WO2014187193A1 - 一种超高强度冷轧耐候钢板及其制造方法 - Google Patents

一种超高强度冷轧耐候钢板及其制造方法 Download PDF

Info

Publication number
WO2014187193A1
WO2014187193A1 PCT/CN2014/074091 CN2014074091W WO2014187193A1 WO 2014187193 A1 WO2014187193 A1 WO 2014187193A1 CN 2014074091 W CN2014074091 W CN 2014074091W WO 2014187193 A1 WO2014187193 A1 WO 2014187193A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
steel plate
rolled
strength cold
cold
Prior art date
Application number
PCT/CN2014/074091
Other languages
English (en)
French (fr)
Inventor
钟勇
王利
冯伟骏
何晓明
黄俊杰
柯阳林
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020177012485A priority Critical patent/KR20170054572A/ko
Priority to KR1020157022280A priority patent/KR20150108396A/ko
Priority to US14/777,249 priority patent/US10094011B2/en
Priority to SE1551047A priority patent/SE539940C2/en
Publication of WO2014187193A1 publication Critical patent/WO2014187193A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention relates to an alloy steel sheet and a method of manufacturing the same, and more particularly to a weather resistant alloy steel sheet and a method of manufacturing the same. Background technique
  • the strength of ultra-high strength weathering steel is mainly based on precipitation strengthening and phase transformation strengthening.
  • the publication number is CN1884608A, and the publication date is December 27, 2006.
  • the Chinese patent document entitled "A method for producing 700MPa grade VN microalloyed high-strength and atmospheric corrosion-resistant steel based on thin slab continuous casting and rolling process" discloses The invention relates to a method for manufacturing high-strength and atmospheric corrosion-resistant steel, which is characterized by thin-slab continuous casting and rolling characteristics and metallurgical composition, and adopts electric furnace or converter smelting, refining, thin slab continuous casting, solidification of slab directly into roller bottom heating or both Hot furnace, hot rolling, laminar cooling, coiling.
  • the chemical composition of molten steel ranges from (wt.%): C: ⁇ 0.08%; Si: 0.25 - 0.75%; Mn: 0.8 - 2.0%; P: 0.070 ⁇ 0.150%; S: ⁇ 0.040%; Cu: 0.25 - 0.60 %; Cr: 0.30 ⁇ 1.25 wt%; Ni: 0.65%; V: 0.05 - 0.20%; N: 0.015 ⁇ 0.030%.
  • the chemical composition (wt.%) of the weather resistant steel sheet is: C: 0.08 - 0.12%; Mn: 0.80 ⁇ 1.35%; Si: 0.30 ⁇ 0.65%; Mo: 0.08 ⁇ 0.35%; V: 0.06 - 0.14%; Cu : 0.20 - 0.40%; Ni: 0.50%; Cr: 0.30 - 0.70%; P: 0.010 - 0.020%; Nb: ⁇ 0.04%; Ti: ⁇ 0.02%; S: ⁇ 0.01%; the rest is Fe and others are inevitable Impurities.
  • Korean Patent Publication No. KR431839 published on May 20, 2004, entitled "A method for producing a cold-rolled weather-resistant steel sheet", discloses a method for producing a cold-rolled atmospheric corrosion-resistant steel sheet.
  • the chemical elements of the steel sheet are: C: 0.06 - 0.08 wt.%, Si: 0.17 - 0.24 wt.%, Mn: 0.9 ⁇ 1.10 wt.%, P: ⁇ 0.020 wt.%, S: ⁇ 0.010 wt .%, Cu: 0.20 ⁇ 0.30wt.%, Ni: 0.20 - 0.30 wt.%, H: ⁇ 2.5 ppm, balance is Fe and other unavoidable impurities, tensile strength of the steel plate > 45 kgf/mm 2 , yield strength > 32kgf / mm 2 , elongation > 22%.
  • the above first and second patent documents use the hot rolling process to produce weathering steel sheets, which are limited by the thickness of the hot rolling mill steel sheet.
  • the weathering steel sheets produced by the hot rolling process generally have a large thickness, usually The strength of the steel plate is increased, and the ultimate thickness of the available hot-rolled steel sheet is also increased, and the shape and surface quality of the hot-rolled steel sheet are still somewhat different from those of the cold-rolled steel sheet.
  • the third patent document described above uses a cold rolling process to obtain a weather resistant steel sheet, the steel sheet has a low strength and a yield strength of only 300 MPa, and cannot be widely used in the production of high-strength steel structural members. Summary of the invention
  • One of the objects of the present invention is to provide an ultra-high strength cold-rolled weathering steel sheet having high strength, thin thickness, excellent atmospheric corrosion resistance, and superior shape and surface quality to accommodate steel structures.
  • the development trend of thinning and lightening, and the addition of Si element improves the manufacturability of the material, does not add Nb element, and reduces the manufacturing cost.
  • the present invention provides an ultra high strength cold rolled weathering steel sheet having a chemical element mass percentage content of:
