WO2014187132A1 - 高折射低色散光学玻璃及其制造方法 - Google Patents

高折射低色散光学玻璃及其制造方法 Download PDF

Info

Publication number
WO2014187132A1
WO2014187132A1 PCT/CN2013/090312 CN2013090312W WO2014187132A1 WO 2014187132 A1 WO2014187132 A1 WO 2014187132A1 CN 2013090312 W CN2013090312 W CN 2013090312W WO 2014187132 A1 WO2014187132 A1 WO 2014187132A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical
less
optical glass
refractive index
Prior art date
Application number
PCT/CN2013/090312
Other languages
English (en)
French (fr)
Inventor
王自力
黄�俊
Original Assignee
成都尤利特光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都尤利特光电科技有限公司 filed Critical 成都尤利特光电科技有限公司
Publication of WO2014187132A1 publication Critical patent/WO2014187132A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the present invention relates to a high refractive, low dispersion optical glass, and a method of making the same. More specifically, the present invention provides an optical glass having an optical constant having a refractive index of 1.94 or more and an Abbe number (vd) of 29 or more but less than 33, and having high transmission and good stability.
  • the blank from the optical glass can be used for secondary hot pressing and to form optical elements of different shapes.
  • optical systems in SLR cameras have also been widely used.
  • As a high-refractive-index, low-dispersion glass used in its optical system it not only needs to meet the design requirements of high-performance optical systems for SLR cameras, camcorders, and digital cameras, but also needs to meet the zoom optical system of SLR cameras and cameras, and The need for large size lenses and high transmission requirements. Therefore, the development of optical glass with extremely high refractive index and low dispersion is very useful for the design of optical systems for SLR cameras.
  • the refractive index (nd) also reaches 1.94 or more, but the Abbe number (vd) is less than 29, and only the comparison of the same refractive index, the Abbe number (vd) is also smaller than the scope of the present invention.
  • the optical constants cannot meet the design requirements of the current new SLR, camera zoom optics and digital camera optics.
  • the present invention has been made to achieve the above object and to eliminate the disadvantages and defects of such a high refractive glass, and an object thereof is to provide a refractive index (nd) of 1.94 or more and an Abbe number (vd) of 29 to 33.
  • Refractive optical glass which has an easy-to-form tack and exhibits good reproducibility, and is available for secondary hot press forming.
  • Another object of the present invention is to provide a high transmittance and low cost, stable manufacturing method. It is an object of the present invention to provide not only an optical constant having the above-mentioned range and meeting the optical system design requirements of a camera, but also a stable quantitative production and a good second at a low cost without introducing expensive components. Secondary hot pressing and its reproducibility.
  • another object of the present invention is to achieve high transmission of the optical lens, maximizing the high pixel design requirements of the SLR camera, the zoom system of the camera, and the optical system of the digital camera.
  • the present invention has found that the optimization of the selected components such as Gd203, La203, Ta205, Nb205, Zr02, ZnO, etc. can be achieved through the adjustment of the content of SiO2 and B203 and the proportion thereof.
  • the optical constant of the range and also achieves high transmission, and can satisfy the secondary hot pressing at the maximum extent, and eliminate the "fog spot" appearing on the surface of the optical element in repeated hot pressing.
  • the present invention has been completed for this purpose.
  • optical glass having a refractive index (nd) of 1.94 or more and an Abbe number (vd) of 29 or more but less than 33.
  • nd refractive index
  • vd Abbe number
  • the content of the Gd 2 0 3 is greater than 20%.
  • the total content of Ta 2 0 5 and Nb 2 0 5 is less than 36%.
  • the optical glass has a refractive index greater than 1.94 and an Abbe number of 29 to 33.
  • the upper limit of the internal transmission ( ⁇ ⁇ ) of the glass is less than 405 nm ; the density of the glass is less than .10 g/cm 3 .
  • the glass has a transition temperature (Tg) of less than 710 ° C and a liquidus temperature (LT) of not higher than 1210 C.
  • the present invention also provides an optical element which is prepared from the aforementioned optical glass.
  • the invention also provides a method for manufacturing an optical component, comprising the steps of: preparing a batch or a clinker, reheating and melting into a uniform glass liquid, flowing into a specific molding die via a platinum leakage device, cooling, solidifying to a constant The thickness and width of the blank material formed by the aforementioned optical glass.
  • the aforementioned blank material is cut and processed into a desired size and weight, and then softened by heating in a softening furnace, and compression-molded in a softened state to obtain a secondary hot-pressed optical element of a different shape.
  • the optical glass of the present invention has a refractive index (nd) of 1.94 or more, an Abbe number (vd) of 29 to 33, a glass transmittance of less than 405, a density of less than 5.10, and a transition temperature (Tg) of less than 710 ° C, and excellent quality.
  • nd refractive index
  • vd Abbe number
  • Tg transition temperature
  • the optical glass of the present invention has a refractive index (nd) of 1.94 or more, an Abbe number (vd) of 29 or more, but less than 33, and has high transmittance, and has a property of being directly molded into a blank material in a glass liquid state. Good stability and reproducibility.
  • nd refractive index
  • vd Abbe number
  • the glass components constituting the glass 1 to 11 included in the optical glass of the present invention and the percentage of each component and the total content of each group, which are respectively expressed by weight%, will be described in detail below.
  • the optical glass of the present invention contains SiO ⁇ PB 2 0 3 as a component forming a glass network, and contains Gd 2 0 3 , La 2 0 3 , Ta 2 0 5 as refractive index, A component such as Nb 2 0 5 and 1 0 2 , wherein the alkaline earth metal oxides CaO, SrO, and BaO are introduced in at least one kind or two kinds, and at the same time, the introduction amount of Sn0 2 and Li 2 0 is limited.
  • SiO 2 is a component which is a necessary component for forming a glass network, or is the most effective for expanding the range of glass formation and enhancing resistance to devitrification.
  • the amount of SiO ⁇ introduced is too low, the stability of the glass is extremely poor, and the coloration of the glass is also increased, making it difficult to form a high quality glass. If the amount of introduction is too large, the solubility of the melt deteriorates and the optical constant decreases, and it is difficult to obtain an ideal refractive index and dispersion value. Therefore, it is preferably 1 to 10%, more preferably 1 to 8%, still more preferably 2 to 7%.
