WO2014186913A1 - PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy, - Google Patents

PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy, Download PDF

Info

Publication number
WO2014186913A1
WO2014186913A1 PCT/CL2013/000031 CL2013000031W WO2014186913A1 WO 2014186913 A1 WO2014186913 A1 WO 2014186913A1 CL 2013000031 W CL2013000031 W CL 2013000031W WO 2014186913 A1 WO2014186913 A1 WO 2014186913A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
oleoresin
extraction
process according
preparation process
Prior art date
Application number
PCT/CL2013/000031
Other languages
English (en)
French (fr)
Inventor
Miguel BRONFMAN
Francisca BRONFMAN
Claudio PINTO
Claudia PISSANI
María José PAREDES MARTÍNEZ
Original Assignee
Pontificia Universidad Cátolica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Cátolica De Chile filed Critical Pontificia Universidad Cátolica De Chile
Priority to PCT/CL2013/000031 priority Critical patent/WO2014186913A1/es
Publication of WO2014186913A1 publication Critical patent/WO2014186913A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/04Rhodophycota or rhodophyta (red algae), e.g. Porphyra
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/60Edible seaweed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine

Definitions

  • the present invention relates to an efficient and simple preparation process for obtaining an oleoresin from red algae that maintains a high capacity to induce the transcriptional activity of the PPARy nuclear receptor (peroxisome proliferator activated receptor range).
  • PPARy nuclear receptor peroxisome proliferator activated receptor range
  • Our invention is related to a process for preparing an oleoresin from a red algae, preferably Gracilaria chiiensis which is one of the species of the genus Gracilariae.
  • a red algae preferably Gracilaria chiiensis which is one of the species of the genus Gracilariae.
  • the preparation and extraction of compounds from red algae, such as Gracilaria chiiensis, in particular the extraction in the aqueous phase have been widely developed to obtain hydrocolloids such as agar-agar, alginate and carrageenan, used in the field of food and cosmetics.
  • the extraction of oil phases is poorly described and they have been developed only on a small scale in research related to the ecology of the algae and its defense mechanisms.
  • Natural marine products especially those derived from secondary metabolites, have attracted great scientific interest for the potential presence in them of new chemicals or new drugs especially useful in the treatment of human diseases and in the control of pests in agriculture (Liebezeit , 2005., Mayer and Hamann., 2005).
  • activities detected are antiviral, antibiotic, coagulation and cell migration activity, cell growth, antifungal and insecticidal activity, antithrombotic and anticoagulant actions, anti-inflammatory and antilipidemic, hypoglycemic and hypotensive effects (Smith, 2004).
  • the advantages of the use of natural products in the industry are that, together with their active principles, there may be constituents of synergistic action, which enhance their action over the isolated active principle or its synthetic similar.
  • PEF As oxidized derivatives of polyunsaturated fatty acids
  • many of these molecules are similar to oxidized products of polyunsaturated fatty acids in vertebrates, such as some eicosanoids from reactions catalyzed by enzymes from the lipoxygenase family. In mammals a significant amount of these products would correspond to endogenous ligands of the PPARy nuclear receptor.
  • This transcription factor participates in lipid homeostasis and is the target of thiazolenediones (TZDs), drugs that are PPARy ligands and modulate insulin resistance, a pathology that precedes diabetes.
  • TZDs thiazolenediones
  • TZDs have neuro-protective, neuro-regenerative, and anti-inflammatory effects.
  • side effects such as an increased risk of coronary disease, peripheral edema and macular edema (Singh, et al, 2007; Nikolaidis and Levine, 2004 and endall and Wooltorton, 2006). This has led to the withdrawal of some of these drugs from the market, those that are still being marketed being questioned.
  • an oleoresin produced from algae as a raw material should present a potential as a PPARy nuclear receptor activator, since it would contain in its composition molecules (oxylipins) similar to the endogenous ligands of these receptors in mammals Model that had never been described in the prior art state. Due to the side effects of TZDs and the difficulties and costs involved in the synthesis and testing of new molecules with potential activation of PPARy, this patent focused on the process of preparing extracts of natural origin in red seaweed, which They would behave like endogenous activators and are better tolerated by the body.
  • red algae are the most prolific source of both known and new oxilipins and contain, among others, oxilipins from the eicosanoid family, including prostaglandins and leukotrienes, as well as octadecanoids.
  • oxilipins from the eicosanoid family, including prostaglandins and leukotrienes, as well as octadecanoids.
  • algae of the genus Gracilaria, as well as Gracilariopsis are of particular interest, since they contain eicosanoids similar to those found in mammals.
  • the objective of the present invention is to provide an efficient and simple process, which does not use solvent extraction, or high temperature distillation, for the production of an oleoresin while maintaining the activity of PPARy, of a natural raw material derived from algae red, preferably Gracilaria chilensis, suitable for human oral consumption and pharmaceutical quality.
  • Oleoresin is obtained from a preparation process comprising five stages of:
  • the extraction of the seaweed can be manual or automatic, it is recommended that the live and whole seaweed be extracted, taken off directly from the marine substrate with the aim of preserving cellular integrity, avoiding inducing an early metabolic response against damage.
  • the extraction and manual selection of the red seaweed of preference Gracilaria chilensis is recommended, without restricting it to that particular red seaweed, of a size equal to or greater than 60 cm long, thus preserving the growing algae.
  • a buffer solution preferably a phosphate buffered saline solution (PBS) consisting of NaCl (137 mmol / L), KC1 (2.7 mmol / L), Na2HP04 ⁇ 2 H20 (10 mmol / L), KH2P04 (2.0 mmol / L) at pH 7.4 and at 4 ° C, without restricting other types of buffer solutions.
  • PBS phosphate buffered saline solution
  • This washing is carried out by passing the algae through containers with PBS, preferably three, then dried in a vegetable centrifuge by manual or automatic centrifugation (approx. 500 rpm). Finally the algae is stored in vacuum bags and refrigerated at -20 ° C.
  • This storage allows to accumulate the raw material when working with algae over-stock, avoiding the rapid degradation that occurs with this type of algae when exposed to room temperature outside its natural environment, as presented in Figure 7/10. Additionally, it allows to take advantage of the seasonal abundance that the extraction of this product can present, as well as to replace the lack of processing capacity that may occur at an industrial or semi-industrial level.
  • B.2 Defrosting the algae: The algae is thawed at 4 ° C to generate moderate stress on the structure of the algae but not in its cells and again washed with PBS (pH 7.4 and 4 ° C), for later dry it like the procedure mentioned in Bl.
  • the defrosted seaweed has characteristics of fibers or threads which prevent its processing in conventional rotor cutting machines because these are entangled in the blades of each one, blocking them and increasing the temperature of their rotors. For this reason and in the induction of the damage on the algae, the following protocol described below was generated:
  • a quantity of dried seaweed is taken and chopped manually or automatically with stainless steel blades of half blow at room temperature (20-24 ° C), in small pieces between 1 and 3 mm. Being defrosted, the seaweed behaves like a semi-solid improving its presentation to be chopped. This process constitutes a reaction in a moist environment of the algae against the damage exposed to the air. This chop is very important to maintain PPARy activity, since it is at this critical stage where there is a greater loss of activity, as shown in Figure 5/10.
  • the algae is frozen at -20 ° C briefly, for subsequent lyophilization.
  • Another shorter alternative is to freeze at - 80 ° C, which saves more time. Since this frozen is not vacuum, it is optional but advisable to proceed to the lyophilization process immediately once the algae is frozen to avoid any oxidation deterioration.
  • This freezing generates a semi-finished raw material for the drying process and delivers a second temporary lapse where raw material can be stored, without damaging its metabolic characteristics.
  • the previously frozen seaweed is lyophilized for a range of 12 to 48 hours, preferably 24 hours; at a temperature between -20 ° C and -90 ° C, preferably -50 ° C; at a pressure range of 0.001 mbar to 0.03 mbar, preferably a pressure of 0.014 mbar.
  • a dehydrated product is obtained, which is stored in vacuum bags at -20 ° C. This freezing allows generating a third temporary lapse where the raw material can be stored prior to its final process and with the minimum oxidative damage of its active components.
  • a container for the extraction process a container is used, as an example a 500 ml glass flask of the erlenmayer type with a ground lid, to which a quantity of finely ground algae is added and added, in a ratio range 1/2 at 1/10 weight finely ground algae / volume of dichloromethane in a preferred ratio of 1 is 3.6 weight / volume, in the case of this example 180 ml of CH 2 CL 2 (dichloromethane).
  • Each container was brought to an atmosphere saturated with nitrogen gas and covered by sealing them. They were immediately incubated with horizontal agitation in a range of 45 ° C to 25 ° C, preferably 34 ° C; for a range of 2 hours to 10 minutes, preferably 30 minutes.
  • the mixture is decanted for 10 minutes and filtered in vacuo with a sintered glass filter and whatman paper No. 1.
  • the liquid phase is received in another container.
  • the solid phase is resuspended in the solvent by repeating the previous extraction procedure for a second time, although not only limited to only two oil extractions.
  • This product is transferred to a smaller container to be dried under nitrogen gas until it reaches constant weight and then resuspended in the minimum possible volume (this will depend on the amount of dried product) of cyclohexane being quickly frozen at -80 ° C to be lyophilized for 24 hrs (in order to completely eliminate cyclohexane in combination with dichloromethane), finally obtaining a solvent-free oleoresin as the final product.
  • This figure presents an outline of the preparation procedure presented in this patent and the critical stages in which cold storage occurs in order to store the final product or semi-processed raw material.
  • the following figure presents a scheme of the plasmids used.
  • the first contains the PPAR promoter region (3xPPRE) attached to the Luciferase reporter and the second corresponds to a PPARy overexpression plasmid that is linked to a strong promoter such as pCMV.
  • This figure presents a graph of PPARy transcriptional activity in CHO cells co-transfected with PPRE-tk-Luc and pCMV -PPARy and treated with AF (fresh algae) and ATPBS (ground algae washed in PBS).
  • control bar (DMSO 0.02%).
  • Ic AF white bar and ATPBS black bar at a concentration of 40 j ⁇ g / ml] each.
  • This figure presents a graph of PPARy transcriptional activity in PC12-yl4 cells transfected with PPRE-tk-Luc and treated with ATPBS (ground algae washed in PBS) and AP Alga Picada).
  • Kc AF white bars and ATPBS black bars and a concentration of 40
  • Kd bars with the same extract treatments at a concentration of 100
  • L presents the axis of the ordinates, which corresponds to the average ⁇ SD of the relative activity (Luciferase / p-gal) expressed as activation times with respect to the control. The results represent at least three independent experiments.
  • LLb Seaweed processed with ultraturrex (ATPBS)
  • M presents the axis of the ordinates, which correspond to percentages where the LLa bar corresponds to a baseline activation value and the other bars to the percentage differences between them (AF v / s ATPBS and ATPBS v / s AP).
  • This figure shows the different solvents tested in the oleoresin extraction process, in the spray stage with discontinuous solid-liquid extraction of the oleoresin. Subsequently, the transcriptional activity of the different extracts for PPARy was measured, which are expressed numerically as relative activity.
  • This figure presents a graph of transcriptional stability for PPAR and Oleoresin over time.
  • This figure presents the action of a PPARy antagonist on the transcriptional activity induced by Algae extract.
  • the results represent at least three independent experiments.
  • the first graph in Figure 9/10 shows the determination of plasma glucose in LFD (low carbohydrate diet) and HFD (high carbohydrate diet) mice, after treatment with Algae extract.
  • the graph shows on the axis of the abscissa (N) the following:
  • Nb Mice with diet Corn Oil HFD
  • Nc Mice with Corn Oil diet and subsequent treatment with Algae extract 90 [mg / kg]
  • Nd Mice with Corn Oil diet and subsequent treatment with Algae extract 300 [mg / kg]
  • Ne Mice with RZG 5 [mg / kg].
  • the graph shows on the axis of the ordinates ( ⁇ ) shows blood glucose values in mg / dl. The values correspond to an "n" of 10 mice per group. Significant differences in the HFD group were determined regarding their control treated with Corn oil.
  • the second graph in Figure 9/10 shows the determination of plasma insulin in LFD (low carbohydrate diet) and HFD (high carbohydrate diet) mice, after treatment with Algae extract.
  • the graph shows on the axis of the abscissa (O) the following: Oa: Mouse control bar with LFD diet
  • Oc Mice with Corn Oil diet and subsequent treatment with Algae extract 90 [mg / kg]
  • Od Mice with Corn Oil diet and subsequent treatment with Algae extract 300 [mg / kg]
  • Oe Mice with RZG 5 [mg / kg].
  • the graph shows on the axis of the ordinates (P) shows the blood values of
  • Plasma insulin in ng / ml Plasma insulin in ng / ml.
  • mice The values correspond to an "n" of 10 mice per group. Significant differences in the HFD group were determined regarding their control treated with Corn oil.
  • the present figure shows the neuro-recovery effect of oleoresin on the volume of cerebral infarction in a rat model.
  • AA presents the axis of the ordinates where the percentage of cerebral infarction volume is measured.
  • the seaweed is passed to a cold container and portions of seaweed of approximately 100 grams are quickly taken and placed on a chopped surface where they are finely cut with a knife until you see bits between 1 and 3 mm.
  • This procedure is adapted according to the operator's expertise so that it does not take more than 10 minutes total, although the seaweed is always kept in a cold container.
  • the chopped seaweed was deposited in 150 mm diameter petrile plates in an approximate amount of 50 grams. per plate, to be immediately refrigerated at -20 ° C, for approximately 3 hrs. This procedure was repeated for the 10 kg of initially frozen seaweed.
  • the plates corresponding to the 1 kg of seaweed chop were placed in the lyophilizer (according to protocol) for 24 hrs and the dried seaweed was weighed and stored in vacuum bags at -20 ° C (these can be stored for long periods). After processing the total algae, an average amount of 850 g of lyophilized algae from 10 kg of algae was obtained. This corresponds to 8.5% of dry matter obtained from fresh seaweed.
  • To obtain the oleoresin 200 grams of frozen lyophilized seaweed were taken and brought to room for 40 min. After that it was finely ground in a professional coffee grinder until it reached a fine powder (average particle of 1/2 mm). This powder was placed in 500 ml erlenmayer flasks with frosted lid.
  • the total liquid phase contained in the round flask was placed in a steam rotator at 37-39 ° C for approximately 30 min, removing much of the solvent leaving a small amount to be transferred to a smaller and previously weighed round glass flask. (150 ml) which was dried under nitrogen gas, being weighed every half hour until reaching constant weight (approximately 70 to 90 min total). Then the almost solvent-free extract was resuspended in a minimum volume of cyclohexane and was frozen per lhr at -80 ° C, being immediately after lyophilized for a period of 24 hrs. After the lyophilization period, the flask containing oleoresin was weighed again, recording the total and final weight of the extract obtained.
