に配置される。このため、混合室(63)の高さを、主横仕切板(80a,80b)の間隔とは無関係に設定可能となる。従って、本発明によれば、副横仕切板(85a)を適切な位置に配置することによって、混合室(63)の高さを低く抑えることが可能となる。その結果、混合室(63)内の気液二相状態の冷媒を均質化することが可能となり、各扁平管へ流入する冷媒の湿り度を平均化することが可能となる。
 上記第2の発明では、混合室(63)の高さが、縦仕切板(90)を挟んで混合室(63)と隣り合う連通室(62b)の高さよりも低くなる。このため、混合室(63)の高さが低く抑えられ、混合室(63)に存在する気液二相状態の冷媒の均質化を図ることができる。
 上記第3の発明では、混合室(63)を形成する縦仕切板(90)が、第1ヘッダ集合管(60)の中心軸(64)に対して扁平管(32)とは逆側に配置される。このため、混合室(63)の幅を第1ヘッダ集合管(60)の内径の半分よりも短くすることができ、混合室(63)の容積を抑えることによって、混合室(63)に存在する気液二相状態の冷媒の均質化を図ることができる。
 上記第10の発明では、接続口(66)を通って混合室(63)へ流入した気液二相状態の冷媒が縦仕切板(90)に衝突する。このため、接続口(66)から混合室(63)へ流入した冷媒は、縦仕切板(90)に衝突することによって激しく掻き乱される。従って、この発明によれば、混合室(63)内の冷媒に含まれるガス冷媒と液冷媒の混合を促進させ、混合室(63)内の気液二相状態の冷媒の均質化を促進することができる。
 また、第10の発明の縦仕切板(90)では、連通用貫通孔(95)が接続口(66)の正面から外れた位置に設けられる。このため、接続口(66)から混合室(63)へ流入した冷媒が縦仕切板(90)の連通用貫通孔(95)へ集中的に流入ことを回避できる。
図1は、実施形態1の室外熱交換器を備えた空気調和機の概略構成を示す冷媒回路図である。 図2は、実施形態1の室外熱交換器の概略構成を示す正面図である。 図3は、実施形態1の室外熱交換器の正面を示す一部断面図である。 図4は、図3のP-P断面の一部を拡大して示す室外熱交換器の断面図である。 図5は、実施形態1の室外熱交換器の要部の正面を拡大して示す断面図である。 図6は、実施形態1の室外熱交換器の要部を拡大して示す断面図であって、(A)は図5のQ-Q断面の一部を示し、(B)は(A)のR-R断面を示し、(C)は(A)のS-S断面を示し、(D)は(A)のT-T断面を示す。 図7は、実施形態1の室外熱交換器に設けられた縦仕切板の平面図である。 図8は、実施形態1の変形例の室外熱交換器の要部の正面を拡大して示す断面図である。 図9は、実施形態2の室外熱交換器の要部の正面を拡大して示す断面図である。 図10は、図9のU-U断面の一部を示す断面図である。 図11は、実施形態2の室外熱交換器の要部の断面図であって、(A)は図10のV-V断面を示し、(B)は図10のW-W断面を示し、(C)は図10のX-X断面を示し、(D)は図10のY-Y断面を示し、(E)は図10のZ-Z断面を示す。 図12は、実施形態2の室外熱交換器に設けられた縦仕切板の平面図である。 図13は、その他の実施形態の第1変形例を適用した実施形態1の室外熱交換器の要部の断面図であって、(A)は図6(B)に相当する断面を示し、(B)は図6(C)に相当する断面を示す。
 本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
 本発明の実施形態1について説明する。本実施形態の熱交換器は、空気調和機(10)に設けられた室外熱交換器(23)である。以下では、先ず空気調和機(10)について説明し、その後に室外熱交換器(23)について詳細に説明する。
  -空気調和機-
 空気調和機(10)について、図1を参照しながら説明する。
   〈空気調和機の構成〉
 空気調和機(10)は、室外ユニット(11)および室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)およびガス側連絡配管(14)によって、冷媒回路(20)が形成されている。
 冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、および膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。一方、室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。
 冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出管が四方切換弁(22)の第1のポートに、その吸入管が四方切換弁(22)の第2のポートに、それぞれ接続されている。また、冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。
 圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。
 室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)については後述する。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。
   〈空気調和機の運転動作〉
 空気調和機(10)は、冷房運転と暖房運転を選択的に行う。冷房運転と暖房運転のそれぞれにおいて、空気調和機(10)の冷媒回路(20)は、冷媒を循環させて冷凍サイクルを行う。
 冷房運転中の冷媒回路(20)は、四方切換弁(22)が第1状態に設定される。このとき、冷媒回路(20)では、室外熱交換器(23)、膨張弁(24)、室内熱交換器(25)の順に冷媒が循環し、室外熱交換器(23)が凝縮器として機能し、室内熱交換器(25)が蒸発器として機能する。室外熱交換器(23)では、圧縮機(21)から流入したガス冷媒が室外空気へ放熱して凝縮し、凝縮後の冷媒が膨張弁(24)へ向けて流出してゆく。
 暖房運転中の冷媒回路(20)は、四方切換弁(22)が第2状態に設定される。このとき、冷媒回路(20)では、室内熱交換器(25)、膨張弁(24)、室外熱交換器(23)の順に冷媒が循環し、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が流入する。室外熱交換器(23)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(21)へ向けて流出してゆく。
  -室外熱交換器-
 室外熱交換器(23)について、図2~7を適宜参照しながら説明する。なお、以下の説明に示す扁平管(31,32)の本数と、主熱交換部(51a~51c)及び補助熱交換部(52a~52c)の数は、何れも単なる一例である。
   〈室外熱交換器の構成〉
 図2及び図3に示すように、室外熱交換器(23)は、一つの第1ヘッダ集合管(60)と、一つの第2ヘッダ集合管(70)と、多数の扁平管(31,32)と、多数のフィン(36)とを備えている。第1ヘッダ集合管(60)、第2ヘッダ集合管(70)、扁平管(31,32)およびフィン(35)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。
 詳しくは後述するが、室外熱交換器(23)は、主熱交換領域(51)と補助熱交換領域(52)に区分されている。この室外熱交換器(23)では、一部の扁平管(32)が補助熱交換領域(52)を構成し、残りの扁平管(31)が主熱交換領域(51)を構成している。
 第1ヘッダ集合管(60)と第2ヘッダ集合管(70)は、何れも両端が閉塞された細長い円筒状に形成されている。図2及び図3において、第1ヘッダ集合管(60)は室外熱交換器(23)の左端に、第2ヘッダ集合管(70)は室外熱交換器(23)の右端に、それぞれ起立した状態で設置されている。つまり、第1ヘッダ集合管(60)及び第2ヘッダ集合管(70)は、それぞれの軸方向が上下方向となる状態で設置されている。
 図4に示すように、扁平管(31,32)は、その断面形状が扁平な長円形となった伝熱管である。図3に示すように、室外熱交換器(23)において、複数の扁平管(31,32)は、その伸長方向が左右方向となり、それぞれの平坦な側面が対向する状態で配置されている。また、複数の扁平管(31,32)は、互いに一定の間隔をおいて上下に並んで配置され、互いに実質的に平行となっている。各扁平管(31,32)は、その一端が第1ヘッダ集合管(60)に挿入され、その他端が第2ヘッダ集合管(70)に挿入されている。
 図4に示すように、各扁平管(31,32)には、複数の流体通路(34)が形成されている。各流体通路(34)は、扁平管(31,32)の伸長方向に延びる通路である。各扁平管(31,32)において、複数の流体通路(34)は、扁平管(31,32)の幅方向(即ち、長手方向と直交する方向)に一列に並んでいる。各扁平管(31,32)に形成された複数の流体通路(34)は、それぞれの一端が第1ヘッダ集合管(60)の内部空間に連通し、それぞれの他端が第2ヘッダ集合管(70)の内部空間に連通している。室外熱交換器(23)へ供給された冷媒は、扁平管(31,32)の流体通路(34)を流れる間に空気と熱交換する。
 図4に示すように、フィン(36)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(36)には、フィン(36)の前縁(即ち、風上側の縁部)からフィン(36)の幅方向に延びる細長い切り欠き部(45)が、多数形成されている。フィン(36)では、多数の切り欠き部(45)が、フィン(36)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(45)の風下寄りの部分は、管挿入部(46)を構成している。管挿入部(46)は、上下方向の幅が扁平管(31,32)の厚さと実質的に等しく、長さが扁平管(31,32)の幅と実質的に等しい。扁平管(31,32)は、フィン(36)の管挿入部(46)に挿入され、管挿入部(46)の周縁部とロウ付けによって接合される。また、フィン(36)には、伝熱を促進するためのルーバー(40)が形成されている。そして、複数のフィン(36)は、扁平管(31,32)の伸長方向に配列されることで、隣り合う扁平管(31,32)の間を空気が流れる複数の通風路(38)に区画している。
 図2及び図3に示すように、室外熱交換器(23)は、上下に二つの熱交換領域(51,52)に区分されている。室外熱交換器(23)では、上側の熱交換領域が主熱交換領域(51)となり、下側の熱交換領域が補助熱交換領域(52)となっている。
 各熱交換領域(51,52)は、上下に三つずつの熱交換部(51a~51c,52a~52c)に区分されている。つまり、室外熱交換器(23)では、主熱交換領域(51)と補助熱交換領域(52)のそれぞれが、複数且つ互いに同数の熱交換部(51a~51c,52a~52c)に区分されている。なお、各熱交換領域(51,52)に形成される熱交換部(51a~51c,52a~52c)の数は、二つであってもよいし、四つ以上であってもよい。