  • the balance is Fe and other unavoidable impurities.
  • the inevitable impurities in this technical solution are mainly S and N elements, and also include trace amounts of unavoidable residual Si elements.
  • the content percentage of each chemical element in the ultrahigh-strength cold-rolled weathering steel sheet is further limited to: C: 0.07 - 0.15%;
  • the ultra-high-strength cold-rolled weathering steel sheet further includes ⁇ 0.20% by weight of Ni, and adding an appropriate amount of Ni is advantageous for further improving the weather resistance of the steel sheet.
  • microstructure of the ultrahigh-strength cold-rolled weathering steel sheet is martensite, and the volume fraction of martensite is > 95%.
  • the ultrahigh-strength cold-rolled weathering steel sheet has a thickness of 0.8 to 1.5 mm.
  • C is the most basic strengthening element in steel, which can effectively improve the hardenability and strength of steel.
  • the present invention is a high hydrogen cooled weathering steel having a maximum cooling rate of 150 ° C / s for high hydrogen cooling, and a C content of greater than 0.05 % for achieving martensitic transformation.
  • the carbon content of the present invention is controlled to be 0.05 to 0.16% in consideration of the strength of the material and the demand for use properties. Preferably, it is controlled to be 0.07 to 0.15 wt%.
  • Mn is a solid solution strengthening element, which is advantageous for increasing the strength of the steel sheet.
  • the Mn content In order to achieve the required yield strength of the present invention > 700 MPa and tensile strength > 1 OOO MPa, the Mn content must be greater than 1.0%. However, too high Mn content will result in decreased weldability and insufficient elongation. To meet the elongation > 5% requirement, the Mn content should be ⁇ 2.2%.
  • the present invention has a Mn content of 1.00 to 2.20% by weight, and further, it can be designed to be 1.30 to 2.00% by weight. Both C and Mn have the effects of improving the strength of the material and reducing the weldability. Therefore, in the present invention (:, Mn cannot simultaneously take the upper limit or the lower limit. To satisfy the requirements, the relationship between the design component C and Mn of the present invention is: 0.19% ⁇ C+ Mn/16 ⁇ 0.23%characteristics, a ⁇ C+ Mn/16 ⁇ 0.23%
  • Al is added for deoxidation.
  • the steel of the present invention requires good cold bending properties during processing, and excessively high O content may result in a decrease in forming properties such as cold bending of the material.
  • the A1 content should not be less than 0.02%.
  • the carbon content of the present invention is controlled to be 0.02 to 0.06%.
  • it is controlled to be 0.02 to 0.04%.
  • Cu can form a barrier layer composed of Cu and P as a main component between the substrate and the rust layer, and it is firmly bonded to the substrate to have a good protective effect on the steel sheet.
  • Cu can also offset the impurity element in the steel sheet.
  • the Cu content should be not less than 0.2%.
  • excessive Cu addition leads to a serious "Cu brittle" problem.
  • the upper limit of Cu addition should be 0.4%. Therefore, in the ultrahigh-strength cold-rolled weathering steel sheet of the present invention, the Cu content should be set to 0.20 to 0.40% by weight, and in a preferred embodiment, the Cu content can be set to 0.25 to 0.35%.
  • Cr Cr can form a dense oxide film on the surface of the steel sheet to improve the passivation ability of the steel sheet, especially when
  • Ti is a main element for the formation of strong carbonitrides, and it can improve the formability of the steel sheet by precipitation strengthening and fine grain strengthening. Therefore, in the present invention, the mass percentage of Ti is designed to be 0.015 to 0.035%.
  • P It should be specially noted that although P is an impurity element in most steel grades, in the present technical solution, P can form a corrosion-resistant barrier layer with Cu, improve the atmospheric corrosion resistance of the steel sheet, and at the same time have a solid The solution strengthening effect, but too much P will increase the brittleness of the steel and deteriorate the welding performance of the steel. Therefore, it is necessary to control the mass percentage of P to be ⁇ 0.030%, preferably to ⁇ 0.015%.
  • Ni is added to reduce the "Cu brittle" problem that Cu may cause.
  • Cu Ni should satisfy Cu: Ni ⁇ 2/3. Based on this result, the Ni content of the present invention was designed to be ⁇ 0.2%.