  • PPARy has the ability to activate the transcriptional activity of various genes. This is done by joining a nucleotide consensus sequence in the promoter region of these genes, which is called PPRE (peroxisomal proliferator response element). This element has been incorporated into the promoter region of a reporter plasmid that contains the luciferase gene. With this they performed cell transfections, which allowed us if the incubation of the cells with our algae compound was capable of activating PPARy and therefore joining the PPRE present in the reporter, activating the transcription of the luciferase gene.
  • PPRE peroxisomal proliferator response element
  • This assay contemplates a transfection with a reporter vector that contains the luciferase gene from Photinus puralis under the control of the thymidine kinase promoter and three tandem sequences from the PPRE of the AOX gene (Acyl Co-enzyme Oxidase) rat or PPRE-tk-Luc ( Figure 2).
  • the luminescence emitted by the luciferase protein is determined by reacting with a substrate. This reflects the amount of luciferase protein translated by the cell due to the transciptional induction of the plasmid by PPARy binding.
  • PPARy was also overexpressed by co-transfection of a plasmid containing the PPARy gene together with a strong promoter of cytomegalovirus or pCMV-PPARy ( Figure 2).
  • Figure 2 In cells that stably express PPARy, as is the case of PC 12 clone gamma 14 (PC12-yl4) cells characterized by our laboratory, only a simple transfection with the PPRE-tk-Luc vector is required.
  • the different cell types were transfected with a receptor containing the E.coli ⁇ -galactosidase gene under the strong cytomegalovirus promoter, which is quantified by the reaction of the protein with a substrate. Its activity is used as an internal control of transfection and allows the variation of luciferase values to be corrected by variations in cell transfection efficiency.
  • the plasmid used is described in Figure 2/10. Test Specifications:
  • the tests were performed as follows: the cells were seeded in 24-well culture plates and under complete DMEM medium, incubating until 70% confluence was reached. Co-transfection was performed in culture medium without antibiotic or antifungal, as described below for a well. A solution of 50ul / well of opti-PRO containing O ⁇ g of the PPARy plasmid, O ⁇ g of plasmid PPREx3-tk-Luc, 0.075 ⁇ g of plasmid pCMVp ( ⁇ -gal) and O. ⁇ g of Tk- plasma was prepared. luc.
  • lipofectanin LipofectAMINE 200, GIBCO BRL, USA
  • lipofectAMINE 200 GIBCO BRL, USA
  • both solutions bind and incubate for 20 min.
  • the complete culture medium was replaced with 400 ⁇ DMEM medium with 0.5% SFB, after which 100 ⁇ of the lipofectamine mixture with the plasmids was added and allowed to transfect for a period of 6 hours in the Growing stove. After this period, the cells are washed and then maintained in DMEM medium 2% SFB during the addition and incubation with the different treatments for 16 hours.
  • the culture medium was aspirated and the cells were washed with cold PBS, after which lOOul of luciferase kit lysis solution (Luciferase Assay System El 500, Pomega Corp, USA) was added in each well, repeatedly pipetting to achieve lysis and homogenization of the cells.
  • the Used was transferred to eprendorf tube and centrifuged at 12,000 rpm for 5 min. 20 ⁇ 1 were separated from the supernatant to determine Luciferase and 50 ⁇ to determine ⁇ -galactosidase activity ( ⁇ -galactosidase Enzime Assay System, Pomega Corp, USA).
  • PC12-yl4 cells were used, which over stably express PPARy, so they were only transfected with the PPRE-tk-Luc reporter gene.
  • the cells were seeded in 24-well plates, with 10 x 5 cells / well, in complete medium and left until the next day, reaching 70% confluence. The transfection by well is briefly described.
  • a solution of 50ul / well of opti-PRO containing O ⁇ g of PPREx3-tk-Luc, 0.075 ⁇ g of pCMVp was prepared. Additionally ⁇ of lipofectanin was diluted in 48 ⁇ 1 of opti-PRO leaving it 5 min. Finally, both solutions bind and incubate for 20 min. Before being added to the cells.
  • the complete culture medium was replaced with 400 ⁇ of RPMI medium with 0.5% HS (horse serum), after which 100 ⁇ of the mixture of lipofectamine with the plasmids is added, allowing to incubate 16 hrs. After the transfection, the treatments were initiated, which were performed in RPMI medium with 2% HS. Once the treatments are finished, the determination protocol remains the same as previously seen.
  • HS human serum
  • Co-transfection of CHO cells with plasmid for PPARy and the reporter PPREx3-tkLuc The cells were co-transfected with a plasmid battery to transiently express PPRAy (plasmid vCMV-PPARy) and the reporter gene Luciferase (plasmid PPREx3-tk- Luc). Additionally, the ⁇ -galactosidase plasmid (plasmid pCMVp) was transfected. The tests were carried out as follows: the cells were seeded at a concentration of 100x10 5 cells / well, in 24-well culture plates and under full DMEM medium, incubated for 16 hrs, and reaching 70-80% confluence .
  • Co-transfection was performed in culture medium without antibiotic or antifungal, as described below for a well.
  • a solution of 50ul / well of opti-PRO containing 0 ⁇ g of the PPARy plasmid, 0 ⁇ g of plasmid PPREx3-tk-Luc, 0.075 ⁇ g of plasmid pCMVp ( ⁇ -gal) and 0.14 ⁇ g of Tk-luc plasmid was prepared. Additionally ⁇ of lipofectanin (LipofectAMINE 200, GIBCO BRL, USA) was diluted in 48 ⁇ 1 of opti-PRO leaving it 5 min. Finally, both solutions bind and incubate for 20 min., Before being added to the cells.
  • the complete culture medium was replaced with 400 ⁇ DMEM medium with 0.5% SFB, after which 100 ⁇ of the lipofectamine mixture with the plasmids was added and allowed to transfect for a period of 6 hours in the Growing stove. After this period, the cells are washed and then maintained in DMEM medium 2% SFB during the addition and incubation with the different treatments for 16 hours.
  • the treatments were: DMSO 0.02%, the positive control Rosiglitazone [luM] and fresh seaweed extract (AF) and algae damaged with ultraturrex in PBS (ATPBS) both at 40
  • the culture medium was aspirated and the cells were washed with cold PBS, after which lOOul of luciferase kit lysis solution (Luciferase Assay System El 500, Pomega Corp, USA) was added in each well, repeatedly pipetting to achieve lysis and homogenization of the cells.
  • the lysate was transferred to eprendorf tube and centrifuged at 12,000 rpm for 5 min. 20 ⁇ 1 were separated from the supernatant to determine Luciferase and 50 ⁇ to determine ⁇ -galactosidase activity ( ⁇ -galactosidase Enzime Assay System, Pomega Corp, USA).
  • the results correspond to the calculation of the relative activity, Luciferase / p-gal that is expressed in the graphs as the times of activation or increase of the treatments with respect to the baseline (DMSO). Comment of the results:
  • PC 12-Y14 cells were used, which over stably express PPARy, so they were only transfected with the PPRE-tk-Luc reporter gene.
  • the cells were seeded in 24-well plates, with 10 x 5 cells / well, in complete medium and left until the next day, reaching 80 confluence. The transfection by well is briefly described.
  • a solution of 50ul / well of opti-PRO containing 0 ⁇ g of PPREx3-tk-Luc, 0.075 ⁇ g of pCMVp was prepared. Additionally ⁇ ⁇ of lipofectanin (LipofectAMINE 200, GIBCO BRL, USA) was diluted in 48 ⁇ 1 of opti-PRO leaving it 5 min.
  • both solutions bind and incubate for 20 min.
  • the complete culture medium was replaced with 400 ⁇ of RPMI medium with 0.5% HS (horse serum), after which 100 ⁇ of the mixture of lipofectamine with the plasmids is added, allowing to incubate 16 hrs.
  • the treatments were initiated, which were performed in RPMI medium with 2% HS.
  • the treatments were, DMSO 0.02%, Rosiglitazone [1 ⁇ ] and the extract of algae ATPBS and AP in concentrations of 50 and 100
  • the culture medium was aspirated and the cells were washed with cold PBS, after which lOOul of luciferase kit lysis solution (Luciferase Assay System El 500, Pomega Corp, USA) was added in each well, repeatedly pipetting to achieve lysis and homogenization of the cells.
  • the Used was transferred to eprendorf tube and centrifuged at 12,000 rpm for 5 min. 20 ⁇ 1 were separated from the supernatant to determine Luciferase and 50 ⁇ to determine ⁇ -galactosidase activity ( ⁇ -galactosidase Enzime Assay System, Pomega Corp, USA).
  • ATPBS is 21.6% greater than AF and that AP is 25% greater than ATPBS, which is presented in Figure 5/10.
  • the graph shows a clear percentage difference in the ability to activate PPARy between the different algae processes.
  • the extract from ATPBS is 21.6% higher than AF, while AP is 25% higher than ATPBS. This clearly shows that the best algae processing system is the process that begins with a manual knife seaweed chopping corresponding to our inventive process.
  • Algae extract induces the activation of the transcription of the PPRE (3x) -tk-Luc reporter in a PPARy-dependent manner:
  • the peroxisomal proliferating response element is a consensus sequence that can eventually bind other PPAR isoforms, so we had to verify whether the response observed with our algae extract depended exclusively on the activation of PPARy and not on another isoform of the receptor or of some cellular interference. Therefore, we decided to confirm our result using in our assay a selective PPAR antagonist that completely inhibits the transcriptional activity of the receptor, which would allow us to confirm that the effects of the algae extract are exclusively dependent on the activation of PPARy. Principles of the essay:
  • the complete culture medium was replaced with 400 ⁇ of RPMI medium with 0.5% HS, after which 100 ⁇ of the mixture of lipofectamine with the plasmids is added, allowing to incubate 16 hrs.
  • the treatments were initiated, which were performed in RPMI medium with 2% HS.
  • Two groups of treatments were used, in one of which the cells were pre-treated with the PPAR antagonist and T0070907 [10 ⁇ ] for 1 hr., And other cells were incubated without the antagonist.
  • the treatments were, DMSO 0.02%, Rosiglitazone [1 ⁇ ] and the algae extract in 50 [mg / ml], which were maintained for 16 hrs.
  • the culture medium was aspirated and the cells were washed with cold PBS, after which lOOul of luciferase kit lysis solution (Luciferase Assay System E1500, Pomega Corp, USA) was added in each well, repeatedly pipetting to achieve lysis and homogenization of the cells.
  • the Used was transferred to eprendorf tube and centrifuged at 12,000 rpm for 5 min. 20 ⁇ 1 were separated from the supernatant to determine Luciferase and 50 ⁇ to determine ⁇ -galactosidase activity ( ⁇ -galactosidase Enzime Assay System, Pomega Corp, USA).
  • mice 50 C57BL / 6J mice 6 weeks old, from Jackson Laboratory, were randomly separated and kept from 3 or 4 mice per box. Additionally the mice were separated into two feeding groups. 10 mice were fed with the Low Fat Diet (LFD) commercial diet, which contains 10% Kcal based on animal fat, while 40 mice were fed High Fat Diet (HFD), which contains 60% Kcal based to animal fat. The mice were fed ad libitum and were weighed 3 times per week during the entire study. After 12 weeks feeding with the LFD and HFD diets, a blood sample was obtained from each mouse to determine the blood parameters of Glucose and Insulin. These determinations indicated that the mice fed the HFD diet had concordant characteristics with insulin resistance.
  • LFD Low Fat Diet
  • HFD High Fat Diet
  • mice were taken per treatment group, as follows: A) as a normal diet control or healthy mouse, LFD mice treated with the Corn Oil vehicle were treated; B) As an insulin-resistant mouse control, HFD mice were treated with Corn Oil; C) HFD mice treated with RZG 5mg / kg as a positive control; D) HFD mice treated with algae extract at 90 mg / kg (in a 1: 3 mixture with Corn Oil), and E) HFD mice treated with algae extract at 300 mg / kg (in a 1: 1 mixture with Corn Oil) The daily volume administered was approximately 50 ⁇ . After the end of the treatment, a new blood sample was obtained by puncturing the submandibular sinus, to determine the blood values mentioned and evaluate the recovery of insulin sensitivity.
  • the original reaction volumes were modified to do so in 96-well multiplates, using little sample volume. A total of 6 ⁇ was used for each sample, distributed in three wells with 2 ⁇ per well. To each well was added 300 ⁇ of enzyme reagent at 25 ° C and incubated for 20 min at room temperature. The spectrophotometric measurement was performed at 490 nm in an ELISA reader.
  • b) For the Plasma Insulin the protocol included in the ELISA kit for insulin was used, which is briefly explained below: 96-well multi-plates that were previously coated with the primary antibody (Mouse monoclonal anti-insulin) were used.
  • mice with the HFD diet controls (Corn Oil)
  • mice with the HFD diet controls maintain a statistically significant increase in glycemia compared to the controls of the LFD diet, similar to that seen before the start of the treatments (data not shown).
  • a complete recovery of blood glucose levels (pO.001) was induced, reaching the levels of LFD control mice without insulin resistance RZG also had a positive effect by decreasing glycemia (p ⁇ 0.05), although recovery was only half of what was found with algae extract.
  • the extract in a very short period of treatment and in insulin-resistant mice fed a high-fat diet, induces a recovery of the blood values found in mice fed a normal diet. Due to the experimental conditions we consider it a very effective effect. Significant of our extract in the condition of insulin resistance. It is quite possible that these effects may be related to the ability of the algae extract to activate the PPARy nuclear receptor, similar to what occurs with synthetic ligands such as RGZ, although it has not yet been experimentally confirmed by us.
  • the rats of each experimental group were put in change of the inverted light cycle of 12:12 hours during the first 2 weeks of maintenance.
  • the animals were treated with Rosiglitazone, oleoresin and Vehicle (corn oil) 24 hours before the focal cerebral infarction was performed for 5 consecutive days through the Gavage technique (gastric tube). 500 ⁇ volume was used for each treatment and a dose of 2.5mg / kg / day for Rosiglitazone and 800mg / kg / day for oleoresin.
  • the experimental groups were as follows: Group 1: Rats without infarction treated with vehicle (n8), Group 2: Rats with infarction treated with vehicle (n5), Group 3: Rats with infarction treated with Rosiglitazone (n7), Group 4: Rats with heart attack treated with oleoresin (n8).
  • the surgical procedure for brain injury was performed with the vasoconstrictor endotelin-1 (Et-1) applied locally.
  • the isoflurane gas anesthetic was used in two stages. The first of these was the induction stage, which was performed in an acrylic chamber with a gaseous solution of 4% isoflurane in medical oxygen (99.5% of 02) mixed with air and supplied at 6 SCFH ("standard cubic feet per hours ") for 4 minutes. After that, the sedated animals were placed in the stereotaxic apparatus with a maintenance dose of 1-2% isoflurane dissolved in medicinal oxygen (99.5% of 02) mixed with air and supplied at 6 SCFH. The maintenance period was according to the requirements of the surgeries.
  • the microinjector was adjusted to make injections at a speed of 0.25 ⁇ 1 / ⁇ in two consecutive 50 ⁇ 1 injections with 1 minute of waiting between each. Both regions were injected in the same way, waiting 2 minutes with the needle inside the brain and rising 0.1 mm before proceeding to inject. To prevent the solution from coming out after the injection, they waited 3 minutes before removing the needle from the injected region.
  • Brains were sliced in 2mm coronal sections and stained with TTC vital staining (2,3,4-triphenyltetrazolium chloride) by immersion at 37 ° C for 30 minutes in the dark, kept 24 hours in 20% sucrose dissolved in phosphate buffered saline (PBS) 0.1 M, pH 7.4 and fixed in 4% paraformaldehyde dissolved in PBS for 24 hours. Subsequently, the brains were frozen in liquid nitrogen and cryopreserved at - 80 ° C.
  • PBS phosphate buffered saline
  • the sections stained with TTC were scanned and analyzed using the Image J program (NIH, Bethesda), to then determine the percentage corresponding to the area of the infarcted region with respect to the total area of the ipsilateral hemisphere.
  • the percentage of infarcted volume is obtained by adding the infarcted area (Ai) of each cut, dividing the result by the sum of the total area of the infarcted hemisphere (A) and multiplying the ratio by one hundred [( ⁇ Ain) * 2mm / ( ⁇ An ) * 2mm] * 100.
  • Adipocyte-specific transcription factor ARF 6 is a heterodimeric complex of two nuclear hormone receptors, PPARg and RXRa. Nucleic Acids Res. 22: 5628-34.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

