WO2014185085A1 - Semiconductor storage device - Google Patents

Semiconductor storage device Download PDF

Info

Publication number
WO2014185085A1
WO2014185085A1 PCT/JP2014/051221 JP2014051221W WO2014185085A1 WO 2014185085 A1 WO2014185085 A1 WO 2014185085A1 JP 2014051221 W JP2014051221 W JP 2014051221W WO 2014185085 A1 WO2014185085 A1 WO 2014185085A1
Authority
WO
WIPO (PCT)
Prior art keywords
field effect
type field
effect transistor
gate electrode
effect transistors
Prior art date
Application number
PCT/JP2014/051221
Other languages
French (fr)
Japanese (ja)
Inventor
小野 瑞城
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2014185085A1 publication Critical patent/WO2014185085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Definitions

  • Embodiments described herein relate generally to a semiconductor memory device, and more particularly, to an SRAM (Static Random Access).
  • the present invention relates to a semiconductor memory device having a three-dimensional structure.
  • SNM Static Noise Margin
  • SRAM Static Noise Margin
  • SNM represents the upper limit of the magnitude of noise that is not lost in stored information. If the SNM is zero, the upper limit of the magnitude of the noise that is not lost in the stored information is zero, that is, the stored information is lost in any noise. That means that no noise is allowed, so such SRAM cannot be used.
  • the SNM decreases as the power supply voltage decreases. Therefore, the reduction of the power supply voltage has been restricted due to the decrease of the SNM accompanying the reduction of the power supply voltage.
  • the problem to be solved by the present invention is to provide a semiconductor memory device capable of increasing the SNM under a constant power supply voltage in an SRAM structure.
  • a semiconductor memory device is formed on a semiconductor substrate, first and second p-type field effect transistors and first and second n-type field effect transistors formed on the semiconductor substrate, and the respective transistors. And the third and fourth n-type field effect transistors formed on the insulating film.
  • Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region and each substrate electrode are connected to a wiring whose potential is maintained at the ground potential, and each drain region of the first p-type field effect transistor and the first n-type field effect transistor and the second p-type
  • the gate electrodes of the n-type field effect transistor and the second n-type field effect transistor and the drain region of the third n-type field effect transistor are connected to each other, and the second p-type field effect transistor and the second n-type field effect transistor Each n-type field effect transistor drain region, the first p-type field effect transistor, each gate electrode of the first n-type field effect transistor, and the fourth n-type.
  • a drain region of the field effect transistor is connected to each other, gate electrodes of the third and fourth n-type field effect transistors are connected to a word line, and a source region of the third n-type field effect transistor is a bit And a source region of the fourth n-type field effect transistor is connected to an inverted bit line.
  • the third and fourth n-type field effect transistors have a planar structure, and at least a part of the channel region of the third n-type field effect transistor is a gate of the second p-type field effect transistor.
  • An electrode and a wiring connected to the gate electrode overlap with at least a part of the gate electrode of the second n-type field effect transistor and the wiring connected to the gate electrode when viewed from the normal direction of the semiconductor substrate.
  • the channel region of the fourth n-type field effect transistor includes a gate electrode of the first p-type field effect transistor, a wiring connected to the gate electrode, and the first n-type field effect transistor. Formed so as to overlap at least a part of the gate electrode of the type field effect transistor and the wiring connected to the gate electrode when viewed from the normal direction of the semiconductor substrate It has been.
  • At least one of the field effect transistors constituting the SRAM is formed on the field effect transistor forming the storage node via an insulating film.
  • at least one threshold voltage of the field effect transistor constituting the inverter whose output terminal is the potential of the power supply voltage among the two sets of inverters constituting the SRAM is positive.
  • the threshold voltage of the field effect transistor connecting the output terminal of the inverter and the bit line or the inverted bit line changes in the negative direction.
  • the threshold voltage of at least one of the field effect transistors constituting the inverter of which the output terminal is at the ground potential among the two sets of inverters constituting the SRAM changes in the negative direction, or the output terminal of the inverter
  • the threshold voltage of the field effect transistor connecting the bit line or the inverted bit line changes in the positive direction.
  • FIG. 1 is a circuit configuration diagram showing the semiconductor memory device according to the first embodiment.
  • FIG. 2 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing a schematic structure of the semiconductor memory device according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor memory device according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the semiconductor memory device according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment.
  • FIG. 7 is a characteristic diagram showing a butterfly curve when there is no variation in the threshold voltage, for explaining the performance of the semiconductor memory device according to the first embodiment.
  • FIG. 8A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the first embodiment and showing a butterfly curve when the threshold voltage varies.
  • FIG. 8B is a characteristic diagram illustrating a butterfly curve when the threshold voltage varies in order to explain the performance of the semiconductor memory device according to the first embodiment.
  • FIG. 9 is a bird's-eye view showing the structure of the first modification of the first embodiment.
  • FIG. 10 is a cross-sectional view showing the manufacturing process of the first modification of the first embodiment.
  • FIG. 11 is a bird's-eye view showing the structure of the second modification of the first embodiment.
  • FIG. 12 is a bird's-eye view showing the structure of the third modification of the first embodiment.
  • FIG. 13 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the second embodiment.
  • FIG. 14A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the second embodiment.
  • FIG. 14B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the second embodiment.
  • FIG. 15 is a bird's eye view showing a schematic structure of a semiconductor memory device according to a modification of the second embodiment.
  • FIG. 16A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the second embodiment.
  • FIG. 16B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the second embodiment.
  • FIG. 16A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the second embodiment.
  • FIG. 16B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the second
  • FIG. 17 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the third embodiment.
  • FIG. 18A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the third embodiment.
  • FIG. 18B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the third embodiment.
  • FIG. 19 is a bird's-eye view showing a schematic structure of a semiconductor memory device according to a modification of the third embodiment.
  • FIG. 20A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the third embodiment.
  • FIG. 20B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the third embodiment.
  • FIG. 21 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the fourth embodiment.
  • FIG. 22 is a bird's-eye view showing a schematic structure of a semiconductor memory device according to a modification of the fourth embodiment.
  • FIG. 23 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the fifth embodiment.
  • FIG. 24 is a bird's-eye view showing a schematic structure of a semiconductor memory device according to a modification of the fifth embodiment.
  • FIG. 1 is a circuit configuration diagram showing a semiconductor memory device according to the first embodiment of the present invention.
  • VDD is at the power supply voltage.
  • GND represents a wiring whose potential is maintained at the ground potential
  • WL represents a word line
  • BL represents a bit line
  • BL ′ represents an inverted bit line.
  • the substrate electrode of the field effect transistor is omitted.
  • FIG. 2 schematically shows the structure of the first embodiment in a bird's-eye view.
  • the thickness of the semiconductor layer on which the field effect transistor formed on the insulating film formed on the semiconductor substrate is omitted, and the interlayer insulating film thereon is also omitted.
  • the substrate electrode of the field effect transistor formed on the semiconductor substrate is omitted.
  • the distance between the field effect transistor formed on the semiconductor substrate and the field effect transistor formed on the insulating film in the direction perpendicular to the surface of the semiconductor substrate is enlarged. . In general, the scale of the figure is not accurate.
  • first and second p-type field effect transistors Tp1 and Tp2 and first and second n-type field effect transistors Tn1 and Tn2 are formed on a semiconductor substrate.
  • Third and fourth n-type field effect transistors Tn3 and Tn4 are formed on the insulating film formed above.
  • the channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate.
  • the channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate.
  • the normal direction is a direction perpendicular to the surface of the semiconductor substrate.
  • FIG. 3 schematically shows a cross-sectional structure of the present embodiment.
  • a cross section of only the first p-type field effect transistor Tp1 and the first and fourth n-type field effect transistors Tn1 and Tn4 is schematically shown as if they were formed in the same direction. Also, the scale of the figure is not accurate. Further, the wiring or the interlayer insulating film of the second layer or higher is omitted.
  • an element isolation region 2 made of, for example, silicon oxide is formed in a semiconductor substrate 1 made of, for example, silicon, and an n-well region 3 and a p-well region 4 are formed in regions separated by the element isolation region 2.
  • a gate electrode 6 is formed on each of the n well region 3 and the p well region 4 with a gate insulating film 5 interposed therebetween.
  • a source / drain region 7 is formed so as to sandwich the gate electrode 6, and a gate sidewall 8 is formed in contact with the gate electrode.
  • the first p-type field effect transistor Tp1 is formed in the n-well region 3, and the first n-type field-effect transistor Tn1 is formed in the p-well region 4, respectively.
  • An interlayer insulating film 9 made of, for example, silicon oxide is formed on the first p-type field effect transistor Tp1 and the first n-type field effect transistor Tn1, and made of, for example, silicon.
  • a semiconductor layer 10 containing p-type impurities is formed.
  • a gate electrode 6 is formed on the semiconductor layer 10 with a gate insulating film 5 interposed therebetween.
  • a source / drain region 7 is formed in the semiconductor layer 10 so as to sandwich the gate electrode 6, and a gate sidewall 8 is formed in contact with the gate electrode, so that the fourth n-type field effect transistor Tn 4 is formed. Is formed.
  • the channel region 11 formed between the source / drain regions 7 of the fourth n-type field effect transistor Tn4 is a gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate 1. 6 is formed so as to overlap.
  • a second p-type field effect transistor Tp2 and second and third n-type field effect transistors Tn2 and Tn3 are also formed, and the third n-type field effect transistor Tn3 is also formed.
  • the channel region is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate 1.
  • an element isolation region 2 is formed on a silicon substrate 1 by a method such as shallow trench isolation (STI).
  • STI shallow trench isolation
  • As arsenic
  • B boron
  • a thermal process is performed to form n well region 3 and p well region 4. It is possible to introduce an impurity only into a specific region by using a method such as a photo-etching method or a lithography process.
  • an HfO 2 film 12 having a thickness of 5 nm is formed on the semiconductor substrate 1 by a method such as chemical vapor deposition.
  • a tungsten film 13 having a thickness of 50 nm is formed by a method such as chemical vapor deposition.
  • a part of the tungsten film 13 is selectively removed by performing a process such as an active ion etching method to form the gate electrode 6.
  • a part of the HfO 2 film 12 is selectively removed by performing a process such as an active ion etching method, and the gate insulating film 5 is formed.
  • B is implanted into the p-type field effect transistor formation region, and As is implanted into the n-type field effect transistor formation region, the extension region 14 is formed.
  • a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition. Subsequently, a part of the silicon oxide film is selectively removed by etching back by, for example, an active ion etching method, and the gate sidewall 8 is formed.
  • B is implanted into the p-type field effect transistor formation region.
  • As is implanted into the n-type field effect transistor formation region, and a thermal process is performed.
  • source / drain regions 7 are formed.
  • a silicon oxide film (not shown) having a thickness of 100 nm is formed on the entire surface of the semiconductor substrate 1 by a method such as chemical vapor deposition, and planarization is performed.
  • the interlayer insulating film 9 is formed.
  • illustration is abbreviate
  • a 20 nm thick silicon layer (not shown) containing B is formed on the interlayer insulating film 9 by a method such as chemical vapor deposition, for example.
  • Element isolation is performed by a method such as a mesa element isolation method to form the semiconductor layer 10.
  • an HfO 2 film (not shown) having a thickness of 5 nm is formed on the semiconductor layer 10 by a method such as chemical vapor deposition.
  • a 50 nm-thickness tungsten film (not shown) is formed on the HfO 2 film (not shown) by a method such as chemical vapor deposition.
  • a part of the tungsten film (not shown) is selectively removed, for example, by performing a process such as an active ion etching method, and the gate electrode 6 is formed.
  • the gate insulating film 5 is formed by selectively removing a part of the HfO 2 film (not shown) by, for example, active ion etching.
  • an extension region 14 is formed in the surface portion of the semiconductor layer 10 by implanting, for example, As.
  • a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition.
  • a part of the silicon oxide film is selectively removed by etching back by, for example, an active ion etching method, and the gate sidewall 8 is formed.
  • the source / drain region 7 is formed together with the extension region 14 by performing a thermal process. Thereafter, the structure shown in FIG. 3 is formed through an interlayer insulating film forming process, a wiring process, and the like in the same manner as the prior art.
  • a semiconductor memory device is formed using a bulk substrate
  • a semiconductor substrate in which a semiconductor layer is formed on a support substrate via an insulating film.
  • a semiconductor memory device can be formed, and similar effects can be obtained.
  • an element is formed using a semiconductor substrate having the above structure
  • the same effect can be obtained by forming an element having a structure in which gate electrodes are provided above and below a channel region in an element formed on a semiconductor layer. It is done.
  • Such a structure is preferable because controllability of the gate electrode with respect to the potential of the channel region can be improved.
  • a planar structure element is shown as an example.
  • a triple gate Triple Gate
  • Similar effects can be obtained in the case of a three-dimensional element such as a structure, a gate all around structure, and a vertical structure. It is preferable to form a semiconductor memory device using an element having such a structure because the controllability of the gate electrode with respect to the potential of the channel region can be improved.