  • the present invention also provides a container panel manufactured using the above-described ultra high strength cold rolled weathering steel sheet.
  • the container panel has a good shape and excellent surface quality.
  • the present invention also provides an automotive structural member panel manufactured using the above-described ultra high strength cold rolled weathering steel sheet.
  • the automotive structural panel is light in weight and high in strength.
  • the present invention also provides a method for producing the above-described ultra high strength cold-rolled weathering steel sheet, which comprises the following steps: smelting, heating and holding, hot rolling, coiling, pickling, cold rolling, continuous annealing, leveling; In the annealing step, the annealing temperature is 830 - 880 °C to achieve austenitization, and then rapidly cooled in a high hydrogen atmosphere to obtain a martensite structure.
  • the present invention employs a continuous annealing process in the manufacturing process and employs a higher annealing temperature than the prior art to ensure that the steel sheet is austenitized prior to rapid cooling.
  • This temperature control adjusts the degree of austenitization to adjust the mechanical properties and formability of the final product.
  • a high hydrogen atmosphere is used for rapid cooling to ensure that the martensite initiation structure is obtained during the rapid cooling process; compared with the water quenching, the cooling effect of rapid cooling in a high hydrogen atmosphere is more uniform, which is not only The production cost of steel is reduced, and the shape and surface quality superior to water quenching can be obtained.
  • the volume fraction of hydrogen in the high hydrogen atmosphere is 60%.
  • the cooling rate of rapid cooling is greater than 100 ° C / s.
  • the annealing temperature is further limited to 850 to 880 ° C to obtain a better effect.
  • the slab is heated and kept at 1170 to 1200 °C.
  • This technical solution uses a lower heating and holding temperature, in order to ensure that the adverse effects of Cu on the thermoplastic properties of the steel are minimized while ensuring that the (:, N compound is sufficiently dissolved.
  • the finishing temperature is > eight.
  • the coiling temperature is 450 to 550 °C.
  • the technical solution adopts a lower coiling temperature, which is advantageous for improving the flattening problem of the coil after crimping, and at the same time obtaining a fine precipitated phase in the steel sheet.
  • the cold rolling reduction ratio is 50 to 60%.
  • the ultra-high-strength cold-rolled weathering steel sheet of the invention has a very good implementation effect through reasonable composition design and appropriate process flow: it has excellent atmospheric corrosion resistance; its strength is high, and the yield strength is above 700 MPa, and the resistance is high.
  • the tensile strength is above 1000 MPa; its shape is good and the surface quality is excellent.
  • Hot rolling hot rolling finishing temperature > Ar3;
  • the coiling temperature is 450 ⁇ 550 °C;
  • Annealing temperature is 830-880 °C to achieve complete austenitization, and then rapid cooling in a high hydrogen atmosphere (hydrogen volume fraction of 60%) (cooling rate is greater than 100 ° C / S ) To obtain martensite structure;
  • Table 1 lists the mass percentage contents of the chemical elements of the ultrahigh-strength cold-rolled weathering steel sheets of Examples 1 to 7 of the present invention.
  • Table 2 lists the related processes and the mechanical properties of the ultra-high strength cold-rolled weathering steel sheets of the examples 1 to 7 produced in this case.
  • the yield strength of the ultra-high strength cold-rolled weathering steel sheet of the present invention is greater than 700 MPa, and the highest is 1009 MPa; the tensile strength is greater than 100 MPa, and the highest is 1235 MPa; the elongation is greater than 6%, the highest 11.5%, at the same time, the 2a bending test reached the qualified level.
  • the steel plate is suitable for the manufacture of high-strength, lightweight automotive structural parts and container panels.
  • the forming process of the finished steel plate can be mainly rolled and simple bending, and it has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种超高强度冷轧耐候钢板,其化学元素质量百分配比为:C:0.05〜0.16%;Mn:1.00〜2.20%;Al:0.02〜0.06%;Cu:0.20〜0.40%;Cr:0.40〜0.60%;Ti:0.015〜0.035wt%;P≥0.03%;且满足0.19%<C+Mn/16<0.23%;余量为Fe和其他不可避免的杂质。该超高强度冷轧耐候钢板的制造方法包括步骤有:冶炼;加热保温;热轧;卷取;酸洗;冷轧;连续退火及平整。该超高强度冷轧耐候钢板具有较高的强度,其屈服强度>700MPa且抗拉强度>1000MPa;具有优良的耐大气腐蚀性能;厚度薄以满足钢结构件减薄减重的需求;具有优良的钢材板形和表面质量。