 具体的に、主熱交換領域(51)には、下から上に向かって順に、第1主熱交換部(51a)と、第2主熱交換部(51b)と、第3主熱交換部(51c)とが形成されている。補助熱交換領域(52)には、下から上に向かって順に、第1補助熱交換部(52a)と、第2補助熱交換部(52b)と、第3補助熱交換部(52c)とが形成されている。各主熱交換部(51a~51c)と各補助熱交換部(52a~52c)は、扁平管(31,32)を複数本ずつ備えている。また、図3に示すように、各主熱交換部(51a~51c)を構成する扁平管(31)の本数は、各補助熱交換部(52a~52c)を構成する扁平管(32)の本数よりも多い。従って、主熱交換領域(51)を構成する扁平管(31)の本数は、補助熱交換領域(52)を構成する扁平管(32)の本数よりも多い。
 なお、本実施形態の室外熱交換器(23)において、第1補助熱交換部(52a)を構成する扁平管(32)の本数は三本であり、第2補助熱交換部(52b)を構成する扁平管(32)の本数は三本であり、第3補助熱交換部(52c)を構成する扁平管(32)の本数は五本である。
 図3に示すように、第1ヘッダ集合管(60)の内部空間は、仕切板(39a)によって上下に仕切られている。第1ヘッダ集合管(60)では、仕切板(39a)の上側の空間が上側空間(61)となり、仕切板(39a)の下側の空間が下側空間(62)となっている。
 上側空間(61)は、主熱交換領域(51)に対応した主連通空間を構成している。上側空間(61)は、主熱交換領域(51)を構成する扁平管(31)の全てと連通する単一の空間である。つまり、上側空間(61)は、各主熱交換部(51a~51c)の扁平管(31)と連通している。
 下側空間(62)は、補助熱交換領域(52)に対応した補助連通空間を構成している。詳細は後述するが、下側空間(62)は、補助熱交換部(52a~52c)と同数(本実施形態では三つ)の連通室(62a~62c)に区画されている。最も下方に位置する第1連通室(62a)は、第1補助熱交換部(52a)を構成する全ての扁平管(32)と連通する。第1連通室(62a)の上方に位置する第2連通室(62b)は、第2補助熱交換部(52b)を構成する全ての扁平管(32)と連通する。最も上方に位置する第3連通室(62c)は、第3補助熱交換部(52c)を構成する全ての扁平管(32)と連通する。
 第2ヘッダ集合管(70)の内部空間は、主熱交換領域(51)に対応した主連通空間(71)と、補助熱交換領域(52)に対応した補助連通空間(72)とに区分されている。
 主連通空間(71)は、二枚の仕切板(39c)によって上下に仕切られている。この仕切板(39c)は、主連通空間(71)を、主熱交換部(51a~51c)と同数(本実施形態では三つ)の部分空間(71a~71c)に区画している。最も下方に位置する第1部分空間(71a)は、第1主熱交換部(51a)を構成する全ての扁平管(31)と連通する。第1部分空間(71a)の上方に位置する第2部分空間(71b)は、第2主熱交換部(51b)を構成する全ての扁平管(31)と連通する。最も上方に位置する第3部分空間(71c)は、第3主熱交換部(51c)を構成する全ての扁平管(31)と連通する。
 補助連通空間(72)は、二枚の仕切板(39d)によって上下に仕切られている。この仕切板(39d)は、補助連通空間(72)を、補助熱交換部(52a~52c)と同数(本実施形態では三つ)の部分空間(72a~72c)に区画している。最も下方に位置する第4部分空間(72a)は、第1補助熱交換部(52a)を構成する全ての扁平管(32)と連通する。第4部分空間(72a)の上方に位置する第5部分空間(72b)は、第2補助熱交換部(52b)を構成する全ての扁平管(32)と連通する。最も上方に位置する第6部分空間(72c)は、第3補助熱交換部(52c)を構成する全ての扁平管(32)と連通する。
 第2ヘッダ集合管(70)には、二本の接続用配管(76,77)が取り付けられている。これら接続用配管(76,77)は、何れも円管である。
 第1接続用配管(76)は、その一端が第2主熱交換部(51b)に対応する第2部分空間(71b)に接続され、その他端が第1補助熱交換部(52a)に対応する第4部分空間(72a)に接続される。第2接続用配管(77)は、その一端が第3主熱交換部(51c)に対応する第3部分空間(71c)に接続され、その他端が第2補助熱交換部(52b)に対応する第5部分空間(72b)に接続される。また、第2ヘッダ集合管(70)では、第3補助熱交換部(52c)に対応する第6部分空間(72c)と、第1主熱交換部(51a)に対応する第1部分空間(71a)とが、互いに連続した一つの空間を形成している。
 このように、本実施形態の室外熱交換器(23)では、第1主熱交換部(51a)と第3補助熱交換部(52c)が直列に接続され、第2主熱交換部(51b)と第1補助熱交換部(52a)が直列に接続され、第3主熱交換部(51c)と第2補助熱交換部(52b)が直列に接続されている。
 図2及び図3に示すように、室外熱交換器(23)には、液側接続管(55)とガス側接続管(57)とが設けられている。液側接続管(55)及びガス側接続管(57)は、円管状に形成されたアルミニウム合金製の部材である。液側接続管(55)及びガス側接続管(57)は、第1ヘッダ集合管(60)とロウ付けによって接合されている。
 詳細は後述するが、管状部材である液側接続管(55)の一端は、第1ヘッダ集合管(60)の下部に接続され、下側空間(62)に連通している。液側接続管(55)の他端は、室外熱交換器(23)と膨張弁(24)を繋ぐ銅製の配管(17)に、継手(図示せず)を介して接続されている。
 ガス側接続管(57)の一端は、第1ヘッダ集合管(60)の上部に接続され、上側空間(61)に連通している。ガス側接続管(57)の他端は、室外熱交換器(23)と四方切換弁(22)の第3のポートを繋ぐ銅製の配管(18)に、継手(図示せず)を介して接続されている。
   〈第1ヘッダ集合管の下部の構成〉
 第1ヘッダ集合管(60)の下部の構造について、図5~図7を適宜参照しながら詳細に説明する。なお、この説明では、第1ヘッダ集合管(60)の側面のうち扁平管(32)側の部分を「前面」とし、第1ヘッダ集合管(60)の側面のうち扁平管(32)とは反対側の部分を「背面」とする。
 第1ヘッダ集合管(60)の下側空間(62)には、第1主横仕切板(80a)と、第2主横仕切板(80b)と、副横仕切板(85a)と、縦仕切板(90)とが一つずつ設置されている(図5を参照)。この下側空間(62)は、二枚の主横仕切板(80a,80b)と一枚の副横仕切板(85a)と一枚の縦仕切板(90)とによって、三つの連通室(62a~62c)と一つの混合室(63)とに仕切られている。第1主横仕切板(80a)、第2主横仕切板(80b)、副横仕切板(85a)、及び縦仕切板(90)の材質は、アルミニウム合金である。
 第1主横仕切板(80a)、第2主横仕切板(80b)、及び副横仕切板(85a)のそれぞれは、概ね円板状の部材であって、下側空間(62)を横断するように設けられている。つまり、第1主横仕切板(80a)、第2主横仕切板(80b)、及び副横仕切板(85a)は、下側空間(62)を上下に仕切っている。第1主横仕切板(80a)、第2主横仕切板(80b)、及び副横仕切板(85a)は、ロウ付けによって第1ヘッダ集合管(60)と接合されている。
 第1主横仕切板(80a)は、第1補助熱交換部(52a)と第2補助熱交換部(52b)の境界に配置され、第1連通室(62a)と第2連通室(62b)を仕切っている。第2主横仕切板(80b)は、第2補助熱交換部(52b)と第3補助熱交換部(52c)の境界に配置され、第2連通室(62b)と第3連通室(62c)を仕切っている。副横仕切板(85a)は、第2補助熱交換部(52b)を構成する三本の扁平管(32)のうち、下から二本目と三本目の間に配置されている。つまり、副横仕切板(85a)は、第1主横仕切板(80a)と第2主横仕切板(80b)の間に配置されている。
 第1主横仕切板(80a)、第2主横仕切板(80b)、及び副横仕切板(85a)のそれぞれには、スリット孔(82a,82b,87a)が一つずつ形成されている(図5及び図6を参照)。スリット孔(82a,82b,87a)は、細長い長方形状の孔であって、横仕切板(80a,80b,85a)を厚さ方向に貫通している。スリット孔(82a,82b,87a)の長辺は、扁平管(32)の端面と実質的に平行である。第1主横仕切板(80a)、第2主横仕切板(80b)、及び副横仕切板(85a)のそれぞれにおいて、スリット孔(82a,82b,87a)は、第1ヘッダ集合管(60)の中心軸(64)よりも第1ヘッダ集合管(60)の背面寄りに位置している。スリット孔(82a,82b,87a)は、その幅が縦仕切板(90)の厚さとほぼ同じであり、その長さが縦仕切板(90)の幅とほぼ同じである。
 図6(D)に示すように、第1主横仕切板(80a)には、一つの流量調節孔(81a)が形成されている。流量調節孔(81a)は、第1主横仕切板(80a)を厚さ方向に貫通する円形の孔である。流量調節孔(81a)は、スリット孔(82a)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。
 図6(B)に示すように、第2主横仕切板(80b)には、三つの接続孔(83b)が形成されている。各接続孔(83b)は、第2主横仕切板(80b)を厚さ方向に貫通する円形の孔である。三つの接続孔(83b)は、スリット孔(82a)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。
 図6(C)に示すように、副横仕切板(85a)には、一つの流量調節孔(86a)と三つの接続孔(88a)とが形成されている。流量調節孔(86a)と各接続孔(88a)は、いずれも副横仕切板(85a)を厚さ方向に貫通する円形の孔である。流量調節孔(86a)は、スリット孔(87a)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。三つの接続孔(88a)は、スリット孔(87a)よりも第1ヘッダ集合管(60)の前面寄りに配置されている。
 縦仕切板(90)は、縦長の長方形板状に形成されている(図7を参照)。縦仕切板(90)は、第1主横仕切板(80a)のスリット孔(82a)と、第2主横仕切板(80b)のスリット孔(82b)と、副横仕切板(85a)のスリット孔(87a)とに通されている(図5及び図6を参照)。縦仕切板(90)は、第1ヘッダ集合管(60)内の下側空間(62)を縦断している。また、縦仕切板(90)は、第1ヘッダ集合管(60)へ差し込まれた扁平管(32)の端面と向かい合っている。
