WO2014187045A1 - 一种基于单端口实现双向供电的装置及方法 - Google Patents

一种基于单端口实现双向供电的装置及方法 Download PDF

Info

Publication number
WO2014187045A1
WO2014187045A1 PCT/CN2013/082944 CN2013082944W WO2014187045A1 WO 2014187045 A1 WO2014187045 A1 WO 2014187045A1 CN 2013082944 W CN2013082944 W CN 2013082944W WO 2014187045 A1 WO2014187045 A1 WO 2014187045A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
current
port
external device
Prior art date
Application number
PCT/CN2013/082944
Other languages
English (en)
French (fr)
Inventor
卢清
张建华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014187045A1 publication Critical patent/WO2014187045A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips

Definitions

  • the present invention relates to the field of circuit design, and in particular, to an apparatus and method for implementing bidirectional power supply based on a single port. Background technique
  • terminals are equipped with large-capacity batteries, which require a long battery life on the one hand, and require the terminal to output current to power the connected devices at certain times.
  • the first method is to use two ports to design the corresponding circuit.
  • One port is a port that externally supplies power to the terminal, and the other port is a port that the terminal supplies to the device connected to the port;
  • the second method is that the user uses different specially designed differentiated data cables to
  • the third method is to use only one port to set a switch on the terminal. When the switch is on the power supply, the terminal only accepts the external input current to the terminal. When the switch is connected to the output file, the terminal can only supply power to the external device.
  • the three methods provided above have disadvantages. Among them, in the first method, since the terminal design adopts two ports, the terminal cost is increased, and the terminal is not miniaturized, and the portability is poor; The two methods need to manually determine which data cable to use. If the wrong data cable is misused in the charging or external power supply scenario, the device will be damaged, the material cost will be increased, and, because of the corresponding data cable, it is portable. The third method also needs to artificially distinguish the charging or external power supply scene, and then put the switch in the corresponding position. If the switch position is selected incorrectly, the same judgment will damage the equipment, increase the material cost, and affect the user experience. Summary of the invention
  • the main purpose of the embodiments of the present invention is to provide a device and a method for implementing dual-directional power supply based on a single port, which can save cost and improve product portability and user experience.
  • a device for implementing bidirectional power supply based on a single port comprising: a detection module, a system processor, a decision module, a power input module, a power output module, and a power module;
  • the detecting module is configured to detect a device type of an external device connected to the port and/or bidirectional current information at the port;
  • the system processor is configured to determine the status information of the external device according to the detection result of the detection module
  • the decision module is configured to determine to enable the power input according to the detection result of the detection module, and/or the state of the power module, and/or the external device status information determined by the system processor a module or the power output module, and performing a corresponding operation according to the judgment result;
  • the power input module is configured to input the power on the port into the power module in an enabled state
  • the power output module is configured to output the power of the power module to the port in an enabled state
  • the power module is configured to provide a preferred power supply to the device.
  • the detecting module includes: an external device determining submodule, a current detecting resistor and a bidirectional current detecting submodule; wherein
  • the external device decision sub-module is configured to detect whether the external device is connected to the port, and further detect an external device type that accesses the port when the external device is accessed on the port;
  • the bidirectional current detecting submodule is configured to detect a current flow on the current detecting resistor and
  • the sigma resistor is coupled between the port and the system processor.
  • the current input from the port to the device direction is set to be positive, and the system processor is configured to:
  • the decision module is configured to:
  • the power input module includes: a first overvoltage protection submodule, a first reverse blocking submodule, a first current limiting submodule, and a first control logic submodule; and an input current of the power input module sequentially passes through the The first overvoltage protection submodule, the first reverse blocking submodule, and the first current limiting submodule are output;
  • the first overvoltage protection submodule is configured to perform overvoltage protection to prevent the input voltage of the power input module from being too high;
  • the first reverse blocking submodule is configured to perform reverse blocking to prevent the power input
  • the current at the output of the module is inverted to the input;
  • the first current limiting submodule is configured to limit current of the path
  • the first control logic submodule is configured to provide control logic for the first overvoltage protection submodule, the first reverse blocking submodule, and the first current limiting submodule.
  • the power output module includes: a second reverse blocking submodule, a second current limiting submodule, a second overvoltage protection submodule, and a second control logic submodule; wherein an input current of the power output module passes through the The second reverse blocking submodule, the second current limiting submodule, and the second overvoltage protection submodule are output;
  • the second reverse blocking submodule is configured to perform reverse blocking to prevent current flowing from the output end of the power output module to the input end;
  • the second current limiting submodule is configured to limit current of the path
  • the second overvoltage protection submodule is configured to perform overvoltage protection to prevent the output voltage of the power output module from being too high;
  • the second control logic sub-module is configured to provide control logic for the second reverse blocking sub-module, the second current limiting sub-module, and the second over-voltage protection sub-module.
  • the device also includes a display module
  • the display module is configured to display a current power supply state according to control of the system processor.
  • the device is disposed on the terminal.
  • a method for implementing bidirectional power supply based on a single port comprising:
  • Determining an enable power input function or a power output function according to the detection result, and/or a state of the preferred power supply, and/or the determined external device status information, and according to the determination result Perform the appropriate action.
  • the method further includes:
  • the device includes: a detection module, a system processor, a decision module, a power input module, a power output module, and a power module; wherein, the detection module is configured to Detecting device type and/or bidirectional current information at the port of the external device connected to the port; the system processor is configured to determine the state information of the external device according to the detection result of the detecting module; and the determining module is configured according to the detecting module The detection result, and/or the status of the power module, and/or the external device status information determined by the system processor, determine the enable power input module or the power output module, and perform corresponding operations according to the decision result.