Description

一种超高强度冷轧耐候钢板及其制造方法
技术领域
本发明涉及一种合金钢板及其制造方法,尤其涉及一种耐候合金钢板及其制造 方法。 背景技术
目前,采用更高强度的薄钢材料以实现钢用结构的减薄、减重是近年来钢铁材 料发展的主要趋势。 同时, 广泛应用于交通运输行业的热轧、 冷轧耐候钢板也不断 地向着高强度、低合金含量的方向发展, 以满足终端客户在减重节能、 降低成本方 面的需求。 自上世纪 30年代开始, 美国钢铁公司 ( United States Steel Corporation ) 首先研制成功了耐腐蚀高抗拉强度的含 Cu的低合金 Corten钢之后, 便形成了以 高含量的?、 Cu元素, 并加上 Cr、 Ni元素 的 Corten A钢系列以及以 Cr、 Mn、 Cu合金化为主的 Corten B钢系列, 随后, 在国内又发展了采用稀土处理的耐候钢 系列。 在提高耐候钢强度方面, 主要措施有固溶强化、 析出强化和相变强化等, 提 高超高强度耐候钢的强度则以析出强化和相变强化为主。
公开号为 CN1884608A, 公开日为 2006年 12月 27日, 名称为 "一种基于薄 板坯连铸连轧工艺生产 700MPa级 V-N微合金化高强耐大气腐蚀钢的方法" 的中 国专利文献公开了一种高强耐大气腐蚀钢的制造方法,该制作方法针对薄板坯连铸 连轧特点及冶金成分, 采用电炉或转炉冶炼、 精炼、 薄板坯连铸、 铸坯凝固后直接 进入辊底式加热或均热炉、热轧、层流冷却、卷取。其中钢水化学成分范围为 (wt.%): C: < 0.08%; Si: 0.25 - 0.75%; Mn: 0.8 - 2.0%; P: 0.070 ~ 0.150%; S: < 0.040%; Cu: 0.25 - 0.60 %; Cr: 0.30 ~ 1.25 wt%; Ni: 0.65%; V: 0.05 - 0.20%; N: 0.015 ~ 0.030%。
公开号为 US6056833, 公开日为 2000年 5月 2日, 名称为 "一种采用热机械 控制处理生产的低屈强比高强度耐候钢" 的美国专利文献涉及了一种低屈强比的 耐候钢板, 其最小屈服强度在 70 ~ 75 ksi, 屈强比 < 0.85。 该耐候钢板的各化学成 分(wt.% )为: C: 0.08 - 0.12%; Mn: 0.80 ~ 1.35%; Si: 0.30 ~ 0.65%; Mo: 0.08 ~ 0.35%; V: 0.06 - 0.14%; Cu: 0.20 - 0.40%; Ni: 0.50%; Cr: 0.30 - 0.70%; P: 0.010 - 0.020%; Nb: < 0.04%; Ti: < 0.02%; S: < 0.01%; 其余为 Fe和其他不 可避免的杂质。 公开号为 KR431839, 公开日为 2004年 5月 20日, 名称为 "一种冷轧耐候钢 板的制造方法" 的韩国专利文献公开了一种冷轧耐大气腐蚀性能钢板的制造方法。 其中, 钢板的化学元素的成分为: C: 0.06 - 0.08 wt.%, Si: 0.17 - 0.24 wt.%, Mn: 0.9 ~ 1.10 wt.%, P: < 0.020 wt.%, S: < 0.010 wt.%, Cu: 0.20 ~ 0.30wt.%, Ni: 0.20 - 0.30 wt.%, H: < 2.5 ppm, 余量为 Fe和其他不可避免的杂质, 该钢板 的抗拉强度 > 45 kgf/mm2 , 屈服强度 > 32kgf/mm2 , 延伸率 > 22%。
上述第一项和第二项专利文献均采用热轧工艺来生产制造耐候钢板,受到热轧 机组钢板厚度方面的限制, 通过热轧工艺所生产的耐候钢板一般具有较大的厚度, 通常随着钢板强度的提升,可供的热轧钢板的极限厚度也随之增大, 而且热轧钢板 的板形和表面质量相较于冷轧钢板仍存在一定差距。虽然上述第三项专利文献采用 冷轧工艺来获得耐候钢板, 但是该钢板的强度较低, 屈服强度仅为 300MPa级, 不 能够广泛应用于高强度钢结构件的生产制造。 发明内容
本发明的目的之一在于提供一种超高强度冷轧耐候钢板,该钢板具有较高的强 度, 较薄的厚度, 优良的耐大气腐蚀性以及优越的板形和表面质量, 以适应钢结构 件减薄、 减轻的发展趋势, 且其不添加 Si元素, 提高了材料的可制造性, 不添加 Nb元素, 降低了制造成本。
为了实现上述目的,本发明提出了一种超高强度冷轧耐候钢板,其化学元素质 量百分比含量为:
C: 0.05 - 0.16%;
Mn: 1.00 - 2.20%;
A1: 0.02 - 0.06%;
Cu: 0.20 - 0.40%;
Cr: 0.40 - 0.60%;
Ti: 0.015 - 0.035%;
P: < 0.03%;
余量为 Fe和其他不可避免的杂质, 本技术方案中不可避免的杂质主要是 S和 N元素, 此外还包括微量不可避免的残留 Si元素。
优选地,上述超高强度冷轧耐候钢板中的各化学元素质量百分比含量进一步限 定为: C: 0.07 - 0.15%;
Mn: 1.30 - 2.00%;
Al: 0.02 - 0.04%;