  • B 2 0 3 is the most effective component for forming a glass network component and effective for reducing solubility and lowering the melting temperature.
  • the introduction amount is controlled in the range of 3 to 18%, preferably 6 to 16%, more preferably 6 to 15%.
  • the object of the present invention is not only to achieve an extremely high refractive index, but also to have good resistance to devitrification and stability.
  • the total content of Si0 2 + B20 3 is more than 20%, the required optical constant is not obtained. Therefore, the above total content is controlled to be within 20%, more preferably 18% or less.
  • Gd 2 0 3 which is a rare earth component has an oxide which acts in the same manner as La 2 O 3 , and has a component which has a high refractive index, and has an effect of improving the transmission in the visible light region and the stability of the glass.
  • the amount of introduction of Gd 2 0 3 is controlled to be 20 to 30%, more preferably 20 to 28%, still more preferably 20 to 27%.
  • La 2 0 3 is an essential component for obtaining high refraction and low dispersion, however, when the introduction amount of La 2 0 3 is less than 10%, it is difficult to achieve the required optical constant, and when it is more than 40%, the anti-devitrification of the glass is lowered. Therefore, no stable glass can be obtained. Therefore, the introduction amount of La 2 0 3 is controlled to be 10 to 40%, preferably 12 to 305%, more preferably 14 to 33%.
  • Y 2 0 3 as a rare earth oxide of the same type has any addition component which acts in the same manner as L 0 3 - however, if introduced in excess, the stability of the glass will decrease, and at the same time, the glass transition temperature will also rise. Therefore, the amount of introduction is controlled to be 0 to 8%, preferably 0 to 4% or less.
  • the glass component containing a plurality of rare earth oxides can significantly improve the stability of the glass, and Increase the total content of rare earth oxides.
  • the glass of the present invention if it contains components such as Gd 2 O 3 , La 2 O 3 , Y 2 0 3 having an increased refractive index, the refractive index and the glass stability can be effectively and greatly improved. If the total amount exceeds 60%, the glass resistance to devitrification will deteriorate. Therefore, the total amount of (Gd 2 0 3 + La 2 0 3 + Y 2 0 3 ) is controlled to be 60% or less, preferably 45 to 58%, more preferably 48 to 55%.
  • Ta 2 0 5 is an important component which has a large improvement in glass stability, improves stability, adjusts optical constants, and sets optical constants within a set range.
  • the amount of introduction is controlled to be 5 to 20%, preferably 5 to 19%, more preferably 6 to 18%.
  • Nb 2 0 5 is an important component for remarkably increasing the refractive index and the dispersion value, and can significantly improve the devitrification resistance of the glass and improve the stability of the glass.
  • the amount of introduction is less than 5%, it is difficult to obtain the above effects. If it is more than 35%, the opposite is true, the devitrification resistance and stability of the glass will decrease, and the Abbe number will also exceed the set range. . Therefore, it is preferably in the range of 5 to 32%, more preferably in the range of 5 to 30%, still more preferably in the range of 7 to 28%.
  • the total content of Ta 2 0 5 + Nb 2 0 5 is controlled to be 38% or less, more preferably the total introduction amount of Ta 2 0 5 + Nb 2 0 5 is 36% or Lower.
  • Ti0 2 is a component having a significant increase in refractive index and dispersion value.
  • the amount of introduction is too large, not only will the glass dispersion value be increased, but also the short-wavelength side section and length will be intensified. The absorption of the band causes the glass to be colored and the glass is devitrified and the solubility is deteriorated. From the viewpoint of preferentially lowering the coloration and dispersion value of the glass, it is preferable to control the amount of introduction of 110 2 to 0 to 8.0%, more preferably to 0 to 7.5%, and still more preferably 0 to 7.0%.
  • Zr0 2 is a component that improves glass stability and resistance to devitrification and adjusts optical constants.
  • a small amount of introduction has the effect of improving the stability of the glass, such as excessive introduction, not only the stability of the glass will decrease, but also the dispersion value will increase, and the solubility of the glass will also deteriorate. Therefore, the amount thereof is more than 0 but less than 7%, preferably 0.5 to 6%, more preferably 1 to 5%.
  • ZnO is a component which lowers the transition temperature, improves the solubility, and improves the stability of the glass.
  • the introduction amount is controlled to be more than 0 but less than 6%, preferably 0.5 to 5%, more preferably 1 to 4%.
  • W0 3 is a component that enhances resistance to devitrification, increases glass stability, and refractive index.
  • the amount of introduction is controlled to be 0 to 5%, preferably 0 to 3%, more preferably 0 to 2% or less.
  • the optical glass of the present invention contains at least one of CaO, SrO and BaO as a glass component, and the total amount of introduction thereof is less than 15%.
  • the introduction amount of the two types is 0 to 8%, preferably 0 to 6%, more preferably 0 to 4%, still more preferably 0 to 3% or less.
  • BaO not only has an effect of increasing the refractive index but also improving the transmission of the short-wavelength side of the visible light region of the glass, and also has an effect of improving glass stability and devitrification resistance.
  • the amount of introduction exceeds 10%, not only the refractive index of the glass is lowered, but also the devitrification of the glass is deteriorated and the stability is lowered. Therefore, the amount of introduction is controlled from 0 to 8%, preferably from 0 to 7%, further preferably from 0 to 6.5%.
  • Li 2 0 helps to improve the melting properties, lower the melting temperature, improve the frit property and increase the viscosity during molding. However, if the amount of introduction exceeds 2%, the glass resistance to devitrification will be drastically deteriorated, and the refractive index will also be greatly reduced. Therefore, the amount thereof is 0 to 2%, preferably 0 to 1.0%, more preferably 0 to 0.5% or less.
  • the amount thereof to be introduced is preferably 0 to 2.0%, more preferably 0 to 1.0% or less.
  • Sb 2 0 3 is an optional additive used as a clarifying agent, and by a small amount of addition, light absorption due to reduction of Fe impurities can be alleviated, and glass coloring can be alleviated. If added in excess, it will have the opposite effect and will also deteriorate the intrinsic quality of the glass. Therefore, it is preferable to control the amount of introduction thereof to 0 to 1%. It is preferably 0 to 0.2%, more preferably 0 to 0.1% or less.