  • the external device connected to the port can be powered, and the external device connected to the port can be powered. Since the embodiment of the present invention only relates to one port, the cost is saved, the portability of the product is improved, and the user experience is increased, and the input and output are not required to be different in the embodiment of the present invention. Data cable or switch position, which can further save costs and improve product portability.
  • FIG. 1 is a schematic structural diagram of a device for implementing bidirectional power supply based on a single port according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a detection module according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a power input module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a power output module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another apparatus for implementing bidirectional power supply based on a single port according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for implementing bidirectional power supply based on a single port according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of functions of a decision module according to Embodiment 1 of the present invention
  • FIG. 8 is a schematic flowchart of a decision process of a decision module according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic flowchart of a method for implementing bidirectional power supply based on a single port according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of functions of a decision module according to Embodiment 1 of the present invention
  • FIG. 8 is a schematic flowchart of a decision process of a decision module according to Embodiment 1 of the present invention
  • FIG. 9 is a schematic structural diagram of a detection module according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a processing flow of a system processor according to Embodiment 2 of the present invention. detailed description
  • the apparatus for implementing bidirectional power supply based on a single port includes: a detection module, a system processor, a decision module, a power input module, a power output module, and a power module; wherein the detection module is configured to detect the connection on the port The device type of the external device and/or the bidirectional current information at the port; the system processor configured to determine the external device state information according to the detection result of the detecting module; the determining module configured to be based on the detection result of the detecting module, and / or the status of the power module, and / or external device status information determined by the system processor, the decision enables the power input module or the power output module, and performs the corresponding operation according to the decision result.
  • the embodiment of the present invention provides a device for implementing bidirectional power supply based on a single port.
  • the device includes: a detection module 11 , a system processor 12 , a decision module 13 , a power input module 14 , a power output module 15 , and Power module 16; wherein
  • the detecting module 11 is configured to detect a device type of the external device connected to the port and/or bidirectional current information at the port;
  • the system processor 12 is configured to determine the status information of the external device according to the detection result of the detecting module 11;
  • the decision module 13 is configured to determine the enable power input module 14 or the power output module 15 according to the detection result of the detection module 11, and/or the state of the power module 16, and/or the external device state information determined by the system processor 12, And performing corresponding operations according to the judgment result, so that one branch of the input path and the output path is opened;
  • the power input module 14 is configured to input the power on the port into the power module when enabled.
  • the power output module 15 is configured to output the power of the power module 16 to the end in an enabled state. mouth;
  • the power module 16 configured to provide a preferred power source for the device.
  • the power supply source may be a large-capacity battery inside the terminal, or may be an output voltage of the source AC/DC converter, but is not limited to the above two cases.
  • the port described in the embodiment of the present invention is generally a USB port.
  • the detecting module 11 specifically includes: an external device determining sub-module 111, a current detecting resistor 112, and a bidirectional current detecting sub-module 113;
  • the external device decision sub-module 111 is configured to detect whether the external device is connected to the port, and further detect the external device type of the access port when the external device is connected to the port;
  • the bidirectional current detecting sub-module 113 is configured to detect the current flow and the magnitude of the current-sense resistor 112, and the current-sense resistor 112 is connected between the port and the system processor.
  • the current from the port input to the device direction is set to be positive, and the system processor 12 is specifically configured to:
  • the decision module 13 is specifically configured to:
  • the power input module 14 When it is determined that the device is not powered by the power module 16 or the signal of the system processor 12 is low, the power input module 14 is turned on, and the power output module 15 is turned off;
  • the device is powered by the power module 16, and the signal of the detecting module 11 is low level, and the signal of the system processor 12 is high level, it is determined that the external device has just been inserted into the port, is to be charged, and the power output module 15 is turned off, Power input module 14;
  • the determining device uses the power module 16 to supply power, and the signal of the detecting module 11 is high level, When the signal of the system processor 12 is high, it is determined that the external device is charging, keeping the power output module open 15, and the power input module being turned off 14.
  • the power input module 14 specifically includes: a first overvoltage protection submodule 141, a first reverse blocking submodule 142, a first current limiting submodule 143, and a first control logic.
  • the sub-module 144; the input current of the power input module is sequentially outputted through the first overvoltage protection sub-module 141, the first reverse blocking sub-module 142, and the first current limiting sub-module 143;
  • the first overvoltage protection sub-module 141 is configured to perform overvoltage protection to prevent the input voltage of the power input module from being too high to avoid damaging the secondary circuit;
  • the first reverse blocking sub-module 142 is configured to perform reverse blocking to prevent current from the output of the power input module from being reversed to the input terminal to avoid damaging the front-end circuit;
  • the first current limiting sub-module 143 is configured to limit the current of the path, and the current limiting function can provide a protection function for the pre-stage circuit in the case of a short-circuit current in the latter stage;
  • the first control logic sub-module 144 is configured to provide control logic for the first overvoltage protection submodule 141, the first reverse blocking submodule 142, and the first current limiting submodule 142.
  • the first control logic sub-module 144 generally provides control logic for the first overvoltage protection submodule 141, the first reverse blocking submodule 142, and the first current limiting submodule 142 according to the control of the system processor.
  • the decision module 13 decides to enable the power input module 14 or the power output module 15, and performs a corresponding operation according to the decision result, by executing the corresponding enable module and shutting down the module operation by the system processor.
  • the power input module 14 has a reverse blocking function to prevent the power supply from affecting the power input of the port to the power supply of the port, and to protect the power supply of the port input.
  • the power output module 15 specifically includes: a second reverse blocking submodule 151, a second current limiting submodule 152, a second overvoltage protection submodule 153, and a second control logic submodule. 154; the input current of the power output module sequentially passes through the second reverse blocking submodule 151, the first The second current limiting submodule 152 and the second overvoltage protection submodule 153 are outputted;