Cu: 0.25 - 0.35%;
P: < 0.15%。
采用上述优选的成分配比可以使得本技术方案具有更优越的实施效果。
优选地, 上述超高强度冷轧耐候钢板还包括 < 0.20wt%^ Ni, 添加适量的 Ni 有利于进一步提高钢板的耐候性能。
进一步地,上述超高强度冷轧耐候钢板的微观组织为马氏体, 马氏体的体积分 数〉 95%。
进一步地, 上述超高强度冷轧耐候钢板的厚度为 0.8 ~ 1.5mm。
本发明所述的超高强度冷轧耐候钢板中各化学元素的设计原理为:
C: C是钢中最基本的强化元素, 可有效提高钢的淬透性和强度。 本发明为一 种高氢冷却的耐候钢, 对于高氢冷却的最大冷速为 150°C/s, 为实现马氏体相变, C含量必须大于 0.05%。 但是当 C大于 0.16%后, 钢的焊接性能将不能满足使用要 求。 因此, 综合考虑材料的强度和使用性能的需求, 本发明的碳含量控制在 0.05 ~ 0.16%。 优选地, 将其控制为 0.07 ~ 0.15wt%。
Mn: Mn是固溶强化元素, 其有利于提高钢板的强度。 为实现本发明所需屈服 强度 > 700MPa、 抗拉强度 > 1 OOOMPa的要求, Mn含量必须大于 1.0%。 但是过高 Mn含量会导致焊接性下降和延伸率不足, 为满足延伸率 > 5%的要求, Mn含量应 < 2.2%。 综合上述要求, 本发明将 Mn的含量设计为 1.00 ~ 2.20wt%, 进一步地, 可将其设计为 1.30 ~ 2.00wt%。 C和 Mn都有提高材料强度和降低焊接性能的作用, 因此本发明中(:、 Mn不能同时取上限或下限。 为满足要求, 本发明设计成分 C与 Mn的关系为: 0.19% < C+Mn/16 < 0.23%„
Al: Al的加入是为了脱氧。 本发明钢种在加工过程中要求较好的冷弯性能, 而过高 O含量会导致材料的冷弯等成形性能下降。 为满足钢板成形性能要求, A1 含量不应小于 0.02%。 但是 A1含量过高会导致钢板中 A1N等夹杂物过多, 会降低 材料的延伸率。 因此, 综合考虑脱氧和夹杂物控制, 本发明的碳含量控制在 0.02 ~ 0.06%。 优选地, 将其控制为 0.02 ~ 0.04%。
Cu: Cu在基体与锈层之间可以形成以 Cu和 P 为主要成分的阻挡层, 其与基 体牢固结合而对钢板具有良好的保护作用, 此外, Cu还可以抵消钢板中杂质元素 S 的有害作用。 为确保本发明中钢板所需耐候性, Cu含量应不低于 0.2%。 但是过 多的 Cu加入会导致严重的 "Cu脆" 问题, 配合 Ni元素的加入, Cu的添加上限应 为 0.4%。 因而,在本发明的超高强度冷轧耐候钢板中应该将 Cu含量设定为 0.20 ~ 0.40wt%, 在优选方案中 , 可以将 Cu含量设定为 0.25 ~ 0.35%。
Cr: Cr能够在钢板表面形成致密的氧化膜以提高钢板的钝化能力, 尤其是当
Cr 与 Cu 同时加入钢中, 其所显现的效果更为明显; 在本技术方案中需要将 Cr 的质量百分含量控制为 0.40 ~ 0.60%。
Ti: Ti是强碳氮化物形成的主要元素,其通过析出强化和细晶强化后可以提高 钢板的成型性能。 因而, 在本发明中将 Ti的质量百分含量设计为 0.015 ~ 0.035%。
P: 需要特别说明的是, 虽然 P在大多数钢种中均是杂质元素, 但是在本技术 方案中, P能和 Cu形成耐腐蚀的阻挡层, 提高钢板耐大气腐蚀性能, 同时还具有 固溶强化效果, 但是过多的 P会增加钢材的脆性, 同时恶化钢材的焊接性能, 故 需要将 P的质量百分含量控制为 < 0.030%, 最好控制为 < 0.015%。
Ni: Ni的加入是为了减少 Cu加入可能导致的 "Cu脆" 问题。 为实现较好的 效果以及降低成本, Cu: Ni应满足 Cu: Ni < 2/3。 基于此结果, 本发明的 Ni含量 设计为 < 0.2%。
本发明还提供了一种采用上述超高强度冷轧耐候钢板制造的集装箱面板。该集 装箱面板板形好, 表面质量优。
本发明还提供了一种采用上述超高强度冷轧耐候钢板制造的汽车结构件板。该 汽车结构件板质量轻, 强度高。
相应地,本发明还提供了上述超高强度冷轧耐候钢板的制造方法,其包括下列 步骤: 冶炼, 加热保温, 热轧, 卷取, 酸洗, 冷轧, 连续退火, 平整; 其中在连续 退火步骤中, 退火温度为 830 - 880 °C以实现奥氏体化, 然后在高氢气氛中快速冷 却, 以获得马氏体组织。
本发明在制造工艺中采用了连续退火工艺,并采用了相对于现有技术较高的退 火温度,从而保证钢板在快速冷却前实现奥氏体化。此温度的控制可以调节奥氏体 化程度, 以调整最终成品的机械性能和成形性能。在快冷过程中采用高氢气氛进行 快速冷却以确保在快冷过程中获得马氏体啟观组织; 与水淬相比较,在高氢气氛中 快速冷却的冷却效果更为均句,这不仅降低了钢材的生产成本,还可以获得比水淬 更为优越的板形和表面质量。
进一步地, 在上述连续退火步骤中, 高氢气氛中的氢气体积分数为 60%。 进一步地, 在上述连续退火步骤中, 快速冷却的冷却速度大于 100°C/s。
优选地, 在上述连续退火步骤中, 退火温度进一步限定为 850~880°C, 以获 得更好的实施效果。