 縦仕切板(90)は、その下端が第1ヘッダ集合管(60)の底部に当接し、その上端が仕切板(39a)に当接している。また、縦仕切板(90)は、幅方向(図6における左右方向)の両側部が第1ヘッダ集合管(60)の内周面に接している。縦仕切板(90)は、他の部材に対して接合されていない。この縦仕切板(90)は、各主横仕切板(80a,80b)のスリット孔(82a,82b,87a)に差し込まれ、仕切板(39a)と第1ヘッダ集合管(60)の底部に当接することによって、その姿勢が保持されている。
 縦仕切板(90)は、第2主横仕切板(80b)よりも上側の部分が上側部分(91)となり、第2主横仕切板(80b)と第1主横仕切板(80a)の間の部分が中間部分(92)となり、第1主横仕切板(80a)よりも下側の部分が下側部分(93)となっている(図5及び図6を参照)。
 縦仕切板(90)の中間部分(92)は、下側空間(62)のうち第2主横仕切板(80b)と第1主横仕切板(80a)に挟まれた部分を、第1ヘッダ集合管(60)の前面側と背面側に仕切っている。縦仕切板(90)の中間部分(92)に対して第1ヘッダ集合管(60)の前面側に位置する空間は、第2連通室(62b)である。縦仕切板(90)の中間部分(92)に対して第1ヘッダ集合管(60)の背面側に位置する空間は、背面空間(67)である。
 背面空間(67)は、副横仕切板(85a)によって上下に仕切られている。背面空間(67)は、副横仕切板(85a)よりも上側の部分が中間室(68)となり、副横仕切板(85a)よりも下側の部分が混合室(63)となる。つまり、副横仕切板(85a)は、背面空間(67)を混合室(63)と中間室(68)に仕切っている。
 このように、混合室(63)は、縦仕切板(90)の中間部分(92)と、第1主横仕切板(80a)と、副横仕切板(85a)と、第1ヘッダ集合管(60)の側壁部とによって囲まれている。つまり、第1ヘッダ集合管(60)内では、混合室(63)が縦仕切板(90)の中間部分(92)を挟んで第2連通室(62b)と隣り合っている。
 また、副横仕切板(85a)は、第1主横仕切板(80a)と第2主横仕切板(80b)の間に配置されている。このため、第1主横仕切板(80a)と副横仕切板(85a)に挟まれた混合室(63)の高さは、第1主横仕切板(80a)と第2主横仕切板(80b)に挟まれた第2連通室(62b)の高さよりも低い。
 縦仕切板(90)には、長方形状の開口部(94a,94b)と、円形の流量調節孔(95,95)とが二つずつ形成されている。各開口部(94a,94b)と各流量調節孔(95,95)は、縦仕切板(90)を厚さ方向に貫通している。
 開口部(94a,94b)は、縦仕切板(90)の上側部分(91)と下側部分(93)とに一つずつ形成されている。上側の開口部(94b)は、縦仕切板(90)の上側部分(91)の大半を占めている。従って、第2主横仕切板(80b)の上側に位置する第3連通室(62c)は、縦仕切板(90)の両側の部分が実質的に一つの空間となっている。下側の開口部(94a)は、縦仕切板(90)の下側部分(93)の大半を占めている。従って、第1主横仕切板(80a)の下側に位置する第1連通室(62a)は、縦仕切板(90)の両側の部分が実質的に一つの空間となっている。
 二つの流量調節孔(95)は、いずれも縦仕切板(90)を厚さ方向に貫通する円形の孔である。各流量調節孔(95)は、縦仕切板(90)の中間部分(92)のうち第1主横仕切板(80a)と副横仕切板(85a)の間の部分(即ち、混合室(63)に臨む部分)に形成されている。また、二つの流量調節孔(95)は、縦仕切板(90)の幅方向の中心線に沿って上下に並んで配置されている。つまり、二つの流量調節孔(95)は、一方が副横仕切板(85a)の近傍に配置され、他方が第1主横仕切板(80a)の近傍に配置されている。
 第1ヘッダ集合管(60)の側壁部には、液側接続管(55)を差し込むための接続口(66)が形成されている。接続口(66)は、円形の貫通孔である。接続口(66)は、第1ヘッダ集合管(60)のうち第1主横仕切板(80a)と副横仕切板(85a)の間の部分に形成され、混合室(63)に連通している。接続口(66)の中心は、混合室(63)の高さ方向の中央に位置している。なお、液側接続管(55)は、第1ヘッダ集合管(60)の接続口(66)へ差し込まれる接続端部(56)が窄まった形状となっている。
 上述したように、縦仕切板(90)の流量調節孔(95)は、縦仕切板(90)のうち混合室(63)に臨む部分の上端付近と下端付近に一つずつ配置されている。一方、接続口(66)の中心は、混合室(63)の高さ方向の中央に位置している。つまり、縦仕切板(90)では、接続口(66)の正面から外れた部分に流量調節孔(95)が配置されている。
 また、上述したように、第1主横仕切板(80a)、副横仕切板(85a)、及び縦仕切板(90)には、流量調節孔(81a,86a,95)が形成されている。これら流量調節孔(81a,86a,95)は、混合室(63)の冷媒を各連通室(62a~62c)へ所定の割合で分配するための連通用貫通孔である。そして、これら流量調節孔(81a,86a,95)は、混合室(63)の冷媒を各連通室(62a~62c)へ所定の割合で分配する分配通路(65)を構成している。
 第1主横仕切板(80a)の流量調節孔(81a)は、混合室(63)を第1連通室(62a)と連通させている。この流量調節孔(81a)の直径は、例えば2mm程度である。
 副横仕切板(85a)の流量調節孔(86a)は、中間室(68)を介して混合室(63)を第3連通室(62c)と連通させている。この流量調節孔(86a)は、第1主横仕切板(80a)の流量調節孔(81a)に比べて、直径が少しだけ大きい。
 縦仕切板(90)の二つの流量調節孔(95)は、混合室(63)を第2連通室(62b)と連通させている。これら二つの流量調節孔(95)の断面積の合計は、第1主横仕切板(80a)の流量調節孔(81a)の断面積と実質的に等しい。
 また、上述したように、第2主横仕切板(80b)には、三つの接続孔(83b)が形成されている。第2主横仕切板(80b)の接続孔(83b)は、中間室(68)を第3連通室(62c)と連通させている。各接続孔(83b)は、副横仕切板(85a)の流量調節孔(86a)に比べて、直径が大幅に大きい。そして、三つの接続孔(83b)の断面積の合計は、副横仕切板(85a)に形成された流量調節孔(86a)の断面積よりも充分に大きな値(例えば10倍以上)となっている。従って、中間室(68)は、断面積の大きな接続孔(83b)を介して第3連通室(62c)と連通しており、実質的に第3連通室(62c)と一体の空間である。
 また、上述したように、副横仕切板(85a)は、第1主横仕切板(80a)と第2主横仕切板(80b)の間に配置されている。つまり、副横仕切板(85a)は、第2連通室(62b)を横断している。一方、副横仕切板(85a)には、三つの接続孔(88a)が形成されている。このため、第2連通室(62b)のうち副横仕切板(85a)の上側と下側の部分は、接続孔(88a)を介して互いに連通する。
 副横仕切板(85a)の各接続孔(88a)は、縦仕切板(90)の流量調節孔(95)に比べて、直径が大幅に大きい。そして、三つの接続孔(88a)の断面積の合計は、縦仕切板(90)に形成された二つの流量調節孔(95)の断面積の合計よりも充分に大きな値(例えば10倍以上)となっている。従って、副横仕切板(85a)は第2連通室(62b)を横断するように配置されているが、第2連通室(62b)は実質的に一つの空間である。
   〈室外熱交換器における冷媒の流れ/凝縮器の場合〉
 空気調和機(10)の冷房運転中には、室外熱交換器(23)が凝縮器として機能する。冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
 室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が供給される。圧縮機(21)から送られたガス冷媒は、ガス側接続管(57)を介して第1ヘッダ集合管(60)の上側空間(61)へ流入した後、主熱交換領域(51)の各扁平管(31)へ分配される。主熱交換領域(51)の各主熱交換部(51a~51c)において、扁平管(31)の流体通路(34)へ流入した冷媒は、流体通路(34)を流れる間に室外空気へ放熱して凝縮し、その後に第2ヘッダ集合管(70)の対応する各部分空間(71a~71c)へ流入する。
 主連通空間(71)の各部分空間(71a~71c)へ流入した冷媒は、補助連通空間(72)の対応する部分空間(72a~72c)へ送られる。主連通空間(71)の第1部分空間(71a)へ流入した冷媒は、下方へ流れ落ちて補助連通空間(72)の第6部分空間(72c)へ流れ込む。主連通空間(71)の第2部分空間(71b)へ流入した冷媒は、第1接続用配管(76)を通って補助連通空間(72)の第4部分空間(72a)へ流入する。主連通空間(71)の第3部分空間(71c)へ流入した冷媒は、第2接続用配管(77)を通って補助連通空間(72)の第5部分空間(72b)へ流入する。
 補助連通空間(72)の各部分空間(72a~72c)へ流入した冷媒は、対応する補助熱交換部(52a~52c)の各扁平管(32)へ分配される。各扁平管(32)の流体通路(34)を流れる冷媒は、室外空気へ放熱して過冷却液となり、その後に第1ヘッダ集合管(60)の下側空間(62)の対応する連通室(62a~62c)へ流入する。その後、冷媒は、混合室(63)を経て液側接続管(55)へ流れ込み、室外熱交換器(23)から流出してゆく。
   〈室外熱交換器における冷媒の流れ/蒸発器の場合〉
 空気調和機(10)の暖房運転中には、室外熱交換器(23)が蒸発器として機能する。暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
 室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が供給される。膨張弁(24)から流れてきた気液二相状態の冷媒は、接続口(66)に差し込まれた液側接続管(55)を通って第1ヘッダ集合管(60)内の混合室(63)へ流入する。その際、冷媒が液側接続管(55)の接続端部(56)を通過する際にその流速が上昇し、液側接続管(55)から噴出した高流速の冷媒が縦仕切板(90)に衝突する。このため、混合室(63)内では、冷媒が激しく掻き乱され、その冷媒中のガス冷媒と液冷媒が混合される。つまり、混合室(63)内の冷媒が均質化され、混合室(63)内の冷媒の湿り度が概ね均一となる。
 混合室(63)内の冷媒は、各連通室(62a~62c)へ分配される。上述したように、混合室(63)内の気液二相状態の冷媒は、均質化されている。このため、各連通室(62a~62c)へ混合室(63)から流入する冷媒の湿り度は、概ね等しい。
 混合室(63)内の冷媒は、第1主横仕切板(80a)の流量調節孔(81a)を通過し、第1連通室(62a)へ流入する。また、混合室(63)内の冷媒は、縦仕切板(90)の流量調節孔(95)を通過し、第2連通室(62b)のうち副横仕切板(85a)よりも下側の部分へ流入する。第2連通室(62b)のうち副横仕切板(85a)よりも下側の部分へ流入した冷媒の一部は、副横仕切板(85a)の接続孔(88a)を通過し、第2連通室(62b)のうち副横仕切板(85a)よりも上側の部分へ流入する。つまり、縦仕切板(90)の流量調節孔(95)を通過した冷媒は、第2連通室(62b)の全体に行き渡る。また、混合室(63)内の冷媒は、副横仕切板(85a)の流量調節孔(86a)を通過して中間室(68)へ一旦流入し、その後に第2主横仕切板(80b)の接続孔(83b)を通過して第3連通室(62c)へ流入する。