La presente invención corresponde a un procedimiento de preparación de un extracto oleoso proveniente de un alga roja, de preferencia Gracilaria chilemis. Este proceso logra mantener en el extracto oleoso, una alta capacidad de inducir la actividad transcripcional de PPAR gamma. Este proceso comprende las etapas de: I) Extracción del alga fresca y transporte a baja temperatura: donde se recolecta el alga viva y entera arrancándola de su fijación al sustrato del fondo marino para luego ser trasladada en frío (aprox 4°C); II) Preparación y picado del alga: consistente en el lavado del alga con PBS (pH7,4), estilado por centrifugación y almacenaje al vacio a -20°C. Descongelamiento a 4°C y nuevo lavado con PBS (pH 7,4), secando por centrifugación y picado del alga con cuchillo de ½ golpe de acero inoxidable en fragmentos entre 1-3 miti, para luego congelarla brevemente -20°C para su liofilización; III) Secado por liofilización: se liofiliza por 24 hrs a -50°C y 0,014 mbar y es almacenada al vacío a -20°C; IV) Pulverización con extracción sólido-líquido discontinua de la oleorresina: llevar a T° ambiente (20-25°C) el alga liofilizada para ser molida hasta un polvo fino de tamaño promedio menor a ½ mm. Una cantidad de polvo se deposita en un matraz y se mezcla con una cantidad adecuada de solvente (Diclorometano) para realizar una extracción sólido-líquido discontinua. Esta mezcla es saturada en una atmósfera de nitrógeno gaseoso y sellada para someterla a agitación horizontal a 34°C por 30 min. Luego se decanta y se filtra en papel y la fase líquida es recibida en un matraz. La fase sólida se vuelve a re-suspender en un solvente liposoluble, de preferencia diclorometano, repitiéndose el procedimiento de extracción anterior. La fase líquida total o extracto es concentrado en un rota-vapor que retira el solvente quedándose con la oleorresina. Este producto es secado bajo gas nitrógeno hasta alcanzar peso constante, para luego ser resuspendida en un volumen mínimo de ciclohexano y congelada (-80°C), para finalmente ser liofilizada obteniendo la oleorresina sin solventes. Además se protege la oleorresina derivada del procedimiento y el uso de la oleorresina en el tratamiento de la diabetes mellitus, resistencia a la insulina y enfermedades neurodegenerativas, entre otros.