  • the introduction amount of components of Si0 2 , B 2 0 3 , Gd 2 0 3 , La 2 0 3 , Ta 2 0 5 , Nb 2 0 5 , Ti0 2 , BaO, Zr0 2 , ZnO, etc. is preferable to limit the introduction amount of components of Si0 2 , B 2 0 3 , Gd 2 0 3 , La 2 0 3 , Ta 2 0 5 , Nb 2 0 5 , Ti0 2 , BaO, Zr0 2 , ZnO, etc. to 97% or more. More, the components such as W0 3 , CaO, SrO, SnO 2 , Li 2 0 and the like are introduced in an amount of 3% or less, and the total amount thereof is 100%.
  • the optical glass of the present invention can achieve a higher refractive index without containing an expensive oxide such as Ge0 2 , Te0 2 , Lu 2 0 3 , Yb 2 0 3 or the like.
  • oxides such as Ge0 2 , Lu 2 0 3 , and Yb 2 0 3 are not introduced, and stable mass production can be achieved.
  • the optical glass of the present invention has a refractive index (nd) of 1.94 or more and an Abbe number (vd) of 29 to 33.
  • the refractive index (nd) of the present invention is preferably at least 1.94, more preferably 1.95 or 1.98. In order to achieve manufacturing stability, it is desirable to limit the refractive index (nd) to 2.00 or less, and more desirably to 1.98 or less.
  • the optical glass of the present invention preferably has an Abbe number (vd) of 29 to 33.
  • the optical glass of the present invention is mainly used for softening pressing by secondary heating to obtain an optical element, or by cold working, and processed into an optical lens.
  • the internal permeation (wavelength into ⁇ 70 ) is controlled to 405 nm or less, preferably 400 nm or less, by composition optimization and process modification.
  • the internal transmission (wavelength ⁇ ⁇ 5 ) is controlled to be 365 nm or less, preferably 360 nm or less. Since the optical glass of the present invention has a transmission of 70% or more in the ( ⁇ ⁇ 70 ) wavelength range and ( ⁇ ⁇ 5 ) is more shifted in the short-wave direction, it is suitable as an optical lens of various high pixels.
  • the premise of achieving stability in manufacturing is that the glass has a low liquidus temperature, and when the devitrification resistance of the glass is lowered, the liquidus temperature thereof is sharply increased, and the glass stability is deteriorated. Therefore, the liquidus temperature of the optical glass of the present invention is controlled to be 1210 ° C or lower, more preferably 1190 ° C or lower.
  • Tables 1 and 2 show the compositions of Comparative Examples N 2a to N 2c of the glass compositions of the examples N2l to N2 ll of the optical glass of the present invention and the high refractive glass of the same type as the glass of the present invention.
  • the optical glass obtained by annealing the -4.0/h annealing rate and cooling in each of the examples and the comparative examples was measured, refractive index (nd), Abbe number (vd), and internal transmission ( ⁇ ⁇ 70 ).
  • the results of measurement of ⁇ ⁇ 5 ), density ( ⁇ ), transition temperature (Tg), and liquidus temperature (LT) are shown in Tables 1 and 2.
  • Raw materials such as various oxides, carbonates and nitrates corresponding to the raw materials of the respective components are calculated and mixed according to the compositions of the respective examples and comparative examples, and the mixture is mixed to prepare a batch material, which is added to a platinum container or In a yellow platinum alloy container, after melting, stirring, clarifying and homogenizing at a temperature of 800 ° C to 1350 ° C, it is poured or leaked into the mold through a platinum leakage tube.
  • the type is of various specifications and is annealed to form the optical glass of the present invention.
  • the refractive index (nd) and Abbe's number (vd) of each of the above glasses were measured by the following method to obtain a glass sample at an annealing rate of -4.0 / h.
  • Glass transition temperature (Tg) Measured using a thermal analyzer unit and measured at a heating rate of 4.0 ° C / min.
  • Liquidus temperature (LT) 500g glass was added to a 0.3L platinum container or a yellow platinum container. The sample was set at 10 °C intervals in the test furnace and kept at different temperatures for 2 hours to obtain a sample. Crystallization occurs, and the lowest temperature at which no crystals are confirmed is taken as the liquidus temperature (LT).
  • the optical glass N2 l ⁇ N2 ll of the embodiment of the present invention has an optical constant of the above range, that is, the refractive index (nd) is 1.94065 - 2.00012, and the Abbe number (vd) 29.08-32.76, in the glass.
  • the upper limit of transmission is less than 405 nm
  • the lower limit is 354 nm
  • the specific gravity is lower than 5.10
  • the transition temperature (Tg) is 710 ° C or lower
  • the liquidus temperature (LT) is 1210 ° C or lower. Not only can stable mass production be achieved, but also a good reproducibility of secondary hot pressing.
  • the refractive index (nd) is also above 1.94, but the Abbe number (vd) is less than 29, and therefore does not belong to the optical constant of the present invention.
  • vd the Abbe number
  • it also contains expensive Lu 2 0 3 components, which cannot achieve low-cost mass production.
  • the above a case and b case also have deep glass coloration and low transmittance, which cannot be used in the design of optical systems of new SLR cameras and cameras.
  • the refractive index (nd) of the c example also reached 1.94 or more, but the Abbe number (vd) was only 23.6, which is far from the optical constant of the present invention.
  • the composition of Te0 2 and Bi 2 0 3 is contained, the transmittance of glass is poor, and the requirement for high transmission of the optical design of the present invention is not satisfied.
  • the optical glass of the present invention has a high refractive index (nd) of 1.94 or more, an Abbe number (vd) of 29 to 33, high transmittance and excellent manufacturing stability, and can be prepared into various types.
  • the invention has the viscosity of easy molding, shows good reproducibility at the same time, and can be used for secondary heat For compression molding, and to provide a high-transmission and low-cost, stable manufacturing method, on the basis of not introducing expensive components, achieving stable quantitative production at low cost and achieving good secondary hot pressing and Its reproducibility enables high transmission of optical lenses, maximizing the high pixel design requirements of SLR cameras, camera zoom systems, and digital camera optics. Suitable for a wide range of applications in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种不含GeO2或TeO2成分的高折射、低色散的光学玻璃及其制造方法。该光学玻璃按氧化物的重量%计,含有:CaO、SrO和BaO中至少一种;1〜10%SiO2,5〜18%B2O3,(SiO2+B2O3)总量小于20%,20〜30%Gd2O3,12〜35%La2O3,0〜8%Y2O3,(Gd2O3+La2O3+Y2O3)总量小于58%,5〜20%Ta2O5,5〜32%Nb2O5,(Ta2O5+Nb2O5)总量为17〜38%,0〜8%TiO2,大于0但小于7%ZrO2,大于0但小于6%ZnO,0〜5%WO3,0〜8%BaO,0〜4%CaO,0〜4%SrO,0〜2%SnO2,0〜2%Li2O,0〜1%Sb2O3。该光学玻璃具有折射率(nd)为1.94以上,阿贝数(Vd)为29以上但不足33的光学常数,玻璃内部透过式子(I)70上限为405nm或更低,液相线温度1210℃以下。