 本実施形態の室外熱交換器(23)では、混合室(63)から各連通室(62a~62c)への冷媒の分配割合が所定の割合となるように、分配通路(65)を構成する流量調節孔(81a,86a,95)の大きさが設定されている。具体的に、本実施形態の室外熱交換器(23)では、補助熱交換部(52a~52c)を構成する各扁平管(32)へ流入する冷媒の質量流量が実質的に等しくなるように、混合室(63)から各連通室(62a~62c)への冷媒の分配割合が設定される。従って、本実施形態の室外熱交換器(23)では、混合室(63)から第2連通室(62b)へ流入する冷媒の質量流量が、混合室(63)から第1連通室(62a)へ流入する冷媒の質量流量と実質的に等しく、混合室(63)から第3連通室(62c)へ流入する冷媒の質量流量が、混合室(63)から第1連通室(62a)へ流入する冷媒の質量流量よりも多い。
 第1ヘッダ集合管(60)の各連通室(62a~62c)へ流入した冷媒は、対応する補助熱交換部(52a~52c)の各扁平管(32)へ分配される。各扁平管(32)の流体通路(34)へ流入した冷媒は、流体通路(34)を流れる間に室外空気から吸熱し、一部の液冷媒が蒸発する。扁平管(32)の流体通路(34)を通過した冷媒は、第2ヘッダ集合管(70)の補助連通空間(72)の対応する部分空間(72a~72c)へ流入する。この部分空間(72a~72c)へ流入した冷媒は、依然として気液二相状態のままである。
 補助連通空間(72)の各部分空間(72a~72c)へ流入した冷媒は、主連通空間(71)の対応する部分空間(71a~71c)へ送られる。補助連通空間(72)の第4部分空間(72a)へ流入した冷媒は、第1接続用配管(76)を通って主連通空間(71)の第2部分空間(71b)へ流入する。補助連通空間(72)の第5部分空間(72b)へ流入した冷媒は、第2接続用配管(77)を通って主連通空間(71)の第3部分空間(71c)へ流入する。補助連通空間(72)の第6部分空間(72c)へ流入した冷媒は、上方へ向かって流れて主連通空間(71)の第1部分空間(71a)へ流入する。
 主連通空間(71)の各部分空間(71a~71c)へ流入した冷媒は、対応する主熱交換部(51a~51c)の各扁平管(31)へ分配される。各扁平管(31)の流体通路(34)を流れる冷媒は、室外空気から吸熱して蒸発し、実質的にガス単相状態となった後に、第1ヘッダ集合管(60)の上側空間(61)へ流入する。その後、冷媒は、ガス側接続管(57)を通って室外熱交換器(23)から流出してゆく。
  -実施形態1の効果-
 本実施形態の室外熱交換器(23)では、第1ヘッダ集合管(60)に主横仕切板(80a,80b)と副横仕切板(85a)と縦仕切板(90)とが設けられ、これらの仕切板(80a,80b,85a,90)によって、第1ヘッダ集合管(60)内に一つの混合室(63)と三つの連通室(62a~62c)とが形成される。そして、蒸発器として機能する室外熱交換器(23)へ供給された気液二相状態の冷媒は、第1ヘッダ集合管(60)内の混合室(63)へ流入し、縦仕切板(90)に衝突することによって撹拌される。従って、本実施形態によれば、混合室(63)から各連通室(62a~62c)へ分配される冷媒の湿り度を平均化でき、連通室(62a~62c)に連通する各扁平管(32)へ流入する冷媒の湿り度を平均化することが可能となる。
 ここで、混合室(63)へ流入した気液二相状態の冷媒には、重力が作用する。このため、混合室(63)の高さがある程度以上になると、混合室(63)の上端付近と下端付近における冷媒の湿り度の差が無視できない程度に拡大するおそれがある。また、混合室(63)の容積が大きいと、混合室(63)の各部における冷媒の湿り度の差が無視できない程度に拡大するおそれがある。
 これに対し、本実施形態の室外熱交換器(23)では、縦仕切板(90)と共に混合室(63)を形成する副横仕切板(85a)が、上下に隣り合う第1主横仕切板(80a)と第2主横仕切板(80b)の間に配置される。このため、混合室(63)の高さを、主横仕切板(80a,80b)の間隔とは無関係に設定可能となる。そこで、本実施形態の室外熱交換器(23)では、混合室(63)の高さを、縦仕切板(90)を挟んで混合室(63)と隣り合う第2連通室(62b)の高さよりも低くしている。
 また、本実施形態の室外熱交換器(23)では、混合室(63)を形成する縦仕切板(90)が、第1ヘッダ集合管(60)の中心軸(64)に対して扁平管(32)とは逆側に配置される。このため、混合室(63)の幅が狭く抑えられ、混合室(63)の容積が小さく抑えられる。
 このように、本実施形態の室外熱交換器(23)では、室外熱交換器(23)が蒸発器として機能する際に気液二相状態の冷媒が流入する混合室(63)について、その高さが低く抑えられ、更にはその容積が小さく抑えられる。従って、本実施形態によれば、混合室(63)内の各部における冷媒の湿り度の差を低く抑えることが可能となり、混合室(63)から各連通室(62a~62c)へ分配される冷媒の湿り度を均一化することが可能となる。
 また、本実施形態の室外熱交換器(23)の縦仕切板(90)では、流量調節孔(95)が接続口(66)の正面から外れた位置に設けられる。このため、接続口(66)から混合室(63)へ流入した冷媒が縦仕切板(90)の流量調節孔(95)へ集中的に流入するのを回避でき、混合室(63)から各連通室(62a~62c)に対して、所定の分配割合で冷媒を確実に分配することが可能となる。
  -実施形態1の変形例-
 図5に示す第1ヘッダ集合管(60)では、第1主横仕切板(80a)と第2主横仕切板(80b)の間の下寄りに混合室(63)が形成されている。しかし、混合室(63)は、図8に示すように、第1主横仕切板(80a)と第2主横仕切板(80b)の間の上寄りに形成されていてもよい。ここでは、本変形例の第1ヘッダ集合管(60)の構造について、図5に示された第1ヘッダ集合管(60)の構造と異なる点を説明する。
 本変形例の第1主横仕切板(80a)は、第2補助熱交換部(52b)と第3補助熱交換部(52c)の境界に配置されている。この第1主横仕切板(80a)は、第2連通室(62b)と第3連通室(62c)を仕切る。
 本変形例の第2主横仕切板(80b)は、第1補助熱交換部(52a)と第2補助熱交換部(52b)の境界に配置されている。この第2主横仕切板(80b)は、第1連通室(62a)と第2連通室(62b)を仕切る。
 本変形例の副横仕切板(85a)は、第2補助熱交換部(52b)を構成する三本の扁平管(32)のうち、下から一本目と二本目の間に配置されている。本変形例の第1ヘッダ集合管(60)の背面空間(67)は、副横仕切板(85a)よりも上側の部分が混合室(63)となり、副横仕切板(85a)よりも下側の部分が中間室(68)となる。
 本変形例の接続口(66)は、第1ヘッダ集合管(60)のうち副横仕切板(85a)と第1主横仕切板(80a)の間の部分に形成され、混合室(63)に連通している。
 本変形例の縦仕切板(90)では、中間部分(92)のうち副横仕切板(85a)と第1主横仕切板(80a)の間の部分(即ち、混合室(63)に臨む部分)に、二つの流量調節孔(95)が形成されている。この流量調節孔(95)は、混合室(63)を第2連通室(62b)と連通させる。
 本変形例の第1主横仕切板(80a)は、図6(D)に図示された第1主横仕切板(80a)と同じ形状の部材である。本変形例の第1主横仕切板(80a)には、一つの流量調節孔(81a)が形成されている。この流量調節孔(81a)は、混合室(63)を第3連通室(62c)と連通させる。
 本変形例の第2主横仕切板(80b)は、図6(B)に図示された第2主横仕切板(80b)と同じ形状の部材である。本変形例の第2主横仕切板(80b)には、三つの接続孔(83b)が形成されている。この接続孔(83b)は、中間室(68)を第1連通室(62a)と連通させる。
 本変形例の副横仕切板(85a)は、図6(C)に図示された副横仕切板(85a)と同じ形状の部材である。本変形例の副横仕切板(85a)には、一つの流量調節孔(86a)と三つの接続孔(88a)とが形成されている。本変形例の流量調節孔(86a)は、混合室(63)を中間室(68)と連通させる。本変形例の接続孔(88a)は、第2連通室(62b)における副横仕切板(85a)の上側と下側の部分を連通させる。
 《発明の実施形態2》
 本発明の実施形態2について説明する。ここでは、本実施形態の室外熱交換器(23)について、実施形態1の室外熱交換器(23)と異なる点を説明する。
   〈室外熱交換器の構成〉
 図9に示すように、本実施形態の室外熱交換器(23)は、補助熱交換領域(52)が四つの補助熱交換部(52a~52d)に区分されている。補助熱交換領域(52)には、下から上に向かって順に、第1補助熱交換部(52a)と、第2補助熱交換部(52b)と、第3補助熱交換部(52c)と、第4補助熱交換部(52d)とが形成されている。また、図示しないが、本実施形態の室外熱交換器(23)は、主熱交換領域(51)が四つの主熱交換部に区分されている。
 実施形態1の室外熱交換器(23)と同様に、本実施形態の室外熱交換器(23)では、補助熱交換部(52a~52d)と主熱交換部が一対一に対応している。そして、本実施形態の室外熱交換器(23)では、各補助熱交換部(52a~52d)が対応する主熱交換部と直列に接続される。
 本実施形態の室外熱交換器(23)において、第1補助熱交換部(52a)を構成する扁平管(32)の本数は三本であり、第2補助熱交換部(52b)を構成する扁平管(32)の本数は三本であり、第3補助熱交換部(52c)を構成する扁平管(32)の本数は三本であり、第4補助熱交換部(52d)を構成する扁平管(32)の本数は五本である。
   〈第1ヘッダ集合管の下部の構成〉
 本実施形態の第1ヘッダ集合管(60)の下部の構造について、図9~図11を適宜参照しながら詳細に説明する。なお、この説明では、第1ヘッダ集合管(60)の側面のうち扁平管(32)側の部分を「前面」とし、第1ヘッダ集合管(60)の側面のうち扁平管(32)とは反対側の部分を「背面」とする。
 図9に示すように、第1ヘッダ集合管(60)の下側空間(62)には、三枚の主横仕切板(80a~80c)と、二枚の副横仕切板(85a,85b)と、一枚の縦仕切板(90)とが設置されている。この下側空間(62)は、これらの主横仕切板(80a~80c)、副横仕切板(85a,85b)、及び縦仕切板(90)によって、四つの連通室(62a~62d)と一つの混合室(63)とに仕切られている。なお、これらの主横仕切板(80a~80c)、副横仕切板(85a,85b)、及び縦仕切板(90)の材質は、アルミニウム合金である。