进一步地, 在上述加热保温步骤中, 板坯经 1170 ~ 1200 °C加热保温。 本技术 方案采用了较低的加热保温温度,这是为了在确保(:、 N化合物充分溶解的前提下, 尽可能地降低 Cu对钢材热塑性能的不利影响。
进一步地, 在上述热轧步骤中, 终轧温度>八 。
进一步地, 在上述卷取步骤中, 卷取温度为 450-550 °C。 本技术方案采用了 较低的卷取温度,这有利于改善钢卷在卷曲后的扁卷问题, 同时可在钢板中获得细 小的析出相。
进一步地, 在上述冷轧步骤中, 冷轧压下率为 50 ~ 60%。
本发明所述的超高强度冷轧耐候钢板通过合理的成分设计和适当的工艺流程, 具有非常优越的实施效果: 其具备优良的耐大气腐蚀性能; 其强度高, 屈服强度在 700MPa以上, 抗拉强度在 lOOOMPa以上; 其板形好, 表面质量优良。 具体实施方式
下面将结合具体实施例来对本发明所述的超高强度冷轧耐候钢板及其制造方 法作进一步的详细说明, 但是该详细说明并不构成对本发明技术方案的不当限定。
实施例 1 ~ 7
按照下列步骤制造超高强度冷轧耐候钢板:
( 1 ) 冶炼并控制各化学元素的质量百分比含量如表 1所示;
( 2 )将板坯经过 1170 ~ 1200 °C的加热保温;
( 3 ) 热轧: 热轧终轧温度 > Ar3;
( 4 )卷取: 卷取温度为 450 ~ 550 °C;
(5) 酸洗;
(6)冷轧: 冷轧压下率为 50 ~ 60%;
(7)连续退火: 退火温度为 830-880 °C, 以实现完全奥氏体化, 然后在高氢 气氛中 (氢气的体积分数为 60%)快速冷却(冷却速度大于 100°C/S) , 以获得马 氏体组织;
(8)平整。 表 1列出了本案实施例 1 ~ 7的超高强度冷轧耐候钢板的各化学元素的质量百 分比含量。
表 1. ( wt.%, 余量为 Fe和其他不可避免的杂质)
Figure imgf000007_0001
表 2列出了生产制造本案实施例 1 ~ 7的超高强度冷轧耐候钢板的相关工艺. 数和各项力学性能。
表 2
加热保温温卷取温度 冷轧压 退火温 屈服强度 抗拉强度 延伸率
序号 2a弯曲 度 (°c) (°C) 下率 (%) 度 (°c) (MPa) (MPa) ( )
实施例 1A 1200 498 50 873 900 1043 8.4 合格 实施例 1B 1180 457 60 880 1009 1117 6.7 合格 实施例 1C 1180 546 60 854 841 1010 9.3 合格 实施例 1D 1170 509 55 880 931 1067 7.3 合格 实施例 2A 1190 550 55 859 763 1053 11.1 合格 实施例 2B 1170 508 60 879 851 1061 9.6 合格 实施例 2C 1190 454 55 880 859 1162 9.1 合格 实施例 2D 1200 482 60 862 762 1020 10.2 合格 实施例 3A 1180 501 60 867 886 1162 8.6 合格 实施例 3B 1190 465 60 880 970 1231 8.4 合格 实施例 3C 1180 534 55 871 749 1100 9.6 合格 实施例 3D 1190 497 55 875 776 1114 10.8 合格 实施例 4A 1170 495 55 880 903 1235 8.6 合格 实施例 4B 1170 533 60 867 729 1154 10.3 合格 实施例 4C 1180 514 55 872 854 1216 8.6 合格 实施例 4D 1180 475 60 880 960 1231 8.2 合格 实施例 5A 1190 523 60 878 940 1140 9.3 合格 实施例 5B 1180 489 60 857 852 1067 11 合格 实施例 5C 1190 550 60 865 861 1073 10.7 合格 实施例 5D 1190 509 55 871 900 1173 9.8 合格 实施例 6A 1200 497 60 848 825 1050 11.3 合格 实施例 6B 1180 514 55 873 930 1211 8.9 合格 实施例 6C 1170 506 55 864 900 1150 9.3 合格 实施例 6D 1200 550 60 877 951 1198 9.6 合格 实施例 7A 1200 526 55 880 856 1209 9.5 合格 实施例 7B 1180 495 60 864 790 1120 11.5 合格 实施例 7C 1200 487 55 858 807 1132 10.6 合格 实施例 7D 1180 550 55 877 930 1220 9.4 合格 表 2中的实施例 1-7的钢种成分对应表 1 , 即实施例 1A、 1B、 1C和 ID的钢 种成分均采用了表 1中的实施例 1所示的成分。