Description

说 明 书 高折射低色散光学玻璃及其制造方法 技术领域
本发明涉及一种高折射、 低色散的光学玻璃, 以及制造该光学玻璃的方 法。 更具体的讲, 本发明提供了一种具有折射率 1.94以上、 阿贝数 (vd) 为 29以上但不足 33的光学常数, 并具有高的透过和良好稳定性的光学玻璃。 由该光学玻璃的毛坯料可用于二次热压、 并制成不同形体的光学元件。
背景技术
近年来, 随着单反相机、 摄像机的快速普及, 作为单反相机中的光学系 统, 尤其是作为这类相机和摄像机的光学变焦系统, 也被广泛使用。 作为其 光学系统所使用的高折射率、 低色散的玻璃, 它不仅需满足高性能的单反相 机、 摄像机以及数码相机的光学系统的设计要求, 更需满足单反相机、 摄像 机的变焦光学系统以及对大尺寸透镜的需求和高透过的要求。 因此, 开发具 有特高折射率、 低色散的光学玻璃对于单反相机的光学系统的设计是非常有 用的。
作为这类特高折射率领域的光学玻璃, 目前已知的仅是折射率 (nd) 在 1.94以上或达 2.00的, 如: 磷酸盐系列玻璃、碲酸盐系列或是 Bi203成分含 量高的玻璃。 而这类玻璃都达不到低的色散和高的阿贝数, 且还存在玻璃着 色重、透过率低, 玻璃化稳性差等诸多缺陷。如专利文献: CN1010441553A、 CN101279816A等。
还有的为大幅度提高折射率的同时为了维持玻璃的稳定性而引入大量价 格昂贵的 Ge02成分, 如专利文献: CN1955128A, 而高成本不可能实现量化 产。
再如专利文献: CN101289276A, CN101012103A, 其折射率 (nd) 也达 到 1.94以上, 但阿贝数 (vd)不足 29, 仅以相同折射率的比较, 阿贝数 (vd) 也小于本发明范围的光学常数, 不能满足目前的新型单反、 摄像机的变焦光 学系统及数码相机光学系统的设计要求。
再者, 对于这类特高折射率玻璃, 随着折射率的增加, 玻璃的着色也将 随之加深, 透过率也将下降。 特别是, 在使用着色倾向加深的玻璃时, 其相 机的光学成像系统中的基色短波长侧蓝色光敏感度下降, 这将严重影响到成 像质量的清晰度, 尤其是摄像机的变焦光学系统的成像质量。
不仅如此, 对于这类高折射、 低色散的光学玻璃, 在二次热压过程中, 其良好的抗失透性是实现反复、 多次的二次热压而在压型坯件表面不出现雾 斑和失透现象的关键。
再者从提高玻璃透过和制造的稳定性、 以及低成本运作是优先考虑的, 以上存在的缺陷也是显而易见的。
发明内容
本发明是为实现上述目的和消除这种高折射玻璃存在的不足与缺陷而进 行的, 其目的在于提供一种折射率 (nd) 1.94以上, 阿贝数 (vd) 29~33范 围内的高折射光学玻璃, 具有易于成型的粘性、 同时显示出良好的再现性, 并可供二次热压成型之用。
本发明的另一目的是提供一种高透过率和低成本的、 稳定的制造方法。 本发明的目的在于, 不仅是提供具有上述范围的、 并能满足相机的光学 系统设计要求的光学常数, 在不引入价格昂贵成分的基础上, 以低成本实现 稳定的量化生产和达到良好的二次热压及其再现性。
不仅如此, 本发明的另一目的, 是实现光学透镜具有高的透过, 最大满 足单反相机、 摄像机的变焦系统以及数码相机光学系统的高像素设计要求。
本发明为达到上述要求, 在经过不断的反复研究中发现, 能够通过对 Si02、 B203含量以及其比例的调整,同时对 Gd203、 La203、 Ta205、 Nb205、 Zr02、 ZnO等必选组分的优化配比和对 Ti02、 BaO、 W03、 CaO、 SrO、 Li20、 等任选组分的引入和优化配比,并在不引入价格昂贵的 Ge02成分和 Lu203、 Yb203等稀土成分时 , 不仅达到了具有上述范围的光学常数, 且还实现了 高的透过、 并能最大幅度满足二次热压、 消除在反复热压中所出现于光学元 件表面 "雾斑"。 为此完成了本发明。
本发明的结果还发现,将 Ta205/Nb205含量之比逐渐增大时, 玻璃稳定 性和抗失透性进一步提高, 进一步完成了本发明。
更具体地, 用于实现本发明如下所述:
(1) 一种光学玻璃, 折射率(nd) 1.94以上, 阿贝数(vd) 29以上但不 足 33。 当以重量%表示时, 所述光学玻璃包含有:
1~10%的 Si02
3~18%的 B203 其中: (Si02+B203) 20%
20~30%的 Gd203
12~35%的 La203
0~8%的 Y203 其中: (Gd203+ La203 +Y203) <58%
5~20%的 Ta205
5~32%的 Nb205 其中: (Ta205+Nb205) = 17-38%
0~8%的 Ti02 大于 0但小于 7%的 Zr02
大于 0但小于 6%的 ZnO
0~5%的 W03
0~8%的 BaO
0~4%的 CaO
0~4%的 SrO
0~2%的 Sn02
0~2%的 Li20
0~1%的 Sb203
优选地, 它含有如下重量百分含量的成分:
1 ~8%的 Si02
6~16%的 B203 其中: (Si02+B203) 18%
20~28%的 Gd203
14~33%的 La203
0~4%的 Y203 其中: (Gd203+ La203 +Y203 ) <55%
6~18%的 Ta205
7~28%的 Nb205 其中: (Ta205+Nb205) = 19- 36%
0~8%的 Ti02
1~5%的 Zr02
1~4%的 ZnO
0~2%的 W03
0~7%的 BaO
0~2%的 CaO
0~1%的 SrO
0~0.5%的 Sn02
0~2%Li2O
0~0.1%的 Sb203
优选地, 所述 Gd203的含量大于 20%。
优选地, Ta205与 Nb205的总含量小于 36%。
所述光学玻璃的折射率大于 1.94, 阿贝数为 29~33。
所述玻璃的内部透过 (λ τ ) 上限小于 405nm; 所述玻璃的密度小于 .10g/cm3
所述玻璃的转变温度 (Tg)低于 710°C, 液相线温度 (LT) 不高于 1210C。
本发明还提供了一种光学元件, 它由前述的光学玻璃制备而成。 本发明还提供了一种光学元件的制造方法, 包括以下步骤: 配合料或至 熟料制备、 再加热融化成均匀的玻璃液态, 经由铂金漏料装置流入特定的成 型模具中冷却、固化为恒定的厚度和宽度,制造前述光学玻璃形成的毛坯料。
进一步地, 将前述毛坯料切割、 加工成所需规格与重量, 再经过软化炉 加热软化, 并在软化状态下对其进行压制成型, 得到不同形体的二次热压的 光学元件。
本发明光学玻璃折射率 (nd) 1.94以上, 阿贝数 (vd) 为 29~33, 玻璃 内透过低于 405, 密度低于 5.10, 转变温度 (Tg) 低于 710°C, 品质优良。 除此之外,与现有高折射光学玻璃相比,不仅具有高折射率和低色散的特性, 且还具有良好的抗失透性和低成本, 可在稳定的状态下实现低成本运作和量 产。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段, 在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、 替换或变更。
以下通过实施例形式的具体实施方式, 对本发明的上述内容再作进一步 的详细说明。 但不应将此理解为本发明上述主题的范围仅限于以下的实例。 凡基于本发明上述内容所实现的技术均属于本发明的范围。
具体实施方式