  • the formation process of only a single semiconductor memory device is shown.
  • active elements such as a field effect transistor, a bipolar transistor, and a single electron transistor
  • the present invention can also be used when a semiconductor memory device is formed as a part of a semiconductor device including a passive element such as a resistor, a diode, an inductor, a capacitor, or an element using a magnetic material, for example.
  • a passive element such as a resistor, a diode, an inductor, a capacitor, or an element using a magnetic material, for example.
  • OEIC Optical Electrical Integrated Circuit
  • MEMS Micro Electro Mechanical System
  • Another group V impurity may be used as an impurity for forming the region, or another group III impurity may be used as an impurity for forming the p-type semiconductor region.
  • the introduction of Group III or Group V impurities may be carried out in the form of a compound containing them.
  • the introduction of impurities into the source / drain regions is performed using ion implantation, but may be performed using a method other than ion implantation such as solid phase diffusion or vapor phase diffusion. Furthermore, a method of depositing or growing a semiconductor containing impurities may be used.
  • the ion implantation method is used, there is an advantage that it is easy to form a complementary semiconductor device including an n-type semiconductor element and a p-type semiconductor element.
  • impurities are introduced using a method such as vapor phase diffusion, there is an advantage that it is easy to realize a high impurity concentration.
  • a stressor may be formed on the source / drain regions. It is preferable to apply strain to the channel region in this manner because the mobility of current carriers is improved.
  • the present embodiment has an advantage that the process can be simplified.
  • silicon is used as a semiconductor layer for forming an element.
  • the semiconductor layer is not limited to silicon, and germanium or a mixed crystal of silicon and germanium may be used. Germanium or a mixed crystal of silicon and germanium is preferable because it has an advantage of higher mobility of current carriers than silicon.
  • a semiconductor that is a compound of a group III element and a group V element may be used as a semiconductor layer forming the element.
  • Such compounds are also preferred because they have the advantage of higher current carrier mobility than silicon.
  • InAs indium arsenide
  • In x Ga 1-x As (0 ⁇ x ⁇ 1) indium gallium arsenide
  • InSb indium antimony
  • the conventional manufacturing process can be used as it is, which has another advantage that the manufacturing process can be easily constructed.
  • the source / drain regions are formed after the processing of the gate electrode and the gate insulating film.
  • the order is not essential, and the order may be reversed.
  • the gate electrode is formed using tungsten, but may be formed using another metal.
  • a semiconductor such as single crystal silicon or amorphous silicon, a compound containing a metal, or a stacked layer thereof may be used.
  • a gate electrode is formed using a semiconductor, there is an advantage that the threshold voltage can be easily controlled.
  • a complementary semiconductor device is formed, either an n-type semiconductor element or a p-type semiconductor element is used.
  • it is preferable to form the gate electrode using a metal or a compound containing a metal because resistance of the gate electrode is suppressed, so that high-speed operation of the device can be obtained.
  • the gate electrode is formed of metal, the oxidation reaction does not proceed easily, so that there is an advantage that the interface controllability such as suppression of the level at the interface between the gate electrode and the insulating film is good.
  • the gate electrode is formed using a method in which anisotropic etching is performed after depositing the material.
  • a method such as embedding such as a damascene process is used. May be formed.
  • it is preferable to use a damascene process because the source / drain regions and the gate electrode are formed in a self-aligned manner.
  • the length of the gate electrode measured in the main direction of the current flowing through the element is equal to the upper part and the lower part of the gate electrode, but this is not essential.
  • the length of the upper part of the gate electrode measured in the shape of an alphabet “T” may be longer than the length measured in the lower part. In this case, there is an advantage that the gate resistance can be reduced.
  • a silicide or germanide layer or the like may be formed on the source / drain region.
  • a method of depositing or growing a layer containing a metal on the source / drain regions may be used. This is preferable because the resistance of the source / drain regions is reduced.
  • the gate electrode is formed of polycrystalline silicon or the like, a process such as silicide or germanide may be performed on the gate electrode. In that case, it is preferable to perform a process such as silicide or germanide because the gate resistance is reduced. Further, an elevator structure may be used. The elevated structure is also preferable because the resistance of the source / drain regions is reduced.
  • the upper part of the gate electrode has a structure in which the electrode is exposed, but an insulator such as silicon oxide, silicon nitride, or silicon oxynitride may be provided on the upper part.
  • an insulator such as silicon oxide, silicon nitride, or silicon oxynitride may be provided on the upper part.
  • the gate electrode is formed of a material containing metal and a silicide or germanide layer or the like is formed on the source / drain region, the gate electrode needs to be protected during the manufacturing process, etc. It is essential to provide a protective material such as silicon oxide, silicon nitride, or silicon oxynitride on the gate electrode.
  • the HfO 2 film is used as the gate insulating film.
  • an insulating film such as a silicon oxide film or a silicon oxynitride film, or another insulating film such as a stacked layer thereof may be used.
  • nitrogen is present in the insulating film, when polycrystalline silicon containing impurities is used as the gate electrode, it is suppressed that the impurities are diffused into the substrate, so that variation in threshold voltage is suppressed. This is preferable because of its advantages.
  • silicon oxide there is an advantage that variation in device characteristics is suppressed because there are few interface states at the interface with the gate electrode or fixed charges in the insulating film.
  • an oxide of a certain substance when used as the insulating film, a method of first forming a film of the substance and oxidizing it may be used. Moreover, you may expose to the oxygen gas of the excited state which does not necessarily accompany temperature rising. Forming by using a method of exposing to an excited oxygen gas that is not accompanied by an increase in temperature is preferable because impurities in the channel region can be prevented from changing the concentration distribution due to diffusion.
  • a silicon oxide film may be formed, and then nitrogen may be introduced into the insulating film by exposure to a gas containing nitrogen in a heated or excited state. Forming by using a method of exposing to an excited nitrogen gas that is not accompanied by an increase in temperature is preferable because the concentration distribution of the impurities in the channel region can be suppressed by diffusion.
  • a silicon nitride film may be formed, and then oxygen may be introduced into the insulating film by exposure to a gas containing oxygen in a heated or excited state. Forming by using a method of exposing to an excited oxygen gas that is not accompanied by an increase in temperature is preferable because impurities in the channel region can be prevented from changing the concentration distribution due to diffusion.
  • Hf hafnium
  • Zr zirconium
  • Ti titanium
  • Sc scandium
  • Y yttrium
  • Ta tantalum
  • Al aluminum
  • La lanthanum
  • Ce ce
  • Pr Pr
  • insulating films containing nitrogen in them.
  • Other insulating films such as a body film or a laminate thereof may be used.
  • the method for forming the insulating film is not limited to the chemical vapor deposition method, and other methods such as a thermal oxidation method, a vapor deposition method, a sputtering method, or an epitaxial growth method may be used.
  • post-oxidation after the formation of the gate electrode is not mentioned, but a post-oxidation step may be performed if possible in view of the material of the gate electrode.
  • the process is not necessarily limited to post-oxidation, and a process of rounding the corners of the gate electrode may be performed using a method such as chemical treatment or exposure to a reactive gas. If these steps are possible, the electric field at the lower end corner of the gate electrode is relaxed, which improves the reliability of the gate insulating film, which is preferable.
  • the silicon oxide film is used as the interlayer insulating film.
  • a substance other than silicon oxide such as a low dielectric constant material may be used for the interlayer insulating film. If the dielectric constant of the interlayer insulating film is set low, there is an advantage that high-speed operation of the device can be obtained because the parasitic capacitance of the device is reduced.
  • contact holes it is possible to form self-aligned contacts.
  • the use of the self-aligned contact is preferable because the area of the element can be reduced, and the degree of integration can be improved.
  • the formation of the metal layer for wiring may be performed using, for example, a sputtering method or a method such as a deposition method. Furthermore, a method such as selective growth of metal may be used, or a method such as damascene method may be used. Further, as the material of the wiring metal, for example, Al (aluminum) containing silicon may be used, or a metal such as Cu (copper) may be used. In particular, Cu is preferable because of its low resistivity.
  • the semiconductor layer formed on the interlayer insulating film may be crystallized. Since crystallization increases the carrier mobility, there is an advantage that the operation speed can be improved.
  • the schematic diagram of the structure of this embodiment is merely an example, and the arrangement of the field effect transistor in the direction perpendicular to the surface of the semiconductor substrate is essential, but the arrangement in the direction parallel to the surface of the semiconductor substrate is essential. is not. Even if other arrangements are used, the same effect can be obtained. Also, the arrangement or shape of the wiring is not essential, and the same effect can be obtained with other arrangements or shapes as long as the connection relationship is maintained.
  • the gate length of the element is 25 nm
  • the first and second p-type field effect transistors Tp1 and Tp2 have the same characteristics
  • the first to fourth n-type field effect transistors Tn1 to Tn4 are all the same. It was set as the element of the characteristic.
  • the gate insulating film was made of silicon oxide having a thickness of 1 nm.
  • Fig. 7 shows the butterfly curve (Butterfly Curve) when there is no fluctuation in the threshold voltage.
  • the drain region of the first p-type field effect transistor Tp1 the drain region of the first n-type field effect transistor Tn1
  • the gate electrode of the second p-type field effect transistor Tp2 the second n-type.
  • the potential at the connection point between the gate electrode of the n-type field effect transistor Tn2 and the drain region of the third n-type field effect transistor Tn3 is V1
  • the drain region of the second p-type field effect transistor Tp2 is The drain region of the second n-type field effect transistor Tn2, the gate electrode of the first p-type field effect transistor Tp1, the gate electrode of the first n-type field effect transistor Tn1, and the drain region of the fourth n-type field effect transistor Tn4
  • V2 The potential at the connection point connected to each other is denoted as V2.
  • the potential of the bit line BL is the power supply voltage
  • the potential of the inverted bit line BL ′ is the ground potential
  • the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL V1 and V2 are P1 in the figure.
  • the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing, and the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL after the writing.
  • V1 and V2 become P2 in the figure.
  • the shape of the butterfly curve changes due to noise, and when the closed curve of L1 in the figure disappears, the state of P1 becomes unstable and becomes the state of P2 regardless of whether the previous state was P1 or P2. Also, the shape of the butterfly curve changes due to noise, and when the closed curve of L2 in the figure disappears, the state of P2 becomes unstable and becomes the state of P1 regardless of whether the previous state was P1 or P2. That is, in any case, the stored information is lost. Therefore, the larger the closed curve of L1 or L2, the larger the upper limit of the magnitude of noise that does not lose information.
  • An index indicating the upper limit is the above-described SNM, and a specific value is included in L1 or L2 and the side is the largest of the squares parallel to the vertical and horizontal axes in the figure, that is, SQ1 or SQ2 respectively. Is given by the length of the side.
  • the SNM indicating the stability of P1 ie, the length of the side of SQ1
  • the SNM indicating the stability of P2 ie, the length of the side of SQ2
  • the second p-type is compared with the threshold voltage of the fourth n-type field effect transistor Tn4 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1.
  • the threshold voltage of the third n-type field effect transistor Tn3 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
  • the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the negative direction as compared with the case shown in FIG. 7, and the threshold of the fourth n-type field effect transistor Tn4 is changed.
  • a butterfly curve was calculated on the assumption that the value voltage was changed by 50 mV in the positive direction.
  • the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change.
  • the results are shown in FIG. 8A.
  • the closed curve L1 is larger, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also larger. I understand.
  • the specific value of SNM in this case is 0.170V.
  • the first p-type is compared with the threshold voltage of the third n-type field effect transistor Tn3 in which the channel region is formed on the gate electrode of the second p-type field effect transistor Tp2.
  • the threshold voltage of the fourth n-type field effect transistor Tn4 where the channel region is formed on the gate electrode of the field effect transistor Tp1 changes in the negative direction.
  • the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the positive direction as compared with the case shown in FIG. 7, and the threshold of the fourth n-type field effect transistor Tn4 is changed.
  • the butterfly curve was calculated on the assumption that the value voltage was changed by 50 mV in the negative direction.
  • the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change.
  • FIG. 8B In this case, it becomes a curve in which the vertical axis and the horizontal axis of the butterfly curve shown in FIG. 8A are interchanged. Compared to the case where there is no change in the threshold voltage shown in FIG.
  • the closed curve L2 is larger, and accordingly, the square SQ2 representing the SNM indicating the stability of P2 is also larger.
  • the specific value of the SNM in this case is 0.170 V, which is the same as that shown in FIG. 8A.
  • the semiconductor memory device of this embodiment has an increased SNM, that is, improved resistance to noise. I know that.
  • the SNM is increased in the semiconductor memory device of this embodiment is that the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are the second and first p-type electric fields, respectively.
  • the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1 are effectively third and fourth n-type, respectively. It is to act as the back gate electrode of the field effect transistors Tn3 and Tn4.
  • the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are formed so as to overlap the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively. If the fourth n-type field effect transistors Tn3 and Tn4 have a structure other than a planar structure such as a columnar structure, the threshold voltage does not change, so the effect of the present embodiment cannot be obtained. Therefore, it is essential that the third and fourth n-type field effect transistors Tn3 and Tn4 have a planar structure.