Description

"PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy."
Campo de aplicación
La presente invención se relaciona con un procedimiento de preparación eficiente y simple para la obtención de una oleorresina partir de algas rojas que mantiene una alta capacidad de inducir la actividad transcripcional del receptor nuclear PPARy (peroxisome proliferator activated receptor gama). Hasta la fecha se desconocía la capacidad de este tipo de oleorresina de alga roja para generar la activación de PPARy, lo que fue identificado por nuestras investigaciones. La metodología de preparación fue optimizada para obtener la mayor eficiencia en la activación del receptor PPARy, la que fue puesta a prueba en ensayos in vitro e in vivo. Además nuestros estudios demostraron la capacidad de participar en la recuperación de patologías en el campo de la diabetes, como la resistencia a la insulina y neuropatologías tales como el infarto cerebro vascular.
El procedimiento de obtención de nuestro compuesto fue separado en etapas que permiten trabajar con sobre stock, controlando el almacenamiento tanto de la materia prima (alga), etapas intermedias de la producción y producto final, manteniendo en todas las etapas una alta capacidad de inducir la actividad transcripcional del receptor nuclear PPARy. Esto le da la capacidad de ser producido a nivel industrial con gran flexibilidad, para el posterior uso de la oleorresina como un fármaco natural directo, un nutraceútico o un complemento nutricional en diversos productos de consumo humano.
Estado de la técnica.
Nuestra invención está relacionada con un procedimiento de preparación de una oleorresina desde un alga roja, de preferencia Gracilaria chiiensis la cual es una de las especies del genero Gracilariae. La preparación y extracción de compuestos desde algas rojas, como Gracilaria chiiensis, en particular la extracción en la fase acuosa, han sido ampliamente desarrolladas para la obtención de hidrocoloides como el agar-agar, alginato y carragenina, utilizados en el ámbito de los alimentos y cosmética. Por otro lado, la extracción de fases oleosas está pobremente descrita y se han desarrollado solo a baja escala en investigación relacionada con la ecología del alga y sus mecanismos de defensa.
Los productos marinos naturales, en especial los derivados de metabolitos secundarios, han concitado gran interés científico por la potencial presencia en ellos de nuevos productos químicos o nuevos fármacos especialmente útiles en el tratamiento de enfermedades humanas y en el control de pestes en la agricultura (Liebezeit, 2005., Mayer and Hamann., 2005). Entre las actividades detectadas se encuentran actividad antiviral, antibiótica, de coagulación y migración celular, crecimiento celular, actividad antifúngica e insecticida, acciones antitrombóticas y anticoagulante, efectos antinflamatorios y antilipidémicos, hipoglicémicos e hipotensivos (Smith, 2004). Las ventajas del empleo de productos naturales en la industria, son que junto a sus principios activos pueden existir constituyentes de acción sinérgica, que potencian su acción por sobre el principio activo aislado o su similar sintético. Además a diferencia de los compuestos sintéticos, los cuales poseen efectos secundarios, los productos naturales son asimilados por el organismo humano en forma más equilibrada que los medicamentos sintéticos. Así mismo estos productos naturales se han consumido durante siglos por diferentes pueblos como parte del menú habitual en comidas, como es el caso de las algas marinas en países como Japón y China.
Las algas rojas al ser sometidas a daño físico o biológico generan moléculas llamadas oxilipinas las que corresponden a derivados oxidados de ácidos grasos poliinsaturados (PUF As). Al hacer una comparación estructural, muchas de estas moléculas son similares a los productos oxidados de ácidos grasos poliinsaturados en los vertebrados, como algunos eicosanoides provenientes de las reacciones catalizadas por enzimas de la familia de las lipoxigenasas. En los mamíferos una cantidad importante de estos productos corresponderían a ligandos endógenos del receptor nuclear PPARy. Este factor de transcripción participa en la homeostasis lipídica y es el blanco de las tiazolenedionas (TZDs), drogas que son ligandos de PPARy y modulan la resistencia a insulina, patología que precede a la diabetes. Las TZDs tienen además efectos neuro-protectores, neuro-regenerativos, y anti-inflamatorios. Sin embargo actualmente se ha descrito que las TZDs tienen efectos secundarios tales como un incremento en el riesgo de afección coronaria, edema periférico y edema macular (Singh, et al, 2007; Nikolaidis and Levine, 2004 y endall and Wooltorton, 2006). Esto ha llevado a retirar del mercado algunos de estos fármacos, siendo cuestionados los que aún se comercializan.
En este contexto se plantea que la generación de una oleorresina producida a partir de algas como materia prima, debería presentar un potencial como activador de receptor nuclear PPARy, ya que contendría en su composición moléculas (oxilipinas) similares a los ligandos endógenos de estos receptores en mamíferos. Modelo que nunca había sido descrito en el estado del arte previo. Debido a los efectos secundarios de las TZDs y a las dificultades y costos que implica la síntesis y prueba de nuevas moléculas con potencial activación de PPARy, esta patente se enfocó en el proceso de preparación de extractos de origen natural en algas marinas rojas, las cuales se comportarían como los activadores endógenos y son mejor toleradas por el organismo. Su validez como potenciales activadores de PPARy se determinó tanto in vitro (ensayos de gen reportero) como en dos modelos in vivo (ratones com resistencia a insulina inducida por dieta, y un modelo de infarto cerebral en rata) En general los ligandos endógenos de PPARy son moléculas lipofílicas y la mayoría de las veces capaces de entrar por sí mismas a las células. Esto les permite ser absorbidas directamente por el tracto gastrointestinal, facilitando su uso en terapias por vía oral (Bordoni et al, 2006). Las algas marinas presentan una diversidad de ácidos grasos polinsaturados (PUF As), y se ha determinado que en especial las algas rojas son particularmente abundantes en ácidos grasos de 18 y 20 átomos de carbono. Estos PUF As son los precursores de las ya mencionadas Oxilipinas, término con que fueron agrupados en plantas terrestres y organismos marinos los derivados oxidados de ácidos grasos C-18 (octadecanoicos) y C-16 (hexadecanoicos) y en menor proporción C-20 (Stefanov et al. 1988, Gerwick et al, 1993, Bouarab et al ,2004). En el curso de investigaciones sobre productos marinos naturales en algas tropicales se encontró que muchas macroalgas y especialmente el orden rhodophyta (algas rojas), presentaban la capacidad enzimática para metabolizar PUF As en vías análogas a las de las lipoxigenasas de mamíferos. También se hizo notar que estos compuestos se encontraban en concentraciones mucho mayores en el tejido de las algas que en los tejidos animales, lo que supone un rol importante en la fisiología del alga, tanto en su desarrollo como en defensa. Hoy en día las algas rojas son la fuente más prolífica de oxilipinas tanto conocidas como nuevas y contienen entre otras, oxilipinas de la familia de los eicosanoides, incluyendo prostaglandinas y leucotrienos, así como también octadecanoides. Por ejemplo las algas del género Gracilaria, así como también Gracilariopsis, son de interés particular, ya que contienen eicosanoides similares a los encontrados en mamíferos.
Para la supervivencia del alga en un ambiente competitivo, las plantas marinas desarrollaron defensas como la producción de disuasivos químicos. Dentro de estos disuasivos se evidencia un posible rol de las oxilipinas cuando las algas son expuestas a agentes dañinos o estrés. En uno de estos estudios se puede apreciar que la liberación o generación de estas moléculas no observa cuando las algas fueron previamente incubadas con un inhibidor de las lipoxigenasas (LOXs), lo que da cuenta de que este cambio se debe a la liberación previa de ácidos grasos desde membranas celulares frente al daño físico. Una gran diversidad de oxilipinas se detectaron al incubar diferentes ácidos grasos polinsaturados exógenos con extractos de un alga roja Chondrus crispus que habían sido expuestas a un patógeno, muchas de estas moléculas corresponden a eicosanoides que se encuentran también en animales superiores (Bouarab et al 2004).
Un segundo estudio realizado por Lion et al. (2006) determinó el papel de las oxilipinas frente al daño físico y biológico en un alga roja endémica en Chile, la Gracilaria chilensis (pelillo). Ellos demostraron que en algas sometidas a trituración con mortero se encontraron grandes cantidades de ácido araquidónico, ácido 8R-hidroxieicosatetraenoico (8- HETE) y ácido 7,8-dihydroxyeicosatetraenoic (7,8-di-HETE). También se detectó la presencia de fosfolipasa A2 y su inhibición previno la liberación de ácido araquidónico y 8-HETE. Por otra parte en ensayos de interacción con algas epífitas, su capacidad de invasión fue inhibida por los extractos de G. chilensis previamente tratadas. En resumen, lo conocido en el estado del arte es que frente a ciertos estímulos nocivos y de estrés en algas rojas se desencadena una cascada de procesos enzimáticos que dan a origen a una gama de oxilipinas, dentro de los cuales se encuentran derivados oxidados de PUF As muy similares a los que se producen en mamíferos, y algunas de ellas pueden corresponder a activadores endógenos del receptor nuclear PPARy. Este planteamiento fue corroborado por nuestras investigaciones donde estudios in vitro de transfecciones celulares con genes reporteros demostraron que nuestros extracto oleoso proveniente del alga roja Gracilaria chilensis, tiene la capacidad de inducir la actividad transcripcional de PPARy. Esta metodología fue utilizada posteriormente en la presente patente para medir o determinar la actividad de los extractos provenientes de diferentes procedimientos de generación y obtención del extracto. En general, los procesos de refinación de concentrados oleosos en algas rojas no están bien descritos y normalmente son adaptaciones de los clásicos procesos de refinación de los aceites de origen vegetal. Algunos de tales procesos se divulgan en patentes norteamericanas 4915876, 4804555 y 4838997 entre otros. Este tipo de procesos basa su tecnología en procesos de destilación de este tipo de aceites con lo cual muchas de sus características metabólicas y biológicas son perdidas en el proceso. Para la elaboración de este tipo de productos alimenticios, nutracéuticos y farmacéuticos se requieren productos con una actividad transcripcional del receptor PPARy mantenida o aumentada, lo que evidentemente no se puede lograr mediante los procesos de refinación tradicionales de aceites. Otro enfoque, radica en el hecho de que existen numerosos procesos en el estado de la técnica para la producción de concentrados en base a algas. La mayoría de los procesos de concentración comienza con la etapa de machacando o trituración del alga, para luego realizar extracción por solventes, generalmente en una mezcla etanol/agua, metanol/agua, propanol/agua, hexano/agua y acetona/agua, entre otras. Algunas patentes con este tipo de descripciones de proceso que pueden ser mencionadas son EP 07764849, EP06810942, EP1778219. Por otro lado, se utilizan solventes de extracción con mayor lipofilicidad (WO2010039024), para luego trabajar independientemente las fases.
El problema de los métodos previamente propuestos, radica en la sobre-generación de estrés al destruir las células del alga, esto se traduce en la perdida, en parte de la actividad transcripcional del receptor PPARy en mamíferos, descrito en la figura 5/10. En su estado basal, si no es estresada el alga, existe un nivel fijo en donde se genera una actividad transcripcional del receptor PPARy. El punto estuvo en lograr el estrés adecuado para obtener y mantener la actividad transcripcional del receptor PPARy.
Los problemas técnicos y objetivos que pretende solucionar este procedimiento de preparación, se resumen en que para poder hacer uso de estas algas como extractos, se requiere que en el proceso de producción se mantengan las características beneficiosas del alga. Por otro lado, uno de los objetivos con respecto a esta patente es poder mantener a través del proceso de preparación, la mantención de la capacidad inductora de la actividad transcripcional del receptor PPARy, relacionado con la actividad beneficiosa de este extracto en el ser humano. Por otra parte, la capacidad de almacenamiento en diferentes etapas del producto final o semi-elaborado manteniendo una alta actividad biológica, entrega una plasticidad en la operación de producción del extracto, tal como se presenta en la figura 7/10. Finalmente, una característica de este proceso es que permite que el extracto pueda ser consumido directamente en forma oral manteniendo la actividad biológica que se desea.
En consecuencia, el objetivo de la presente invención es proveer un proceso eficiente y simple, que no utiliza extracción por solventes, ni destilación en alta temperatura, para la producción de una oleorresina manteniendo la actividad de PPARy, de una materia prima natural derivada de algas rojas, de preferencia Gracilaria chilensis, aptos para el consumo oral humano y de calidad farmacéutica.
Descripción del Procedimiento de Preparación
La oleorresina se obtiene de un procedimiento de preparación que comprende cinco etapas de:
A) Extracción y transporte del alga fresca a baja temperatura;
B) preparación y picado del alga;
C) Secado por liofilización
D) Pulverización con extracción sólido-líquido discontinua de la oleorresina
E) Eliminación de solventes. El detalle de cada una de las etapas se presenta a continuación: A) Selección y transporte del alga fresca a baja temperatura. A. l) Selección y recolección del alga fresca:
La extracción del alga puede ser manual o automática, se recomienda la extracción del alga viva y entera, despegada directamente del sustrato marino con el objetivo de preservar la integridad celular, evitando inducir una respuesta metabólica temprana frente al daño. De preferencia se recomienda la extracción y selección manual del alga roja de preferencia Gracilaria chilensis, sin restringirla a esa alga roja en particular, de un tamaño igual o superior a 60 cm de largo, preservando así las algas en crecimiento.
A.2) transporte del alga fresca a baja temperatura:
Luego de la recolección el alga es depositada en recipientes termo-aislados y puestas en bolsas las cuales se cubren con ice-pack (bolsas congeladas) para preservarlas a baja temperatura durante su transporte. B) Preparación de la materia prima y picado del alga;
B. l) lavado con PBS y centrifugado con almacenaje al vacio a -20°C;
Una vez recibidas las algas son lavadas para retirar el agua de mar con una solución tampón, de preferencia una solución tampón Fosfato Salino (PBS) constituido por NaCl (137 mmol/L), KC1 (2.7 mmol/L), Na2HP04 · 2 H20 (10 mmol/L), KH2P04 (2.0 mmol/L) a pH 7.4 y a 4°C, sin restringir otro tipo de soluciones tampones. Este lavado se realiza pasando el alga por recipientes con PBS, de preferencia tres, luego se secan en una centrífuga de vegetales por centrifugación manual o automática (aprox. 500 rpm). Finalmente el alga se almacena en bolsas al vacío y se refrigera a -20°C. Este almacenamiento permite acumular la materia prima cuando se trabaja con sobre- stock de alga, evitando la rápida degradación que ocurre con este tipo de algas al exponerlas a temperatura ambiente fuera de sus medio natural, como se presenta en la figura 7/10. Adicionalmente permite aprovechar la abundancia estacional que puede presentar la extracción de este producto, como también suplir la falta de capacidad de procesamiento que pueda presentarse a nivel industrial o semi-industrial.
B.2) Descongelamiento del alga: El alga es descongelada a 4°C para generar un estrés moderado en la estructura del alga pero no en sus células y nuevamente se lava con PBS (pH 7,4 y 4°C), para posteriormente secarla al igual que el procedimiento mencionado en B.l .
B.3) Picado con cuchillo:
Una vez descongelada y secada el alga, corresponde realizar un picado rápido de ella con el objetivo de causar un daño moderado con el fin de generar una respuesta de la defensa del alga generando una serie de moléculas del tipo oxilipinas y antioxidantes. En este sentido se puede apreciar una diferencia significativa de la capacidad de inducir la actividad transcripcional de PPARy entre el alga sin daño y el alga dañada (Figura 3/10).
Por otro lado, el alga descongelada presenta características de fibras o hilachas las cuales impiden su procesamiento en maquinarias convencionales de corte con rotor debido a que estas se enredan en las aspas de cada una de ellas, trancándolas y aumentando la temperatura de sus rotores. Por este motivo y en la inducción del daño sobre el alga, se generó el siguiente protocolo descrito a continuación:
Se toma una cantidad de alga secada y se pica manual o automáticamente con cuchillas de acero inoxidable de medio golpe a temperatura ambiente (20-24°C), en trocitos entre 1 a 3 mm. Al estar en descongelación, el alga se comporta como un semi-sólido mejorando su presentación para ser picada. Este proceso constituye una reacción en ambiente húmedo del alga frente al daño expuesta al aire. Este picado es de suma importancia para mantener la actividad PPARy, ya que es en esta etapa crítica en donde se observa una mayor pérdida de actividad, tal como se presenta en la figura 5/10.