  • a second reverse blocking sub-module 151 configured to perform reverse blocking to prevent current from the output of the power output module from being poured to the input terminal
  • a second current limiting sub-module 152 configured to limit the current of the path
  • the second overvoltage protection sub-module 153 is configured to perform overvoltage protection to prevent the output voltage of the power output module from being too high;
  • the second control logic sub-module 154 is configured to provide control logic for the second reverse blocking sub-module 151, the second current limiting sub-module 152, and the second over-voltage protection sub-module 153.
  • the power output module 15 also has a reverse blocking function to prevent the power supply of the port input of the front stage from affecting the power supply of the rear stage.
  • the main difference between the power output module 15 and the power input module 14 is overvoltage protection. The position is different because the function of the power output module 15 is to supply the power inside the device to the external device because of the need to increase the overvoltage protection function at the output.
  • the device further includes a display module 17;
  • Display module 17 is configured to display the current power state based on control of system processor 12. For example, whether the display device is a power input state or a power output state.
  • the device is disposed on the terminal.
  • the embodiment of the present invention further provides a method for implementing bidirectional power supply based on a single port. As shown in FIG. 6, the method includes:
  • Step 601 detecting bidirectional current information at a device type and/or a port of an external device connected to the port;
  • Step 602 Determine, according to the detection result, the external device status information.
  • Step 603 Determine an enable power input function or a power output function according to the detection result, and/or the state of the preferred power supply, and/or the determined external device status information, and perform a corresponding operation according to the determination result.
  • the method further includes: displaying a current power supply state.
  • FIG. 7 is a schematic diagram of functions of a decision module according to Embodiment 1 of the present invention.
  • the decision module 13 controls according to a priority power OK signal 71 (from a power module), a detection signal 72 (from a detection module), and a system processor.
  • Signal 73 determines the enable power input module or power output module, i.e., to determine the enable signal 74 of the output power input module or the enable signal 75 of the power output module.
  • FIG. 8 is a schematic diagram of a decision process of a decision module according to Embodiment 1 of the present invention. As shown in FIG. 8, the process includes:
  • Step 801 Determine whether the terminal is working with the preferred power supply.
  • the terminal operates using a preferred power supply.
  • the power input module is turned on, and the power output module is turned off.
  • Step 802 Determine whether the detection signal is low.
  • the detection signal is low, and the control signal of the system processor is high.
  • the power output module is turned on, and the power input module is turned off.
  • Step 803 After starting charging, the detection signal goes high.
  • Step 804 Determine that the detection signal is at a high level, and the control signal of the system processor is at a high level, determine that the external device is charging, and the corresponding display module indicates that the “external device is charging” information to the user.
  • FIG. 9 is a schematic structural diagram of a detection module according to Embodiment 2 of the present invention.
  • an electronic switch 91 and a peripheral determination sub-module 111 are configured to detect an external device type connected to a USB port, that is, determine a connection on a USB port.
  • the device is a power type device, a power receiving external device, and no external device
  • the situation, and the detected information is transmitted to the decision module and the system processor 12; secondly, the bidirectional current detecting sub-module 113 monitors the bidirectional current on the current-sense resistor 112 (also referred to as the VBUS power line) on the USB port and direction.
  • the bidirectional current detecting sub-module 113 monitors the bidirectional current on the current-sense resistor 112 (also referred to as the VBUS power line) on the USB port and direction.
  • the system processor 12 can determine the state of the external device currently connected to the USB port based on the current value and the current direction on the VBUS. That is, whether the external device is charging, whether the external device is fully charged, whether the external device has been removed, and the external device is charging the terminal for the external power source. Assume that the current from the USB port input to the terminal direction is positive, and vice versa.
  • the system processor 12 communicates control signals to the decision module using a generic I/O port based on the knowledge of the external device.
  • the processing flow of the system processor in the second embodiment of the present invention is as shown in FIG. 10, and the processing flow thereof includes:
  • Step 1001 The system processor acquires current information on the current-sense resistor.
  • Step 1002 The system processor determines whether the current on the current detecting resistor is zero. If it is zero, it indicates that there is no external device on the USB port. If not, the process proceeds to step 1003.
  • Step 1003 The system processor determines the positive or negative condition of the current on the VBUS. If it is negative, it indicates that the terminal is supplying power to the external device. At this point, go to step 1004. If the current on VBUS is positive, it indicates that the external power supply is supplying power to the terminal. Go to step 1005.
  • Step 1004 The system processor continuously monitors the current value on the VBUS until the current value is less than the minimum threshold, indicating that the charging of the external device is about to be full, and the system processor transmits a low level control signal to the decision module; the current value is greater than the minimum The threshold indicates that the terminal is charging an external device.
  • Step 1005 The system processor continuously monitors the current value on the VBUS. When the current value is greater than the highest threshold, the system processor issues an excessive current warning to remind the terminal to reduce its power consumption; otherwise, the terminal is in normal operation.
  • the display module indicates the current state of the external device on the USB port through a display screen or an indicator light (but not limited to the above two display modes) according to various states detected by the above system processor. State.
  • the single-port bidirectional power supply solution proposed by the embodiment of the present invention can implement power supply to the external device and the external power source to the terminal through a single port.
  • the two branches are controlled by detecting the current on the positive and negative loops and blocking the reverse current, and assisting the logic control circuit and the overvoltage protection circuit. Therefore, the input or output of the power supply can be realized through a single USB port, and the input and output have different current limiting.
  • the external device type power supply device, power receiving device, or floating state
  • the system processor determine whether the external device is external.
  • Power supply (the input and output of the power supply are all completed through a single port, and has over-voltage and over-current protection functions).
  • the identification circuit also prevents the user from accidentally inserting an external device that does not conform to the specification to prevent damage to the terminal and external devices. Protection function.