本发明的光学玻璃具有折射率 (nd) 为 1.94以上, 阿贝数 (vd) 为 29 以上、 但不足 33, 且具有高透过率的特点, 而且当以玻璃液态直接成型为毛 坯料时具有良好的稳定性和再现性, 在二次热压过程中, 经反复地二次热压 而不出现失透, 并制成各类规格的光学元件。
以下将详细说明构成本发明光学玻璃所包括的玻璃 1~11的玻璃组分及 每一组分含量和每一组总含量的百分比, 分别以重量%表示。
为实现上述的各项性能, 本发明的光学玻璃包含作为形成玻璃网络的组 分的 SiO^P B203, 包含作为提高折射率的 Gd203、 La203、 Ta205、 Nb205和 1 02等组分, 其中碱土金属氧化物 CaO、 SrO、 BaO的引入量至少一种或两 种, 同时限制 Sn02、 Li20的引入量。
在本发明的高折射、 低色散的玻璃中, Si02是作为形成玻璃网络必选组 分, 还是最有效扩大玻璃生成范围、 增强抗失透性的组分。 当 SiO^ 引入量 过低时, 玻璃的稳定性极差, 且还会使玻璃着色加重, 难以形成高质量的玻 璃。 若引入量过大时, 熔化的可溶性变差、 光学常数降低, 难以获得理想的 折射率和色散值。 因此优选 1~10%, 更优选 1~8%, 进一步优选 2~7%。
B203是最有效用于形成玻璃网络成分, 且能有效用于降低可溶性、 并降 低熔化温度的组分。 但是在本发明的玻璃中, 如过量引入, 不仅会使折射率 降低, 同时玻璃着色也将会加深。因此, 引入量控制在 3~18%,优选 6~16%, 进一步优选 6~15%。
本发明的目的不仅要实现特高的折射率, 同时必须具有良好的抗失透性 和稳定性。 但是, 当 Si02+B203总含量大于 20%时, 则达不到所要求的光学 常数。 因此将上述总含量控制在 20%以内, 更优选 18%或更低。
作为稀土成分的 Gd203具有与 La203相同作用的氧化物, 都是具有提高 高折射率的组分,不仅如此,还具有提高可见光区透过和玻璃稳定性的作用。 但是, 当过量引入时, 玻璃稳定性则将降低, 而且将使玻璃失透性恶化。 因 此, Gd203的引入量控制在 20~30%, 更优选 20~28%, 进一步优选 20~27%。
La203是获得高折射、低色散的必需组分,然而当 La203引入量小于 10% 时, 将难以达到所要求的光学常数, 当大于 40%时, 玻璃抗失透下降, 因此 不能得到任何稳定制造的玻璃。 因此, La203的引入量控制在 10~40%, 优选 12-35%, 更优选 14~33%。
作为同类稀土氧化物的 Y203具有与 L 03相同作用的任意加入组分, - 然而如过量引入, 则玻璃的稳定性将下降, 同时也将使玻璃转变温度上升。 因此, 其引入量控制在 0~8%, 优选 0~4%或更低。
另外, 与该玻璃含有单一成分的稀土氧化物相比, 玻璃组分同时含有多 种稀土氧化物(Gd203+La203+ Y203)则可明显提高玻璃稳定性, 并增加稀土 氧化物的总含量。 特别是在本发明的玻璃中, 如同时含有具有提高折射率的 Gd203、 La203、 Y203等组分, 则可有效地、 大幅度的提高折射率和玻璃稳定 性, 如总量超过 60%, 玻璃抗失透性将恶化。 因此, (Gd203+La203+ Y203) 总量控制在 60%以下, 优选 45~58%, 更优选为 48~55%。
Ta205是具有大幅度提高玻璃稳定性、 且提高化稳性和调整光学常数、 并使光学常数达到设定范围的重要成分。 但是, 如引入量过多, 玻璃稳定性 将变差, 色散值也将增大, 而引入量过少, 又难以起到稳定性的作用。 因此, 其引入量控制为 5~20%, 优选 5~19%, 更优选 6~18%。
在本发明的玻璃中, Nb205是显著提高折射率和色散值的重要组分, 并 能显著改善玻璃的抗失透性和提高玻璃稳定性。 但是, 当其引入量低于 5% 时, 则难以得到上述效果, 如大于 35%时, 则出现相反, 玻璃的抗失透性和 稳定性都将下降, 阿贝数也将超出设定范围。 因此, 其优选范围为 5~32%, 更优选范围为 5~30%, 进一步优选范围为 7~28%。
为满足上述光学常数和实现高的透过, 优选 Ta205+Nb205的总含量控制 在 38%以下, 更优选 Ta205+Nb205的总引入量为 36%或更低。
在本发明的玻璃中, Ti02是具有显著提高折射率和色散值的组分。然而, 当引入量过多时, 不仅将增大玻璃色散值, 同时还将加剧对短波长侧段和长 波段的吸收, 使玻璃着色加重, 同时玻璃抗失透性和可溶性变差。 从优先降 低玻璃着色和色散值方面考虑, 优选将 1102的引入量控制为 0~8.0%, 更优 选控制为 0~7.5%, 进一步优选为 0~7.0%.。
Zr02是提高玻璃稳定性和抗失透性、 并调整光学常数的组分。 少量的引 入, 则具有提高玻璃稳定性的作用, 如过量引入, 不仅玻璃稳定性将下降, 色散值也将增大, 同时玻璃的可溶性也将变差。 因此, 其引入量大于 0但小 于 7%, 优选 0.5~6%, 更优选 1~5%。
在本发明中, ZnO是降低转变温度、 改善可溶性和提高玻璃稳定性的组 分。 然而, 其含量太多则难以达到预期的折射率和色散值, 玻璃着色也将会 加深。 因此, 为使玻璃达到所要求的光学常数和减轻玻璃着色, 其引入量控 制大于 0但小于 6%, 优选 0.5~5%, 更优选 1~4%。
W03是增强抗失透性、 提高玻璃稳定性和折射率的组分。 在本发明的玻 璃中, 如过量引入, 将导致色散值增加, 可见光区短波长侧的光吸收将加大, 玻璃着色倾向加重。 因此其引入量控制为 0~5%, 优选 0~3%, 更优选 0~2% 或更低。
本发明的光学玻璃含有 CaO、 SrO和 BaO中的至少一种作为玻璃组分, 其引入总量小于 15%。
CaO和 SrO具有提高可见光区短波长侧段的透过率, 并提高抗失透性和 加速玻璃液澄清。 但是, 当两种的引入量超过 8%时, 不仅会降低玻璃折射 率、 玻璃粘度变小、 抗失透性恶化。 因此, 其两种的引入量为 0~8%, 优选 0-6%, 更优选 0~4%, 进一步优选 0~3%或更低。
BaO不仅具有提高折射率、 且还具有提高玻璃可见光区短波长侧透过的 作用,并还具有提高玻璃稳定性和抗失透的作用。但是,当其引入量超过 10% 时, 不仅玻璃折射率会降低, 同时玻璃失透性恶化、 稳定性随之下降。 因此, 引入量-控制在 0~8%, 优选 0~7%, 进一步优选 0~6.5%。
Li20有助于改善熔化性能、 降低熔化温度、 改善玻璃料性和增大成型时 的粘度。 但是, 如引入量超过 2%, 将会使玻璃抗失透性急剧变坏, 同时折 射率也将大幅下降。 因此, 其引入量为 0~2%, 优选 0~1.0%, 更优选 0~0.5% 或更低。
Sn02具有与 Zr02相同的效果, 但是, 当引入量过多时, 玻璃可熔性将 变差, 折射率和色散值也将降低, 玻璃转变温度(Tg)将会快速上升。 因而, 其引入量优选 0~2.0%, 更优选 0~1.0%或更低。
Sb203是作为澄清剂使用的任意添加剂, 通过微量的加入, 可减轻由于 Fe杂质的还原而导致的光吸收, 并减轻玻璃着色。 如过量添加, 将起到相反 的作用, 还将使玻璃内在质量变差。 因此, 优选将其引入量控制为 0~1%, 优选 0~0.2%, 更优选 0~0.1%或更低。
如上所述, 为了不仅是实现高折射、 低色散的性能, 同时更要达到减小 可见光短波长侧的光吸收, 并提高玻璃制造的稳定性。优选限制 Si02、 B203、 Gd203、 La203、 Ta205、 Nb205、 Ti02、 BaO、 Zr02、 ZnO等的组分引入量为 97%或更多, W03、 CaO、 SrO、 Sn02、 Li20等组分的引入量为 3%或更少, 其总引入量为 100%。