B.4) Congelamiento corto a -20°C:
Tal como se menciono en el protocolo luego de su procesamiento el alga es congelada a -20°C brevemente, para su posterior liofílización. Otra alternativa más corta es congelar a - 80°C con lo cual se ahorra más tiempo. Ya que este congelado no es al vacío, es opcional pero recomendable pasar al proceso de liofílización inmediatamente una vez congelada el alga para evitar cualquier deterioro por oxidación.
Este congelamiento genera una materia prima sem i-terminada para el proceso de desecación y entrega un segundo lapsus temporal en donde se puede almacenar materia prima, sin dañar sus características metabólicas.
C) Secado ó deshidratado por liofílización C.n Liofílización:
El alga previamente congelada se liofíliza por un rango de 12 a 48 horas, de preferencia 24 horas; a una temperatura entre -20°C y -90°C, de preferencia -50°C; a un rango de presión de 0.001 mbar a 0,03 mbar, de preferencia una presión de 0,014 mbar. Finalizado el tiempo de liofílización se obtiene un producto deshidratado el cual es almacenado en bolsas al vacío a -20°C. Este congelamiento permite generar un tercer lapsus temporal en donde se puede almacenar la materia prima previo a su proceso final y con el mínimo daño oxidativo de sus componentes activos. D) Pulverización con extracción sólido-líquido discontinua de la oleorresina
D. l) Temperado y Molido del alga liofilizada: Las bolsas con alga liofílizada al vacío se llevan a temperatura ambiente (20-24°C), siendo posteriormente abiertas y su contenido pesado. Una cantidad del alga liofílizada, dependiendo de cuanta oleorresina se quiera producir, es molida (moledora de café), con un tamiz capaz de alcanzar un polvo fino con un tamaño de partícula promedio inferior a ½ mm.
Cuando ha sido deshidratada por liofílización el alga, el daño que puede ser generado al producir un mayor estrés por la molienda de la misma, se minimiza por no tener agua disponible en donde puedan ser degradadas o afectadas las acciones beneficiosas de las oxilipinas y antioxidantes.
D.2) Extracción sólido-líquida discontinua:
Para el proceso de extracción se utiliza un contenedor, a modo de ejemplo un matraz de vidrio del tipo erlenmayer de 500 mi con tapa esmerilada, al cual se agrega una cantidad del alga finamente molida y se adiciona, en una rango de relación 1/2 a 1/10 peso alga finamente molida /volumen de diclorometano en una relación preferente de 1 es a 3,6 peso/volumen, para el caso de este ejemplo 180 mi de CH2CL2 (diclorometano). Cada contenedor se llevo a una atmósfera saturada con gas nitrógeno y se tapan sellándolos. Inmediatamente se incubaron con agitación horizontal en un rango de 45°C a 25 °C, de preferencia 34°C; por un rango de 2 horas a 10 minutos, de preferencia 30 minutos. Finalizado este período se decanta la mezcla por 10 minutos y se filtra con vacio con un filtro de vidrio sinterizado y papel whatman N°l. La fase líquida es recibida en otro recipiente. La fase sólida se vuelve a resuspender en el solvente repitiéndose el procedimiento de extracción anterior por una segunda vez, aunque no sólo limitándose a solo dos extracciones oleosas.
Para optimizar el proceso, se compararon diferentes tipos de solventes oleosos, siendo el de mayor actividad la extracción mencionada con diclorometano (figura 1/10). Por otro lado, es una extracción oleosa porque el agua fue extraída inicialmente por liofílización, por lo tanto acá no se forman fases. Las alícuotas de líquido filtrado son concentradas por rota-vapor en un rango de temperatura entre los 20°C a 50°C, de preferencia 37-39°C, generándose una oleorresina semi-terminada con trazas del diclorometano; E) Eliminación de solventes:
Este producto es trasvasijado a un recipiente más pequeño para ser secado bajo gas nitrógeno hasta alcanzar peso constante y luego se resuspende en el mínimo volumen posible (esto dependerá de la cantidad de producto secado) de ciclohexano siendo congelada rápidamente a -80°C para ser liofilizada por 24 hrs (con el fin de eliminar completamente el ciclohexano en combinación con el diclorometano), obteniendo finalmente una oleorresina sin solventes como producto final.
Con respecto al almacenamiento de la oleorresina, ésta es almacenada bajo atmósfera saturada de gas argón (o un gas inerte para evitar procesos de oxidación) a -20°C. Este almacenaje permite mantener las características funcionales buscadas por largos períodos, sin disminuir la habilidad del extracto de activar PPARy (Figura 7/10).
La eficiencia del procedimiento de extracción de todo el proceso partiendo desde el alga fresca hasta la obtención de la oleorresina se puede apreciar en la siguiente tabla I:
Tabla I
Eficiencia del proceso de obtención de oleoresina a partir de alga picada
Figure imgf000013_0001
Figura 1/10
Esta figura presenta un esquema del procedimiento de preparación presentado en la presente patente y las etapas críticas en donde se produce el almacenamiento en frío para poder guardar el producto final o la materia prima semi-elaborada.
A: Alga Roja
B: Recolección y Transporte a baja temperatura
C: Preparación de la materia prima y picado del alga
D: Secado por liofilización
E: Pulverización con extracción sólido-líquido discontinua de la oleorresina
F: Eliminación de Solventes
G: Oleorresina del Alga
H: Almacenamiento a -20°C.
Figura 2/10
La siguiente figura presenta un esquema de los plásmidos utilizados.
El primero contiene la región promotora de los PPARs (3xPPRE) unido al reportero Luciferasa y el segundo corresponde a un plásmido de sobre-expresión de PPARy que está unido a un promotor fuerte como pCMV.
Donde: s: Corresponde a PPRE 3x
t: Corresponde a TK
u: Corresponde a Luciferasa
v: Corresponde a Pcmv
w: Corresponde a PPARy Figura 3/10
Esta figura presenta un gráfico de actividad transcripcional de PPARy en células CHO co-transfectadas con PPRE-tk-Luc y pCMV -PPARy y tratadas con AF (alga fresca) y ATPBS (alga molida con lavado en PBS).
I: presenta el eje de las abscisas donde se muestran las barras que corresponden a:
la: barra control (DMSO 0,02%).
Ib: barra RZG [Ι μπι]
Ic: barra blanca AF y barra negra ATPBS en una concentración de 40 j^g/ml] cada una.
J: presenta el eje de las ordenadas como los valores promedio ±SD de la actividad relativa (Luciferasa/p-gal) expresados como veces de activación respecto al control. Los resultados representan a lo menos tres experimentos independientes. Figura 4/10
Esta figura presenta un Gráfico de actividad transcripcional de PPARy en células PC12-yl4 transfectadas con PPRE-tk-Luc y tratadas con ATPBS (alga molida con lavado en PBS) y AP Alga Picada).
K: presenta el eje de las abscisas donde se muestran las barras que corresponden a:
Ka: barra control (DMSO 0,02%)
Kb: barra RZG [Ι μπι]
Kc: barras blanca AF y barra negra ATPBS e una concentración de 40 |^g/ml] cada una. Kd: barras con los mismos tratamientos con extracto a una concentración de 100 |^g/ml]. L: presenta al eje de las ordenadas, el cual corresponde al promedio ±SD de la actividad relativa (Luciferasa/p-gal) expresados como veces de activación respecto al control. Los resultados representan a lo menos tres experimentos independientes.
Figura 5/10
Esta figura presenta una diferencia porcentual de las veces de actividad transcripcional obtenida entre los extractos desde tres diferentes tipos de procesamiento del alga. LL: presenta el eje de las abscisas donde se muestran las barras que corresponden a:
LLa: Alga fresca sin daño (AF)
LLb: Alga procesada con ultraturrex (ATPBS)
LLc: Alga picada con cuchillo (AP)
M: presenta al eje de las ordenadas, el cual corresponden a porcentajes donde la barra LLa corresponde a un valor basal de activación y las otras barras a las diferencias porcentual entre ellas (AF v/s ATPBS y ATPBS v/s AP). Figura 6/10
Esta figura presenta los diferentes solventes probados en el procedimiento de extracción de la oleorresina, en la etapa de pulverización con extracción sólido-líquido discontinua de la oleorresina. Posteriormente se midió la actividad transcripcional de los diferentes extractos para PPARy, los que se expresan numéricamente como actividad relativa.
En el eje de las ordenadas, expresado numéricamente se presenta la actividad transcripcional relativa de PPARy. En el eje de las ordenadas están las diferentes pruebas extractivas con diferentes solventes.
a) Control (sin adiciones);
b) Diclorometano;
c) Etil acetato;
d) Hexano;
e) Methanol
En todos los casos se utilizaron 250 ug/ml de la oleoresina. Figura 7/10
Esta figura presenta un Gráfico de la estabilidad transcripcional para PPARy de la Oleorresina en el tiempo.
Q: presenta el eje de las abscisas donde se muestran las barras que corresponden de izquierda a derecha a:
Barra negra control solo con solvente a -20°C
Barra negra de oleorresina congelada a -20°C a tiempo 0
Barra negra de oleorresina congelada a -20°C a tiempo 4 semanas
Barra negra de oleorresina congelada a -20°C a tiempo 6 semanas
Barra negra de oleorresina congelada a -20°C a tiempo 9 semanas
Barra gris control solo en ausencia de la oleorresina
Barra gris control con Rosiglitazona (RGZ) 1 μπι. (como un agonista conocido).
L: presenta al eje de las ordenadas, el cual corresponde al promedio +SD de la actividad relativa de PPARy. Figura 8/10
Esta figura presenta la acción de un antagonista de PPARy sobre la actividad transcripcional inducida por extracto de Alga.
En el eje de las abscisas (X) se presentan los siguientes tratamientos celulares:
Xa: Control DMSO
Xb: Control pre-incubado con T0070907, inhibidor específico de PPARy
Xc: células tratadas con RZG [Ι μπι]
Xd: T0070907+RZG[^m]
Xe: Extracto de alga 50 | g/ml]
Xf: T0070907+ Extracto de alga 50 | g/ml]. En el eje de las ordenadas (Y) los valores corresponden al promedio ±SD de la actividad relativa (Luciferasa/p-gal) expresados en veces de activación respecto al control.
Los resultados representan a lo menos tres experimentos independientes.
Figura 9/10
El primer gráfico de la Figura 9/10 presenta la determinación de Glucosa plasmática en ratones LFD (dieta baja en hidratos de carbono) y HFD (dieta alta en hidratos de carbono), posteriores al tratamiento con extracto de Alga.
El gráfico muestra en el eje de las abscisas (N) lo siguiente:
Na: barra control de Ratones con dieta LFD
Nb: Ratones con dieta Aceite de Maíz HFD
Nc: Ratones con dieta Aceite de Maíz y posterior tratamiento con extracto de Alga 90 [mg/kg]
Nd: Ratones con dieta Aceite de Maíz y posterior tratamiento con extracto de Alga 300 [mg/kg]
Ne: Ratones con RZG 5[mg/kg].
El gráfico muestra en el eje de las ordenadas (Ñ) muestra los valores sanguíneos de glucosa en mg/dl. Los valores corresponden a un "n" de 10 ratones por grupo. Se determinaron las diferencias significativas en el grupo HFD respecto su control tratado con aceite de Maíz.
El segundo gráfico de la Figura 9/10 presenta la determinación de Insulina plasmática en ratones LFD (dieta baja en hidratos de carbono) y HFD (dieta alta en hidratos de carbono), posteriores al tratamiento con extracto de Alga.
El gráfico muestra en el eje de las abscisas (O) lo siguiente: Oa: barra control de Ratones con dieta LFD
Ob: Ratones con dieta Aceite de Maíz HFD
Oc: Ratones con dieta Aceite de Maíz y posterior tratamiento con extracto de Alga 90 [mg/kg]
Od: Ratones con dieta Aceite de Maíz y posterior tratamiento con extracto de Alga 300 [mg/kg]
Oe: Ratones con RZG 5 [mg/kg]. El gráfico muestra en el eje de las ordenadas (P) muestra los valores sanguíneos de
Insulina plasmática en ng/ml.
Los valores corresponden a un "n" de 10 ratones por grupo. Se determinaron las diferencias significativas en el grupo HFD respecto su control tratado con aceite de Maíz.
Figura 10/10
La presente figura muestra el efecto neuro-recuperador de la oleorresina en el volumen de infarto cerebral en un modelo en rata.
Z) es el eje de las abscisas, en el cual se presentan los diferentes tratamientos:
Zl) Presenta un control solo con vehículo
Z2) Presenta el tratamiento con RZG (Roziglitazona)
Z3) Presenta el tratamiento con la oleorresina
AA) presenta el eje de las ordenadas en donde se mide el procentaje de volumen de infarto cerebral.
El efecto de la droga Rosiglitazona (RGZ, réplicas experimentales: 7) y de la oleoresina (réplicas experimentales: 8) sobre el porcentaje de volumen de infarto cerebral ipsilateral luego de 21 días de generada la lesión. El tratamiento para ambas drogas fue suministrado desde un día antes a la cirugía por 5 días consecutivos. Se muestran diferencias significativas entre el grupo tratado con vehículo (réplicas experimentales: 5) y los grupos tratados con las distintas drogas. Sobre cada columna se observa un corte representativo del tamaño de infarto en color gris. Ejemplo de Aplicación
Preparación de un extracto oleoso de alga roía de acuerdo a nuestra invención
El siguiente es un ejemplo del proceso productivo:
Se tomaron lOKg de alga, son lavados con PBS (pH 7,4) a 4°C y guardados en bolsas de 1 KG al vacío a -20° los cuales se pueden guardar por largos períodos.
Luego se descongelan bolsas que contiene lKg de alga a 4°C . El alga se vuelve a lavar brevemente en PBS (pH 7,4) a 4°C según protocolo e inmediatamente es secada manualmente en una centrífuga de verduras.
El alga se pasa a un recipiente frío y rápidamente se toman porciones de alga de aproximadamente 100 grs y se colocan sobre una superficie de picado donde son cortada finamente con cuchillo hasta apreciar trocitos entre 1 a 3 mm. Este procedimiento se adecúa según la experticia del operario para que no demore más de 10 min totales, si bien el alga se mantiene siempre en un recipiente frío. El alga picada fue depositada en placas de petril de 150 mm diámetro en una cantidad aproximada de 50 grs. por placa, para inmediatamente ser refrigeradas a -20°C, por aproximadamente 3 hrs. Este procedimiento se repitió para los 10 kg de alga congelada inicialmente.
Las placas correspondiente al picado de 1 Kg de alga fueron colocadas en el liofilizador (según protocolo) por 24 hrs y el alga deshidratada fue pesada y guardada en bolsas al vacío a -20C° (estas se pueden guardar por largos períodos). Finalizado el procesamiento del total de alga se obtuvo una cantidad promedio de 850 grs de alga liofilizada provenientes de 10 Kg de alga. Esto corresponde a un 8,5 % de materia seca obtenida desde alga fresca. Para la obtención de la oleoresina se tomaron 200 grs de alga liofílizada congelada y se llevaron a t° ambiente por 40 min. Luego de ello fue molida finamente en una moledora de café profesional hasta alcanzar un polvo fino (partícula promedio de 1/2 mm). Este polvo fue colocado en matraces erlenmayer de 500 mi con tapa esmerilada. Se depositaron 50 grs de polvo de alga por matraz y a cada uno se le agregó 180 mi de diclorometano. Estos fueron saturados con una atmósfera de gas nitrógeno y sellados con su tapa y parafilm. Los matraces se colocaron el un shaker (agitador), con una agitación de 350 rmp, a 34°C, por un período de 30 minutos. Finalizada la extracción por agitación, se retiraron los matraces y se dejaron decantar por 10 minutos a t° mbiente. Posteriormente se filtraron con embudo Bcühner con filtro de vidrio sinterizado y papel Whitman N°l . La fase líquida fue es recibida en un matraz redondo de 1 lt. La fase sólida se volvió a resuspender en ahora en 150 mi de dicloromentano, repitiéndose el procedimiento de extracción anterior por una segunda vez y se realizó un segundo filtrado de los matraces con alga y solvente.
La fase líquida total contenida en al matraz redondo fue colocada en un rota-vapor a 37-39°C por aproximadamente 30 min, retirando gran parte del solvente dejando una pequeña cantidad para ser trasvasijado a un matraz redondo de vidrio más pequeño y previamente pesado (de 150 mi) el cual fue secado bajo gas nitrógeno, siendo pesado cada media hora hasta alcanzar peso constante (aproximadamente 70 a 90 min totales). Luego el extracto casi sin solvente fue resuspendido en un volumen mínimo de ciclohexano y fue congelad por lhr a -80°C, siendo inmediatamente después liofilizado por un período de 24 hrs. Finalizado el período de liofilización el matraz conteniendo la oleoresina fue pesado nuevamente registrando el peso total y final de extracto obtenido. En el caso de los 200 grs de extracto extraído se obtuvo una cantidad de 1,28 grs de oleoresina, correspondiendo a un 0,64 % del peso inicial extraído. Finalmente este fue guardado bajo atmósfera de argón, siendo sellado y almacenado a -20°C para su uso posterior.
Resultados experimentales
Descripción del protocolo de transfecciones celulares Protocolo general de los ensayos de transfección celular para estudiar la actividad transcripcional de PPARy
PPARy posee la capacidad de activar la actividad transcripcional de diversos genes. Esto lo realiza uniéndose a una secuencia consenso de nucleótidos en la región promotora de dichos genes, la cual se denomina PPRE (elemento de respuesta a proliferadores peroxisomales). Este elemento se ha incorporado a la región promotora de un plásmidos reportero que contiene el gen de luciferasa. Con éste realizaron transfecciones celulares, que nos permitieron si la incubación de las células con nuestro compuesto de alga era capaz de activar a PPARy y por consiguiente unirse al PPRE presente en el reportero, activando la transcripción del gen luciferasa.