Abstract

本发明公开了一种基于单端口实现双向供电的装置及方法,所述装置包括:检测模块、系统处理器、判决模块、电源输入模块、电源输出模块和电源模块;其中,检测模块检测连接在端口上的外部设备的设备类型和/或端口处的双向电流信息;系统处理器根据检测模块的检测结果,确定所述外部设备状态信息;判决模块根据检测模块的检测结果、和/或电源模块的状态、和/或系统处理器确定的外部设备状态信息,判决使能电源输入模块或电源输出模块。通过本发明,基于一个端口,即可以实现由接在该端口上的外部设备对本装置供电,也可以实现本装置对接在该端口上的外部设备供电,从而节省了成本,提高了产品便携性,增加了用户体验。

Description

一种基于单端口实现双向供电的装置及方法 技术领域
本发明涉及电路设计领域, 尤其涉及了一种基于单端口实现双向供电 的装置及方法。 背景技术
在智能终端普及的今天, 终端均配备大容量电池, 一方面要求该终端 有很长的续航时间, 而另一方面要求该终端在某些时候能够对外输出电流 给与其相连的设备供电。
一般而言, 有三种方法能够在实现此功能, 其中, 第一种方法是, 使 用两个端口来设计相应电路。 一个端口是外部给终端供电的端口, 另一个 端口是终端为接在该端口上的设备供电的端口; 第二种方法是, 用户通过 使用不同的特殊设计的带有区分的数据线缆, 以实现向终端供电或者是从 终端输出电流; 第三种方法是, 仅使用一种端口, 在终端上设置一个开关, 当开关在供电档上的时候, 终端只接受外部对终端的输入电流, 当开关接 在输出档上的时候, 终端只能向外部设备供电。
但是, 以上提供的三种方法均存在不利因素, 其中, 第一种方法中, 由于终端设计采用了两个端口, 从而会增加终端成本, 且不利于终端的小 型化, 便携性较差; 第二种方法需要人为判断使用哪种数据线缆, 如果在 充电或对外供电的场景下误用错误的数据线缆, 将会损坏设备, 增加材料 成本, 并且, 由于对应不同的数据线缆, 便携性较差; 第三种方法同样需 要人为区分充电或对外供电的场景, 进而将开关置于相应的位置, 如果开 关位置选择错误, 同样判断会损坏设备, 增加材料成本, 影响用户体验。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种基于单端口实现双 向供电的装置及方法, 能够节省成本, 提高产品便携性及用户体验。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
一种基于单端口实现双向供电的装置, 包括: 检测模块、 系统处理器、 判决模块、 电源输入模块、 电源输出模块和电源模块; 其中,
所述检测模块, 配置为检测连接在端口上的外部设备的设备类型和 /或 所述端口处的双向电流信息;
所述系统处理器, 配置为根据所述检测模块的检测结果, 确定所述外 部设备状态信息;
所述判决模块, 配置为根据所述检测模块的检测结果、 和 /或所述电源 模块的状态、 和 /或所述系统处理器确定的所述外部设备状态信息, 判决使 能所述电源输入模块或所述电源输出模块, 并根据判决结果执行相应的操 作;
所述电源输入模块, 配置为在使能状态下将所述端口上的电源输入所 述电源模块;
所述电源输出模块, 配置为在使能状态下将所述电源模块的电源输出 到所述端口;
所述电源模块, 配置为为所述装置提供优选供电电源。
所述检测模块包括: 外部设备判决子模块、 检流电阻和双向电流检测 子模块; 其中,
所述外部设备判决子模块, 配置为检测所述端口上是否接入外部设备, 以及在所述端口上接入外部设备时, 进一步检测接入所述端口的外部设备 类型;
所述双向电流检测子模块, 配置为检测所述检流电阻上的电流流向及 大小, 所述检流电阻连接于所述端口和所述系统处理器之间。
设定从所述端口输入到所述装置方向的电流为正, 所述系统处理器配 置为:
确定所述检流电阻上的电流绝对值为零时, 判定所述端口上无外部设 备;
确定所述检流电阻上的电流绝对值不为零且方向为正时, 判定当前由 外部设备给所述装置供电;
确定所述检流电阻上的电流绝对值不为零且方向为负时, 判定当前由 所述装置给外部设备供电。
所述判决模块配置为:
确定所述装置未使用所述电源模块供电或者所述系统处理器的信号为 低电平时, 打开所述电源输入模块, 关闭所述电源输出模块;
确定所述装置使用所述电源模块供电, 且所述检测模块的信号为低电 平、 所述系统处理器的信号为高电平时, 判定外部设备刚刚插入所述端口, 待充电, 打开所述电源输出模块, 关闭所述电源输入模块;
确定所述装置使用所述电源模块供电, 且所述检测模块的信号为高电 平、 所述系统处理器的信号为高电平时, 判定外部设备正在进行充电, 保 持所述电源输出模块打开、 所述电源输入模块关闭。
所述电源输入模块包括: 第一过压保护子模块、 第一反向阻断子模块、 第一限流子模块和第一控制逻辑子模块; 所述电源输入模块的输入电流依 次经过所述第一过压保护子模块、 所述第一反向阻断子模块和所述第一限 流子模块后输出;
所述第一过压保护子模块, 配置为进行过压保护, 防止所述电源输入 模块输入电压过高;
所述第一反向阻断子模块, 配置为进行反向阻断, 防止所述电源输入 模块输出端的电流倒灌至输入端;
所述第一限流子模块, 配置为限制通路的电流;
所述第一控制逻辑子模块, 配置为为所述第一过压保护子模块、 所述 第一反向阻断子模块、 所述第一限流子模块提供控制逻辑。
所述电源输出模块包括: 第二反向阻断子模块、 第二限流子模块、 第 二过压保护子模块和第二控制逻辑子模块; 所述电源输出模块的输入电流 依次经过所述第二反向阻断子模块、 所述第二限流子模块、 所述第二过压 保护子模块后输出;
所述第二反向阻断子模块, 配置为进行反向阻断, 防止所述电源输出 模块输出端的电流倒灌至输入端;
所述第二限流子模块, 配置为限制通路的电流;
所述第二过压保护子模块, 配置为进行过压保护, 防止所述电源输出 模块输出电压过高;
所述第二控制逻辑子模块, 配置为为所述第二反向阻断子模块、 所述 第二限流子模块、 所述第二过压保护子模块提供控制逻辑。
所述装置还包括显示模块;
所述显示模块, 配置为根据所述系统处理器的控制, 显示当前供电状 态。