  • the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are formed so as to overlap the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively.
  • the increase in the SNM is essential because the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1 are effectively third and fourth n respectively.
  • the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are not necessarily formed so as to overlap the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively. The same effect can be obtained even if they are formed so as to overlap with the wirings connected to the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively.
  • the essence of increasing the SNM in the semiconductor memory device of this embodiment is that the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1 are effectively third and fourth, respectively.
  • the threshold voltage of the third and fourth n-type field effect transistors Tn3 and Tn4 has changed as a result of acting as the back gate electrodes of the n-type field effect transistors Tn3 and Tn4.
  • There is fluctuation in the electric potential at normal temperature which is the thermal potential, ie, kT / q (k is Boltzmann's constant, T is 300 K at absolute temperature, ie, normal temperature, q is elementary charge, ie, 1.6 ⁇ 10 ⁇ 19 C, kT / q.
  • the change in threshold voltage accompanying the application of the voltage to the back gate electrode was calculated.
  • 1 V of the assumed power supply voltage to the back gate electrode In order to obtain a change amount of the threshold voltage of 78 mV, it has been found that the thickness of the insulating film between the channel region and the back gate electrode needs to be 70 nm or less. Therefore, it is formed on the insulating film among the lower end of the channel region of the field effect transistor formed on the insulating film and the gate electrode of the field effect transistor formed on the semiconductor substrate and the wiring connected to the gate electrode.
  • the distance measured in the direction perpendicular to the surface of the semiconductor substrate between the upper end of the region overlapping the channel region of the field effect transistor is preferably 70 nm or less.
  • a voltage of 1V ⁇ 0.18V 0.82V, which is a difference in gate voltage value of the field effect transistor formed on the semiconductor substrate, is applied to the back gate electrode.
  • the thickness of the insulating film between the channel region and the back gate electrode needs to be 40 nm or less in order to obtain a change in threshold voltage of 78 mV. Therefore, it is formed on the insulating film among the lower end of the channel region of the field effect transistor formed on the insulating film and the gate electrode of the field effect transistor formed on the semiconductor substrate and the wiring connected to the gate electrode. More preferably, the distance measured in the direction perpendicular to the surface of the semiconductor substrate with respect to the upper end of the region overlapping the channel region of the field effect transistor is 40 nm or less.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 9, the first and second p-type field effect transistors Tp1, Tp2 and the first and second n-type field effect transistors Tn1 are formed on the semiconductor substrate. , Tn2 are formed, and third and fourth n-type field effect transistors Tn3, Tn4 are formed on the insulating film formed thereon.
  • the channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate.
  • the channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
  • B is formed on the interlayer insulating film 9 by a method such as chemical vapor deposition.
  • a silicon layer (not shown) having a thickness of 20 nm including is formed, and element isolation is performed by a method such as a mesa element isolation method to form the semiconductor layer 10.
  • an HfO 2 film (not shown) having a thickness of 5 nm is formed on the semiconductor layer 10 by a method such as chemical vapor deposition.
  • a 50 nm thick tungsten film (not shown) is formed on the HfO 2 film (not shown) by a method such as chemical vapor deposition.
  • a part of the tungsten film (not shown) is selectively removed by subjecting the tungsten film (not shown), for example, to a gate electrode 6.
  • a part of the HfO 2 film (not shown) is selectively removed, for example, by performing a process such as an active ion etching method to form the gate insulating film 5.
  • the extension region 14 is formed in the surface portion of the semiconductor layer 10 by implanting, for example, As. Subsequently, a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition. Thereafter, a part of the silicon oxide film is selectively removed by etching back using a method such as an active ion etching method, and the gate sidewall 8 is formed.
  • a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition. Thereafter, a part of the silicon oxide film is selectively removed by etching back using a method such as an active ion etching method, and the gate sidewall 8 is formed.
  • the semiconductor memory device having the structure shown in FIG. 9 is formed through an interlayer insulating film forming process or a wiring process in the same manner as in the prior art.
  • the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are connected to each other, and the gate electrode of the second n-type field effect transistor Tn2 is connected to the second p-type field effect transistor Tn2.
  • the gate electrode of the type field effect transistor Tp2 is mutually connected. Therefore, the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are at the same potential, and the gate electrode of the second n-type field effect transistor Tn2 And the gate electrode of the second p-type field effect transistor Tp2 have the same potential.
  • the semiconductor memory device of this modification can achieve the same effects as those of the semiconductor memory device of the above embodiment.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 11, the first and second p-type field effect transistors Tp1, Tp2 and the first and second n-type field effect transistors Tn1 are formed on the semiconductor substrate. , Tn2 are formed, and third and fourth n-type field effect transistors Tn3, Tn4 are formed on the insulating film formed thereon.
  • the channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate.
  • the channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device according to the present modification is essentially the same as the manufacturing process according to the first embodiment or the first modification, and a description thereof will be omitted.
  • the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are connected to each other, and the gate electrode of the second n-type field effect transistor Tn2 is connected to the second p-type field effect transistor Tn2.
  • the gate electrode of the type field effect transistor Tp2 is mutually connected. Therefore, the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are at the same potential, and the gate electrode of the second n-type field effect transistor Tn2 And the gate electrode of the second p-type field effect transistor Tp2 have the same potential.
  • the semiconductor memory device of this modification can achieve the same effects as those of the semiconductor memory device of the above embodiment.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 12, the first and second p-type field effect transistors Tp1, Tp2 and the first and second n-type field effect transistors Tn1 are formed on the semiconductor substrate. , Tn2 are formed, and third and fourth n-type field effect transistors Tn3, Tn4 are formed on the insulating film formed thereon.
  • the channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate.
  • the channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the first embodiment or the first or second modification thereof, and will not be described.
  • the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are connected to each other, and the gate electrode of the second n-type field effect transistor Tn2 is connected to the second p-type field effect transistor Tn2.
  • the gate electrode of the type field effect transistor Tp2 is mutually connected. Therefore, the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are at the same potential, and the gate electrode of the second n-type field effect transistor Tn2 And the gate electrode of the second p-type field effect transistor Tp2 have the same potential.
  • the semiconductor memory device of this modification can achieve the same effects as those of the semiconductor memory device of the above embodiment.
  • FIG. 13 is a bird's eye view showing a schematic structure of a semiconductor memory device according to the second embodiment of the present invention.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor memory device of this embodiment has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields are schematically shown in FIG.
  • the effect transistors Tp1, Tp2 and the third and fourth n-type field effect transistors Tn3, Tn4 are formed on the semiconductor substrate, and the first and second n-type electric fields are formed on the interlayer insulating film formed thereon. Effect transistors Tn1 and Tn2 are formed.
  • the channel region of the first n-type field effect transistor Tn1 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the n-type field effect transistor Tn2 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the first embodiment or its modification, and will not be described.
  • the second p-type is compared with the threshold voltage of the first n-type field effect transistor Tn1 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1.
  • the threshold voltage of the second n-type field effect transistor Tn2 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
  • the threshold voltage of the first n-type field effect transistor Tn1 changes by 50 mV in the positive direction
  • the second n-type field effect transistor Tn2 has a threshold voltage.
  • the butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction.
  • the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change.
  • the results are shown in FIG. 14A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. .
  • the specific value of SNM in this case is 0.188V.
  • the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing.
  • V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case shown in FIG. 14A are interchanged. The results are shown in FIG.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in the present modification, as schematically shown in FIG. 15, the first to fourth n-type field effect transistors Tn1 to Tn4 are formed on the semiconductor substrate, and the interlayer insulation formed thereon is formed. First and second p-type field effect transistors Tp1 and Tp2 are formed on the film.
  • the channel region of the first p-type field effect transistor Tp1 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the p-type field effect transistor Tp2 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the second n-type The threshold voltage of the second p-type field effect transistor Tp2 in which the channel region is formed on the gate electrode of the field effect transistor Tn2 changes in the negative direction.
  • the threshold voltage of the first p-type field effect transistor Tp1 changes by 50 mV in the positive direction as compared with the case shown in FIG. 7, and the second p-type field effect transistor Tp2 has a threshold voltage.
  • the butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction.
  • the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change.
  • the results are shown in FIG. 16A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. .
  • the specific value of SNM in this case is 0.156V.
  • the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing.
  • V1 and V2 are P2. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 1.0V, and the gate electrode of the second n-type field effect transistor Tn2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case shown in FIG. 16A are interchanged. The results are shown in FIG.
  • FIG. 17 is a bird's eye view showing a schematic structure of a semiconductor memory device according to the third embodiment of the present invention.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor memory device of the present embodiment has a circuit similar to that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields as schematically shown in FIG.
  • the effect transistors Tp1 and Tp2 are formed on a semiconductor substrate, and first to fourth n-type field effect transistors Tn1 to Tn4 are formed on an interlayer insulating film formed thereon.
  • the channel regions of the first and fourth n-type field effect transistors Tn1 and Tn4 are formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate.
  • the channel regions of the second and third n-type field effect transistors Tn2 and Tn3 are formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate. .
  • the manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the threshold voltages of the second and third n-type field effect transistors Tn2 and Tn3 where the channel region is formed on the gate electrode of the second p-type field effect transistor Tp2 change in the negative direction. is doing.
  • the threshold voltages of the first and fourth n-type field effect transistors Tn1 and Tn4 change by 50 mV in the positive direction
  • the second and third The butterfly curve was calculated on the assumption that the threshold voltages of the n-type field effect transistors Tn2 and Tn3 were changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change.
  • the results are shown in FIG. 18A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. .
  • the specific value of SNM in this case is 0.213V.
  • the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing.
  • V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case illustrated in FIG. 18A are interchanged. The results are shown in FIG.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in the present modification, as schematically shown in FIG. 19, the first and second n-type field effect transistors Tn1 and Tn2 are formed on the semiconductor substrate, and the interlayer insulation formed on them. First and second p-type field effect transistors Tp1 and Tp2 and third and fourth n-type field effect transistors Tn3 and Tn4 are formed on the film. The channel regions of the first p-type field effect transistor Tp1 and the fourth n-type field effect transistor Tn4 overlap with the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
  • the channel regions of the second p-type field effect transistor Tp2 and the third n-type field effect transistor Tn3 are formed in the second n-type field effect transistor Tn2 as viewed from the normal direction of the semiconductor substrate. It is formed so as to overlap with the gate electrode.
  • the manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the second p-type field effect transistor Tp2 and the third n-type field effect transistor Tn3 in which the channel region is formed on the gate electrode of the second n-type field effect transistor Tn2 are used.
  • the threshold voltage is changing in the negative direction.
  • the threshold voltages of the first p-type field effect transistor Tp1 and the fourth n-type field effect transistor Tn4 change by 50 mV in the positive direction.
  • the butterfly curve was calculated on the assumption that the threshold voltages of the p-type field effect transistor Tp2 and the third n-type field effect transistor Tn3 were changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change.
  • the results are shown in FIG. 20A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. .
  • the specific value of SNM in this case is 0.182V.
  • the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing.
  • V1 and V2 are P2. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 1.0V, and the gate electrode of the second n-type field effect transistor Tn2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case shown in FIG. 20A are interchanged. The results are shown in FIG.
  • FIG. 21 is a bird's eye view showing a schematic structure of a semiconductor memory device according to the fourth embodiment of the present invention.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the semiconductor memory device of this embodiment has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields are schematically shown in FIG.
  • the effect transistors Tp1 and Tp2 are formed on a semiconductor substrate, and first to fourth n-type field effect transistors Tn1 to Tn4 are formed on an interlayer insulating film formed thereon.
  • the channel region of the first n-type field effect transistor Tn1 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the n-type field effect transistor Tn2 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the second p-type is compared with the threshold voltage of the first n-type field effect transistor Tn1 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1.
  • the threshold voltage of the second n-type field effect transistor Tn2 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
  • the threshold voltage of the first n-type field effect transistor Tn1 changes by 50 mV in the positive direction
  • the second n-type field effect transistor Tn2 has a threshold voltage.
  • the butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the semiconductor memory device of the second embodiment shown in FIG. 14A. Therefore, the specific value of SNM in this case is 0.188V.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second n-type field effects are schematically shown in FIG.
  • the transistors Tn1 and Tn2 are formed on a semiconductor substrate, and first and second p-type field effect transistors Tp1 and Tp2 and third and fourth n-type field effect transistors are formed on an interlayer insulating film formed thereon. Tn3 and Tn4 are formed.
  • the channel region of the first p-type field effect transistor Tp1 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the p-type field effect transistor Tp2 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the second n-type The threshold voltage of the second p-type field effect transistor Tp2 in which the channel region is formed on the gate electrode of the field effect transistor Tn2 changes in the negative direction.
  • the threshold voltage of the first p-type field effect transistor Tp1 changes by 50 mV in the positive direction as compared with the case shown in FIG. 7, and the second p-type field effect transistor Tp2 has a threshold voltage.
  • the butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the modification of the second embodiment shown in FIG. 16A. Therefore, the specific value of SNM is 0.156V.