 三枚の主横仕切板(80a~80c)と二枚の副横仕切板(85a,85b)は、いずれも概ね円板状の部材であって、下側空間(62)を横断するように設けられている。つまり、これらの主横仕切板(80a~80c)と副横仕切板(85a,85b)は、下側空間(62)を上下に仕切っている。これらの主横仕切板(80a~80c)と副横仕切板(85a,85b)は、ロウ付けによって第1ヘッダ集合管(60)と接合されている。
 第1主横仕切板(80a)は、第1補助熱交換部(52a)と第2補助熱交換部(52b)の境界に配置され、第1連通室(62a)と第2連通室(62b)を仕切っている。第2主横仕切板(80b)は、第2補助熱交換部(52b)と第3補助熱交換部(52c)の境界に配置され、第2連通室(62b)と第3連通室(62c)を仕切っている。第3主横仕切板(80c)は、第3補助熱交換部(52c)と第4補助熱交換部(52d)の境界に配置され、第3連通室(62c)と第4連通室(62d)を仕切っている。
 第1副横仕切板(85a)は、第1主横仕切板(80a)と第2主横仕切板(80b)の間に配置されている。この第1副横仕切板(85a)は、第2補助熱交換部(52b)を構成する三本の扁平管(32)のうち、下から二本目と三本目の間に配置されている。第2副横仕切板(85b)は、第2主横仕切板(80b)と第3主横仕切板(80c)の間に配置されている。この第2副横仕切板(85b)は、第3補助熱交換部(52c)を構成する三本の扁平管(32)のうち、下から一本目と二本目の間に配置されている。
 三枚の主横仕切板(80a~80c)と二枚の副横仕切板(85a,85b)のそれぞれには、スリット孔(82a,82b,82c,87a,87b)が一つずつ形成されている。図11に示すように、スリット孔(82a~82c,87a,87b)は、細長い長方形状の孔であって、横仕切板(80a~80c, 85a,85b)を厚さ方向に貫通している。スリット孔(82a~82c,87a,87b)の長辺は、扁平管(32)の端面と実質的に平行である。
 三枚の主横仕切板(80a~80c)と二枚の副横仕切板(85a,85b)のそれぞれにおいて、スリット孔(82a~82c,87a,87b)は、第1ヘッダ集合管(60)の中心軸(64)よりも第1ヘッダ集合管(60)の背面寄りに位置している(図11を参照)。スリット孔(82a~82c,87a,87b)は、その幅が縦仕切板(90)の厚さとほぼ同じであり、その長さが縦仕切板(90)の幅とほぼ同じである。
 図11(E)に示すように、第1主横仕切板(80a)には、三つの接続孔(83a)が形成されている。各接続孔(83a)は、第1主横仕切板(80a)を厚さ方向に貫通する円形の孔である。三つの接続孔(83a)は、スリット孔(82a)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。
 図11(C)に示すように、第2主横仕切板(80b)には、一つの切り欠き孔(84b)が形成されている。切り欠き孔(84b)は、第2主横仕切板(80b)の外周縁からその中心へ向かって伸びる矩形状の切欠きである。切り欠き孔(84b)は、スリット孔(82a)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。また、切り欠き孔(84b)は、図11(C)における左右方向の幅が、接続口(66)の直径と実質的に等しい。
 図11(A)に示すように、第3主横仕切板(80c)には、三つの接続孔(83c)が形成されている。各接続孔(83c)は、第3主横仕切板(80c)を厚さ方向に貫通する円形の孔である。三つの接続孔(83c)は、スリット孔(82c)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。
 図11(B)及び(D)に示すように、第1副横仕切板(85a)と第2副横仕切板(85b)のそれぞれには、一つの流量調節孔(86a,86b)と三つの接続孔(88a,88b)とが形成されている。流量調節孔(86a,86b)と各接続孔(88a)は、いずれも副横仕切板(85a,85b)を厚さ方向に貫通する円形の孔である。流量調節孔(86a,86b)は、スリット孔(87a,87b)よりも第1ヘッダ集合管(60)の背面寄りに配置されている。三つの接続孔(88a,88b)は、スリット孔(87a,87b)よりも第1ヘッダ集合管(60)の前面寄りに配置されている。
 縦仕切板(90)は、実施形態1と同様に、縦長の長方形板状に形成されている(図12を参照)。縦仕切板(90)は、各主横仕切板(80a~80c)のスリット孔(82a~82c)と、各副横仕切板(85a,85b)のスリット孔(87a,87b)とに通されている(図9,11を参照)。実施形態1と同様に、縦仕切板(90)は、第1ヘッダ集合管(60)内の下側空間(62)を縦断し、第1ヘッダ集合管(60)へ差し込まれた扁平管(32)の端面と向かい合っている。
 縦仕切板(90)は、第3主横仕切板(80c)よりも上側の部分が上側部分(91)となり、第3主横仕切板(80c)と第1主横仕切板(80a)の間の部分が中間部分(92)となり、第1主横仕切板(80a)よりも下側の部分が下側部分(93)となっている(図9及び図10を参照)。
 縦仕切板(90)の中間部分(92)は、下側空間(62)のうち第3主横仕切板(80c)と第1主横仕切板(80a)に挟まれた部分を、第1ヘッダ集合管(60)の前面側と背面側に仕切っている。縦仕切板(90)の中間部分(92)に対して第1ヘッダ集合管(60)の前面側に位置する空間は、第2主横仕切板(80b)によって第2連通室(62b)と第3連通室(62c)に仕切られている。縦仕切板(90)の中間部分(92)に対して第1ヘッダ集合管(60)の背面側に位置する空間は、背面空間(67)である。
 背面空間(67)は、二枚の副横仕切板(85a,85b)によって上下に仕切られている。背面空間(67)は、第1副横仕切板(85a)よりも下側の部分が第1中間室(68a)となり、第2副横仕切板(85b)よりも上側の部分が第2中間室(68b)となり、第1副横仕切板(85a)と第2副横仕切板(85b)の間の部分が混合室(63)となる。つまり、二枚の副横仕切板(85a,85b)は、背面空間(67)を一つの混合室(63)と二つの中間室(68a,68b)に仕切っている。
 このように、混合室(63)は、縦仕切板(90)の中間部分(92)と、第1副横仕切板(85a)と、第2副横仕切板(85b)と、第1ヘッダ集合管(60)の側壁部とによって囲まれている。つまり、第1ヘッダ集合管(60)内では、混合室(63)が縦仕切板(90)の中間部分(92)を挟んで第2連通室(62b)及び第3連通室(62c)と隣り合っている。
 また、第1副横仕切板(85a)は、第1主横仕切板(80a)と第2主横仕切板(80b)の間で且つ第2主横仕切板(80b)寄りに配置され、第2副横仕切板(85b)は、第2主横仕切板(80b)と第3主横仕切板(80c)の間で且つ第2主横仕切板(80b)寄りに配置されている。このため、二枚の副横仕切板(85a,85b)に挟まれた混合室(63)の高さは、第2連通室(62b)の高さよりも低く、第3連通室(62c)の高さよりも低い。
 縦仕切板(90)には、長方形状の開口部(94a,94b)と、円形の流量調節孔(95a,95b)とが二つずつ形成されている。各開口部(94a,94b)と各流量調節孔(95a,95b)は、縦仕切板(90)を厚さ方向に貫通している。
 開口部(94a,94b)は、縦仕切板(90)の上側部分(91)と下側部分(93)とに一つずつ形成されている。上側の開口部(94b)は、縦仕切板(90)の上側部分(91)の大半を占めている。従って、第3主横仕切板(80c)の上側に位置する第4連通室(62d)は、縦仕切板(90)の両側の部分が実質的に一つの空間となっている。下側の開口部(94a)は、縦仕切板(90)の下側部分(93)の大半を占めている。従って、第1主横仕切板(80a)の下側に位置する第1連通室(62a)は、縦仕切板(90)の両側の部分が実質的に一つの空間となっている。
 二つの流量調節孔(95a,95b)は、いずれも縦仕切板(90)を厚さ方向に貫通する円形の孔である。第1流量調節孔(95a)は、縦仕切板(90)の中間部分(92)のうち第2主横仕切板(80b)と第1副横仕切板(85a)の間の部分に形成されている。第2流量調節孔(95b)は、縦仕切板(90)の中間部分(92)のうち第2主横仕切板(80b)と第2副横仕切板(85b)の間の部分に形成されている。また、二つの流量調節孔(95a,95b)は、縦仕切板(90)の幅方向の中心線に沿って上下に並んで配置されている。
 実施形態1と同様に、第1ヘッダ集合管(60)の側壁部には、接続口(66)が形成されている。接続口(66)は、第2主横仕切板(80b)と同じ高さに配置され、混合室(63)に連通している。接続口(66)の中心は、混合室(63)の高さ方向の中央に位置している。
 縦仕切板(90)では、縦仕切板(90)のうち混合室(63)に臨む部分の上端付近と下端付近に流量調節孔(95a,95b)が一つずつ配置されている。一方、接続口(66)の中心は、混合室(63)の高さ方向の中央に位置している。つまり、縦仕切板(90)では、接続口(66)の正面から外れた部分に流量調節孔(95a,95b)が配置されている。
 上述したように、第1副横仕切板(85a)、第2副横仕切板(85b)、及び縦仕切板(90)には、流量調節孔(86a,86b,95a,95b)が形成されている。これら流量調節孔(86a,86b,95a,95b)は、混合室(63)の冷媒を各連通室(62a~62d)へ所定の割合で分配するための連通用貫通孔である。そして、これら流量調節孔(86a,86b,95a,95b)は、混合室(63)の冷媒を各連通室(62a~62d)へ所定の割合で分配する分配通路(65)を構成している。
 第1副横仕切板(85a)の流量調節孔(86a)は、第1中間室(68a)を介して混合室(63)を第1連通室(62a)と連通させている。この流量調節孔(86a)の直径は、例えば2mm程度である。
 第2副横仕切板(85b)の流量調節孔(86b)は、第2中間室(68b)を介して混合室(63)を第4連通室(62d)と連通させている。この流量調節孔(86b)は、第1副横仕切板(85a)の流量調節孔(86a)に比べて、直径が少しだけ大きい。
 縦仕切板(90)の第1流量調節孔(95a)は、混合室(63)を第2連通室(62b)と連通させている。この第1流量調節孔(95a)の直径は、第1副横仕切板(85a)の流量調節孔(86a)の直径と実質的に等しい。
 縦仕切板(90)の第2流量調節孔(95b)は、混合室(63)を第3連通室(62c)と連通させている。この第2流量調節孔(95b)の直径は、第1副横仕切板(85a)の流量調節孔(86a)の直径と実質的に等しい。