所述装置设置于终端上。
一种基于单端口实现双向供电的方法, 包括:
检测连接在端口上的外部设备的设备类型和 /或所述端口处的双向电流 信息;
根据检测结果, 确定所述外部设备状态信息;
根据所述检测结果、 和 /或优选供电电源的状态、 和 /或确定的所述外部 设备状态信息, 判决使能电源输入功能或电源输出功能, 并根据判决结果 执行相应的操作。
所述方法还包括:
显示当前供电状态。
本发明实施例所述的基于单端口实现双向供电的装置及方法, 该装置 包括: 检测模块、 系统处理器、 判决模块、 电源输入模块、 电源输出模块 和电源模块; 其中, 检测模块, 配置为检测连接在端口上的外部设备的设 备类型和 /或端口处的双向电流信息; 系统处理器, 配置为根据检测模块的 检测结果, 确定所述外部设备状态信息; 判决模块, 配置为根据检测模块 的检测结果、 和 /或电源模块的状态、 和 /或系统处理器确定的外部设备状态 信息, 判决使能电源输入模块或电源输出模块, 并根据判决结果执行相应 的操作。 通过本发明实施例所述的方案, 基于一个端口, 即可以实现由接 在该端口上的外部设备对本装置供电, 也可以实现本装置对接在该端口上 的外部设备供电。 由于本发明实施例仅涉及一个端口, 因此, 相比于输入 输出对应不同端口, 节省了成本, 提高了产品便携性, 增加了用户体验, 并且, 本发明实施例也不需要输入输出对应不同的数据线缆或开关位置, 从而能够进一步节省成本, 提高产品便携性。 附图说明
图 1为本发明实施例一种基于单端口实现双向供电的装置结构示意图; 图 2为本发明实施例一种检测模块的结构示意图;
图 3为本发明实施例一种电源输入模块的结构示意图;
图 4为本发明实施例一种电源输出模块的结构示意图;
图 5 为本发明实施例另一种基于单端口实现双向供电的装置结构示意 图;
图 6为本发明实施例一种基于单端口实现双向供电的方法流程示意图; 图 7为本发明实施例一中判决模块的功能示意图; 图 8为本发明实施例一中判决模块的判决流程示意图;
图 9为本发明实施例二中检测模块的结构示意图;
图 10为本发明实施例二中系统处理器的处理流程示意图。 具体实施方式
在本发明实施例中, 基于单端口实现双向供电的装置包括: 检测模块、 系统处理器、 判决模块、 电源输入模块、 电源输出模块和电源模块; 其中, 检测模块, 配置为检测连接在端口上的外部设备的设备类型和 /或端口处的 双向电流信息; 系统处理器, 配置为根据检测模块的检测结果, 确定所述 外部设备状态信息; 判决模块, 配置为根据检测模块的检测结果、 和 /或电 源模块的状态、 和 /或系统处理器确定的外部设备状态信息, 判决使能电源 输入模块或电源输出模块, 并根据判决结果执行相应的操作。
本发明实施例提出了一种基于单端口实现双向供电的装置, 如图 1 所 示, 该装置包括: 检测模块 11、 系统处理器 12、 判决模块 13、 电源输入模 块 14、 电源输出模块 15和电源模块 16; 其中,
检测模块 11 , 配置为检测连接在端口上的外部设备的设备类型和 /或端 口处的双向电流信息;
系统处理器 12, 配置为根据检测模块 11的检测结果, 确定所述外部设 备状态信息;
判决模块 13, 配置为根据检测模块 11的检测结果、 和 /或电源模块 16 的状态、和 /或系统处理器 12确定的外部设备状态信息,判决使能电源输入 模块 14或电源输出模块 15, 并根据判决结果执行相应的操作,使得输入通 路、 输出通路中的一条支路打开;
电源输入模块 14, 配置为在使能状态下将端口上的电源输入电源模块
16;
电源输出模块 15,配置为在使能状态下将电源模块 16的电源输出到端 口;
电源模块 16, 配置为为该装置提供优选供电电源。
需要说明的是, 优选供电电源可以是终端内部的大容量电池, 也可以 是来源 AC/DC转换器的输出电压, 但不限于以上两种情况。
需要说明的是, 本发明实施例中所述的端口一般为 USB端口。
可选地,如图 2所示,检测模块 11具体包括:外部设备判决子模块 111、 检流电阻 112和双向电流检测子模块 113; 其中,
外部设备判决子模块 111 , 配置为检测端口上是否接入外部设备, 以及 在端口上接入外部设备时 , 进一步检测接入端口的外部设备类型;
双向电流检测子模块 113 ,配置为检测检流电阻 112上的电流流向及大 小, 检流电阻 112连接于端口和系统处理器之间。
可选地, 设定从端口输入到装置方向的电流为正, 所述系统处理器 12 具体配置为:
在确定检流电阻 112上的电流绝对值为零时, 判定端口上无外部设备; 在确定检流电阻 112上的电流绝对值不为零且方向为正时, 判定当前 由外部设备给该装置供电;
在确定检流电阻 112上的电流绝对值不为零且方向为负时, 判定当前 由该装置给外部设备供电。
可选地, 判决模块 13具体配置为:
确定该装置未使用所述电源模块 16供电或者系统处理器 12的信号为 低电平时, 打开电源输入模块 14, 关闭电源输出模块 15;
确定该装置使用所述电源模块 16供电, 且检测模块 11的信号为低电 平、 系统处理器 12的信号为高电平时, 判定外部设备刚刚插入端口, 待充 电, 打开电源输出模块 15, 关闭电源输入模块 14;
确定装置使用所述电源模块 16供电, 且检测模块 11的信号为高电平、 系统处理器 12的信号为高电平时, 判定外部设备正在进行充电, 保持电源 输出模块打开 15、 电源输入模块关闭 14。
可选地, 如图 3所示, 所述电源输入模块 14具体包括: 第一过压保护 子模块 141、 第一反向阻断子模块 142、 第一限流子模块 143和第一控制逻 辑子模块 144;电源输入模块的输入电流依次经过第一过压保护子模块 141、 第一反向阻断子模块 142和第一限流子模块 143后输出;
第一过压保护子模块 141 , 配置为进行过压保护, 防止电源输入模块输 入电压过高, 以免损坏次级电路;
第一反向阻断子模块 142, 配置为进行反向阻断, 防止电源输入模块输 出端的电流倒灌至输入端, 以免损坏前级电路;
第一限流子模块 143, 配置为限制通路的电流, 此限流功能可以在后级 电流短路的情况下, 为前级电路提供保护功能;