  • FIG. 23 is a circuit diagram showing a semiconductor memory device according to the fifth embodiment of the present invention.
  • the semiconductor memory device of this embodiment has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields are schematically shown in FIG.
  • the effect transistors Tp1 and Tp2 are formed on the semiconductor substrate, and the first to fourth n-type field effects are formed on the interlayer insulating film formed on the first and second p-type field effect transistors Tp1 and Tp2.
  • Transistors Tn1 to Tn4 are formed.
  • the channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate, and the fourth The channel region of the n-type field effect transistor Tn4 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the second p-type is compared with the threshold voltage of the fourth n-type field effect transistor Tn4 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1.
  • the threshold voltage of the third n-type field effect transistor Tn3 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
  • the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the negative direction
  • the fourth n-type field effect transistor Tn4 has a threshold voltage.
  • the butterfly curve was calculated on the assumption that the threshold voltage was changed by 50 mV in the positive direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the semiconductor memory device of the first embodiment shown in FIG. 8A. Therefore, the specific value of SNM in this case is 0.170V.
  • the semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 24, the first and second n-type field effect transistors Tn1 and Tn2 are formed on the semiconductor substrate, and the interlayer insulation formed on them. First and second p-type field effect transistors Tp1 and Tp2 and third and fourth n-type field effect transistors Tn3 and Tn4 are formed on the film.
  • the channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate, and the fourth The channel region of the n-type field effect transistor Tn4 is formed to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
  • the manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
  • the second n-type The threshold voltage of the third n-type field effect transistor Tn3 where the channel region is formed on the gate electrode of the field effect transistor Tn2 changes in the negative direction.
  • the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the negative direction
  • the fourth n-type field effect transistor Tn4 has a threshold voltage.
  • the butterfly curve was calculated on the assumption that the threshold voltage was changed by 50 mV in the positive direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the first embodiment shown in FIG. 8A. Therefore, the specific value of SNM is 0.170V.
  • the entire channel region of the upper transistor must necessarily overlap the gate electrode of the lower transistor. Instead, some of them may overlap.
  • the wiring may be overlapped with the wiring connected to the gate electrode, not the gate electrode itself. That is, at least a part of the channel region of the upper transistor may overlap with at least a part of the gate electrode of the lower transistor and a wiring connected to the gate electrode.
  • each transistor is not limited to the structure shown in FIG. 3, and can be appropriately changed according to the specification. Furthermore, the film thickness, material, and the like of each part can be appropriately changed according to the specifications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

A semiconductor device comprises: first and second p-type field-effect transistors (Tp1, Tp2), and first and second n-type field-effect transistors (Tn1, Tn2) formed on a semiconductor substrate; an insulating film formed on each transistor; and third and fourth n-type field-effect transistors (Tn3, Tn4) formed on the insulating film. An SRAM is composed of these six transistors. In addition, the transistors (Tn3, Tn4) have a planar structure; at least a portion of a channel region of the transistor (Tn3) is formed on at least a portion of gate electrodes of the transistors (Tp2, Tn2) in such a manner as to overlap when viewed from the normal direction of the semiconductor substrate; and at least a portion of a channel region of the transistor (Tn4) is formed on at least a portion of gate electrodes of the transistors (Tp1, Tn1) in such a manner as to overlap when viewed from the normal direction of the semiconductor substrate.

Description

半導体記憶装置Semiconductor memory device
 本発明の実施形態は、半導体記憶装置に係わり、特にSRAM(Static Random Access
 Memory)を3次元構造に作製した半導体記憶装置に関する。
Embodiments described herein relate generally to a semiconductor memory device, and more particularly, to an SRAM (Static Random Access).
The present invention relates to a semiconductor memory device having a three-dimensional structure.
 半導体集積回路においては、低消費電力化を図るための低電源電圧化が進められているが、それを遂行する上での障壁の一つに、SRAMのスタティック・ノイズ・マージン(Static Noise Margin、以下ではSNMと略記する)の問題がある。SNMとは、記憶されている情報の失われないノイズの大きさの上限を表す。仮にSNMがゼロであると、記憶されている情報の失われないノイズの大きさの上限はゼロ、即ち如何なるノイズであっても記憶されている情報が失われることを意味する。それは即ち、ノイズは全く許容されないことを意味するので、そのようなSRAMは使用することができない。一般に、電源電圧の低電圧化に伴いSNMは減少する。それ故、低電源電圧化に伴うSNMの減少により、電源電圧の低電圧化に制約が課されていた。 In a semiconductor integrated circuit, a low power supply voltage is being promoted in order to reduce power consumption. One of the barriers to accomplishing this is the static noise margin of an SRAM (Static Noise Margin, Hereinafter, there is a problem of abbreviated as SNM). SNM represents the upper limit of the magnitude of noise that is not lost in stored information. If the SNM is zero, the upper limit of the magnitude of the noise that is not lost in the stored information is zero, that is, the stored information is lost in any noise. That means that no noise is allowed, so such SRAM cannot be used. In general, the SNM decreases as the power supply voltage decreases. Therefore, the reduction of the power supply voltage has been restricted due to the decrease of the SNM accompanying the reduction of the power supply voltage.
 このように従来、SRAMにおいてSNMを大きくすることと、電源電圧を低減することとの間には、二律背反の関係が存在する。それ故、低電源電圧化に制約が生じており、特に一定の電源電圧の下でのSNMの増大を図ることが求められている。 Conventionally, there is a trade-off between increasing the SNM in the SRAM and reducing the power supply voltage. Therefore, there is a restriction on lowering the power supply voltage, and there is a demand for increasing the SNM particularly under a constant power supply voltage.
 発明が解決しようとする課題は、SRAM構造において、一定の電源電圧の下でのSNMの増大を図り得る半導体記憶装置を提供することである。 The problem to be solved by the present invention is to provide a semiconductor memory device capable of increasing the SNM under a constant power supply voltage in an SRAM structure.
 実施形態の半導体記憶装置は、半導体基板と、前記半導体基板に形成された第1,第2のp型電界効果トランジスタ及び第1,第2のn型電界効果トランジスタと、前記各トランジスタ上に形成された絶縁膜と、前記絶縁膜の上に形成された第3及び第4のn型電界効果トランジスタと、を含んでいる。前記第1及び第2のp型電界効果トランジスタの各ソース領域と各基板電極とは電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と各基板電極とは電位が接地電位に保たれた配線に接続され、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続されている。そして、前記第3及び第4のn型電界効果トランジスタは平面構造を有し、前記第3のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線と前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線との少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、前記第4のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線と前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線との少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている。 A semiconductor memory device according to an embodiment is formed on a semiconductor substrate, first and second p-type field effect transistors and first and second n-type field effect transistors formed on the semiconductor substrate, and the respective transistors. And the third and fourth n-type field effect transistors formed on the insulating film. Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region and each substrate electrode are connected to a wiring whose potential is maintained at the ground potential, and each drain region of the first p-type field effect transistor and the first n-type field effect transistor and the second p-type The gate electrodes of the n-type field effect transistor and the second n-type field effect transistor and the drain region of the third n-type field effect transistor are connected to each other, and the second p-type field effect transistor and the second n-type field effect transistor Each n-type field effect transistor drain region, the first p-type field effect transistor, each gate electrode of the first n-type field effect transistor, and the fourth n-type. A drain region of the field effect transistor is connected to each other, gate electrodes of the third and fourth n-type field effect transistors are connected to a word line, and a source region of the third n-type field effect transistor is a bit And a source region of the fourth n-type field effect transistor is connected to an inverted bit line. The third and fourth n-type field effect transistors have a planar structure, and at least a part of the channel region of the third n-type field effect transistor is a gate of the second p-type field effect transistor. An electrode and a wiring connected to the gate electrode overlap with at least a part of the gate electrode of the second n-type field effect transistor and the wiring connected to the gate electrode when viewed from the normal direction of the semiconductor substrate. And at least a part of the channel region of the fourth n-type field effect transistor includes a gate electrode of the first p-type field effect transistor, a wiring connected to the gate electrode, and the first n-type field effect transistor. Formed so as to overlap at least a part of the gate electrode of the type field effect transistor and the wiring connected to the gate electrode when viewed from the normal direction of the semiconductor substrate It has been.
 本発明では、SRAMを構成する電界効果トランジスタの少なくとも一つを、記憶ノードを形成する電界効果トランジスタの上に絶縁膜を介して形成する。このようにすると、情報の書き込まれた状態において、SRAMを構成する二組のインバータの内で出力端子が電源電圧の電位となるインバータを構成する電界効果トランジスタの少なくとも一つのしきい値電圧が正の方向に変化する、或いはそのインバータの出力端子とビット線ないし反転ビット線とを繋ぐ電界効果トランジスタのしきい値電圧が負の方向に変化する。又は、SRAMを構成する二組のインバータの内で出力端子が接地電位となるインバータを構成する電界効果トランジスタの少なくとも一つのしきい値電圧が負の方向に変化する、或いはそのインバータの出力端子とビット線ないし反転ビット線とを繋ぐ電界効果トランジスタのしきい値電圧が正の方向に変化する。その結果、記憶されている情報の失われないノイズの大きさの上限は増大する。即ち、一定の電源電圧の下における、SNMの増大が図られる。 In the present invention, at least one of the field effect transistors constituting the SRAM is formed on the field effect transistor forming the storage node via an insulating film. In this manner, in the state where information is written, at least one threshold voltage of the field effect transistor constituting the inverter whose output terminal is the potential of the power supply voltage among the two sets of inverters constituting the SRAM is positive. Or the threshold voltage of the field effect transistor connecting the output terminal of the inverter and the bit line or the inverted bit line changes in the negative direction. Or, the threshold voltage of at least one of the field effect transistors constituting the inverter of which the output terminal is at the ground potential among the two sets of inverters constituting the SRAM changes in the negative direction, or the output terminal of the inverter The threshold voltage of the field effect transistor connecting the bit line or the inverted bit line changes in the positive direction. As a result, the upper limit of the amount of noise that is not lost in the stored information increases. That is, SNM can be increased under a constant power supply voltage.
図1は、第1の実施形態に係わる半導体記憶装置を示す回路構成図である。FIG. 1 is a circuit configuration diagram showing the semiconductor memory device according to the first embodiment. 図2は、第1の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 2 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the first embodiment. 図3は、第1の実施形態に係わる半導体記憶装置の概略構造を示す断面図である。FIG. 3 is a cross-sectional view showing a schematic structure of the semiconductor memory device according to the first embodiment. 図4は、第1の実施形態に係わる半導体記憶装置の製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process of the semiconductor memory device according to the first embodiment. 図5は、第1の実施形態に係わる半導体記憶装置の製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing a manufacturing process of the semiconductor memory device according to the first embodiment. 図6は、第1の実施形態に係わる半導体記憶装置の製造工程を示す断面図である。FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment. 図7は、第1の実施形態に係わる半導体記憶装置の性能を説明するためもので、しきい値電圧に変動の無い場合のバタフライ曲線を示す特性図である。FIG. 7 is a characteristic diagram showing a butterfly curve when there is no variation in the threshold voltage, for explaining the performance of the semiconductor memory device according to the first embodiment. 図8Aは、第1の実施形態に係わる半導体記憶装置の性能を説明するためのもので、しきい値電圧に変動の有る場合のバタフライ曲線を示す特性図である。FIG. 8A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the first embodiment and showing a butterfly curve when the threshold voltage varies. 図8Bは、第1の実施形態に係わる半導体記憶装置の性能を説明するためのもので、しきい値電圧に変動の有る場合のバタフライ曲線を示す特性図である。FIG. 8B is a characteristic diagram illustrating a butterfly curve when the threshold voltage varies in order to explain the performance of the semiconductor memory device according to the first embodiment. 図9は、第1の実施形態の第1の変形例の構造を示す鳥瞰図である。FIG. 9 is a bird's-eye view showing the structure of the first modification of the first embodiment. 図10は、第1の実施形態の第1の変形例の製造工程を示す断面図である。FIG. 10 is a cross-sectional view showing the manufacturing process of the first modification of the first embodiment. 図11は、第1の実施形態の第2の変形例の構造を示す鳥瞰図である。FIG. 11 is a bird's-eye view showing the structure of the second modification of the first embodiment. 図12は、第1の実施形態の第3の変形例の構造を示す鳥瞰図である。FIG. 12 is a bird's-eye view showing the structure of the third modification of the first embodiment. 図13は、第2の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 13 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the second embodiment. 図14Aは、第2の実施形態に係わる半導体記憶装置の性能を説明するための特性図である。FIG. 14A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the second embodiment. 図14Bは、第2の実施形態に係わる半導体記憶装置の性能を説明するための特性図である。FIG. 14B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the second embodiment. 図15は、第2の実施形態の変形例の半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 15 is a bird's eye view showing a schematic structure of a semiconductor memory device according to a modification of the second embodiment. 図16Aは、第2の実施形態の変形例の半導体記憶装置の性能を説明するための特性図である。FIG. 16A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the second embodiment. 図16Bは、第2の実施形態の変形例の半導体記憶装置の性能を説明するための特性図である。FIG. 16B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the second embodiment. 図17は、第3の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 17 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the third embodiment. 図18Aは、第3の実施形態に係わる半導体記憶装置の性能を説明するための特性図である。FIG. 18A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the third embodiment. 図18Bは、第3の実施形態に係わる半導体記憶装置の性能を説明するための特性図である。FIG. 18B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the third embodiment. 図19は、第3の実施形態の変形例の半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 19 is a bird's-eye view showing a schematic structure of a semiconductor memory device according to a modification of the third embodiment. 図20Aは、第3の実施形態の変形例の半導体記憶装置の性能を説明するための特性図である。FIG. 20A is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the third embodiment. 図20Bは、第3の実施形態の変形例の半導体記憶装置の性能を説明するための特性図である。FIG. 20B is a characteristic diagram for explaining the performance of the semiconductor memory device according to the modification of the third embodiment. 図21は、第4の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 21 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the fourth embodiment. 図22は、第4の実施形態の変形例の半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 22 is a bird's-eye view showing a schematic structure of a semiconductor memory device according to a modification of the fourth embodiment. 図23は、第5の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 23 is a bird's-eye view showing a schematic structure of the semiconductor memory device according to the fifth embodiment. 図24は、第5の実施形態の変形例の半導体記憶装置の概略構造を示す鳥瞰図である。FIG. 24 is a bird's-eye view showing a schematic structure of a semiconductor memory device according to a modification of the fifth embodiment.