在本发明的光学玻璃可实现更高的折射率而不含有价格昂贵的 Ge02、 Te02、 Lu203、 Yb203等氧化物。
考虑到经济性和低成本量产, 而不引入 Ge02、 Lu203、 Yb203等氧化物, 并可实现稳定的量产。
本发明的光学玻璃折射率 (nd)为 1.94以上, 阿贝数 (vd)为 29~33。 当逐 步调高折射率时, 玻璃抗失透性易下降或恶化, 然而, 本发明本发明的光学 玻璃可实现优异的抗失透性和达到高的透过率, 因而可进一步提高折射率 (nd)。 因此, 本发明的折射率 (nd) 优选至少 1.94, 更优选 1.95或 1.98。 为实现制造的稳定性, 理想的是将折射率(nd) 限制在 2.00或更小, 更理想 的是限制在 1.98或更小。
再且, 为实现制造的稳定性和减轻玻璃着色, 本发明光学玻璃的阿贝数 (vd) 优选为 29~33。
本发明的光学玻璃主要是用于通过二次加热软化压制得到光学元件、 或 经冷加工切割, 并经加工成光学透镜。
根据本发明的光学玻璃, 通过组分优化和工艺修正, 将内透过 (波长入 τ 70 ) 控制到 405nm以下, 优选 400nm或更小。 将内透过 (波长 λ τ 5 ) 控 制在 365nm以下, 优选 360nm或更小。 由于本发明光学玻璃在 (λ τ 70 ) 波长范围内具有 70%或更高的透过和 (λ τ 5 ) 更偏移短波方向, 因而适于 作为各种高像素的光学透镜。
实现制造的稳定性的前提是玻璃具有低的液相线温度, 当玻璃的抗失透 性下降时, 其液相线温度会急剧升高, 玻璃稳定性变差。 因而, 本发明的光 学玻璃的液相线温度控制在 1210°C以下, 更优选 1190°C或更低。 实施例 1 本发明光学玻璃的性质
表 1、 2显示了本发明光学玻璃的实施例 N2l~N2 ll的玻璃組成和与本发 明玻璃相同类型的高折射玻璃的比较例 N2a~N2c的组成。 以下测定每个实施 例和比较例中是通过 -4.0/h退火速率并冷却而获得的光学玻璃,折射率(nd)、 阿贝数 (vd)、 内透过 (λ τ 70 ) 禾卩 (λ τ 5 )、 密度 ( Ρ )、 转变温度 (Tg)、 液相线温度 (LT) 的测定结果, 所测定的结果在表 1、 2中给出。 将各组分的原料相应的各种氧化物、 碳酸盐和硝酸盐等原料, 按各实施 例和比较例的组成经计算后进行称量混合, 制成配合料, 将其加入铂金容器 或黄铂合金容器中, 在 800°C~1350°C的温度下熔化、 搅拌、 澄清及均化后, 浇入或经铂金漏料管漏入模具中成
型为各种规格, 经退火制成本发明的光学玻璃。
按以下方法测定上述玻璃的各项性能折射率 (nd) 与阿贝数 (vd) 测量 以 -4.0/h的退火降温速率得到玻璃试样。
内透过 (λ τ ) : 分别测量具有三块平行抛光面的 5mm、 10mm, 15mm 样品的内透过, 即 70%处的波长 (nm) 确定为 λ τ 70, 5%处的波长 (nm) 为 λ τ 5。 (内透过不包含试样表面反射损失时的透射比)
确定密度 (Ρ ) : 采用阿基米德法进行测量。
玻璃转变温度(Tg) : 采用热分析仪装置测量, 升温速率为 4.0°C/分钟下 进行测量。
液相线温度(LT) : 在 0.3L铂金容器或黄铂容器中加入 500g玻璃, 设定 为 10°C间隔的试验熔炉内、 在不同温度下分别保温 2h得到试样, 通过显微 镜观察是否有结晶出现, 将确认无结晶的最低温度作为液相线温度 (LT)。
Figure imgf000009_0001
Li20 0.10 0.11
Yb203
Lu203
Sb203 0.08 0.09 0.07 0.09 0.10 0.10 0.10 合计 100 100 100 100 100 100 100 nd 1.94065 1.94879 1.95657 1.97373 1.98167 1.96575 1.99877 vd 32.76 32.61 32.40 30.10 29.55 32.19 29.09
( λ τ 70)ηηι 396 397 400 402 404 401 404
( λ τ 5 ) nm 354 354 355 360 360 360 361
Ρ ( g/cm3 ) 4.82 4.85 5.02 5.03 5.05 5.01 5.09
Tg ( °C ) 683 681 697 699 701 697 703
LT ( °C ) 1175 1180 1195 1185 1175 1160 1195
Figure imgf000010_0001
Bi2o3 10.0
Sb203 0.07 0.10 0.10 0.08 0.10 0.02
合计 100 100 100 100 100 100 100 nd 2.00012 1.98930 1.99011 1.97902 1.99497 1.97892 1.98532
Vd 29.08 30.57 31.16 30.70 25.89 26.84 23.61
( λ τ 70)ηηι 405 403 403 401 430 429 459
( λ τ 5)nm 362 361 363 361 366 367 392
Ρ (g/cm3) 5.08 5.07 5.07 5.05 5.03 4.76 4.87
Tg(°C ) 702 707 703 699 693 693 533
LT( °C ) 1210 1175 1195 1175 1155 1190 ( 1130
如表 1、 2所示, 本发明实施例的光学玻璃 N2 l~N2 l l具有上述范围的光 学常数, 即折射率 (nd) 为 1.94065-2.00012, 阿贝数 (vd) 29.08-32.76, 玻 璃内透过上限小于 405nm, 下限为 354nm, 比重低于 5.10, 其转变温度(Tg) 710°C以下, 液相线温度 (LT) 1210°C以下。 不仅能实现稳定的量产, 还可 实现二次热压的良好再现。
反之, 如表 2中的比较例所示, a例虽然折射率 (nd) 达到 1.94以上, 但与本发明折射率相近的阿贝数(vd) 比较, 则仅为 25.89。 因此, 不属于本 发明的光学常数。
同样如此, b例虽然折射率 (nd) 也达到了 1.94以上, 但阿贝数 (vd) 小于 29, 因此也不属于本发明的光学常数。 同时还含有价格昂贵的 Lu203成 分, 不能实现低成本量产。
以上 a例与 b例还存在玻璃着色深、透过率低,不能用于新型单反相机、 摄像机的光学系统设计中。
c例折射率 (nd) 也达到 1.94以上, 但阿贝数 (vd) 仅为 23.6, 与本发 明的光学常数相差甚远。 同时由于含有 Te02、 Bi203成分, 玻璃透过率差, 不满足本发明的光学设计对高透过的要求。 综上,本发明的光学玻璃具有高折射率(nd)为 1.94或更大,阿贝数(vd) 为 29~33, 并具有高透过率和优异的制造稳定性, 可制备成各种光学元件, 应用于单反相机、 摄像机、 数码相机及手机的光学系统中。 工业应用性
本发明具有易于成型的粘性、 同时显示出良好的再现性, 并可供二次热 压成型之用, 并提供一种高透过率和低成本的、 稳定的制造方法, 在不引入 价格昂贵成分的基础上, 以低成本实现稳定的量化生产和达到良好的二次热 压及其再现性, 实现光学透镜具有高的透过, 最大满足单反相机、 摄像机的 变焦系统以及数码相机光学系统的高像素设计要求。 适于工业上广泛应用。