从表 2可见, 本发明所述的超高强度冷轧耐候钢板的屈服强度大于 700Mpa, 最高达到了 1009 Mpa; 抗拉强度大于 lOOOMpa, 最高达到了 1235 Mpa; 延伸率大 于 6%, 最高可达 11.5%, 同时, 2a弯曲测试均达到合格水平。 本钢板适合用于强 度高, 重量轻的汽车结构件和集装箱面板等零部件的制造,成品钢板的成型工艺可 以辊压和简单折弯为主, 其具有广泛的应用前景。 要注意的是, 以上列举的仅为本发明的具体实施例, 显然本发明不限于以上 实施例, 随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直 接导出或联想到的所有变形 , 均应属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种超高强度冷轧耐候钢板, 其特征在于, 其化学元素质量百分比含量为:
C: 0.05-0.16%;
Mn: 1.00-2.20%;
A1: 0.02-0.06%;
Cu: 0.20-0.40%;
Cr: 0.40-0.60%;
Ti: 0.015-0.035%;
P: <0.03%;
且满足 0.19% < C+Mn/16 < 0.23%;
余量为 Fe和其他不可避免的杂质。
2. 如权利要求 1所述的超高强度冷轧耐候钢板, 其特征在于, 所述化学元素 质量百分比含量进一步地为:
C: 0.07-0.15%;
Mn: 1.30-2.00%;
A1: 0.02-0.04%;
Cu: 0.25-0.35%;
Ρ: <0·15%。
3. 如权利要求 2 所述的超高强度冷轧耐候钢板, 其特征在于, 还包括 < 0.20wt%^ Ni。
4. 如权利要求 1所述的超高强度冷轧耐候钢板, 其特征在于, 其微观组织为 马氏体, 马氏体的体积分数 > 95%。
5. 如权利要求 1所述的超高强度冷轧耐候钢板, 其特征在于, 其厚度为 0.8 ~ 1.5mm„
6. 一种采用如权利要求 1至 5中任一项所述的超高强度冷轧耐候钢板制造的 集装箱面板。
7. 一种采用如权利要求 1至 5中任一项所述的超高强度冷轧耐候钢板制造的 汽车结构件板。
8. 如权利要求 1至 5任一项所述的超高强度冷轧耐候钢板的制造方法, 其特 征在于, 依次包括下列步骤: 冶炼, 加热保温, 热轧, 卷取, 酸洗, 冷轧, 连续退 火, 平整; 其中在连续退火步骤中, 退火温度为 830 ~ 880 °C以实现奥氏体化, 然 后在高氢气氛中快速冷却, 以获得马氏体组织。
9. 如权利要求 8所述的超高强度冷轧耐候钢板的制造方法, 其特征在于, 在 连续退火步骤中, 高氢气氛中的氢气体积分数为 60%。
10. 如权利要求 8所述的超高强度冷轧耐候钢板的制造方法, 其特征在于, 在 连续退火步骤中, 快速冷却的冷却速度大于 100°C/s。
11. 如权利要求 8所述的超高强度冷轧耐候钢板的制造方法, 其特征在于, 在 连续退火步骤中, 退火温度为 850 ~ 880°C。
12. 如权利要求 8所述的超高强度冷轧耐候钢板的制造方法, 其特征在于, 在 加热保温步骤中, 板坯经 1170 ~ 1200 °C加热保温。
13. 如权利要求 8所述的超高强度冷轧耐候钢板的制造方法, 其特征在于, 在 热轧步骤中, 终轧温度>八 。
14. 如权利要求 8所述的超高强度冷轧耐候钢板的制造方法, 其特征在于, 在 卷取步骤中, 卷取温度为 450 ~ 550 °C。
15. 如权利要求 8所述的高强度优良低温韧性钢板的制造方法, 其特征在于, 在冷轧步骤中, 冷轧压下率为 50 ~ 60%。
PCT/CN2014/074091 2013-05-22 2014-03-26 一种超高强度冷轧耐候钢板及其制造方法 WO2014187193A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177012485A KR20170054572A (ko) 2013-05-22 2014-03-26 초고강도 냉간 압연 내후성 강판 및 이의 제조 방법
KR1020157022280A KR20150108396A (ko) 2013-05-22 2014-03-26 초고강도 냉간 압연 내후성 강판 및 이의 제조 방법
US14/777,249 US10094011B2 (en) 2013-05-22 2014-03-26 Superstrength cold-rolled weathering steel sheet and method of manufacturing same
SE1551047A SE539940C2 (en) 2013-05-22 2014-03-26 Superstrength cold rolled weathering steel sheet and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310190897.4A CN103266274B (zh) 2013-05-22 2013-05-22 一种超高强度冷轧耐候钢板及其制造方法
CN201310190897.4 2013-05-22