 以下、実施形態の半導体記憶装置を、図面を参照して説明する。 Hereinafter, the semiconductor memory device of the embodiment will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係わる半導体記憶装置を示す回路構成図である。
(First embodiment)
FIG. 1 is a circuit configuration diagram showing a semiconductor memory device according to the first embodiment of the present invention.
 図中のTpi(i=1,2)は第iのp型電界効果トランジスタ、Tnj(j=1,2,3,4)は第jのn型電界効果トランジスタ、VDDは電位が電源電圧に保たれた配線、GNDは電位が接地電位に保たれた配線、WLはワード線、BLはビット線、BL’は反転ビット線、を各々表す。なお、電界効果トランジスタの基板電極は省略してある。 In the figure, Tpi (i = 1, 2) is the i-th p-type field effect transistor, Tnj (j = 1, 2, 3, 4) is the j-th n-type field effect transistor, and VDD is at the power supply voltage. The maintained wiring, GND represents a wiring whose potential is maintained at the ground potential, WL represents a word line, BL represents a bit line, and BL ′ represents an inverted bit line. The substrate electrode of the field effect transistor is omitted.
 図2に、第1の実施形態の構造を模式的に鳥瞰図で示す。なお、以下の鳥瞰図においては、半導体基板上に形成された絶縁膜及び配線は一部のみを示す。また、半導体基板上に形成された絶縁膜の上に形成された電界効果トランジスタの形成されている半導体層の厚みは省略してあり、その上の層間絶縁膜も省略してある。また、半導体基板上に形成された電界効果トランジスタの基板電極は省略してある。そして、図を見やすくするために半導体基板上に形成された電界効果トランジスタと、絶縁膜上に形成された電界効果トランジスタとの、半導体基板の表面に垂直な方向の間隔は拡大して示してある。一般に、図の縮尺は正確ではない。 FIG. 2 schematically shows the structure of the first embodiment in a bird's-eye view. In the following bird's-eye view, only a part of the insulating film and the wiring formed on the semiconductor substrate are shown. Further, the thickness of the semiconductor layer on which the field effect transistor formed on the insulating film formed on the semiconductor substrate is omitted, and the interlayer insulating film thereon is also omitted. Further, the substrate electrode of the field effect transistor formed on the semiconductor substrate is omitted. In order to make the figure easy to see, the distance between the field effect transistor formed on the semiconductor substrate and the field effect transistor formed on the insulating film in the direction perpendicular to the surface of the semiconductor substrate is enlarged. . In general, the scale of the figure is not accurate.
 本実施形態の半導体記憶装置は、半導体基板上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第1及び第2のn型電界効果トランジスタTn1,Tn2が形成されており、それらの上に形成された絶縁膜上に第3及び第4のn型電界効果トランジスタTn3,Tn4が形成されている。そして、第3のn型電界効果トランジスタTn3のチャネル領域は半導体基板の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されており、第4のn型電界効果トランジスタTn4のチャネル領域は半導体基板の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極と重なるように形成されている。なお、法線方向は半導体基板の面に対して垂直な方向である。 In the semiconductor memory device of this embodiment, first and second p-type field effect transistors Tp1 and Tp2 and first and second n-type field effect transistors Tn1 and Tn2 are formed on a semiconductor substrate. Third and fourth n-type field effect transistors Tn3 and Tn4 are formed on the insulating film formed above. The channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate. The channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate. The normal direction is a direction perpendicular to the surface of the semiconductor substrate.
 また、図3に本実施形態の断面構造を模式的に示す。なお、以下の断面図においては、
第1のp型電界効果トランジスタTp1と第1及び第4のn型電界効果トランジスタTn1,Tn4のみの断面を模式的に且つ三者が等しい向きに形成されているかの如く示す。また、図の縮尺は正確ではない。さらに、配線乃至第2層以上の層間絶縁膜は省略してある。
FIG. 3 schematically shows a cross-sectional structure of the present embodiment. In the following cross-sectional views,
A cross section of only the first p-type field effect transistor Tp1 and the first and fourth n-type field effect transistors Tn1 and Tn4 is schematically shown as if they were formed in the same direction. Also, the scale of the figure is not accurate. Further, the wiring or the interlayer insulating film of the second layer or higher is omitted.
 例えばシリコンよりなる半導体基板1内に、例えば酸化シリコンからなる素子分離領域2が形成され、それにより隔てられた領域中にnウエル領域3とpウエル領域4とが形成されている。そして、nウエル領域3及びpウエル領域4の上にはそれぞれ、ゲート絶縁膜5を介してゲート電極6が形成されている。nウエル領域3内とpウエル領域4内には各々ゲート電極6を挟むようにソース・ドレイン領域7が形成されており、且つゲート電極に接してゲート側壁8が形成されている。これにより、nウエル領域3中には第1のp型電界効果トランジスタTp1が、pウエル領域4中には第1のn型電界効果トランジスタTn1が各々形成されている。そして、第1のp型電界効果トランジスタTp1と第1のn型電界効果トランジスタTn1との上には、例えば酸化シリコンよりなる層間絶縁膜9が形成されており、その上に例えばシリコンよりなり、且つp型の不純物を含む半導体層10が形成されている。 For example, an element isolation region 2 made of, for example, silicon oxide is formed in a semiconductor substrate 1 made of, for example, silicon, and an n-well region 3 and a p-well region 4 are formed in regions separated by the element isolation region 2. A gate electrode 6 is formed on each of the n well region 3 and the p well region 4 with a gate insulating film 5 interposed therebetween. In the n-well region 3 and the p-well region 4, a source / drain region 7 is formed so as to sandwich the gate electrode 6, and a gate sidewall 8 is formed in contact with the gate electrode. As a result, the first p-type field effect transistor Tp1 is formed in the n-well region 3, and the first n-type field-effect transistor Tn1 is formed in the p-well region 4, respectively. An interlayer insulating film 9 made of, for example, silicon oxide is formed on the first p-type field effect transistor Tp1 and the first n-type field effect transistor Tn1, and made of, for example, silicon. A semiconductor layer 10 containing p-type impurities is formed.
 半導体層10上には、ゲート絶縁膜5を介してゲート電極6が形成されている。そして、半導体層10内にゲート電極6を挟むようにソース・ドレイン領域7が形成されており、且つゲート電極に接してゲート側壁8が形成されており、第4のn型電界効果トランジスタTn4が形成されている。第4のn型電界効果トランジスタTn4のソース・ドレイン領域7に挟まれて形成されているチャネル領域11は、半導体基板1の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極6と重なるように形成されている。 A gate electrode 6 is formed on the semiconductor layer 10 with a gate insulating film 5 interposed therebetween. A source / drain region 7 is formed in the semiconductor layer 10 so as to sandwich the gate electrode 6, and a gate sidewall 8 is formed in contact with the gate electrode, so that the fourth n-type field effect transistor Tn 4 is formed. Is formed. The channel region 11 formed between the source / drain regions 7 of the fourth n-type field effect transistor Tn4 is a gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate 1. 6 is formed so as to overlap.
 図3においては記していないが、同様に第2のp型電界効果トランジスタTp2と第2及び第3のn型電界効果トランジスタTn2,Tn3も形成され、且つ第3のn型電界効果トランジスタTn3のチャネル領域は、半導体基板1の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されている。 Although not shown in FIG. 3, a second p-type field effect transistor Tp2 and second and third n-type field effect transistors Tn2 and Tn3 are also formed, and the third n-type field effect transistor Tn3 is also formed. The channel region is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate 1.
 なお、本発明は本実施形態乃至以下の実施形態に限定されるものではなく、種々変更して用いることができる。 In addition, this invention is not limited to this embodiment thru | or the following embodiment, A various change can be used.
 本実施形態の半導体記憶装置の製造工程を、図4~図6を参照して説明する。 The manufacturing process of the semiconductor memory device of this embodiment will be described with reference to FIGS.
 まず、図4(a)に示すように、シリコン基板1に対し、例えばシャロー・トレンチ・アイソレーション法(STI)等の方法により素子分離領域2を形成する。 First, as shown in FIG. 4A, an element isolation region 2 is formed on a silicon substrate 1 by a method such as shallow trench isolation (STI).
 次いで、図4(b)に示すように、半導体基板1のp型電界効果トランジスタ形成領域に例えばAs(砒素)を注入し、半導体基板1のn型電界効果トランジスタ形成領域に例えばB(硼素)を注入し、続いて熱工程を施すことによりnウエル領域3とpウエル領域4とを形成する。なお、特定の領域にのみ不純物を導入することは、例えば光蝕刻法ないしリソグラフィー工程等の方法を用いることにより可能である。 Next, as shown in FIG. 4B, for example, As (arsenic) is implanted into the p-type field effect transistor formation region of the semiconductor substrate 1, and B (boron) is introduced into the n-type field effect transistor formation region of the semiconductor substrate 1, for example. And then a thermal process is performed to form n well region 3 and p well region 4. It is possible to introduce an impurity only into a specific region by using a method such as a photo-etching method or a lithography process.
 次いで、図4(c)に示すように、例えば化学的気相成長法等の方法により、半導体基板1の上に厚さ5nmのHfO2 膜12を形成する。 Next, as shown in FIG. 4C, an HfO 2 film 12 having a thickness of 5 nm is formed on the semiconductor substrate 1 by a method such as chemical vapor deposition.
 次いで、図4(d)に示すように、例えば化学的気相成長法等の方法により厚さ50nmのタングステン膜13を形成する。 Next, as shown in FIG. 4D, a tungsten film 13 having a thickness of 50 nm is formed by a method such as chemical vapor deposition.
 次いで、図4(e)に示すように、タングステン膜13に例えば活性イオンエッチング法等の処理を施すことにより一部を選択的に除去し、ゲート電極6を形成する。続いて、HfO2 膜12に例えば活性イオンエッチング法等の処理を施すことにより一部を選択的に除去し、ゲート絶縁膜5を形成する。 Next, as shown in FIG. 4E, a part of the tungsten film 13 is selectively removed by performing a process such as an active ion etching method to form the gate electrode 6. Subsequently, a part of the HfO 2 film 12 is selectively removed by performing a process such as an active ion etching method, and the gate insulating film 5 is formed.
 次いで、図5(f)に示すように、p型電界効果トランジスタ形成領域に例えばBを注入し、n型電界効果トランジスタ形成領域に例えばAsを注入することにより、エクステンション領域14を形成する。 Next, as shown in FIG. 5F, for example, B is implanted into the p-type field effect transistor formation region, and As is implanted into the n-type field effect transistor formation region, the extension region 14 is formed.
 次いで、図5(g)に示すように、例えば化学的気相成長法等の方法により厚さ20nmの酸化シリコン膜(図示せず)を形成する。続いて、例えば活性イオンエッチング法等の方法でエッチバックすることにより前記酸化シリコン膜の一部を選択的に除去し、ゲート側壁8を形成する。 Next, as shown in FIG. 5G, a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition. Subsequently, a part of the silicon oxide film is selectively removed by etching back by, for example, an active ion etching method, and the gate sidewall 8 is formed.
 次いで、図5(h)に示すように、p型電界効果トランジスタ形成領域に例えばBを注入し、n型電界効果トランジスタ形成領域に例えばAsを注入し、熱工程を施すことにより、エクステンション領域14と共にソース・ドレイン領域7を形成する。 Next, as shown in FIG. 5 (h), for example, B is implanted into the p-type field effect transistor formation region, As is implanted into the n-type field effect transistor formation region, and a thermal process is performed. At the same time, source / drain regions 7 are formed.