 また、上述したように、第1主横仕切板(80a)には、三つの接続孔(83a)が形成されている。第1主横仕切板(80a)の接続孔(83a)は、第1中間室(68a)を第1連通室(62a)と連通させている。各接続孔(83a)は、第1副横仕切板(85a)の流量調節孔(86a)に比べて、直径が大幅に大きい。そして、三つの接続孔(83a)の断面積の合計は、第1副横仕切板(85a)に形成された流量調節孔(86a)の断面積よりも充分に大きな値(例えば10倍以上)となっている。従って、第1中間室(68a)は、断面積の大きな接続孔(83a)を介して第1連通室(62a)と連通しており、実質的に第1連通室(62a)と一体の空間である。
 また、上述したように、第3主横仕切板(80c)には、三つの接続孔(83c)が形成されている。第3主横仕切板(80c)の接続孔(83c)は、第2中間室(68b)を第4連通室(62d)と連通させている。各接続孔(83c)は、第2副横仕切板(85b)の流量調節孔(86b)に比べて、直径が大幅に大きい。そして、三つの接続孔(83c)の断面積の合計は、第2副横仕切板(85b)に形成された流量調節孔(86c)の断面積よりも充分に大きな値(例えば10倍以上)となっている。従って、第2中間室(68b)は、断面積の大きな接続孔(83c)を介して第4連通室(62d)と連通しており、実質的に第4連通室(62d)と一体の空間である。
 また、上述したように、第1副横仕切板(85a)は、第1主横仕切板(80a)と第2主横仕切板(80b)の間に配置されている。つまり、第1副横仕切板(85a)は、第2連通室(62b)を横断している。一方、第1副横仕切板(85a)には、三つの接続孔(88a)が形成されている。このため、第2連通室(62b)のうち第1副横仕切板(85a)の上側と下側の部分は、接続孔(88a)を介して互いに連通する。
 第1副横仕切板(85a)の各接続孔(88a)は、縦仕切板(90)の第1流量調節孔(95a)に比べて、直径が大幅に大きい。そして、三つの接続孔(88a)の断面積の合計は、縦仕切板(90)に形成された第1流量調節孔(95a)の断面積よりも充分に大きな値(例えば10倍以上)となっている。従って、第1副横仕切板(85a)は第2連通室(62b)を横断するように配置されているが、第2連通室(62b)は実質的に一つの空間である。
 また、上述したように、第2副横仕切板(85b)は、第2主横仕切板(80b)と第3主横仕切板(80c)の間に配置されている。つまり、第2副横仕切板(85b)は、第3連通室(62c)を横断している。一方、第2副横仕切板(85b)には、三つの接続孔(88b)が形成されている。このため、第3連通室(62c)のうち第2副横仕切板(85b)の上側と下側の部分は、接続孔(88b)を介して互いに連通する。
 第2副横仕切板(85b)の各接続孔(88b)は、縦仕切板(90)の第2流量調節孔(95b)に比べて、直径が大幅に大きい。そして、三つの接続孔(88b)の断面積の合計は、縦仕切板(90)に形成された第2流量調節孔(95b)の断面積よりも充分に大きな値(例えば10倍以上)となっている。従って、第2副横仕切板(85b)は第3連通室(62c)を横断するように配置されているが、第3連通室(62c)は実質的に一つの空間である。
   〈室外熱交換器における冷媒の流れ〉
 実施形態1と同様に、蒸発器として機能する室外熱交換器(23)へは、気液二相状態の冷媒が供給される。そして、本実施形態の室外熱交換器(23)へ供給された気液二相状態の冷媒は、四つの補助熱交換部(52a~52d)へ分配される。ここでは、蒸発器として機能する本実施形態の室外熱交換器(23)へ供給された冷媒の流れについて説明する。
 蒸発器として機能する室外熱交換器(23)へ供給される気液二相状態の冷媒は、液側接続管(55)を通って第1ヘッダ集合管(60)内の混合室(63)へ流入する。混合室(63)では、液側接続管(55)から噴出した高流速の冷媒が縦仕切板(90)に衝突し、その冷媒中のガス冷媒と液冷媒が混合される。つまり、混合室(63)内の冷媒が均質化され、混合室(63)内の冷媒の湿り度が概ね均一となる。
 混合室(63)内の冷媒は、各連通室(62a~62d)へ分配される。上述したように、混合室(63)内の気液二相状態の冷媒は、均質化されている。このため、各連通室(62a~62d)へ混合室(63)から流入する冷媒の湿り度は、概ね等しい。
 混合室(63)内の冷媒は、第1副横仕切板(85a)の流量調節孔(86a)を通過して第1中間室(68a)へ一旦流入し、その後に第1主横仕切板(80a)の接続孔(83a)を通過して第1連通室(62a)へ流入する。
 また、混合室(63)内の冷媒は、縦仕切板(90)の第1流量調節孔(95a)を通過し、第2連通室(62b)のうち第1副横仕切板(85a)よりも上側の部分へ流入する。第2連通室(62b)のうち第1副横仕切板(85a)よりも上側の部分へ流入した冷媒の一部は、第1副横仕切板(85a)の接続孔(88a)を通過し、第2連通室(62b)のうち第1副横仕切板(85a)よりも下側の部分へ流入する。つまり、縦仕切板(90)の第1流量調節孔(95a)を通過した冷媒は、第2連通室(62b)の全体に行き渡る。
 また、混合室(63)内の冷媒は、縦仕切板(90)の第2流量調節孔(95b)を通過し、第3連通室(62c)のうち第2副横仕切板(85b)よりも下側の部分へ流入する。第3連通室(62c)のうち第2副横仕切板(85b)よりも下側の部分へ流入した冷媒の一部は、第2副横仕切板(85b)の接続孔(88b)を通過し、第3連通室(62c)のうち第2副横仕切板(85b)よりも上側の部分へ流入する。つまり、縦仕切板(90)の第2流量調節孔(95b)を通過した冷媒は、第3連通室(62c)の全体に行き渡る。
 また、混合室(63)内の冷媒は、第2副横仕切板(85b)の流量調節孔(86b)を通過して第2中間室(68b)へ一旦流入し、その後に第3主横仕切板(80c)の接続孔(83c)を通過して第4連通室(62d)へ流入する。
 本実施形態の室外熱交換器(23)では、混合室(63)から各連通室(62a~62d)への冷媒の分配割合が所定の割合となるように、分配通路(65)を構成する流量調節孔(86a,86b,95a,95b)の大きさが設定されている。具体的に、本実施形態の室外熱交換器(23)では、補助熱交換部(52a~52d)を構成する各扁平管(32)へ流入する冷媒の質量流量が実質的に等しくなるように、混合室(63)から各連通室(62a~62d)への冷媒の分配割合が設定される。
 従って、本実施形態の室外熱交換器(23)では、混合室(63)から第1連通室(62a)へ流入する冷媒の質量流量と、混合室(63)から第2連通室(62b)へ流入する冷媒の質量流量と、混合室(63)から第3連通室(62c)へ流入する冷媒の質量流量とが、互いに実質的に等しく、混合室(63)から第4連通室(62d)へ流入する冷媒の質量流量が、混合室(63)から第1連通室(62a)へ流入する冷媒の質量流量よりも多い。
 第1ヘッダ集合管(60)の各連通室(62a~62d)へ流入した冷媒は、対応する補助熱交換部(52a~52d)の各扁平管(32)へ分配される。その後、冷媒は、各補助熱交換部(52a~52d)と、それに対応する主熱交換部とを順に通過し、実質的にガス単相状態となって室外熱交換器(23)から流出してゆく。
  -実施形態2の効果-
 本実施形態によれば、実施形態1と同様の効果が得られる。つまり、本実施形態の室外熱交換器(23)では、第1ヘッダ集合管(60)に設けられた二枚の副横仕切板(85a,85b)と縦仕切板(90)によって混合室(63)が形成され、混合室(63)へ流入した気液二相状態の冷媒が縦仕切板(90)と衝突することによって撹拌される。従って、本実施形態によれば、混合室(63)から各連通室(62a~62d)へ分配される冷媒の湿り度を平均化でき、連通室(62a~62d)に連通する各扁平管(32)へ流入する冷媒の湿り度を平均化することが可能となる。
 また、本実施形態の第1ヘッダ集合管(60)では、二枚の副横仕切板(85a,85b)の間に混合室(63)が形成されており、混合室(63)の高さが第2連通室(62b)及び第3連通室(62c)の高さよりも低く抑えられている。従って、本実施形態によれば、三枚の主横仕切板(80a~80c)によって第1ヘッダ集合管(60)内に四つの連通室(62a~62d)が形成される場合でも、混合室(63)の高さを低く抑えることによって、混合室(63)内の気液二相状態の冷媒を確実に均質化することが可能となる。
 《その他の実施形態》
  -第1変形例-
 上述したように、実施形態1の室外熱交換器(23)では、第2主横仕切板(80b)と副横仕切板(85a)のそれぞれに、円形の接続孔(83b,88a)が三つずつ形成されている(図6(B)(C)を参照)。また、実施形態2の室外熱交換器(23)では、第1主横仕切板(80a)と第3主横仕切板(80c)と第1副横仕切板(85a)と第2副横仕切板(85b)のそれぞれに、円形の接続孔(83a,83c,88a,88b)が三つずつ形成されている(図11(A)(B)(D)(E)を参照)。
 しかし、これらの横仕切板(80a~80c,85a,85b)に形成された接続孔(83a~83c,88a,88b)の形状と数は、単なる一例である。つまり、これらの横仕切板(80a~80c,85a,85b)に形成された接続孔(83a~83c,88a,88b)は、流量調節孔(81a,86a,86b,95,95a,95b)に比べて断面積が充分に大きな貫通孔であればよい。例えば、図13に示すように、実施形態1の第2主横仕切板(80b)と副横仕切板(85a)のそれぞれには、長円形の接続孔(83b,88a)が一つずつ形成されていてもよい。
  -第2変形例-
 上述したように、各実施形態の室外熱交換器(23)では、補助熱交換部(52a~52d)を構成する各扁平管(32)へ流入する冷媒の質量流量が実質的に等しくなるように、流量調節孔(81a,86a,86b,95,95a,95b)の開口面積が設定されている。しかし、補助熱交換部(52a~52d)を構成する全ての扁平管(32)について、そこへ流入する冷媒の質量流量を均一にする必要は無い。
 つまり、各実施形態の室外熱交換器(23)では、例えば、混合室(63)から第1連通室(62a)へ流入する冷媒の質量流量が、混合室(63)から第2連通室(62b)へ流入する冷媒の質量流量よりも多くなるように、流量調節孔(81a,95,86a,95a)の開口面積が設定されていてもよい。各実施形態の室外熱交換器(23)では、第1連通室(62a)と第2連通室(62b)のそれぞれに三本の扁平管(32)が連通している。従って、この場合は、第1連通室(62a)に連通する各扁平管(32)へ流入する冷媒の質量流量が、第2連通室(62b)に連通する各扁平管(32)へ流入する冷媒の質量流量よりも多くなる。
  -第3変形例-
 上述したように、各実施形態の室外熱交換器(23)には、板状のフィン(36)に代えて波形のフィンが設けられていてもよい。このフィンは、いわゆるコルゲートフィンであって、上下に蛇行する波形に形成されている。そして、この波形のフィンは、上下に隣り合った扁平管(31,32)の間に一つずつ配置される。
 以上説明したように、本発明は、複数の扁平管がヘッダ集合管に接続された熱交換器について有用である。