Claims

权 利 要 求 书
1、 一种光学玻璃, 其特征在于: 它含有如下重量百分含量的成分: 1~10%的 Si02
3~18%的 B203 其中: (Si02+B203) 20%
20~30%的 Gd203
12~35%的 La203
0~8%的 Y203 其中: (Gd203+ La203 +Y203) <58%
5~20%的 Ta205
5~32%的 Nb205 其中: (Ta205+Nb205) = 17-38%
0~8%的 Ti02
大于 0但小于 7%的 Zr02
大于 0但小于 6%的 ZnO
0~5%的 W03
0~8%的 BaO
0~4%的 CaO
0~4%的 SrO
0~2%的 Sn02
0~2%的 Li20
0~1%的 Sb203
2、根据权利要求 1所述的光学玻璃, 其特征在于: 它含有如下重量百分
Figure imgf000013_0001
1 ~8%的 Si02
6~16%的8203 其中: (Si02+B203) ^18%
20~28%的 Gd203
14~33%的 La203
0~4%的 Y203 其中: (Gd203+ La203 +Y203) <55%
6~18%的 Ta205
7~28%的 Nb205 其中: (Ta205+Nb205) = 19- 36%
0~8%的 Ti02
1~5%的 Zr02
1~4%的 ZnO
0~2%的 W03 0~7%的 BaO
0~2%的 CaO
0~1%的 SrO
0~0.5%的 Sn02
0~2%Li2O
0~0.1%的 Sb203
3、根据权利要求 1或 2所述的光学玻璃, 其特征在于: 所述 Gd203的含 量大于 20%。
4、 根据权利要求 1或 2所述的光学玻璃, 其特征在于: Ta205与 Nb205 的总含量小于 36%。
5、 根据权利要求 1~4任意一项所述的光学玻璃, 其特征在于: 所述光 学玻璃的折射率大于 1.94, 阿贝数为 29~33。
6、 根据权利要求 1~4任意一项所述的光学玻璃, 其特征在于: 所述玻 璃的内部透过 τ ) 上限小于 405nm; 所述玻璃的密度小于 5.10g/cm3
7、 根据权利要求 1~4的任意一项所述的高折射光学玻璃, 其特征在于: 所述玻璃的转变温度 (Tg) 低于 710°C, 液相线温度 (LT) 不高于 1210°C。
8、 一种光学元件, 其特征在于: 它由权利要求 1-7任一项所述的光学玻 璃制备而成。
9、 一种光学元件的制造方法, 其特征在于: 包括以下步骤:
配合料或至熟料制备、 再加热融化成均匀的玻璃液态, 经由铂金漏料装 置流入特定的成型模具中冷却、 固化为恒定的厚度和宽度, 制造由权利要求 1或 3中任一项所述光学玻璃形成的毛坯料。
10、 根据权利要求 9所述的制造方法, 其特征在于:
是将权利要求 9的毛坯料切割、 加工成所需规格与重量, 再经过软化炉 加热软化, 并在软化状态下对其进行压制成型, 得到不同形体的二次热压的 光学元件。
PCT/CN2013/090312 2013-05-24 2013-12-24 高折射低色散光学玻璃及其制造方法 WO2014187132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310199193.3 2013-05-24
CN201310199193.3A CN103241942B (zh) 2013-05-24 2013-05-24 高折射低色散光学玻璃及其制造方法