第一控制逻辑子模块 144, 配置为为第一过压保护子模块 141、 第一反 向阻断子模块 142、 第一限流子模块 142提供控制逻辑。
需要说明的是, 第一控制逻辑子模块 144一般根据系统处理器的控制 为第一过压保护子模块 141、第一反向阻断子模块 142、第一限流子模块 142 提供控制逻辑, 换言之, 判决模块 13判决使能电源输入模块 14或电源输 出模块 15, 并根据判决结果执行相应的操作为, 通过系统处理器执行相应 的使能模块、 关闭模块操作。
基于上述描述, 电源输入模块 14具有反向阻断功能, 防止后级优选供 电电源对端口输入的电源的影响, 同时兼有对端口输入的电源进行保护限 流。
可选地, 如图 4所示, 电源输出模块 15具体包括: 第二反向阻断子模 块 151、 第二限流子模块 152、 第二过压保护子模块 153和第二控制逻辑子 模块 154; 电源输出模块的输入电流依次经过第二反向阻断子模块 151、 第 二限流子模块 152、 第二过压保护子模块 153后输出;
第二反向阻断子模块 151 , 配置为进行反向阻断, 防止电源输出模块输 出端的电流倒灌至输入端;
第二限流子模块 152, 配置为限制通路的电流;
第二过压保护子模块 153 , 配置为进行过压保护, 防止电源输出模块输 出电压过高;
第二控制逻辑子模块 154, 配置为为第二反向阻断子模块 151、 第二限 流子模块 152、 第二过压保护子模块 153提供控制逻辑。
基于上述描述, 电源输出模块 15同样具有反向阻断功能, 防止前级的 端口输入的电源对后级优选供电电源的影响, 电源输出模块 15与电源输入 模块 14主要的区别在过压保护的位置不同, 这是因为, 电源输出模块 15 的功能是将装置内部的电源供给外部设备, 因为需要在输出端增加过压保 护功能。
可选地, 如图 5所示, 该装置还包括显示模块 17;
显示模块 17, 配置为根据系统处理器 12的控制, 显示当前供电状态。 例如, 显示装置是电源输入状态还是电源输出状态。
可选地, 该装置设置于终端上。
本发明实施例还相应地提出了一种基于单端口实现双向供电的方法, 如图 6所示, 该方法包括:
步驟 601 : 检测连接在端口上的外部设备的设备类型和 /或端口处的双 向电流信息;
步驟 602: 根据检测结果, 确定所述外部设备状态信息;
步驟 603: 根据所述检测结果、 和 /或优选供电电源的状态、 和 /或确定 的所述外部设备状态信息, 判决使能电源输入功能或电源输出功能, 并根 据判决结果执行相应的操作。 可选地, 该方法还包括: 显示当前供电状态。
下面通过具体实施例对本发明作进一步详细说明。
实施例一
图 7为本发明实施例一中判决模块的功能示意图, 如图 7所示, 该判 决模块 13根据优先电源 OK信号 71 (来自电源模块)、 检测信号 72 (来自 检测模块) 以及系统处理器控制信号 73 (来自系统处理器) 来判决使能电 源输入模块或电源输出模块, 即: 来判决输出电源输入模块的使能信号 74 或电源输出模块的使能信号 75。
图 8为本发明实施例一中判决模块的判决流程示意图, 如图 8所示, 该流程包括:
步驟 801 : 判断终端是否在使用优选供电电源工作。 本实施例中, 终端 使用优选供电电源工作。
这里, 若终端没有使用优选供电电源工作, 则打开电源输入模块, 关 闭电源输出模块。
步驟 802: 判断检测信号是否为低电平。 本实施例中, 检测信号为低电 平,且系统处理器的控制信号为高电平,此时,确定外部设备刚刚插入 USB 端口, 待充电, 打开电源输出模块, 关闭电源输入模块。
步驟 803: 开始充电后, 检测信号变为高电平。
步驟 804:判断检测信号为高电平,且系统处理器的控制信号为高电平, 则确定外部设备正在进行充电, 相应的显示模块指示 "外部设备正在进行 充电" 的信息给用户。
实施例二
图 9为本发明实施例二中检测模块的结构示意图, 图 9中, 电子开关 91、 外设判决子模块 111配置为检测接入到 USB端口上的外部设备类型, 即判断连接 USB端口上的设备是电源类设备、 受电外部设备、 无外部设备 的情况, 并将检测到的信息传递给判决模块以及系统处理器 12; 其次, 双 向电流检测子模块 113监测 USB端口上检流电阻 112 (也可称为 VBUS电 源线)上的双向电流大小及方向。 系统处理器 12能根据 VBUS上到的电流 值以及电流方向判断当前连接在 USB端口上的外部设备状态。 即有, 外部 设备是否正在充电中, 外部设备是否已经充电饱和, 外部设备是否已经移 除, 外部设备为外部电源正在为终端充电。 假定从 USB端口输入到终端方 向的电流为正, 反之为负。 系统处理器 12根据已了解到外部设备信息, 利 用通用的 I/O端口传递控制信号到判决模块。
本发明实施例二中系统处理器的处理流程如附图 10所示, 其处理流程 包括:
步驟 1001: 系统处理器获取检流电阻上的电流信息。
步驟 1002: 系统处理器判断检流电阻上的电流是否为零, 若为零, 则 表明 USB端口上无外部设备, 若不为零, 则进入步驟 1003。
步驟 1003: 系统处理器判断 VBUS上的电流的正负情况。 若为负值, 则表明终端正在给外部设备供电, 此时进入步驟 1004; 若 VBUS上的电流 为正, 则表明外部电源正在为终端供电, 此时进入步驟 1005。
步驟 1004: 系统处理器不断监视 VBUS上的电流值, 直到电流值小于 最低阈值, 此时表明对外部设备的充电即将充满, 系统处理器向判决模块 传递低电平的控制信号; 电流值大于最低阈值则表明终端正在对外部设备 进行充电。
步驟 1005: 系统处理器不断监视 VBUS上的电流值, 当电流值大于最 高阈值时, 系统处理器发出电流过大预警, 提醒终端降低自身功耗; 反之 终端处于正常工作之中。
显示模块根据以上系统处理器检测到的各种状态, 通过显示屏或者指 示灯(但不限于以上两种显示方式)指示 USB端口上的外部设备的当前状 态。