  23  室外熱交換器
  31  扁平管
  32  扁平管
  36  フィン
  51  主熱交換領域
  51a  第1主熱交換部
  51b  第2主熱交換部
  51c  第3主熱交換部
  52  補助熱交換領域
  52a  第1補助熱交換部
  52b  第2補助熱交換部
  52c  第3補助熱交換部
  52d  第4補助熱交換部
  60  第1ヘッダ集合管
  62a  第1連通室
  62b  第2連通室
  62c  第3連通室
  62d  第4連通室
  63  混合室
  64  中心軸
  66  接続口
  70  第2ヘッダ集合管
  80a  第1主横仕切板
  80b  第2主横仕切板
  80c  第3主横仕切板
  81a  流量調節孔(連通用貫通孔)
  85a  第1副横仕切板、副横仕切板
  85b  第2副横仕切板
  86a,86b   流量調節孔(連通用貫通孔)
  90  縦仕切板
  95,95a,95b 流量調節孔(連通用貫通孔)

Claims (11)

  1.  複数の扁平管(32)と、各扁平管(32)の一端が接続された第1ヘッダ集合管(60)と、各扁平管(32)の他端が接続された第2ヘッダ集合管(70)と、上記扁平管(32)に接合された複数のフィン(36)とを備え、
     上記扁平管(32)を流れる冷媒を空気と熱交換させることによって蒸発器として機能し得る熱交換器であって、
     上記第1ヘッダ集合管(60)及び上記第2ヘッダ集合管(70)は、起立した状態であり、
     上記第1ヘッダ集合管(60)には、該第1ヘッダ集合管(60)へ気液二相状態の冷媒を導入するための配管が接続される一つの接続口(66)が形成される一方、
     上記第1ヘッダ集合管(60)は、
      該第1ヘッダ集合管(60)の内部空間を横断し、一つ又は複数の上記扁平管(32)がそれぞれに連通する複数の連通室(62a~62c)を形成する主横仕切板(80a,80b)と、
      該第1ヘッダ集合管(60)の内部空間を縦断し、上記接続口(66)と全ての上記連通室(62a~62c)とに連通する混合室(63)を形成する縦仕切板(90)と、
      上下に隣り合う主横仕切板(80a,80b)の間に配置されて該第1ヘッダ集合管(60)の内部空間を横断し、上記縦仕切板(90)と共に上記混合室(63)を形成する副横仕切板(85a)とを備えている
    ことを特徴とする熱交換器。
  2.  請求項1において、
     上記混合室(63)の高さは、上記縦仕切板(90)を挟んで該混合室(63)と隣り合う上記連通室(62b)の高さよりも低い
    ことを特徴とする熱交換器。
  3.  請求項1又は2において、
     上記縦仕切板(90)は、上記第1ヘッダ集合管(60)の中心軸(64)を基準に上記扁平管(32)とは逆側に配置されている
    ことを特徴とする熱交換器。
  4.  請求項1乃至3のいずれか一つにおいて、
     上記混合室(63)は、上記縦仕切板(90)と、該混合室(63)の上側と下側の一方に配置された一つの上記主横仕切板(80a)と、該混合室(63)の上側と下側の他方に配置された一つの上記副横仕切板(85a)とによって上記連通室(62a~62c)から仕切られている
    ことを特徴とする熱交換器。
  5.  請求項4において、
     上記混合室(63)を上記連通室(62a~62c)から仕切る上記縦仕切板(90)と上記主横仕切板(80a)と上記副横仕切板(85a)のそれぞれには、上記混合室(63)の冷媒を上記各連通室(62a~62c)へ所定の割合で分配するための連通用貫通孔(81a,86a,95)が形成されている
    ことを特徴とする熱交換器。
  6.  請求項1乃至3のいずれか一つにおいて、
     上記混合室(63)は、上記縦仕切板(90)と、該混合室(63)の上下に配置された一対の上記副横仕切板(85a,85b)とによって上記連通室(62a~62d)から仕切られている
    ことを特徴とする熱交換器。
  7.  請求項6において、
     上記混合室(63)を上記連通室(62a~62d)から仕切る一対の上記副横仕切板(85a,85b)と上記縦仕切板(90)のそれぞれには、上記混合室(63)の冷媒を上記各連通室(62a~62d)へ所定の割合で分配するための連通用貫通孔(86a,86b,95a,95b)が形成されている
    ことを特徴とする熱交換器。
  8.  請求項1乃至3のいずれか一つにおいて、
     上記混合室(63)は、上記縦仕切板(90)を挟んで一つ又は二つの上記連通室(62b,62c)と隣り合っている
    ことを特徴とする熱交換器。
  9.  請求項1乃至3のいずれか一つにおいて、
     上記縦仕切板(90)には、該縦仕切板(90)を挟んで上記混合室(63)と隣り合う連通室(62b)を、該混合室(63)と連通させるための連通用貫通孔(95)が形成されている
    ことを特徴とする熱交換器。
  10.  請求項9において、
     上記接続口(66)は、上記第1ヘッダ集合管(60)の側壁に形成されて上記縦仕切板(90)と向かい合い、
     上記縦仕切板(90)の連通用貫通孔(95)は、上記接続口(66)の正面から外れた位置に設けられている
    ことを特徴とする熱交換器。
  11.  請求項1乃至10のいずれか一つにおいて、
     それぞれが複数の上記扁平管(31,32)を有する主熱交換領域(51)と補助熱交換領域(52)に区分され、
     上記補助熱交換領域(52)が上記主熱交換領域(51)の下方に位置する一方、
     上記補助熱交換領域(52)は、それぞれが複数の扁平管(32)を有して上記各連通室(62a~62c)に一つずつ対応する複数の補助熱交換部(52a~52c)に区分され、
     上記各補助熱交換部(52a~52c)の扁平管(32)は、該補助熱交換部(52a~52c)に対応する連通室(62a~62c)に連通し、
     上記主熱交換領域(51)は、それぞれが複数の扁平管(31)を有して上記各補助熱交換部(52a~52c)に一つずつ対応する複数の主熱交換部(51a~51c)に区分され、
     上記各主熱交換部(51a~51c)の扁平管(31)は、該主熱交換部(51a~51c)に対応する補助熱交換部(52a~52c)の扁平管(32)と上記第2ヘッダ集合管(70)を介して連通する
    ことを特徴とする熱交換器。
PCT/JP2014/002652 2013-05-22 2014-05-20 熱交換器 WO2014188714A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480027158.6A CN105209846B (zh) 2013-05-22 2014-05-20 热交换器
EP14801226.3A EP3006886A4 (en) 2013-05-22 2014-05-20 Heat exchanger
AU2014269760A AU2014269760B2 (en) 2013-05-22 2014-05-20 Heat exchanger
BR112015028679A BR112015028679A2 (pt) 2013-05-22 2014-05-20 trocador de calor
US14/892,962 US9518788B2 (en) 2013-05-22 2014-05-20 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013108356A JP5761252B2 (ja) 2013-05-22 2013-05-22 熱交換器
JP2013-108356 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014188714A1 true WO2014188714A1 (ja) 2014-11-27

Family

ID=51933281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002652 WO2014188714A1 (ja) 2013-05-22 2014-05-20 熱交換器

Country Status (7)

Country Link
US (1) US9518788B2 (ja)
EP (1) EP3006886A4 (ja)
JP (1) JP5761252B2 (ja)
CN (1) CN105209846B (ja)
AU (1) AU2014269760B2 (ja)
BR (1) BR112015028679A2 (ja)
WO (1) WO2014188714A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292741A1 (en) * 2014-09-30 2017-10-12 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus
WO2018061359A1 (ja) * 2016-09-28 2018-04-05 東芝キヤリア株式会社 熱交換器および冷凍サイクル装置
CN108351188A (zh) * 2016-02-29 2018-07-31 三菱重工制冷空调系统株式会社 热交换器及空调
US20200109902A1 (en) * 2017-03-27 2020-04-09 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN113661367A (zh) * 2019-03-29 2021-11-16 富士通将军股份有限公司 换热器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072900B2 (en) * 2014-09-16 2018-09-11 Mahle International Gmbh Heat exchanger distributor with intersecting streams
JP6642297B2 (ja) * 2016-06-21 2020-02-05 株式会社デンソー エジェクタ式冷凍サイクル
KR102622732B1 (ko) * 2016-09-13 2024-01-10 삼성전자주식회사 열교환기, 열교환기용 헤더 및 그 제조 방법
JP6746234B2 (ja) * 2017-01-25 2020-08-26 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、空気調和機
TWI718485B (zh) * 2019-02-27 2021-02-11 雙鴻科技股份有限公司 熱交換裝置
US11898781B2 (en) * 2019-03-05 2024-02-13 Mitsubishi Electric Corporation Gas header, heat exchanger, and refrigeration cycle apparatus