 次いで、図5(i)に示すように、例えば化学的気相成長法等の方法により、半導体基板1の全面に厚さ100nmの酸化シリコン膜(図示せず)を形成し、平坦化を行うことで層間絶縁膜9を形成する。そして、図示は省略するが、従来技術と同様の配線工程等を行う。 Next, as shown in FIG. 5I, a silicon oxide film (not shown) having a thickness of 100 nm is formed on the entire surface of the semiconductor substrate 1 by a method such as chemical vapor deposition, and planarization is performed. Thus, the interlayer insulating film 9 is formed. And although illustration is abbreviate | omitted, the wiring process etc. similar to a prior art are performed.
 次いで、図6(j)に示すように、例えば化学的気相成長法等の方法により、層間絶縁膜9の上にBを含む厚さ20nmのシリコン層(図示せず)を形成し、例えばメサ型素子分離法等の方法により素子分離を行い、半導体層10を形成する。 Next, as shown in FIG. 6J, a 20 nm thick silicon layer (not shown) containing B is formed on the interlayer insulating film 9 by a method such as chemical vapor deposition, for example. Element isolation is performed by a method such as a mesa element isolation method to form the semiconductor layer 10.
 次いで、図6(k)に示すように、例えば化学的気相成長法等の方法により、半導体層10の上に厚さ5nmのHfO2 膜(図示せず)を形成する。続いて、HfO2 膜(図示せず)の上に例えば化学的気相成長法等の方法により厚さ50nmのタングステン膜(図示せず)を形成する。そして、タングステン膜(図示せず)に例えば活性イオンエッチング法等の処理を施すことにより一部を選択的に除去し、ゲート電極6を形成する。続いて、HfO膜(図示せず)に例えば活性イオンエッチング法等の処理を施すことにより一部を選択的に除去し、ゲート絶縁膜5を形成する。 Next, as shown in FIG. 6 (k), an HfO 2 film (not shown) having a thickness of 5 nm is formed on the semiconductor layer 10 by a method such as chemical vapor deposition. Subsequently, a 50 nm-thickness tungsten film (not shown) is formed on the HfO 2 film (not shown) by a method such as chemical vapor deposition. Then, a part of the tungsten film (not shown) is selectively removed, for example, by performing a process such as an active ion etching method, and the gate electrode 6 is formed. Subsequently, the gate insulating film 5 is formed by selectively removing a part of the HfO 2 film (not shown) by, for example, active ion etching.
 次いで、図6(l)に示すように、半導体層10の表面部に、例えばAsを注入することによりエクステンション領域14を形成する。次に、例えば化学的気相成長法等の方法により厚さ20nmの酸化シリコン膜(図示せず)を形成する。続いて、例えば活性イオンエッチング法等の方法でエッチバックすることにより酸化シリコン膜の一部を選択的に除去し、ゲート側壁8を形成する。 Next, as shown in FIG. 6L, an extension region 14 is formed in the surface portion of the semiconductor layer 10 by implanting, for example, As. Next, a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition. Subsequently, a part of the silicon oxide film is selectively removed by etching back by, for example, an active ion etching method, and the gate sidewall 8 is formed.
 次いで、例えばAsを注入し、熱工程を施すことによりエクステンション領域14と共にソース・ドレイン領域7を形成する。これ以降は、従来技術と同様にして層間絶縁膜形成工程乃至配線工程等を経て前記図3に示す構造を形成する。 Next, for example, As is implanted, and the source / drain region 7 is formed together with the extension region 14 by performing a thermal process. Thereafter, the structure shown in FIG. 3 is formed through an interlayer insulating film forming process, a wiring process, and the like in the same manner as the prior art.
 本実施形態においては、バルク基板を用いて半導体記憶装置を形成する場合を例に取って示したが、支持基板の上に絶縁膜を介して半導体層が形成された半導体基板を用いても同様に半導体記憶装置を形成することができ、同様の効果が得られる。また、上記構造の半導体基板を用いて素子を形成する場合に、半導体層上に形成した素子においては、チャネル領域の上下にゲート電極を設けた構造の素子を形成しても同様の効果が得られる。そのような構造とすると、チャネル領域の電位に対するゲート電極の制御性の向上が図られるので好ましい。 In this embodiment, the case where a semiconductor memory device is formed using a bulk substrate has been described as an example, but the same applies to a semiconductor substrate in which a semiconductor layer is formed on a support substrate via an insulating film. In addition, a semiconductor memory device can be formed, and similar effects can be obtained. In addition, when an element is formed using a semiconductor substrate having the above structure, the same effect can be obtained by forming an element having a structure in which gate electrodes are provided above and below a channel region in an element formed on a semiconductor layer. It is done. Such a structure is preferable because controllability of the gate electrode with respect to the potential of the channel region can be improved.
 また、本実施形態においては、平面構造の素子の場合を例に取って示したが、半導体基板上に形成した素子においては、例えばFinFET、トリプルゲート(Triple Gate)
構造、ゲートオールアラウンド(Gate All Around)構造、縦型構造等の立体構造の素子の場合も、同様の効果が得られる。そのような構造の素子を用いて半導体記憶装置を形成すると、チャネル領域の電位に対するゲート電極の制御性の向上が図られるので好ましい。
Further, in the present embodiment, the case of a planar structure element is shown as an example. However, in an element formed on a semiconductor substrate, for example, a FinFET, a triple gate (Triple Gate)
Similar effects can be obtained in the case of a three-dimensional element such as a structure, a gate all around structure, and a vertical structure. It is preferable to form a semiconductor memory device using an element having such a structure because the controllability of the gate electrode with respect to the potential of the channel region can be improved.
 また、本実施形態においては単一の半導体記憶装置のみの形成工程を示したが、単一の半導体記憶装置の他に、電界効果トランジスタやバイポーラー型トランジスタや単一電子トランジスタ等の能動素子、抵抗体やダイオードやインダクターやキャパシタ等の受動素子、又は例えば磁性体を用いた素子をも含む半導体装置の一部として半導体記憶装置を形成する場合にも用いることができる。OEIC(オプト・エレクトリカル・インテグレーテッド・サーキット)やMEMS(マイクロ・エレクトロ・メカニカル・システム)の一部として半導体記憶装置を形成する場合もまた同様である。 In the present embodiment, the formation process of only a single semiconductor memory device is shown. In addition to a single semiconductor memory device, active elements such as a field effect transistor, a bipolar transistor, and a single electron transistor, The present invention can also be used when a semiconductor memory device is formed as a part of a semiconductor device including a passive element such as a resistor, a diode, an inductor, a capacitor, or an element using a magnetic material, for example. The same applies to the case where the semiconductor memory device is formed as a part of OEIC (Optical Electrical Integrated Circuit) or MEMS (Micro Electro Mechanical System).
 また、本実施形態においては、n型半導体領域を形成するための不純物としてはAs(砒素)を、p型半導体領域を形成するための不純物としてはB(硼素)を用いたが、n型半導体領域を形成するための不純物として他のV族不純物を用いる、或いはp型半導体領域を形成するための不純物として他の III族不純物を用いてもよい。また、III族やV族の不純物の導入はそれらを含む化合物の形で行ってもよい。 In this embodiment, As (arsenic) is used as the impurity for forming the n-type semiconductor region, and B (boron) is used as the impurity for forming the p-type semiconductor region. Another group V impurity may be used as an impurity for forming the region, or another group III impurity may be used as an impurity for forming the p-type semiconductor region. The introduction of Group III or Group V impurities may be carried out in the form of a compound containing them.
 また、本実施形態においては、ソース・ドレイン領域への不純物の導入はイオン注入を用いて行ったが、イオン注入以外の例えば固相拡散や気相拡散等の方法を用いて行ってもよい。さらに、不純物を含有する半導体を堆積する又は成長させる等の方法を用いてもよい。イオン注入の方法を用いると、n型半導体素子とp型半導体素子とを含む相補型の半導体装置の形成が容易であると言う利点があり、不純物を含有する半導体を堆積する或いは固相拡散や気相拡散等の方法を用いて不純物の導入を行うと、高い不純物濃度の実現が容易であると言う利点がある。 In this embodiment, the introduction of impurities into the source / drain regions is performed using ion implantation, but may be performed using a method other than ion implantation such as solid phase diffusion or vapor phase diffusion. Furthermore, a method of depositing or growing a semiconductor containing impurities may be used. When the ion implantation method is used, there is an advantage that it is easy to form a complementary semiconductor device including an n-type semiconductor element and a p-type semiconductor element. When impurities are introduced using a method such as vapor phase diffusion, there is an advantage that it is easy to realize a high impurity concentration.
 また、本実施形態では言及していないが、ソース・ドレイン領域上にストレッサーを形成してもよい。そのようにしてチャネル領域に歪を印加すると電流キャリアの移動度が向上するので好ましい。 Although not mentioned in this embodiment, a stressor may be formed on the source / drain regions. It is preferable to apply strain to the channel region in this manner because the mobility of current carriers is improved.
 また、本実施形態においては、素子のしきい値電圧を調節するための不純物導入は行っていないが、前記ウエル領域形成のシリコン基板への不純物導入とは別にしきい値電圧調節のための不純物導入を行ってもよい。このようにすると、しきい値電圧を所望の値に設定しやすくなると言う利点が得られる。また、本実施形態のようにすると工程の簡略化が図られると言う利点がある。 In this embodiment, no impurity is introduced for adjusting the threshold voltage of the element, but an impurity for adjusting the threshold voltage separately from the introduction of the impurity into the silicon substrate for forming the well region. You may introduce. In this way, there is an advantage that the threshold voltage can be easily set to a desired value. In addition, the present embodiment has an advantage that the process can be simplified.
 また、本実施形態においては、素子を形成する半導体層としてシリコンを用いたが、半導体層としてはシリコンに限るものではなく、ゲルマニウム或いはシリコンとゲルマニウムとの混晶を用いても良い。ゲルマニウム或いはシリコンとゲルマニウムとの混晶は、シリコンに比べて電流キャリアの移動度が高いという利点があるので好ましい。 In this embodiment, silicon is used as a semiconductor layer for forming an element. However, the semiconductor layer is not limited to silicon, and germanium or a mixed crystal of silicon and germanium may be used. Germanium or a mixed crystal of silicon and germanium is preferable because it has an advantage of higher mobility of current carriers than silicon.
 また、素子を形成する半導体層として III族元素とV族元素との化合物である半導体を用いても良い。そのような化合物もまたシリコンに比べて電流キャリアの移動度が高いという利点があるので好ましい。特に、InAs(インジウム砒素)、InGa1-xAs(0≦x≦1)(インジウムガリウム砒素)、InSb(インジウムアンチモン)等は電流キャリアの移動度が特に高いので好ましい。また、チャネル領域に歪を印加することも、移動度の向上が図られるので好ましい。一方、半導体層としてシリコンを用いると、従来の製造工程をそのまま用いることができるので、製造工程の構築が容易であるという他の利点がある。 Alternatively, a semiconductor that is a compound of a group III element and a group V element may be used as a semiconductor layer forming the element. Such compounds are also preferred because they have the advantage of higher current carrier mobility than silicon. In particular, InAs (indium arsenide), In x Ga 1-x As (0 ≦ x ≦ 1) (indium gallium arsenide), InSb (indium antimony), and the like are preferable because the mobility of current carriers is particularly high. It is also preferable to apply strain to the channel region because mobility can be improved. On the other hand, when silicon is used as the semiconductor layer, the conventional manufacturing process can be used as it is, which has another advantage that the manufacturing process can be easily constructed.
 また、本実施形態においては、ソース・ドレイン領域の形成をゲート電極及びゲート絶縁膜の加工の後に行っているが、これらの順序は本質ではなく、逆の順序で行ってもよい。ゲート電極或いはゲート絶縁膜の材質によっては熱工程を施すことが好ましくない場合がある。そのような場合には、ソース・ドレイン領域への不純物の導入及び活性化の熱工程をゲート電極或いはゲート絶縁膜の加工に先立って行うことが好ましい。 In this embodiment, the source / drain regions are formed after the processing of the gate electrode and the gate insulating film. However, the order is not essential, and the order may be reversed. Depending on the material of the gate electrode or the gate insulating film, it may not be preferable to perform the thermal process. In such a case, it is preferable to perform an impurity introduction and activation thermal process in the source / drain regions prior to processing of the gate electrode or the gate insulating film.