Publications (1)

Publication Number Publication Date
WO2014187193A1 true WO2014187193A1 (zh) 2014-11-27

Family

ID=49009935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074091 WO2014187193A1 (zh) 2013-05-22 2014-03-26 一种超高强度冷轧耐候钢板及其制造方法

Country Status (5)

Country Link
US (1) US10094011B2 (zh)
KR (2) KR20150108396A (zh)
CN (1) CN103266274B (zh)
SE (1) SE539940C2 (zh)
WO (1) WO2014187193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094346A (zh) * 2022-07-04 2022-09-23 宁波祥路中天新材料科技股份有限公司 采用TSR产线生产的抗拉强度≥1200MPa级热轧带钢及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103266274B (zh) * 2013-05-22 2015-12-02 宝山钢铁股份有限公司 一种超高强度冷轧耐候钢板及其制造方法
KR101767780B1 (ko) * 2015-12-23 2017-08-24 주식회사 포스코 고항복비형 고강도 냉연강판 및 그 제조방법
CN107267875B (zh) * 2017-05-31 2019-06-28 武汉钢铁有限公司 一种屈服强度≥700MPa铁路集装箱用耐候钢及生产方法
CN109252027A (zh) * 2017-07-13 2019-01-22 安徽宏源铁塔有限公司 低残余应力耐候折弯角钢的加工方法
CN109182893A (zh) * 2018-08-14 2019-01-11 河钢股份有限公司承德分公司 一种制作车载混凝土罐体钢板及其生产方法
CN111719082A (zh) * 2020-05-06 2020-09-29 唐山不锈钢有限责任公司 热轧耐候钢带及其柔性制造方法
CN111549277B (zh) * 2020-05-09 2021-09-24 湖南华菱涟源钢铁有限公司 一种耐大气腐蚀的马氏体耐磨钢板及其制造方法
CN114107786A (zh) * 2020-08-27 2022-03-01 宝山钢铁股份有限公司 一种冷轧高耐蚀高强耐候钢及其制造方法
CN112813352A (zh) * 2021-01-21 2021-05-18 江苏沪之通金属制品有限公司 一种耐腐蚀金属材料及其制备方法
CN113699449B (zh) * 2021-08-27 2022-06-21 宝武集团鄂城钢铁有限公司 一种薄规格耐大气腐蚀桥梁单轧易焊接钢板及其轧制方法
CN114592153A (zh) 2021-11-22 2022-06-07 宝山钢铁股份有限公司 一种具有优良耐候性能的高强度钢材及其制造方法
CN116426838A (zh) * 2022-01-04 2023-07-14 海信(山东)冰箱有限公司 钢板、其制备方法、面板及冰箱
CN117181810B (zh) * 2023-09-26 2024-04-19 江苏甬金金属科技有限公司 一种超薄冷轧耐候钢带的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376950A (zh) * 2007-08-28 2009-03-04 宝山钢铁股份有限公司 一种超高强度冷轧耐候钢板及其制造方法
US20100092331A1 (en) * 2006-12-22 2010-04-15 Posco Weather-resistant hot-rolled steel sheet superior high-strength, and manufacturing method
CN101994065A (zh) * 2010-09-30 2011-03-30 广州珠江钢铁有限责任公司 一种550MPa级具有优良耐候性的冷轧钢板及其制备方法
WO2012072884A1 (en) * 2010-12-02 2012-06-07 Rautaruukki Oyj Ultra high-strength structural steel and method for producing ultra high-strength structural steel
CN103266274A (zh) * 2013-05-22 2013-08-28 宝山钢铁股份有限公司 一种超高强度冷轧耐候钢板及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126322A (en) * 1975-04-26 1976-11-04 Nippon Steel Corp Process for producing copper alloy without surface defect
JP3729108B2 (ja) 2000-09-12 2005-12-21 Jfeスチール株式会社 超高張力冷延鋼板およびその製造方法
KR100815799B1 (ko) * 2006-12-12 2008-03-20 주식회사 포스코 내후성이 우수한 고항복비형 냉연강판
CN102876967B (zh) * 2012-08-06 2014-08-13 马钢(集团)控股有限公司 一种600MPa级铝系热镀锌双相钢钢板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092331A1 (en) * 2006-12-22 2010-04-15 Posco Weather-resistant hot-rolled steel sheet superior high-strength, and manufacturing method
CN101376950A (zh) * 2007-08-28 2009-03-04 宝山钢铁股份有限公司 一种超高强度冷轧耐候钢板及其制造方法
CN101994065A (zh) * 2010-09-30 2011-03-30 广州珠江钢铁有限责任公司 一种550MPa级具有优良耐候性的冷轧钢板及其制备方法
WO2012072884A1 (en) * 2010-12-02 2012-06-07 Rautaruukki Oyj Ultra high-strength structural steel and method for producing ultra high-strength structural steel
CN103266274A (zh) * 2013-05-22 2013-08-28 宝山钢铁股份有限公司 一种超高强度冷轧耐候钢板及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094346A (zh) * 2022-07-04 2022-09-23 宁波祥路中天新材料科技股份有限公司 采用TSR产线生产的抗拉强度≥1200MPa级热轧带钢及方法

Also Published As

Publication number Publication date
KR20170054572A (ko) 2017-05-17
US10094011B2 (en) 2018-10-09
US20160160330A1 (en) 2016-06-09
CN103266274B (zh) 2015-12-02
SE1551047A1 (sv) 2015-07-29
KR20150108396A (ko) 2015-09-25
SE539940C2 (en) 2018-02-06
CN103266274A (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2014187193A1 (zh) 一种超高强度冷轧耐候钢板及其制造方法
JP6208246B2 (ja) 高成形性超高強度溶融亜鉛めっき鋼板及びその製造方法
JP6779320B2 (ja) 強度及び成形性に優れたクラッド鋼板及びその製造方法
JP5532188B2 (ja) 加工性に優れた高強度鋼板の製造方法
JP5821260B2 (ja) 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP6179461B2 (ja) 高強度鋼板の製造方法
JP6766190B2 (ja) 降伏強度に優れた超高強度高延性鋼板及びその製造方法
CN107761006B (zh) 低碳热镀锌超高强双相钢及其制备方法
CN111218620B (zh) 一种高屈强比冷轧双相钢及其制造方法
WO2015151428A1 (ja) 材質均一性に優れた高強度冷延鋼板およびその製造方法
JP2022513964A (ja) 加工性に優れた冷延鋼板、溶融亜鉛めっき鋼板、及びこれらの製造方法
JP2008115454A (ja) 成形性が優れた高張力鋼板およびその製造方法
US20170298466A1 (en) High formability super strength cold-roll steel sheet or steel strip, and manufacturing method therefor
JP6079726B2 (ja) 高強度鋼板の製造方法
KR20110119285A (ko) 고강도 냉연강판, 아연도금강판 및 이들의 제조방법
WO2013094130A1 (ja) 高強度鋼板およびその製造方法
JP2012153957A (ja) 延性に優れる高強度冷延鋼板およびその製造方法
WO2014156142A1 (ja) 高強度鋼板およびその製造方法
WO2013051714A1 (ja) 鋼板及びその製造方法
JP5338257B2 (ja) 延性に優れた高降伏比超高張力鋼板およびその製造方法
CN108950392A (zh) 一种超高延性低密度钢及其制备方法
JP4736853B2 (ja) 析出強化型高強度薄鋼板およびその製造方法
CN110402298B (zh) 高强度冷轧钢板和其制造方法
CN115505847B (zh) 一种具有优异冲击性能的冷轧超高强钢板及其制备方法
JP2023071938A (ja) 延性及び加工性に優れた高強度鋼板、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157022280

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14777249

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800920

Country of ref document: EP

Kind code of ref document: A1