WO2021019725A1 (ja) * 2019-07-31 2021-02-04 東芝キヤリア株式会社 熱交換器及び冷凍サイクル装置
JP7457587B2 (ja) * 2020-06-18 2024-03-28 三菱重工サーマルシステムズ株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262282U (ja) * 1988-10-28 1990-05-09
JPH04174297A (ja) * 1990-11-07 1992-06-22 Zexel Corp 熱交換器
JPH0473779U (ja) * 1990-11-07 1992-06-29
JPH07180988A (ja) * 1993-12-21 1995-07-18 Sanden Corp 熱交換器
JPH09264693A (ja) 1996-03-29 1997-10-07 Sanden Corp 分配装置を備えた熱交換器
JPH10267467A (ja) * 1997-03-26 1998-10-09 Calsonic Corp リキッドタンク付コンデンサ
JP2004353936A (ja) * 2003-05-28 2004-12-16 Denso Corp 熱交換器および受液器一体型凝縮器
JP2007127347A (ja) * 2005-11-04 2007-05-24 Calsonic Kansei Corp 熱交換器のタンク構造
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
JP2013083419A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 熱交換器および空気調和機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044455A (en) * 1935-05-16 1936-06-16 Young Radiator Co Distributing head for evaporators
JPH0674609A (ja) 1992-08-31 1994-03-18 Showa Alum Corp 熱交換器
US6932957B2 (en) * 2002-06-28 2005-08-23 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
US7784529B2 (en) * 2004-11-30 2010-08-31 Showa Denko K.K. Heat exchanger
JP2007163055A (ja) * 2005-12-15 2007-06-28 Calsonic Kansei Corp レシーバタンク付き熱交換器
US7484555B2 (en) * 2006-07-25 2009-02-03 Delphi Technologies, Inc. Heat exchanger assembly
DK2079973T3 (da) * 2006-10-13 2012-08-13 Carrier Corp Varmeveksler med mange strømningsbaner, og hvor der findes tilbageløbs-forgreningsrør med indskudte fordelingsorganer
CN101382339A (zh) * 2007-09-07 2009-03-11 苏州三星电子有限公司 改进的空调换热器结构
ES2589319T3 (es) * 2007-10-12 2016-11-11 Carrier Corporation Intercambiadores de calor que tienen colectores con deflectores
CN101839590B (zh) * 2010-02-22 2012-03-21 三花丹佛斯(杭州)微通道换热器有限公司 一种微通道换热器
US9651317B2 (en) * 2011-01-21 2017-05-16 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP5376010B2 (ja) * 2011-11-22 2013-12-25 ダイキン工業株式会社 熱交換器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262282U (ja) * 1988-10-28 1990-05-09
JPH04174297A (ja) * 1990-11-07 1992-06-22 Zexel Corp 熱交換器
JPH0473779U (ja) * 1990-11-07 1992-06-29
JPH07180988A (ja) * 1993-12-21 1995-07-18 Sanden Corp 熱交換器
JPH09264693A (ja) 1996-03-29 1997-10-07 Sanden Corp 分配装置を備えた熱交換器
JPH10267467A (ja) * 1997-03-26 1998-10-09 Calsonic Corp リキッドタンク付コンデンサ
JP2004353936A (ja) * 2003-05-28 2004-12-16 Denso Corp 熱交換器および受液器一体型凝縮器
JP2007127347A (ja) * 2005-11-04 2007-05-24 Calsonic Kansei Corp 熱交換器のタンク構造
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
JP2013083419A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 熱交換器および空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006886A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292741A1 (en) * 2014-09-30 2017-10-12 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus
US10465955B2 (en) * 2014-09-30 2019-11-05 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus
CN108351188A (zh) * 2016-02-29 2018-07-31 三菱重工制冷空调系统株式会社 热交换器及空调
WO2018061359A1 (ja) * 2016-09-28 2018-04-05 東芝キヤリア株式会社 熱交換器および冷凍サイクル装置
US20200109902A1 (en) * 2017-03-27 2020-04-09 Daikin Industries, Ltd. Heat exchanger and air conditioner
US11181328B2 (en) * 2017-03-27 2021-11-23 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN113661367A (zh) * 2019-03-29 2021-11-16 富士通将军股份有限公司 换热器
CN113661367B (zh) * 2019-03-29 2022-09-09 富士通将军股份有限公司 换热器
US11846472B2 (en) 2019-03-29 2023-12-19 Fujitsu General Limited Heat exchanger

Also Published As

Publication number Publication date
EP3006886A4 (en) 2017-01-25
US20160169596A1 (en) 2016-06-16
CN105209846B (zh) 2016-11-09
JP5761252B2 (ja) 2015-08-12
EP3006886A1 (en) 2016-04-13
AU2014269760A1 (en) 2015-10-15
US9518788B2 (en) 2016-12-13
AU2014269760B2 (en) 2016-02-04
BR112015028679A2 (pt) 2017-07-25
JP2014228199A (ja) 2014-12-08
CN105209846A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
JP5761252B2 (ja) 熱交換器
JP5376010B2 (ja) 熱交換器
US9551540B2 (en) Heat exchanger
JP2013137193A5 (ja)
WO2017149989A1 (ja) 熱交換器及び空気調和機
US10309701B2 (en) Heat exchanger and air conditioner
WO2013161311A1 (ja) 熱交換器
JP6098451B2 (ja) 熱交換器および空気調和機
JP5741658B2 (ja) 熱交換器及び空気調和機
JP2006105581A (ja) 積層型熱交換器
JP5716496B2 (ja) 熱交換器および空気調和機
JP2015055411A (ja) 熱交換器および空気調和機
JP6611335B2 (ja) 熱交換器及び空気調和機
WO2017150221A1 (ja) 熱交換器及び空気調和機
JP6171765B2 (ja) 熱交換器
WO2021074950A1 (ja) 熱交換器及び熱交換器を搭載した空気調和装置
JP6853867B2 (ja) 熱交換器及び空気調和機
WO2024023891A1 (ja) 熱交換器
JP2001227843A (ja) レシーバタンク付き熱交換器
JP2015055400A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014269760

Country of ref document: AU

Date of ref document: 20140520

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014801226

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14892962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028679

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015028679

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151116