 また、本実施形態においては、ゲート電極はタングステンを用いて形成しているが、他の金属を用いて形成してもよい。また、単結晶シリコンや非晶質シリコン等の半導体、金属を含む化合物等、又はそれらの積層等で形成してもよい。半導体を用いてゲート電極を形成するとしきい値電圧の制御が容易であると言う利点があり、また相補型の半導体装置を形成する場合にn型半導体素子とp型半導体素子との何れに対しても、しきい値電圧を所望の値に設定することが容易であると言う他の利点もある。また、金属或いは金属を含む化合物でゲート電極を形成すると、ゲート電極の抵抗が抑制されるので素子の高速動作が得られ、好ましい。さらに、金属でゲート電極を形成すると酸化反応が進みにくいので、ゲート電極と絶縁膜との界面に於ける準位が抑制される等の界面の制御性が良いと言う利点もある。 In this embodiment, the gate electrode is formed using tungsten, but may be formed using another metal. Alternatively, a semiconductor such as single crystal silicon or amorphous silicon, a compound containing a metal, or a stacked layer thereof may be used. When a gate electrode is formed using a semiconductor, there is an advantage that the threshold voltage can be easily controlled. When a complementary semiconductor device is formed, either an n-type semiconductor element or a p-type semiconductor element is used. However, there is another advantage that it is easy to set the threshold voltage to a desired value. In addition, it is preferable to form the gate electrode using a metal or a compound containing a metal because resistance of the gate electrode is suppressed, so that high-speed operation of the device can be obtained. Further, when the gate electrode is formed of metal, the oxidation reaction does not proceed easily, so that there is an advantage that the interface controllability such as suppression of the level at the interface between the gate electrode and the insulating film is good.
 また、本実施形態においては、ゲート電極の形成はその材料を堆積した後に異方性エッチングを施すと言う方法を用いて形成しているが、例えばダマシンプロセス等のような埋め込み等の方法を用いて形成してもよい。ゲート電極の形成に先立ってソース・ドレイン領域を形成する場合には、ダマシンプロセスを用いるとソース・ドレイン領域とゲート電極とが自己整合的に形成されるので好ましい。 In this embodiment, the gate electrode is formed using a method in which anisotropic etching is performed after depositing the material. For example, a method such as embedding such as a damascene process is used. May be formed. In the case where the source / drain regions are formed prior to the formation of the gate electrode, it is preferable to use a damascene process because the source / drain regions and the gate electrode are formed in a self-aligned manner.
 また、本実施形態においては、素子を流れる電流の主方向に測ったゲート電極の長さは、ゲート電極の上部も下部も等しいが、このことは本質的ではない。例えば、ゲート電極の上部を測った長さの方が下部を測った長さよりも長いアルファベットの「T」の字のような形であってもよい。この場合には、ゲート抵抗を低減することができると云う利点が得られる。 In the present embodiment, the length of the gate electrode measured in the main direction of the current flowing through the element is equal to the upper part and the lower part of the gate electrode, but this is not essential. For example, the length of the upper part of the gate electrode measured in the shape of an alphabet “T” may be longer than the length measured in the lower part. In this case, there is an advantage that the gate resistance can be reduced.
 また、本実施形態においては、シリサイド或いはジャーマナイド等の工程には言及しなかったが、ソース・ドレイン領域上にシリサイド或いはジャーマナイド層等を形成してもよい。また、ソース・ドレイン領域上に金属を含む層を堆積或いは成長させる等の方法を用いてもよい。このようにすると、ソース・ドレイン領域の抵抗が低減されるので好ましい。また、ゲート電極を多結晶シリコン等で形成する場合には、ゲート電極に対してのシリサイド或いはジャーマナイド化等の工程を施してもよい。その場合に、シリサイド或いはジャーマナイド化等の工程を施すとゲート抵抗が低減されるので好ましい。また、エレベート構造を用いてもよい。エレベート構造によってもソース・ドレイン領域の抵抗が低減されるので好ましい。 In the present embodiment, although the silicide or germanide process is not mentioned, a silicide or germanide layer or the like may be formed on the source / drain region. Alternatively, a method of depositing or growing a layer containing a metal on the source / drain regions may be used. This is preferable because the resistance of the source / drain regions is reduced. When the gate electrode is formed of polycrystalline silicon or the like, a process such as silicide or germanide may be performed on the gate electrode. In that case, it is preferable to perform a process such as silicide or germanide because the gate resistance is reduced. Further, an elevator structure may be used. The elevated structure is also preferable because the resistance of the source / drain regions is reduced.
 また、本実施形態においては、ゲート電極の上部は電極が露出する構造であるが、上部に例えば酸化シリコンや窒化シリコンや酸化窒化シリコン等の絶縁物を設けてもよい。特に、ゲート電極が金属を含む材料で形成されており、且つソース・ドレイン領域上にシリサイド或いはジャーマナイド層等を形成する場合等、製造工程の途中でゲート電極を保護する必要が在る場合等は、ゲート電極の上部に酸化シリコンや窒化シリコンや酸化窒化シリコン等の保護材料を設けることは必須である。 In this embodiment, the upper part of the gate electrode has a structure in which the electrode is exposed, but an insulator such as silicon oxide, silicon nitride, or silicon oxynitride may be provided on the upper part. In particular, when the gate electrode is formed of a material containing metal and a silicide or germanide layer or the like is formed on the source / drain region, the gate electrode needs to be protected during the manufacturing process, etc. It is essential to provide a protective material such as silicon oxide, silicon nitride, or silicon oxynitride on the gate electrode.
 また、本実施形態においては、ゲート絶縁膜としてHfO2 膜を用いたが、酸化シリコン膜或いは酸化窒化シリコン膜等の絶縁膜、或いはそれらの積層等の他の絶縁膜を用いてもよい。絶縁膜中に窒素が存在すると、ゲート電極として不純物を含有する多結晶シリコンを用いる場合に不純物が基板中に拡散することが抑制されるために、しきい値電圧のバラツキが抑制されると言う利点があるので好ましい。一方、酸化シリコンを用いると、ゲート電極との界面の界面準位ないしは絶縁膜中の固定電荷が少ないために素子特性のバラツキが抑制されると言う利点が得られる。 In this embodiment, the HfO 2 film is used as the gate insulating film. However, an insulating film such as a silicon oxide film or a silicon oxynitride film, or another insulating film such as a stacked layer thereof may be used. When nitrogen is present in the insulating film, when polycrystalline silicon containing impurities is used as the gate electrode, it is suppressed that the impurities are diffused into the substrate, so that variation in threshold voltage is suppressed. This is preferable because of its advantages. On the other hand, when silicon oxide is used, there is an advantage that variation in device characteristics is suppressed because there are few interface states at the interface with the gate electrode or fixed charges in the insulating film.
 また、絶縁膜として或る物質の酸化物を用いる等の場合には、まずその物質の膜を形成しておいてそれを酸化する等の方法を用いてもよい。また、必ずしも昇温を伴わない励起状態の酸素気体に晒してもよい。昇温を伴わない励起状態の酸素気体に晒すと言う方法を用いて形成すれば、チャネル領域中の不純物が拡散により濃度分布を変えることが抑制されるので好ましい。 Further, when an oxide of a certain substance is used as the insulating film, a method of first forming a film of the substance and oxidizing it may be used. Moreover, you may expose to the oxygen gas of the excited state which does not necessarily accompany temperature rising. Forming by using a method of exposing to an excited oxygen gas that is not accompanied by an increase in temperature is preferable because impurities in the channel region can be prevented from changing the concentration distribution due to diffusion.
 さらに、酸化窒化シリコンを用いる場合には、まず酸化シリコン膜を形成し、その後に昇温状態或いは励起状態の窒素を含む気体に晒すことにより絶縁膜中に窒素を導入してもよい。昇温を伴わない励起状態の窒素気体に晒すと言う方法を用いて形成すれば、チャネル領域中の不純物が拡散により濃度分布を変えることが抑制されるので好ましい。又は、まず窒化シリコン膜を形成し、その後に昇温状態或いは励起状態の酸素を含む気体に晒すことにより絶縁膜中に酸素を導入してもよい。昇温を伴わない励起状態の酸素気体に晒すと言う方法を用いて形成すれば、チャネル領域中の不純物が拡散により濃度分布を変えることが抑制されるので好ましい。 Further, when silicon oxynitride is used, first, a silicon oxide film may be formed, and then nitrogen may be introduced into the insulating film by exposure to a gas containing nitrogen in a heated or excited state. Forming by using a method of exposing to an excited nitrogen gas that is not accompanied by an increase in temperature is preferable because the concentration distribution of the impurities in the channel region can be suppressed by diffusion. Alternatively, first, a silicon nitride film may be formed, and then oxygen may be introduced into the insulating film by exposure to a gas containing oxygen in a heated or excited state. Forming by using a method of exposing to an excited oxygen gas that is not accompanied by an increase in temperature is preferable because impurities in the channel region can be prevented from changing the concentration distribution due to diffusion.
 また、Hf(ハフニウム)、Zr(ジルコニウム)、Ti(チタン)、Sc(スカンジ
ウム)、Y(イットリウム)、Ta(タンタル)、Al(アルミニウム)、La(ランタ
ン)、Ce(セリウム)、Pr(プラセオジム)、或いは他のランタノイド系列の元素等
の金属等の酸化物等或いはこれらの元素を初めとする様々な元素を含むシリケート材料等、或いはそれらに窒素をも含有させた絶縁膜等、の高誘電体膜或いはそれらの積層等の他の絶縁膜を用いてもよい。また、絶縁膜の形成方法は化学的気相成長法に限るものではなく、熱酸化法等の方法、蒸着法或いはスパッタ法或いはエピタキシャル成長法等の他の方法を用いてもよい。
In addition, Hf (hafnium), Zr (zirconium), Ti (titanium), Sc (scandium), Y (yttrium), Ta (tantalum), Al (aluminum), La (lanthanum), Ce (cerium), Pr (praseodymium) Or other oxides of metals such as other lanthanoid series elements, silicate materials containing various elements such as these elements, or insulating films containing nitrogen in them. Other insulating films such as a body film or a laminate thereof may be used. The method for forming the insulating film is not limited to the chemical vapor deposition method, and other methods such as a thermal oxidation method, a vapor deposition method, a sputtering method, or an epitaxial growth method may be used.
 また、本実施形態においては、ゲート電極形成後の後酸化には言及していないが、ゲート電極の材料等に鑑みて可能であれば、後酸化工程を行ってもよい。また、必ずしも後酸化に限らず、例えば薬液処理或いは反応性の気体に晒す等の方法を用いてゲート電極の角を丸める処理を行ってもよい。これらの工程が可能な場合にはそれによりゲート電極の下端角部の電場が緩和されるのでゲート絶縁膜の信頼性が向上し、好ましい。 In the present embodiment, post-oxidation after the formation of the gate electrode is not mentioned, but a post-oxidation step may be performed if possible in view of the material of the gate electrode. Further, the process is not necessarily limited to post-oxidation, and a process of rounding the corners of the gate electrode may be performed using a method such as chemical treatment or exposure to a reactive gas. If these steps are possible, the electric field at the lower end corner of the gate electrode is relaxed, which improves the reliability of the gate insulating film, which is preferable.
 また、本実施形態においては層間絶縁膜としては酸化シリコン膜を用いたが、例えば低誘電率材料等の酸化シリコン以外の物質を層間絶縁膜に用いてもよい。層間絶縁膜の誘電率を低く設定すると、素子の寄生容量が低減されるので素子の高速動作が得られると言う利点がある。 In this embodiment, the silicon oxide film is used as the interlayer insulating film. However, a substance other than silicon oxide such as a low dielectric constant material may be used for the interlayer insulating film. If the dielectric constant of the interlayer insulating film is set low, there is an advantage that high-speed operation of the device can be obtained because the parasitic capacitance of the device is reduced.
 また、コンタクト孔に関しては言及していないが、自己整合コンタクトを形成することも可能である。自己整合コンタクトを用いると素子の面積を低減することができるので、集積度の向上が図られ、好ましい。 Also, although no mention is made of contact holes, it is possible to form self-aligned contacts. The use of the self-aligned contact is preferable because the area of the element can be reduced, and the degree of integration can be improved.
 また、本実施形態においては明記していないが、配線のための金属層の形成は、例えばスパッタ法等を用いて行ってもよいし、堆積法等の方法を用いて行ってもよい。さらに、金属の選択成長等の方法を用いてもよいし、ダマシン法等の方法を用いてもよい。また、配線金属の材料は、例えばシリコンを含有するAl(アルミニウム)等を用いてもよいし、例えばCu(銅)等の金属を用いてもよい。特に、Cuは抵抗率が低いので好ましい。 Although not specified in the present embodiment, the formation of the metal layer for wiring may be performed using, for example, a sputtering method or a method such as a deposition method. Furthermore, a method such as selective growth of metal may be used, or a method such as damascene method may be used. Further, as the material of the wiring metal, for example, Al (aluminum) containing silicon may be used, or a metal such as Cu (copper) may be used. In particular, Cu is preferable because of its low resistivity.
 また、本実施形態においては明記していないが、層間絶縁膜上に形成した半導体層の結晶化を行ってもよい。結晶化を行うとキャリアの移動度が増大するので動作速度の向上が図られるという利点がある。 Although not specified in this embodiment, the semiconductor layer formed on the interlayer insulating film may be crystallized. Since crystallization increases the carrier mobility, there is an advantage that the operation speed can be improved.