Principios del ensayo: Este ensayo contempla una transfección con un vector reportero que contiene el gen de luciferasa proveniente de Photinus puralis bajo el control del promotor de timidina quinasa y tres secuencias en tándem provenientes de el PPRE del gen AOX (Acil Co-enzima Oxidasa) de rata ó PPRE-tk-Luc (Figura 2). Al final del ensayo se determina la luminiscencia emitida por la proteína luciferasa al reaccionar con un sustrato. Esto refleja la cantidad de proteína luciferasa traducida por la célula debido a la inducción transcipcional del plásmido mediante la unión de PPARy. Debido a que diversos tipos celulares presentan una variación en la expresión de PPARy y con el objetivo de visualizar adecuadamente el efecto de PPARy, adicionalmente se sobre expresó PPARy mediante la co-transfección de un plásmido que contiene el gen de PPARy junto a un promotor fuerte de cytomegalovirus ó pCMV-PPARy (Figura 2). En células que sobre expresan establemente PPARy como es el caso de las células PC 12 clon gamma 14 (PC12-yl4) caracterizadas por nuestro laboratorio, solo se requiere de una transfección simple con el vector PPRE-tk-Luc. Adicionalmente los diferentes tipos celulares se transfectaron con un receptor que contiene el gen de β-galactosidasa de E.coli bajo el promotor fuerte de cytomegalovirus, el que se cuantifica por la reacción de la proteína con un sustrato. Su actividad se utiliza como control interno de la transfección y permite corregir la variación de los valores de luciferasa por variaciones en la eficiencia de transfección celular. El plásmido utilizado se describe en la figura 2/10. Especificaciones del ensayo:
Co-transfección de células CHO con plásmido para PPARy y el reportero PPREx3-tkLuc:
Los ensayos se realizaron de la siguiente forma: se sembraron las células en placas de cultivo de 24 pocilios y bajo medio DMEM completo, incubándose hasta alcanzar 70% de confluencia. Se realizó una co-transfección en medio de cultivo sin antibiótico ni antimicótico, según se describe a continuación para un pocilio. Se preparó una solución de 50ul/pocillo de opti-PRO conteniendo O^g del plásmido PPARy, O^g de plásmido PPREx3-tk-Luc, 0.075 μg de plásmido pCMVp (β-gal) y O.^g de plasmado Tk-luc. Adicionalmente 1 μΐ de lipofectanina (LipofectAMINE 200, GIBCO BRL, USA) se diluyo en 48μ1 de opti-PRO dejándola 5 min. Finalmente ambas soluciones se unen y se incuban por 20 min., antes de ser agregada a las células. Por cada pocilio se remplazó el medio de cultivo completo por 400 μΐ de medio DMEM con 0.5% de SFB, luego de lo cual se agregan 100 μΐ de la mezcla de lipofectamina con los plásmidos y se dejaron transfectar por un período de 6 horas en la estufa de cultivo. Finalizado ese periodo las células son lavadas y luego mantenidas en medio DMEM 2% SFB durante la adición e incubación con los diferentes tratamientos por 16 horas. Una vez finalizado los tratamientos, se aspiró el medio de cultivo y las células fueron lavadas con PBS lx frío, luego de lo cual se añadió lOOul de solución de lisis del kit de luciferasa (Luciferase Assay System El 500, Pomega Corp, USA) en cada pocilio, pipeteando repetidas veces para lograr la lisis y homogenización de las células. El Usado fue traspasado a tubo eprendorf y se centrifugó a 12.000 rpm por 5 min. Del sobrenadante se separaron 20μ1 para determinar la Luciferasa y 50 μΐ para determinar la actividad β-galactosidasa (β-galactosidase Enzime Assay System, Pomega Corp, USA ). Los resultados corresponden al cálculo de la actividad relativa, Luciferasa/ -gal que se expresa en las gráficas como las veces de activación ó aumento de los tratamientos respecto al basal (DMSO). Transfección de células PC 12- γ!4 con el reportero PPREx3-tkLuc:
Se utilizaron células PC12-yl4, las cuales sobre expresan establemente PPARy, por lo que solamente fueron trasfectadas con el gen reportero PPRE-tk-Luc. Las células fueron sembradas en placas de 24 pocilios, con lOOxlO5 células/pocilio, en medio completo y se dejaron hasta el día siguiente, alcanzando 70% de confluencia. Brevemente se describe la transfección por pocilio. Se preparó una solución de 50ul/pocillo de opti-PRO conteniendo O^g de PPREx3-tk-Luc, 0.075 μg de pCMVp. Adicionalmente Ιμΐ de lipofectanina se diluyo en 48μ1 de opti-PRO dejándola 5 min. Finalmente ambas soluciones se unen y se incuban por 20 min. Antes de ser agregada a las células. Por cada pocilio se remplazó el medio de cultivo completo por 400 μΐ de medio RPMI con 0.5% de HS (horse serum), luego de lo cual se agregan 100 μΐ de la mezcla de lipofectamina con los plásmidos, dejándose incubar 16 hrs. Finalizada la transfección se iniciaron los tratamientos, los que se realizaron en medio RPMI con 2% de HS. Una vez finalizado los tratamientos el protocolo de determinación sigue igual a lo visto anteriormente.
En las gráficas del los estudios transcripcionales se expresan los resultados como veces de activación ó actividad relativa de Luciferasa/ -Gal respecto al su Control: Esto quiere decir que en el eje de las ordenadas el control toma un valor de 1 y sube consecutivamente 1, 2, 3, etc....).
Experimento 1 (descrito en Figura 3/10)
Comparación entre extracto de alga fresca sin daño (AF) y alga tratada en ultraturrex con PBS (ATPBS).
Con la finalidad de corroborar que es necesaria la inducción de un daño del alga previamente al proceso de extracción, buscando la generación de compuestos activos, nosotros comparamos los extractos lipidíeos obtenidos desde alga fresca entera sin daño y alga molida con ultraturrex en PBS. Especificaciones del Ensayo descrito en la figura 3/10
Co-transfección de células CHO con plásmido para PPARy y el reportero PPREx3-tkLuc: Las células se co-transfectaron con una batería de plásmidos para sobre expresar transitoriamente PPRAy (plásmido vCMV-PPARy) y el gen reportero Luciferasa (plásmido PPREx3-tk-Luc). Adicionalmente se transfectó el plásmido de β-galactosidasa (plásmido pCMVp). Los ensayos se realizaron de la siguiente forma: se sembraron las células a una concentración de 100x105 cel/pocillo, en placas de cultivo de 24 pocilios y bajo medio DMEM completo, incubándose por durante 16 hrs, y alcanzando 70-80% de confluencia. Se realizó una co-transfección en medio de cultivo sin antibiótico ni antimicótico, según se describe a continuación para un pocilio. Se preparó una solución de 50ul/pocillo de opti-PRO conteniendo 0^g del plásmido PPARy, 0^g de plásmido PPREx3-tk-Luc, 0.075 μg de plásmido pCMVp (β-gal) y 0.14μg de plasmado Tk-luc. Adicionalmente Ιμΐ de lipofectanina (LipofectAMINE 200, GIBCO BRL, USA) se diluyo en 48μ1 de opti-PRO dejándola 5 min. Finalmente ambas soluciones se unen y se incuban por 20 min., antes de ser agregada a las células. Por cada pocilio se remplazó el medio de cultivo completo por 400 μΐ de medio DMEM con 0.5% de SFB, luego de lo cual se agregan 100 μΐ de la mezcla de lipofectamina con los plásmidos y se dejaron transfectar por un período de 6 horas en la estufa de cultivo. Finalizado ese periodo las células son lavadas y luego mantenidas en medio DMEM 2% SFB durante la adición e incubación con los diferentes tratamientos por 16 horas. Los tratamientos fueron: DMSO 0.02%, el control positivo Rosiglitazona [luM] y extracto de alga fresca (AF) y alga dañada con ultraturrex en PBS (ATPBS) ambas a 40 | ig/ml]. Una vez finalizado los tratamientos, se aspiró el medio de cultivo y las células fueron lavadas con PBS lx frío, luego de lo cual se añadió lOOul de solución de lisis del kit de luciferasa (Luciferase Assay System El 500, Pomega Corp, USA) en cada pocilio, pipeteando repetidas veces para lograr la lisis y homogenización de las células. El lisado fue traspasado a tubo eprendorf y se centrifugó a 12.000 rpm por 5 min. Del sobrenadante se separaron 20μ1 para determinar la Luciferasa y 50 μΐ para determinar la actividad β-galactosidasa (β-galactosidase Enzime Assay System, Pomega Corp, USA). Los resultados corresponden al cálculo de la actividad relativa, Luciferasa/p-gal que se expresa en las gráficas como las veces de activación ó aumento de los tratamientos respecto al basal (DMSO). Comentario de los resultados:
Nuestros resultados indican que el extracto de alga AF y ATPBS inducen significativamente la actividad relativa de Luciferasa en 1.39 y 1.93 veces la actividad del control. Sin embargo el extracto ATPBS fue un 28% superior a AF, lo que indica un incremento significativo (p<0.001) de actividad debido al daño ejercido con ultraturex. Como era de esperar RZG el control positivo de PPARy incrementó de hasta 2,5 veces el control (p<0.001). Experimento 2 (descrito en Figura 4/10)
Comparación entre extracto de alga tratada en ultraturrax con PBS (ATPBS) y el alga picada manualmente con cuchillo (AP). Con la finalidad comparar los extractos de alga obtenido mediante dos protocolos de generación de daño, uno bajo medio líquido y picado con ultraturrex (ATPBS) y el otro picando el alga manualmente con cuchillo en seco y expuesto al aire (AP) (según protocolo del ejemplo N°l), se realizó un ensayo de actividad transcripcional de PPARy en células PC12-yl4, las cuales sobre expresan establemente PPARy y fueron trasfectadas con el gen reportero PPRE-tk-Luc.
Especificaciones del Ensayo descrito en la figura 4/10:
Transfección de células PC12- γ!4 con el reportero PPREx3-tkLuc:
Se utilizaron células PC 12-Y14, las cuales sobre expresan establemente PPARy, por lo que solamente fueron trasfectadas con el gen reportero PPRE-tk-Luc. Las células fueron sembradas en placas de 24 pocilios, con lOOxlO5 células/pocilio, en medio completo y se dejaron hasta el día siguiente, alcanzando 80 de confluencia. Brevemente se describe la transfección por pocilio. Se preparó una solución de 50ul/pocillo de opti-PRO conteniendo 0^g de PPREx3-tk-Luc, 0.075 μg de pCMVp. Adicionalmente Ι μΐ de lipofectanina (LipofectAMINE 200, GIBCO BRL, USA) se diluyo en 48μ1 de opti-PRO dejándola 5 min. Finalmente ambas soluciones se unen y se incuban por 20 min. Antes de ser agregada a las células. Por cada pocilio se remplazó el medio de cultivo completo por 400 μΐ de medio RPMI con 0.5% de HS (horse serum), luego de lo cual se agregan 100 μΐ de la mezcla de lipofectamina con los plásmidos, dejándose incubar 16 hrs. Finalizada la transfección se iniciaron los tratamientos, los que se realizaron en medio RPMI con 2% de HS. Los tratamientos fueron, DMSO 0.02%, Rosiglitazona [1 μΜ] y el extracto de alga ATPBS y AP en concentraciones de 50 y 100 |^g/ml] cada una de ellas, los que se mantuvieron por 16 hrs. Una vez finalizado los tratamientos, se aspiró el medio de cultivo y las células fueron lavadas con PBS lx frío, luego de lo cual se añadió lOOul de solución de lisis del kit de luciferasa (Luciferase Assay System El 500, Pomega Corp, USA) en cada pocilio, pipeteando repetidas veces para lograr la lisis y homogenización de las células. El Usado fue traspasado a tubo eprendorf y se centrifugó a 12.000 rpm por 5 min. Del sobrenadante se separaron 20μ1 para determinar la Luciferasa y 50 μΐ para determinar la actividad β-galactosidasa (β-galactosidase Enzime Assay System, Pomega Corp, USA).
Comentario de los resultados:
Nuestros resultados indican que el extracto de alga ATPBS y AP inducen significativamente la actividad de Luciferasa respecto al control. Se aprecia que la concentración de 100 μg/ml] alcanza un incremento de 1.5 para ATPBS y 2.6 para AP (p<0.001), siendo esta última un 42% superior. Ello indica que el picado manual controlado genera una mejor producción de activadores de PPARy que el picado con ultraturrex y PBS. Como era de esperar RZG el control positivo de PPARy incrementó de hasta 2,5 veces el control (p<0.001)
Integración Experimental 3 (descrita en Figura 5/10)
Diferencia porcentual en la capacidad de activar PPARy entre los extractos provenientes de los protocolos de procesamiento del alga (AF v/s ATPBS v/s AP)
Con el objetivo de comparar la diferencia en la magnitud de aumento de la actividad PPARy, entre los tres protocolos de procesamiento del alga, se realizó un ejercicio que consideró el control positivo RZG de cada estudio como el 100% de la activación. Luego se determino la diferencia porcentual de los tratamientos respecto a este control. Con este valor se pudo determinar la diferencia porcentual entre los tratamientos. Se compararon los tratamientos AF (alga fresca) v/s ATPBS (alga molida lavada con PVS) y ATPBS v/s AP (alga picada), para posteriormente graficarlos.
Si se considera la diferencia porcentual de los estudios de CHO y PC12yl4 que se puede presentar de la siguiente manera: En el caso de las células CHO se obtuvieron los valores en veces de activación de:
RZG: 2,5
AF: 1,39
ATPBS: 1,93
Si se toman las veces de activación de RZG como el 100%, se puede apreciar que AF es un 55,6% y ATPBS un 77,2% del valor de RZG. La diferencia entre ellos es de un 21,6%.
Por otro lado, para el caso de las células con PC12yl4, si los valores en veces de activación con las concentraciones mayores es de:
RZG: 4,4
ATPBS: 1,5
AP: 2,6
Haciendo el mismo ejercicio presentado previamente, con su respectivo valor de RZG, la diferencia entre los tratamientos con alga es de un 25%.
Por lo tanto, se tiene que ATPBS es un 21,6% mayor que AF y que AP es un 25% mayor que ATPBS con lo cual se presenta en la figura 5/10.
Los protocolos de preparación del alga molida y picada se describen a continuación: a) Alga Tratada con Ultraturrex en PBS: Se coloco una cantidad de alga secada con PBS manteniendo la proporción 1 :0,5 Alga/PBS, se colocaron en frascos y se procesan con ultraturrax (6 pulsos de 15 seg con pausas de 30 seg entre cada pulso), seguido a ello se incubaron por 10 min 4°C, y posteriormente se congelaron para su liofílización. Este procesamiento constituye una reacción en ambiente líquido isotónico y con pH regulado que podría asemejar a las condiciones de reacción del alga frente a daño en el ambiente marino. b) Alga Tratada con cuchillo (sin PBS): Se toma una cantidad de alga secada y se pica manual o automáticamente con cuchillas de acero inoxidable de medio golpe a temperatura ambiente (20-24°C), en trocitos entre 1 a 3 mm. Al estar en descongelación, el alga se comporta como un semi-sólido mejorando su presentación para ser picada. Este proceso constituye una reacción en ambiente húmedo del alga frente al daño expuesta al aire. Comentario de los resultados:
En la gráfica se aprecia una clara diferencia porcentual en la capacidad de activar PPARy entre los diferentes procesamientos del alga. El extracto proveniente de ATPBS es un 21,6% mayor que AF, mientras que AP es un 25% mayor que ATPBS. Esto muestra claramente que el mejor sistema de procesamiento de alga lo constituye el proceso que inicia con un picado del alga manual con cuchillo correspondiente a nuestro proceso inventivo.
Experimento 4 (descrito en Figura 6/10) Comparación de extracción con diferentes solventes
Con el fin de comparar el uso de solventes con diferente polaridad en la eficiencia de recuperación de actividad transcripcional de PPARy en la oleorresina se usaron iguales peso de alga liofilizada y se extrajeron con los mismos volumen y procedimiento general descrito anteriormente en ejemplo de aplicación en la preparación de la oleorresina. Posteriormente se midió la actividad transcripcional de los diferentes extracto para PPARy los que se expresan como actividad relativa al control (sin adiciones) como barras + D.S. En el eje de las ordenadas, expresado numéricamente se presenta la actividad transcripcional relativa de PPARy.
En el eje de las ordenadas están las diferentes pruebas extractivas con diferentes solventes, a) Control (sin adiciones);
b) Diclorometano;
c) Etil acetato;
d) Hexano;
e) Methanol Comentario de los resultados
Los resultados muestran que el solvente más efectivo en la extracción de una preparación activa es el diclorometano. Experimento 5 (Descrito en Figura 7/10)
Estabilidad de la actividad transcripcional de PPARY en la oleorresina almacenada baio Argón a -20° La oleoresina fue congelada a -20° C por 0,4,6 y 9 semanas en atmósfera de argón determinándose luego la actividad transcripcional (50 μg/ml; barras negras; ctr: solo solvente) de PPARydeterminado. Como control positivo (barras blancas) se determinó la actividad en ausencia (ctr) y presencia de Rosiglitazone (RGZ) 1 μπι. Comentario de los resultados
El experimento muestra que no hay pérdida de actividad transcripcional de PPARy luego de hasta 9 semanas de almacenamiento a -20° em urna atmósfera inerte. Experimento 6 (Descrito en Figura 8/10)
Extracto de Alga induce la activación de la transcripción del reportero PPRE(3x)-tk- Luc de manera PPARy dependiente:
El elemento de respuesta a proliferadotes peroxisomales (PPRE) es una secuencia consenso que eventualmente puede unir a otras isoformas de los PPAR, por lo que nosotros debíamos verificar si la respuesta observada con nuestro extracto de alga dependía exclusivamente de la activación de PPARy y no de otra isoforma del receptor ó de alguna interferencia celular. Por lo tanto decidimos confirmar nuestro resultado utilizando en nuestro ensayo un antagonista selectivo de PPARy que inhibe completamente la actividad transcripcional del receptor, lo cual nos permitiría corroborar que los efectos del extracto de alga son exclusivamente dependientes de la activación de PPARy. Principios del ensayo:
Para este ensayo utilizamos una línea celular que sobre expresa constitutivamente PPARy, denominadas PC12-yl4, las cuales solo se transfectan con el sistema de reportero (PPRE-tk-Luc). Previo a iniciar el tratamiento algunos puntos experimentales son preincubados con el antagonista selectivo de PPARy, con lo cual se inhibe la acción de este receptor y como consecuencia disminuye drásticamente los valores relativos de luciferasa detectados.
Especificaciones del ensayo:
Transfección de células PC12- yl4 con el reportero PPREx3-tkLuc: Las células fueron sembradas en placas de 24 pocilios, con 100x105 células/pocilio, en medio completo y se dejaron hasta el día siguiente, alcanzando 80 de confluencia. Brevemente se describe la transfección por pocilio. Se preparó una solución de 50ul/pocillo de opti-PRO conteniendo 0^g de PPREx3-tk-Luc, 0.075 μg de pCMVp. Adicionalmente Ιμΐ de lipofectanina (LipofectAMINE 200, GIBCO BRL, USA) se diluyo en 48μ1 de opti-PRO dejándola 5 min. Finalmente ambas soluciones se unen y se incuban por 20 min. antes de ser agregada a las células. Por cada pocilio se remplazó el medio de cultivo completo por 400 μΐ de medio RPMI con 0.5% de HS, luego de lo cual se agregan 100 μΐ de la mezcla de lipofectamina con los plásmidos, dejándose incubar 16 hrs. Finalizada la transfección se iniciaron los tratamientos, los que se realizaron en medio RPMI con 2% de HS. Dos grupos de tratamientos se utilizaron, en uno de ellos las cuales las células fueron pre-tratadas con el antagonista de PPARy T0070907 [10μΜ] por 1 hr., y otras células se incubaron sin el antagonista. Los tratamientos fueron, DMSO 0.02%, Rosiglitazona [1 μΜ] y el extracto de alga en 50 [mg/ml], los que se mantuvieron por 16 hrs. Una vez finalizado los tratamientos, se aspiró el medio de cultivo y las células fueron lavadas con PBS lx frío, luego de lo cual se añadió lOOul de solución de lisis del kit de luciferasa (Luciferase Assay System E1500, Pomega Corp, USA) en cada pocilio, pipeteando repetidas veces para lograr la lisis y homogenización de las células. El Usado fue traspasado a tubo eprendorf y se centrifugó a 12.000 rpm por 5 min. Del sobrenadante se separaron 20μ1 para determinar la Luciferasa y 50 μΐ para determinar la actividad β-galactosidasa (β-galactosidase Enzime Assay System, Pomega Corp, USA).
Comentario de los Resultados:
Los resultados muestran un dramático efecto del antagonista. En las células sin la presencia del inhibidor, tanto el extracto de alga como RZG aumentan significativamente la actividad de la luciferasa en 2.7 y 4.8 veces respectivamente como era de esperar de acuerdo a los resultados anteriores. En presencia del inhibidor, el efecto del alga es bloqueado totalmente, llegando incluso a valores inferiores que el basal. En el caso de la RZG bloquea su acción en un 70% aproximadamente, lo que se condice con su acción específica y potente sobre PPARy. Estos resultados nos confirman que los efectos de nuestro extracto dependen exclusivamente de la activación específica de PPARy, corroborando los ensayos de co- transfección anteriormente descritos.
Experimento 7 (Descrito en Figura 9/10)
Recuperación de la sensibilidad a la insulina en ratones alimentados con dietas ricas en grasas, luego del tratamiento con extracto de Alga Los activadores sintéticos de PPARy son reconocidos por inducir una recuperación de la sensibilidad a la insulina en pacientes diabéticos o resistentes a la insulina. Para determinar si nuestro extracto de Alga originaba una recuperación de la sensibilidad a la insulina, se realizó un ensayo donde se administró nuestro extracto a ratones con resistencia a la insulina. Para analizar el efecto de nuestro extracto se determinaron los valores de glucosa e insulina plasmática.
Principios del ensayo:
La cepa de ratones C57B1/6J presentan una mayor susceptibilidad a desarrollar resistencia a la insulina debido a una alimentación con exceso de ingesta calórica. La alimentación de ellos con dietas ricas en grasas (High Fat Diet=HFD) por un período de 12 semanas genera una condición patológica con u incremento de los valores sanguíneos de Glucosa e Insulina. Se conoce que la administración de RZG genera una disminución de estos valores indicando una recuperación de la sensibilidad a la insulina. Nosotros utilizamos este modelo experimental para probar y comparar los efectos de nuestro extracto de alga.
Especificaciones del Ensayo:
Estudio presentado en la figura 6/10 en ratones resistente a la insulina: 50 ratones C57BL/6J de 6 semanas de edad, desde Jackson Laboratory, fueron separados al azar y mantenidos de 3 ó 4 ratones por caja. Adicionalmente los ratones fueron separados en dos grupos de alimentación. 10 ratones se alimentaron con dieta comercial Low Fat Diet (LFD), la que contiene 10% de Kcal en base materia grasa animal, mientras que 40 ratones fueron alimentados con dieta High Fat Diet (HFD), que contiene 60% de Kcal en base a materia grasa animal. Los ratones se alimentaron ad libitum y fueron pesados 3 veces por semanas durante todo es estudio. Luego de 12 semanas alimentación con las dietas LFD y HFD, se obtuvo una muestra de sangre de cada ratón para determinar los parámetros sanguíneos de Glucosa e Insulina. Estas determinaciones nos indicaron que los ratones alimentados con dieta HFD presentaban características concordantes con resistencia a la insulina. En este momento se iniciaron los tratamientos, los que fueron administrados una vez al día mediante gavage (sondaje gastro-esofágico), por un período de 30 días. Para ello se tomaron 10 ratones por grupo de tratamiento, tal como sigue: A) como control de dieta normal ó ratón sano, se trataron ratones LFD tratados con el vehículo Corn Oil (aceite de maíz); B) como control de ratón resistente a la insulina, se trataron ratones HFD con Corn Oil; C) ratones HFD tratados con RZG 5mg/kg como control positivo; D) Ratones HFD tratados con extracto de alga a 90 mg/kg (en una mezcla 1 :3 con Corn Oil), y E) ratones HFD tratados con extracto de alga a 300 mg/kg (en una mezcla 1 : 1 con Corn Oil). El volumen diario administrado fue de aproximadamente 50 μΐ. Luego de finalizado el tratamiento se obtuvo una nueva muestra de sangre mediante punción del seno submandibular, para determinar los valores sanguíneos mencionados y evaluar la recuperación de la sensibilidad a la insulina.
Determinación de los parámetros sanguíneos: a) Para la determinación de Glucosa Plasmática se utilizó un kit comercial basado en la siguiente reacción:
glucosa oxidasa
glucosa + 02 + H20 ► ácido glucónico + H202
peroxidasa
2 H202 + 4-AF + 4-hidroxibenzoato 1 quinoniminaroja
Los volúmenes de reacción originales se modificaron para hacerlo en multiplacas de 96 pocilios, utilizando poco volumen de muestra. De cada muestra se utilizó un total de 6 μΐ, distribuidos en tres pocilios con 2 μΐ por pocilio. A cada pocilio se le agregó 300 μΐ de reactivo enzimático a 25°C y se incubo por 20 min a temperatura ambiente. La medición espectrofotométrica se realizó a 490 nm en un lector ELISA. b) Para la Insulina Plasmática se utilizó el protocolo incluido en el kit de ELISA para insulina, el cual se explica brevemente a continuación: Se utilizaron multiplacas de 96 pocilios que vienen previamente recubiertas con el anticuerpo primario (Mouse monoclonal anti-insulin). De cada muestra se agregó 5μ1 utilizaron por triplicado, y lo mismo ocurrió para cada uno de los estándares, luego de lo cual adicionó 75 μΐ de solución de trabajo con el anticuerpo conjugado (HRP-monoclonal anti-insulin antibody) a cada pocilio y se incubo por 2 hrs a temperatura ambiente. Posteriormente los pocilios se lavaron 6 veces con buffer de lavado y se agregó 100 μΐ de sutrato TMB (tetrametilbenzidina), incubando 30 min a temperatura ambiente. Finalmente se agregó 100 μΐ de solución de detención de reacción. Las microplacas se leyeron a 450 nm. Comentarios de los resultados:
El análisis de los parámetros sanguíneos finalizado el período de tratamientos, muestra que los ratones con la dieta HFD controles (Corn Oil), mantienen un incremento estadísticamente significativo de la glicemia respecto a los controles de la dieta LFD, similar a lo visto previo al inicio de los tratamientos (datos no mostrados). En el grupo de los ratones del grupo HFD tratados con 300 [mg/kg] del extracto de Alga, se indujo una completa recuperación de los niveles de de glucosa sanguínea (pO.001), alcanzando a los niveles de los ratones controles LFD sin resistencia a la insulina. La RZG también tuvo un efecto positivo disminuyendo la glicemia (p<0.05), si bien la recuperación solo fue la mitad de lo encontrado con el extracto de alga. En el caso del alga a concentraciones menores (90 mg/kg), este es casi idéntico al de la RZG, estando cerca de la significancia estadística (p<0.06). En cualquier caso podemos corroborar que nuestro extracto de alga tiene un efecto claramente beneficioso en la recuperación de los niveles normales de glucosa sanguínea. Al evaluar la insulina plasmática, los ratones controles HFD mantuvieron niveles altos respecto a su contraparte LFD al igual que lo ocurrido con la glicemia. Se observo además que en los ratones HFD tratados con el extracto de alga a una concentración de 90 [mg/kg] ya indujo una disminución significativas de la Insulina (p<0.05), observando su máximo efecto a 300 [mg/kg] (p<0.01), llegando a valores cercanos al 50% de las concentraciones encontradas en el grupo control HFD resistente a la insulina. Por otra parte el ligando sintético de PPARy (RZG), también generó la disminución de Insulina (p>0.001), alcanzando prácticamente a los niveles de los ratones con controles LFD.
Como conclusión se puede apreciar que el extracto en un período muy breve de tratamiento y en ratones resistentes a la insulina alimentados con dieta rica en grasa, induce una recuperación de los valores sanguíneos encontrados en los ratones alimentados con dieta normal. Debido a las condiciones experimentales consideramos que es un efecto muy significativo de nuestro extracto en la condición de resistencia a la insulina. Es muy posible que estos efectos puedan tener relación con la capacidad del extracto de alga para activar el receptor nuclear PPARy, similar a lo que ocurre con los ligandos sintéticos como la RGZ, si bien aún no ha sido confirmado experimentalmente por nosotros.
Experimento 8 (descrito en Figura 10/10)
Efecto neuro-protector de la oleorresina en el volumen de infarto cerebral en un modelo en rata.
Descripción Experimental
Las ratas de cada grupo experimental fueron puestas en cambio de ciclo de luz invertido de 12:12 horas durante las 2 primeras semanas de mantención. Los animales fueron tratados con Rosiglitazona, oleoresina y Vehículo (aceite de maíz) 24 horas antes de realizado el infarto cerebral focal por 5 días consecutivos a través de la técnica de Gavage (sonda gástrica). Se utilizaron 500 μΐ de volumen para cada tratamiento y una dosis de 2,5mg/kg/día para la Rosiglitazona y 800mg/kg/día para oleoresina. Los grupos experimentales fueron los siguiente: Grupo 1: Ratas sin infarto tratadas con vehículo (n8), Grupo 2: Ratas con infarto tratadas con vehículo (n5), Grupo 3: Ratas con infarto tratadas con Rosiglitazona (n7), Grupo 4: Ratas con infarto tratadas con oleoresina (n8).
El procedimiento quirúrgico para la lesión cerebral se realizó con el vasoconstrictor endotelin-1 (Et-1) aplicado de forma local. Se utilizó el anestésico en gas isoflurano en dos etapas. La primera de estas fue la etapa de inducción, la cual fue realizada en una cámara de acrílico con una solución gaseosa de 4% de isoflurano en oxígeno medicinal (99,5% de 02) mezclado con aire y suministrado a 6 SCFH ("standard cubic feet per hours") por 4 minutos. Luego de esto, los animales sedados fueron colocados en el aparato estereotáxico con una dosis de mantención de 1-2% de isoflurano disuelto en oxígeno medicinal (99,5% de 02) mezclado con aire y suministrado a 6 SCFH. El periodo de mantención fue según los requerimientos de las cirugías. Las inyecciones de Et-1 (400 pmol/ul en solución salina 0.9%), correspondientes a la región de la corteza motora primaria y a la región de la corteza somatosensorial, se realizaron en las coordenadas estereotáxicas referentes a bregma: antero- posterior (AP) + 0,0; medio lateral (ML) 2,5; dorso-ventral (DV) -2,1 y AP +2,3; ML 2,5; DV -1,9, con una aguja Hamilton de 28G acoplada a una jeringa Hamilton de 10 μΐ en un sistema de inyección automático (KdScientifíc, modelo KDS-310-plus, Helliston, USA). El microinyector fue ajustado para realizar inyecciones a una velocidad de 0.25μ1/ηιίη en dos inyecciones consecutivas de 50μ1 con 1 minuto de espera entre cada una. Ambas regiones fueron inyectadas de la misma manera, esperando 2 minutos con la aguja dentro del cerebro y subiendo 0, 1 mm antes de proceder a inyectar. Para evitar que la solución salga luego de la inyección se esperaron 3 minutos antes de retirar la aguja de la región inyectada.
Al día 5 los animales fueron sacrificados y se procedió a la extracción del cerebro de la cavidad craniana. Los cerebros fueron rebanados en secciones coronales de 2mm y teñidos con la tinción vital TTC (2,3,4-triphenyltetrazolium cloride) por inmersión a 37°C durante 30 minutos en oscuridad, mantenidas 24 horas en sacarosa 20% disuelta en buffer fosfato salino (PBS) 0,1 M, pH 7,4 y fijadas en paraformaldehído al 4% disuelto en PBS durante 24 horas. Posteriormente, los cerebros fueron congelados en nitrógeno líquido y criopreservados a - 80°C. Las secciones teñidas con TTC fueron escaneadas y analizadas usando el programa Image J (NIH, Bethesda), para luego determinar el porcentaje al que corresponde el área de la región infartada con respecto al área total del hemisferio ipsilateral. El porcentaje del volumen infartado se obtiene sumando el área infartada (Ai) de cada corte, dividiendo el resultado por la suma del área total del hemisferio infartado (A) y multiplicando el cociente por cien [(∑Ain)*2mm/(∑An)*2mm]* 100.
Comentarios de los resultados Los resultados muestran que la oleoresina a la dosis usada disminuye el área infartada en forma tan eficiente como la rosiglitazona, uno de los agonistas más potentes de PPARy
BIBLIOGRAFÍA
Bordoni A, Di Nunzio M, Danesi F and. Biagi PL (2006). "Polyunsaturated fatty acids: from diet to binding to ppars and other nuclear receptors". Genes & Nutrition. 1 (2): 95-106.
Bouarab K, Adas F, Gaquerel E, Kloareg B, et al (2004). "The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways". Plant Physiology 135: 1838- 48.
Cortón C, Anderson SP, Stauber A.(2000), "Central role of peroxisome proliferaror-activated receptors in the action of peroxisome proliferators". Annu Rev. Pharmacol Toxicol. 40: 491- 518.
Gerwick WH and Bernart MW. (1993). "Eicosanoids and Related Compounds From Marine Algae". Marine Biotechnology. Plenum Press. Cap4: 101-151.
Harris PK, Kletzien RF (1994). "Localization of a pioglitazone response element in the adipocyte fatty acid-binding protein gene". Mol. Pharmacol. 45:439-445.
Kendall C, Wooltorton E. (2006). "Rosiglitazone (Avandia) and macular edema". CMAJ. 174(5):623.
Kletzien RF, Clarke SD, Ulrich RG (1992). "Enhancement of adipocyte differentiation by an insulinsensitizing agent". Mol. Pharmacol. 41 :393-398.
Lee HJ, Kim HC, Vitek L, Nam CM (2010). "Algae consumption and risk of tipe 2 diabetes: Korean national health and nutrition examination survey in 2005". J. Nutr Sci Vitaminol, 56: 13-18.
Lehmann JM, Moore LB, Smith-Oliver TA, et al (1995). "An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor -g". J. Biol. Chem. 270: 12953-56.
Liebezeit G (2005). "Aquaculture of "Non-Food Organisms" for Natural Substance Production". Adv Biochem Engin/Biotechnol, 97: 1-28.
Lion U, Wiesem eier T, Weinberger F, Beltrán J, et al (2006). "Phospholipases and GalactolipasesTrigger Oxylipin-Mediated Wound-Activated Defence in the Red Alga Gracilaria chilensis against Epiphytes". Chem. Bio. Chem. 7: 457-462.
Mayer AMS and Hamann MT. ( 2005). "Marine pharmacology in 2001-2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti- inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action". Comparative Biochemistry and Physiology, Part C 140: 265 - 286.
Nagy L, Tontonoz P, Alvarez JGA, et al (1998). "Oxidized LDL regulates macrophage gene expression through ligand activation of PPARg". Cell. 93:229-240. Nikolaidis LA, Levine TB. (2004). "Peroxisome proliferator activator receptors (PPAR), insulin resistance, and cardiomyopathy: friends or foes for the diabetic patient with heart failure?". Cardiol Rev. 12(3): 158-70.
Singh S, Loke YK, Furberg CD (2007). "Long-term Risk of Cardiovascular Events With Rosiglitazone". A Meta-analysis. JAMA. 298(10) 1189-95.
Smit AJ. (2004). "Medicinal and pharmaceutical uses of seaweed natural products: A review". Journalof Applied Phycology 16: 245-262.
Stefanov K, Konaklieva M, Brechany EY, and Cristie WW (1988). "Fatty acid composition of some algae from the Black Sea". Phytochemistry 27: 3495-97.
Tontonoz P, Graves R, Budavari A, et al (1994). "Adipocyte-specific transcription factor ARF 6 is a heterodimeric complex of two nuclear hormone receptors, PPARg and RXRa". Nucleic Acids Res. 22:5628-34.
Willson TM, Brown PJ, Sternbach DD, Henke BR (2000). "The PPARs: from orphan receptors to drug discovery". J. Med. Chem. 43:527-550.
Xu HE, Lambert MH, Montana VG, et al (1999). "Molecular recognition of fatty acids by peroxisome proliferator-activated receptors". Mol. Cell 3:397-403.