本发明实施例提出的单端口双向供电方案, 可以通过单端口实现终端 对外部设备、 外部电源对终端的供电。 通过对正反两条回路上的电流进行 检测以及对其反向电流阻断, 并辅助以逻辑控制电路和过压保护电路, 对 两条支路进行相关控制。从而通过单 USB端口能够实现电源的输入或输出, 且输入、 输出具有不同的限流。 具体地, 通过一套简单的外部设备识别电 路, 自动判断外部设备类型(供电设备、 受电设备、 或者是处于悬浮状态), 并根据外部设备类型, 通过系统处理器判断以确定是否对外部设备进行供 电, (供电的输入输出均是通过单一端口来完成的, 并具有过压、 过流保护 功能), 识别电路还具有用户误插入不符合规范的外部设备后, 防止对终端 和外部设备损坏的保护功能。
采用本发明实施例所述的方案, 具有以下显著的特点:
1 )通过对电路的优化设计, 减少了输入输出带来不同端口, 增加了用 户体验 。
2 )采用硬件去自动判别接在端口上外部设备的状态,无须处理器干预, 无须其它复杂的协议。
3 )不需要额外设置开关、 数据线缆等, 减少了器件成本, 使得产品小 型化, 提高用户的携带性。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种基于单端口实现双向供电的装置, 所述装置包括: 检测模块、 系统处理器、 判决模块、 电源输入模块、 电源输出模块和电源模块; 其中, 所述检测模块, 配置为检测连接在端口上的外部设备的设备类型和 /或 所述端口处的双向电流信息;
所述系统处理器, 配置为根据所述检测模块的检测结果, 确定所述外 部设备状态信息;
所述判决模块, 配置为根据所述检测模块的检测结果、 和 /或所述电源 模块的状态、 和 /或所述系统处理器确定的所述外部设备状态信息, 判决使 能所述电源输入模块或所述电源输出模块, 并根据判决结果执行相应的操 作;
所述电源输入模块, 配置为在使能状态下将所述端口上的电源输入所 述电源模块;
所述电源输出模块, 配置为在使能状态下将所述电源模块的电源输出 到所述端口;
所述电源模块, 配置为为所述装置提供优选供电电源。
2、 根据权利要求 1所述的装置, 其中, 所述检测模块包括: 外部设备 判决子模块、 检流电阻和双向电流检测子模块; 其中,
所述外部设备判决子模块, 配置为检测所述端口上是否接入外部设备, 以及在所述端口上接入外部设备时, 进一步检测接入所述端口的外部设备 类型;
所述双向电流检测子模块, 配置为检测所述检流电阻上的电流流向及 大小, 所述检流电阻连接于所述端口和所述系统处理器之间。
3、 根据权利要求 2所述的装置, 其中, 设定从所述端口输入到所述装 置方向的电流为正, 所述系统处理器配置为: 确定所述检流电阻上的电流绝对值为零时, 判定所述端口上无外部设 备;
确定所述检流电阻上的电流绝对值不为零且方向为正时, 判定当前由 外部设备给所述装置供电;
确定所述检流电阻上的电流绝对值不为零且方向为负时, 判定当前由 所述装置给外部设备供电。
4、 根据权利要求 1所述的装置, 其中, 所述判决模块配置为: 确定所述装置未使用所述电源模块供电或者所述系统处理器的信号为 低电平时, 打开所述电源输入模块, 关闭所述电源输出模块;
确定所述装置使用所述电源模块供电, 且所述检测模块的信号为低电 平、 所述系统处理器的信号为高电平时, 判定外部设备刚刚插入所述端口, 待充电, 打开所述电源输出模块, 关闭所述电源输入模块;
确定所述装置使用所述电源模块供电, 且所述检测模块的信号为高电 平、 所述系统处理器的信号为高电平时, 判定外部设备正在进行充电, 保 持所述电源输出模块打开、 所述电源输入模块关闭。
5、 根据权利要求 1所述的装置, 其中, 所述电源输入模块包括: 第一 过压保护子模块、 第一反向阻断子模块、 第一限流子模块和第一控制逻辑 子模块; 所述电源输入模块的输入电流依次经过所述第一过压保护子模块、 所述第一反向阻断子模块和所述第一限流子模块后输出;
所述第一过压保护子模块, 配置为进行过压保护, 防止所述电源输入 模块输入电压过高;
所述第一反向阻断子模块, 配置为进行反向阻断, 防止所述电源输入 模块输出端的电流倒灌至输入端;
所述第一限流子模块, 配置为限制通路的电流;
所述第一控制逻辑子模块, 配置为为所述第一过压保护子模块、 所述 第一反向阻断子模块、 所述第一限流子模块提供控制逻辑。
6、 根据权利要求 1所述的装置, 其中, 所述电源输出模块包括: 第二 反向阻断子模块、 第二限流子模块、 第二过压保护子模块和第二控制逻辑 子模块; 所述电源输出模块的输入电流依次经过所述第二反向阻断子模块、 所述第二限流子模块、 所述第二过压保护子模块后输出;
所述第二反向阻断子模块, 配置为进行反向阻断, 防止所述电源输出 模块输出端的电流倒灌至输入端;
所述第二限流子模块, 配置为限制通路的电流;
所述第二过压保护子模块, 配置为进行过压保护, 防止电源输出模块 输出电压过高;
所述第二控制逻辑子模块, 配置为为所述第二反向阻断子模块、 所述 第二限流子模块、 所述第二过压保护子模块提供控制逻辑。
7、 根据权利要求 1至 6任一项所述的装置, 其中, 所述装置还包括显 示模块;
所述显示模块, 配置为根据所述系统处理器的控制, 显示当前供电状 态。
8、 根据权利要求 1至 6任一项所述的装置, 其中, 所述装置设置于终 端上。
9、 一种基于单端口实现双向供电的方法, 所述方法包括:
检测连接在端口上的外部设备的设备类型和 /或所述端口处的双向电流 信息;
根据检测结果, 确定所述外部设备状态信息;
根据所述检测结果、 和 /或优选供电电源的状态、 和 /或确定的所述外部 设备状态信息, 判决使能电源输入功能或电源输出功能, 并根据判决结果 执行相应的操作。
10、 根据权利要求 9所述的方法, 其中, 所述方法还包括: 显示当前供电状态。
PCT/CN2013/082944 2013-05-23 2013-09-04 一种基于单端口实现双向供电的装置及方法 WO2014187045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310196211.2A CN104182020A (zh) 2013-05-23 2013-05-23 一种基于单端口实现双向供电的装置及方法
CN201310196211.2 2013-05-23