Publications (1)

Publication Number Publication Date
WO2014187132A1 true WO2014187132A1 (zh) 2014-11-27

Family

ID=48921853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090312 WO2014187132A1 (zh) 2013-05-24 2013-12-24 高折射低色散光学玻璃及其制造方法

Country Status (2)

Country Link
CN (1) CN103241942B (zh)
WO (1) WO2014187132A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105236734A (zh) * 2015-09-09 2016-01-13 湖北戈碧迦光电科技股份有限公司 一种含钛的高铌低镧光学玻璃的制备方法
CN111977970A (zh) * 2020-09-07 2020-11-24 成都光明光电股份有限公司 光学玻璃及光学元件
WO2022055702A1 (en) * 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103241942B (zh) * 2013-05-24 2016-01-13 成都尤利特光电科技有限公司 高折射低色散光学玻璃及其制造方法
CN105198206A (zh) * 2015-08-14 2015-12-30 成都光明光电股份有限公司 光学玻璃
JP7325927B2 (ja) * 2017-12-27 2023-08-15 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
CN110128005B (zh) * 2019-05-23 2021-12-07 成都光明光电股份有限公司 光学玻璃
CN112125513B (zh) * 2020-09-28 2022-04-15 成都光明光电股份有限公司 光学玻璃及光学元件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179142A (ja) * 2002-12-27 2005-07-07 Hoya Corp 光学ガラス、プレス成形用ガラスゴブおよび光学素子
CN101613184A (zh) * 2008-06-27 2009-12-30 Hoya株式会社 光学玻璃
CN101712530A (zh) * 2008-09-30 2010-05-26 Hoya株式会社 光学玻璃
CN102745894A (zh) * 2012-06-28 2012-10-24 湖北新华光信息材料有限公司 光学玻璃
CN103241942A (zh) * 2013-05-24 2013-08-14 成都尤利特光电科技有限公司 高折射低色散光学玻璃及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3883547B2 (ja) * 2004-03-23 2007-02-21 泉陽硝子工業株式会社 ガラス組成物
EP1604959A1 (en) * 2004-06-02 2005-12-14 Kabushiki Kaisha Ohara An optical glass
CN101289276B (zh) * 2008-06-19 2011-08-31 成都光明光电股份有限公司 高折射高色散光学玻璃及其制造方法
CN102295409B (zh) * 2011-03-11 2013-12-18 成都光明光电股份有限公司 一种光学玻璃及光学元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179142A (ja) * 2002-12-27 2005-07-07 Hoya Corp 光学ガラス、プレス成形用ガラスゴブおよび光学素子
CN101613184A (zh) * 2008-06-27 2009-12-30 Hoya株式会社 光学玻璃
CN101712530A (zh) * 2008-09-30 2010-05-26 Hoya株式会社 光学玻璃
CN102745894A (zh) * 2012-06-28 2012-10-24 湖北新华光信息材料有限公司 光学玻璃
CN103241942A (zh) * 2013-05-24 2013-08-14 成都尤利特光电科技有限公司 高折射低色散光学玻璃及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105236734A (zh) * 2015-09-09 2016-01-13 湖北戈碧迦光电科技股份有限公司 一种含钛的高铌低镧光学玻璃的制备方法
CN105236734B (zh) * 2015-09-09 2018-03-06 湖北戈碧迦光电科技股份有限公司 一种含钛的高铌低镧光学玻璃的制备方法
CN111977970A (zh) * 2020-09-07 2020-11-24 成都光明光电股份有限公司 光学玻璃及光学元件
WO2022055702A1 (en) * 2020-09-10 2022-03-17 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density

Also Published As

Publication number Publication date
CN103241942A (zh) 2013-08-14
CN103241942B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
JP6719611B2 (ja) 光学ガラス
WO2014187132A1 (zh) 高折射低色散光学玻璃及其制造方法
JP4726666B2 (ja) 光学ガラス、光学素子およびその製造方法
JP6603449B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP5073353B2 (ja) 光学ガラス
CN110510869B (zh) 光学玻璃
WO2013018586A1 (ja) 光学ガラス
KR20160038848A (ko) 유리, 프레스 성형용 유리 소재, 광학 소자 블랭크, 및 광학 소자
WO2011158774A1 (ja) 光学ガラス
JP6812147B2 (ja) 光学ガラス、光学素子ブランク、および光学素子
JP6396622B1 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP6280284B1 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
WO2014161358A1 (zh) 高折射光学玻璃及其制造方法
JP6444021B2 (ja) 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
JP2021534062A (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
WO2015024351A1 (zh) 高折射、低色散光学玻璃及其制造方法
TWI598312B (zh) 高折射率之光學玻璃
JP5690505B2 (ja) 光学ガラスならびに、モールドプレス成形用プリフォームおよび光学素子
JP2021050125A (ja) 光学ガラスおよび光学素子
JP5770973B2 (ja) 光学ガラスおよび光学素子
TW202114956A (zh) 光學玻璃及光學元件
JP2022063221A (ja) 光学ガラス及び光学ガラスからなる光学素子
CN107129140B (zh) 光学玻璃及光学元件
TWI707834B (zh) 磷酸鹽光學玻璃、壓製成型用玻璃材料及光學元件
JP7481847B2 (ja) 光学ガラスおよび光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885431

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13885431

Country of ref document: EP

Kind code of ref document: A1