Claims

REIVINDICACIONES
1. - Procedimiento de Preparación de una oleorresina manteniendo capacidad de inducir la actividad transcripcional sobre el receptor PPARy desde un alga roja, CARACTERIZADO porque comprende las siguientes etapas:
a) Extracción y transporte del alga fresca a baja temperatura;
b) preparación y picado del alga;
c) secado por liofilización;
d) pulverización con extracción sólido-líquido discontinua de la oleorresina; y
e) eliminación de solventes.
2. - Procedimiento de Preparación según la reivindicación 1, CARACTERIZADO porque en las etapas a, c y e se puede almacenar el producto sem i-elaborado y final por largos períodos de tiempo, de preferencia 1 año, manteniendo la capacidad inductora original.
3. - Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa a comprende la extracción del alga que puede ser manual y/o automática.
4.- Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa a comprende la extracción del alga viva y entera, extraída directamente del sustrato marino y/o en cultivo marino.
5. - Procedimiento de preparación según la reivindicación 4, CARACTERIZADO porque la extracción del alga viva y entera se realiza con el objetivo de preservar la integridad celular, evitando inducir una respuesta metabólica temprana frente al daño.
6. - Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa a) comprende la extracción de un alga roja, de preferencia Gracilaria chilensis.
7. - Procedimiento de preparación según la reivindicación 6, CARACTERIZADO porque la etapa a) comprende la extracción de un alga roja, de preferencia extraída de tamaño igual o superior a 60 cm de largo.
8.- Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa b) comprende las sub-etapas de lavado con una solución tampón, secado por centrifugación del alga, almacenamiento al vacío en frío, descongelamiento hasta 4°C, lavado con solución tampón, secado por centrifugación, picado automático y/o manual con cuchillo y congelamiento corto.
9. - Procedimiento de preparación según la reivindicación 8, CARACTERIZADO porque la etapa b) comprende el lavado con una solución tampón, de preferencia una solución tampón fosfato salino (PBS) al 1%, luego la centrifugación de forma manual y/o automática, está en el rango de los 500 RPM, y finalmente el almacenamiento al vacio a -20°C.
10. - Procedimiento de preparación según la reivindicación 8, CARACTERIZADO porque en la etapa b) permite acumular materia prima cuando se trabaja con sobre-stock de alga, aprovechando la abundancia estacional de la misma.
11.-.Procedimiento de preparación según la reivindicación 8, CARACTERIZADO porque la etapa b) comprende_después del almacenamiento del alga a -20°C, su descongelación a 4°C para generar un estrés moderado en la estructura del alga pero no en sus células, para finalmente lavar con PBS y secar.
12. - Procedimiento de preparación según la reivindicación 8, CARACTERIZADO porque el cortado con cuchillo, es rápida con el fin de generar una respuesta de la defensa del alga, se puede picar manual y/o automáticamente con cuchillas de acero inoxidable de medio golpe a temperatura ambiente (20-24°C), en trocitos entre 1 a 3 mm.
13. - Procedimiento de preparación según la reivindicación 12, CARACTERIZADO porque el cortado con cuchillo se hace con el alga cuando se comporta como un semi-sólido, mejorando su presentación para ser picada.
14. - Procedimiento de preparación según la reivindicación 8, CARACTERIZADO porque el congelamiento corto se realiza entre los -20°C A -80°C, para luego liofilizar el extracto.
15. - Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa c) comprende el congelamiento de la muestra en un rango entre las 12 y 48 horas de preferencia 24 horas, a una temperatura en el rango de entre -20°C y -90°C, de preferencia - 50°C; a un rango de presión de 0.001 mbar a 0,03 mbar, de preferencia una presión de 0,014 mbar, después de este proceso se obtiene un producto deshidratado el cual es almacenado en bolsas al vacío a -20°C.
16. -Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa d) comprende las sub-etapas de: Temperado y Pulverizado del alga liofilizada, y Extracción sólido-líquida discontinua.
17.- Procedimiento de preparación según la reivindicación 16, CARACTERIZADO porque el temperado es realizado hasta temperatura ambiente en un rango de entre 20 a 24 °C y el Pulverizado del alga liofilizada se realiza con un molinillo de café generando un tamaño de partícula inferior a 1/2 mm.
18.- Procedimiento de preparación según la reivindicación 16, CARACTERIZADO porque la extracción sólido-líquida discontinua, utiliza alga en polvo y que se le adiciona un solvente polar, de preferencia diclorometano en una atmosfera saturada de un gas inerte, de preferencia nitrógeno, y se mantienen con agitación horizontal en un rango de temperatura de 25°C a 45°C, de preferencia 34°C, y por un rango de entre 10 y 120 minutos, de preferencia 30 minutos, para luego ser filtrado al vacio a través de papel , recibiendo la forma líquida oleosa en un contenedor y re-suspendiendo la forma sólida nuevamente con el mismo solvente, luego la forma líquida acumulada se concentra por rota-vapor en un rango de temperatura entre los 20°C a 50°C, de preferencia 37°C-39°C, generándose una oleorresina semi-terminada con trazas del diclorometano.
19.- Procedimiento de preparación según la reivindicación 1, CARACTERIZADO porque la etapa e) comprende el secado de la oleorresina semi-terminada con un gas inerte, de preferencia nitrógeno hasta alcanzar peso constante y luego se re-suspende en un volumen mínimo de ciclohexano, para luego ser congelada rápidamente a -80°C y ser liofilizada por 24 hrs, obteniendo finalmente la oleorresina sin solventes, esta oleorresina es almacenada bajo atmósfera saturada de gas inerte de preferencia argón a -20°C.
20.- Una oleorresina, CARACTERIZADA por ser elaborada de acuerdo con el procedimiento de preparación descrito en la reivindicación 1.
21. - Uso de una oleorresina según la reivindicación 20, CARACTERIZADA porque sirve para preparar un medicamento útil para el tratamiento de la diabetes mellitus tipo II.
22. - Uso de una oleorresina según la reivindicación 20, CARACTERIZADA porque sirve para preparar un medicamento útil para el tratamiento de la resistencia a la Insulina.
23. - Uso de una oleorresina según la reivindicación 20, CARACTERIZADA porque sirve para preparar un medicamento útil para el tratamiento de enfermedades neurodegenerativas.
24. - Uso de una oleorresina según la reivindicación 23, CARACTERIZADA porque sirve para preparar un medicamento útil para el tratamiento de infartos cerebrales.
PCT/CL2013/000031 2013-05-23 2013-05-23 PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy, WO2014186913A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2013/000031 WO2014186913A1 (es) 2013-05-23 2013-05-23 PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy,

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2013/000031 WO2014186913A1 (es) 2013-05-23 2013-05-23 PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy,

Publications (1)

Publication Number Publication Date
WO2014186913A1 true WO2014186913A1 (es) 2014-11-27

Family

ID=51932689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2013/000031 WO2014186913A1 (es) 2013-05-23 2013-05-23 PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy,

Country Status (1)

Country Link
WO (1) WO2014186913A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077828A (zh) * 2019-12-30 2020-04-28 贵州医科大学 一种适用于医院的智能煎药装置
WO2020257952A1 (es) * 2019-06-28 2020-12-30 Pontificia Universidad Catolica De Chile Efecto antiproliferativo de extracto de agarophyton chilensis en cáncer prostático
WO2021097584A1 (es) 2019-11-22 2021-05-27 Universidad Andres Bello EXTRACTO DE AGAROPHYTON CHILENSIS, RICO EN ÁCIDOS GRASOS LIBRES, COMO NUTRACÉUTICO O SUPLEMENTO NUTRICIONAL ÚTIL PARA MODULAR LA ACTIVIDAD DE PPARγ
DE102020007494A1 (de) 2020-12-08 2022-06-09 Friedrich-Schiller-Universität Jena, Körperschaft des öffentlichen Rechts Antientzündliche Oxylipine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032670A (ko) * 2008-09-18 2010-03-26 관동대학교산학협력단 PPAR의 작용에 의해 조절되는 질환을 예방 또는 치료하기 위한 약학 조성물, PPARγ 작용제, PPARα 작용제, PPAR의 작용에 의해 조절되는 질환을 예방 또는 개선하기 위한 건강식품 및 약학 조성물의 제조 방법
WO2010039024A1 (en) * 2008-09-30 2010-04-08 Universiti Putra Malaysia A composition for wound healing
EP2198713A1 (en) * 2007-09-07 2010-06-23 National University Corporation Hokkaido University Extract of red alga laurencia sp. with organic solvent, and agent for prevention of the settlement of barnacle comprising compound isolated from the extract

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198713A1 (en) * 2007-09-07 2010-06-23 National University Corporation Hokkaido University Extract of red alga laurencia sp. with organic solvent, and agent for prevention of the settlement of barnacle comprising compound isolated from the extract
KR20100032670A (ko) * 2008-09-18 2010-03-26 관동대학교산학협력단 PPAR의 작용에 의해 조절되는 질환을 예방 또는 치료하기 위한 약학 조성물, PPARγ 작용제, PPARα 작용제, PPAR의 작용에 의해 조절되는 질환을 예방 또는 개선하기 위한 건강식품 및 약학 조성물의 제조 방법
WO2010039024A1 (en) * 2008-09-30 2010-04-08 Universiti Putra Malaysia A composition for wound healing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Alga chilena promete ser solución para diabéticos.", 2009, Retrieved from the Internet <URL:http://www.lanacion.cl/prontus_noticias_v2/site/artic/20090729/pags/20090729184847.html>> [retrieved on 20140116] *
LION, U. ET AL.: "Phospholipases and galactolipases trigger oxylipin- mediates wound-activated defence in the red alga Gracilaria chilensis against ephiphytes.", CHEMBIOCHEM, vol. 7, 2006, pages 457 - 462 *
RIOS N. ET AL.: "Actividad antibacteriana and antifúngica of extractos of algas marinas venezolanas.", REV. PERU . BIOL, vol. 16, no. 1, 2009, pages 97 - 100 *
VONTHRON-SÉNÉCHEAU, C. ET AL.: "Antiprotozoal activities of organic extracts from French marine seaweeds.", MAR. DRUGS, vol. 9, 2011, pages 922 - 933 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020257952A1 (es) * 2019-06-28 2020-12-30 Pontificia Universidad Catolica De Chile Efecto antiproliferativo de extracto de agarophyton chilensis en cáncer prostático
WO2021097584A1 (es) 2019-11-22 2021-05-27 Universidad Andres Bello EXTRACTO DE AGAROPHYTON CHILENSIS, RICO EN ÁCIDOS GRASOS LIBRES, COMO NUTRACÉUTICO O SUPLEMENTO NUTRICIONAL ÚTIL PARA MODULAR LA ACTIVIDAD DE PPARγ
CN111077828A (zh) * 2019-12-30 2020-04-28 贵州医科大学 一种适用于医院的智能煎药装置
CN111077828B (zh) * 2019-12-30 2020-12-22 青岛市黄岛区中心医院 一种适用于医院的智能煎药装置
DE102020007494A1 (de) 2020-12-08 2022-06-09 Friedrich-Schiller-Universität Jena, Körperschaft des öffentlichen Rechts Antientzündliche Oxylipine

Similar Documents

Publication Publication Date Title
Liu et al. Effects of emodin and vitamin E on the growth and crowding stress of Wuchang bream (Megalobrama amblycephala)
US20160215269A1 (en) Method for inducing pluripotent stem cells and pluripotent stem cells prepared by said method
WO2014186913A1 (es) PROCEDIMIENTO DE PREPARACIÓN DE UNA OLEORRESINA PROVENIENTE DE UN ALGA ROJA, QUE MANTIENE LA CAPACIDAD DE INDUCIR LA ACTIVIDAD TRANSCRIPCIONAL DEL RECEPTOR NUCLEAR PPARy,
JP2009531326A (ja) 抽出物を含有する摂取可能組成物
JP2015051970A (ja) 化学療法を受けているがん患者向けのアジュバントを製造するための組成物
KR20160064966A (ko) 화학요법제 보조에 사용하는 의약 조성물 및 그 용도
CN105901703B (zh) 一种用于烧伤患者的海洋生物型肠内营养制剂
Shibu et al. Novel anti-aging herbal formulation Jing Si displays pleiotropic effects against aging associated disorders
Wang et al. Polysaccharides from Enteromorpha prolifera ameliorate acute myocardial infarction in vitro and in vivo via up-regulating HIF-1α
Wu et al. North American ginseng inhibits myocardial NOX2-ERK1/2 signaling and tumor necrosis factor-α expression in endotoxemia
US10039798B2 (en) Extracts of rosemary or hemerocallis fulva and methods of using same to promote circadian rhythm
Liu et al. Myocardial infarction induces cognitive impairment by increasing the production of hydrogen peroxide in adult rat hippocampus
Okechukwu et al. The Effect of ethanol leaf extract of Jatropha curcas on chloroform induced hepatotoxicity in Albino rats
KR20160141986A (ko) 홍삼 및 유산균을 함유하는 혈관질환을 예방, 개선 또는 치료하기 위한 조성물
US20130171263A1 (en) Snake Powder Extract For Treatment Of Cancer
Sudhakumari et al. Cardioprotective effects in methanolic extract of Evolvulus alsinoides linn on isoproterenol-induced myocardial infarction in albino rats
ES2745294T3 (es) Un polipéptido de Mormodica Charantia para su uso en la regulación de genes relacionados con la inflamación y el metabolismo de lípidos y de glucosa
Govindarajan et al. Phytochemical and therapeutic evaluation of leaf and in vitro derived callus and shoot of Solanum trilobatum
JP2024504263A (ja) 敗血症を治療するための薬物組成物及びその使用
JP2008303199A (ja) マイタケの脂質抽出物及びゲニステインを含有する抗血管新生組成物
KR20120064218A (ko) 항염활성을 나타내는 윤판나물 추출물
TWI629991B (zh) 牛樟芝在防治心肌肥大及心肌纖維化中的應用
Bi et al. Effects of Callistephus chinensis flower polyphones on improving metabolic disorders in high-fat diet-induced mice
JP2013121941A (ja) 交感神経抑制剤及び交感神経抑制用飲食組成物
KR20050019433A (ko) 식물 추출물을 포함하는 항고콜레스테롤증 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885090

Country of ref document: EP

Kind code of ref document: A1