Publications (1)

Publication Number Publication Date
WO2014187045A1 true WO2014187045A1 (zh) 2014-11-27

Family

ID=51932756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082944 WO2014187045A1 (zh) 2013-05-23 2013-09-04 一种基于单端口实现双向供电的装置及方法

Country Status (2)

Country Link
CN (1) CN104182020A (zh)
WO (1) WO2014187045A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107517107A (zh) * 2017-07-06 2017-12-26 深圳市顺讯电子有限公司 一种升降压双隔离以太网双向供电系统及供电方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025194A (zh) * 2019-12-24 2020-04-17 北京数衍科技有限公司 接口线缆连接检测装置及接口模块
CN113690967A (zh) * 2021-08-12 2021-11-23 惠州Tcl云创科技有限公司 一种双向充电电路和装置
CN114624632B (zh) * 2022-05-17 2022-09-30 陕西天视致远航空技术有限公司 Usb端口插拔检测系统、方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282897A (zh) * 1997-05-27 2001-02-07 陈树锦 智能型电脑进相电源管理系统
CN2909392Y (zh) * 2005-11-23 2007-06-06 天瑞企业股份有限公司 具有移动电源模块的储存装置
CN202795262U (zh) * 2012-09-18 2013-03-13 上海华勤通讯技术有限公司 鼠标
CN202930931U (zh) * 2012-11-02 2013-05-08 深圳Tcl新技术有限公司 充电显示保护电路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158176B2 (ja) * 2005-02-28 2008-10-01 三菱電機株式会社 電気負荷の電流制御装置
US7363520B1 (en) * 2005-03-29 2008-04-22 Emc Corporation Techniques for providing power to a set of powerable devices
CN202798027U (zh) * 2012-05-17 2013-03-13 兰家林 一种单usb接口的双向供电电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282897A (zh) * 1997-05-27 2001-02-07 陈树锦 智能型电脑进相电源管理系统
CN2909392Y (zh) * 2005-11-23 2007-06-06 天瑞企业股份有限公司 具有移动电源模块的储存装置
CN202795262U (zh) * 2012-09-18 2013-03-13 上海华勤通讯技术有限公司 鼠标
CN202930931U (zh) * 2012-11-02 2013-05-08 深圳Tcl新技术有限公司 充电显示保护电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107517107A (zh) * 2017-07-06 2017-12-26 深圳市顺讯电子有限公司 一种升降压双隔离以太网双向供电系统及供电方法

Also Published As

Publication number Publication date
CN104182020A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
US9450441B2 (en) Mobile terminal, and device and method for charging same
JP6198258B2 (ja) 電力供給端末、ならびに充電制御方法および装置
CN104756350B (zh) 高电压专用充电端口
TWI682605B (zh) 用於電子模組之過電流保護器件及過電流保護方法
TWI491900B (zh) 充電埠偵測控制方法以及充電埠偵測控制裝置
WO2015197032A1 (zh) 一种兼具快速充电和usb充电的充电方法及装置
EP3086433A1 (en) Charging method, alternating current adaptor, charging management device and terminal
US20160099608A1 (en) Power adapter with built-in battery and power storage and supply method thereof
JP5301008B1 (ja) 電子機器、充電制御装置および充電制御方法
US20100060233A1 (en) Charger with USB detection
WO2014022969A1 (zh) 用于供电的装置、方法和用户设备
WO2014187045A1 (zh) 一种基于单端口实现双向供电的装置及方法
WO2012146024A1 (zh) 一种具有usb接口的电子设备及其usb通信启动方法
TW201504811A (zh) 電源適配器及電子裝置
TWI628894B (zh) 充電器電路和功率系統
WO2014187415A1 (zh) 一种充电电缆及充电系统
CN107643998A (zh) 基于智能模块实现otg和充电双功能的系统
CN104951416A (zh) 通用串行总线集线器、其控制模块以及其控制方法
WO2019062787A1 (zh) 充电控制方法、相关设备及计算机存储介质
TW201312896A (zh) 備用電池充電電路
TWI684871B (zh) 多埠usb快充電路
CN104283289B (zh) 一种蓝牙充电装置及充电控制方法
TW201814543A (zh) 一種usb充電與通訊的裝置與方法
CN202997560U (zh) 一种全自动快速反接保护充电器
KR100700532B1 (ko) 범용 직렬 버스 포트의 연결 장치 인식 방법과 범용 직렬버스 어댑터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885249

Country of ref document: EP

Kind code of ref document: A1