 また、本実施形態の構造の模式図はあくまで一例であり、電界効果トランジスタの半導体基板の表面と垂直方向の配置は本質的であるが、それらの半導体基板の表面と平行方向の配置は本質的ではない。他の配置を用いたとしても同様の効果が得られる。また、配線の配置ないし形状も本質的ではなく、接続関係が保たれるのであれば他の配置ないし形状としても同様の効果が得られる。 Further, the schematic diagram of the structure of this embodiment is merely an example, and the arrangement of the field effect transistor in the direction perpendicular to the surface of the semiconductor substrate is essential, but the arrangement in the direction parallel to the surface of the semiconductor substrate is essential. is not. Even if other arrangements are used, the same effect can be obtained. Also, the arrangement or shape of the wiring is not essential, and the same effect can be obtained with other arrangements or shapes as long as the connection relationship is maintained.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。素子のゲート長は25nm、第1及び第2のp型電界効果トランジスタTp1,Tp2は相互に同一の特性の素子、第1から第4のn型電界効果トランジスタTn1~Tn4は全て相互に同一の特性の素子、とした。また、ゲート絶縁膜は厚さ1nmの酸化シリコンとした。 Next, the results of numerical calculations regarding the semiconductor memory device having the structure of this embodiment will be described. The gate length of the element is 25 nm, the first and second p-type field effect transistors Tp1 and Tp2 have the same characteristics, and the first to fourth n-type field effect transistors Tn1 to Tn4 are all the same. It was set as the element of the characteristic. The gate insulating film was made of silicon oxide having a thickness of 1 nm.
 図7に、しきい値電圧に変動の無い場合のバタフライ曲線(Butterfly Curve)を示す。なお、図7においては、第1のp型電界効果トランジスタTp1のドレイン領域と第1のn型電界効果トランジスタTn1のドレイン領域と第2のp型電界効果トランジスタTp2のゲート電極と第2のn型電界効果トランジスタTn2のゲート電極と第3のn型電界効果トランジスタTn3のドレイン領域との相互に接続されている接続点の電位をV1、第2のp型電界効果トランジスタTp2のドレイン領域と第2のn型電界効果トランジスタTn2のドレイン領域と第1のp型電界効果トランジスタTp1のゲート電極と第1のn型電界効果トランジスタTn1のゲート電極と第4のn型電界効果トランジスタTn4のドレイン領域との相互に接続されている接続点の電位をV2、と記してある。 Fig. 7 shows the butterfly curve (Butterfly Curve) when there is no fluctuation in the threshold voltage. In FIG. 7, the drain region of the first p-type field effect transistor Tp1, the drain region of the first n-type field effect transistor Tn1, the gate electrode of the second p-type field effect transistor Tp2, and the second n-type. The potential at the connection point between the gate electrode of the n-type field effect transistor Tn2 and the drain region of the third n-type field effect transistor Tn3 is V1, and the drain region of the second p-type field effect transistor Tp2 is The drain region of the second n-type field effect transistor Tn2, the gate electrode of the first p-type field effect transistor Tp1, the gate electrode of the first n-type field effect transistor Tn1, and the drain region of the fourth n-type field effect transistor Tn4 The potential at the connection point connected to each other is denoted as V2.
 書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とし、書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。また、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とし、書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。 At the time of writing, the potential of the bit line BL is the power supply voltage, the potential of the inverted bit line BL ′ is the ground potential, and after the writing, the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL V1 and V2 are P1 in the figure. In addition, the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing, and the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL after the writing. V1 and V2 become P2 in the figure.
 ノイズによりバタフライ曲線の形が変わり、図中のL1の閉曲線が消滅するとP1の状態は不安定となり、それまでの状態がP1であったかP2であったかを問わずP2の状態となる。また、ノイズによりバタフライ曲線の形が変わり、図中のL2の閉曲線が消滅するとP2の状態は不安定となり、それまでの状態がP1であったかP2であったかを問わずP1の状態となる。即ち、何れの場合も記憶されていた情報は失われる。それ故、L1ないしL2の閉曲線が大きいほど、情報の失われないノイズの大きさの上限は大きくなる。その上限を示す指標が上述のSNMであり、具体的な値はL1或いはL2に含まれ且つ辺が図の縦軸と横軸とに平行な正方形の内で最大のもの、即ち各々SQ1或いはSQ2の辺の長さで与えられる。ここに示した例では、P1の安定性を示すSNM(即ちSQ1の辺の長さ)とP2の安定性を示すSNM(即ちSQ2の辺の長さ)とは等しく0.144Vとなる。 The shape of the butterfly curve changes due to noise, and when the closed curve of L1 in the figure disappears, the state of P1 becomes unstable and becomes the state of P2 regardless of whether the previous state was P1 or P2. Also, the shape of the butterfly curve changes due to noise, and when the closed curve of L2 in the figure disappears, the state of P2 becomes unstable and becomes the state of P1 regardless of whether the previous state was P1 or P2. That is, in any case, the stored information is lost. Therefore, the larger the closed curve of L1 or L2, the larger the upper limit of the magnitude of noise that does not lose information. An index indicating the upper limit is the above-described SNM, and a specific value is included in L1 or L2 and the side is the largest of the squares parallel to the vertical and horizontal axes in the figure, that is, SQ1 or SQ2 respectively. Is given by the length of the side. In the example shown here, the SNM indicating the stability of P1 (ie, the length of the side of SQ1) and the SNM indicating the stability of P2 (ie, the length of the side of SQ2) are equal to 0.144V.
 次に、本実施形態の半導体記憶装置を考える。まず、書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は0.18V、第2のp型電界効果トランジスタTp2のゲート電極は1.0Vとなる。それ故、第1のp型電界効果トランジスタTp1のゲート電極の上にチャネル領域が形成されているところの第4のn型電界効果トランジスタTn4のしきい値電圧に比べると、第2のp型電界効果トランジスタTp2のゲート電極の上にチャネル領域が形成されているところの第3のn型電界効果トランジスタTn3のしきい値電圧は、負の方向に変化している。 Next, consider the semiconductor memory device of this embodiment. First, consider a case where the potential of the bit line BL is set to the power supply voltage and the potential of the inverted bit line BL ′ is set to the ground potential at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 0.18V, and the gate electrode of the second p-type field effect transistor Tp2 is 1.0V. Therefore, the second p-type is compared with the threshold voltage of the fourth n-type field effect transistor Tn4 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1. The threshold voltage of the third n-type field effect transistor Tn3 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
 それで、ここでは図7に示した場合と比較して、第3のn型電界効果トランジスタTn3のしきい値電圧は負の方向に50mV変化し、第4のn型電界効果トランジスタTn4のしきい値電圧は正の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、両者のしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果を、図8Aに示す。図7に示したしきい値電圧に変化の無い場合と比較すると、閉曲線L1は大きくなっていること、それに伴ってP1の安定性を示すところのSNMを表す正方形SQ1も大きくなっていることが判る。この場合のSNMの具体的な値は0.170Vである。 Therefore, here, the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the negative direction as compared with the case shown in FIG. 7, and the threshold of the fourth n-type field effect transistor Tn4 is changed. A butterfly curve was calculated on the assumption that the value voltage was changed by 50 mV in the positive direction. In other words, the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change. The results are shown in FIG. 8A. Compared to the case where there is no change in the threshold voltage shown in FIG. 7, the closed curve L1 is larger, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also larger. I understand. The specific value of SNM in this case is 0.170V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は1.0V、第2のp型電界効果トランジスタTp2のゲート電極は0.18Vとなる。それ故、第2のp型電界効果トランジスタTp2のゲート電極の上にチャネル領域が形成されているところの第3のn型電界効果トランジスタTn3のしきい値電圧に比べると、第1のp型電界効果トランジスタTp1のゲート電極の上にチャネル領域が形成されているところの第4のn型電界効果トランジスタTn4のしきい値電圧は、負の方向に変化している。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the first p-type is compared with the threshold voltage of the third n-type field effect transistor Tn3 in which the channel region is formed on the gate electrode of the second p-type field effect transistor Tp2. The threshold voltage of the fourth n-type field effect transistor Tn4 where the channel region is formed on the gate electrode of the field effect transistor Tp1 changes in the negative direction.
 それで、ここでは図7に示した場合と比較して、第3のn型電界効果トランジスタTn3のしきい値電圧は正の方向に50mV変化し、第4のn型電界効果トランジスタTn4のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、両者のしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果を、図8Bに示す。この場合には、図8Aに示したバタフライ曲線の縦軸と横軸とを入れ替えた曲線となる。図7に示したしきい値電圧に変化の無い場合と比較すると、閉曲線L2は大きくなっていること、それに伴ってP2の安定性を示すところのSNMを表す正方形SQ2も大きくなっていることが判る。この場合のSNMの具体的な値は、図8Aに結果を示した場合と等しく0.170Vである。 Therefore, here, the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the positive direction as compared with the case shown in FIG. 7, and the threshold of the fourth n-type field effect transistor Tn4 is changed. The butterfly curve was calculated on the assumption that the value voltage was changed by 50 mV in the negative direction. In other words, the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change. The results are shown in FIG. 8B. In this case, it becomes a curve in which the vertical axis and the horizontal axis of the butterfly curve shown in FIG. 8A are interchanged. Compared to the case where there is no change in the threshold voltage shown in FIG. 7, the closed curve L2 is larger, and accordingly, the square SQ2 representing the SNM indicating the stability of P2 is also larger. I understand. The specific value of the SNM in this case is 0.170 V, which is the same as that shown in FIG. 8A.
 従って、しきい値電圧に変化の無い従来構造の半導体記憶装置と比較して、本実施形態の半導体記憶装置においてはSNMの増大が図られていること、即ちノイズに対する耐性の向上が図られていることが判る。 Therefore, compared with the semiconductor memory device having the conventional structure in which the threshold voltage does not change, the semiconductor memory device of this embodiment has an increased SNM, that is, improved resistance to noise. I know that.
 なお、本実施形態の半導体記憶装置においてSNMの増大が図られたことの理由は、第3及び第4のn型電界効果トランジスタTn3,Tn4のチャネル領域が各々第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極と重ねて形成されていることの結果として、第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極が各々実効的に第3及び第4のn型電界効果トランジスタTn3,Tn4の裏面ゲート電極として作用することにある。仮に、第3及び第4のn型電界効果トランジスタTn3,Tn4のチャネル領域が各々第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極と重ねて形成されていたとしても、第3及び第4のn型電界効果トランジスタTn3,Tn4が例えば柱状構造等の平面構造以外の構造を有していては、しきい値電圧の変化は生じないので本実施形態の効果は得られない。それ故、第3及び第4のn型電界効果トランジスタTn3,Tn4が平面構造を有することは本質的である。 The reason why the SNM is increased in the semiconductor memory device of this embodiment is that the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are the second and first p-type electric fields, respectively. As a result of overlapping the gate electrodes of the effect transistors Tp2 and Tp1, the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1 are effectively third and fourth n-type, respectively. It is to act as the back gate electrode of the field effect transistors Tn3 and Tn4. Even if the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are formed so as to overlap the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively, If the fourth n-type field effect transistors Tn3 and Tn4 have a structure other than a planar structure such as a columnar structure, the threshold voltage does not change, so the effect of the present embodiment cannot be obtained. Therefore, it is essential that the third and fourth n-type field effect transistors Tn3 and Tn4 have a planar structure.
 また、本実施形態においては、第3及び第4のn型電界効果トランジスタTn3,Tn4のチャネル領域が各々第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極と重ねて形成されている。そのことの結果としてSNMの増大が図られたことに本質的であるのは、第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極が各々実効的に第3及び第4のn型電界効果トランジスタTn3,Tn4の裏面ゲート電極として作用していることにある。それ故、第3及び第4のn型電界効果トランジスタTn3,Tn4のチャネル領域は必ずしも各々第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極と重ねて形成されている必要はなく、各々第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極に接続された配線と重ねて形成されていても同様の効果が得られる。 In the present embodiment, the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are formed so as to overlap the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively. Yes. As a result, the increase in the SNM is essential because the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1 are effectively third and fourth n respectively. This is because it functions as the back gate electrode of the type field effect transistors Tn3 and Tn4. Therefore, the channel regions of the third and fourth n-type field effect transistors Tn3 and Tn4 are not necessarily formed so as to overlap the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively. The same effect can be obtained even if they are formed so as to overlap with the wirings connected to the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1, respectively.
 なお、本実施形態の半導体記憶装置においてSNMの増大が図られたことの本質は、第2及び第1のp型電界効果トランジスタTp2,Tp1のゲート電極が各々実効的に第3及び第4のn型電界効果トランジスタTn3,Tn4の裏面ゲート電極として作用したことの結果として、第3及び第4のn型電界効果トランジスタTn3,Tn4のしきい値電圧が変化したことにある。常温における電位には揺らぎが存在し、それは熱電位即ちkT/q(kは Boltzmann の定数、Tは絶対温度即ち常温では300K、qは素電荷即ち1.6×10-19C、kT/qの常温での値は26mVとなる)程度となる。それ故、SNMの増大による半導体記憶装置の安定領域の拡大を得るためには、半導体記憶装置を構成する電界効果トランジスタのしきい値電圧を電位揺らぎの3倍即ち、78mV程度に変化させる必要がある。 The essence of increasing the SNM in the semiconductor memory device of this embodiment is that the gate electrodes of the second and first p-type field effect transistors Tp2 and Tp1 are effectively third and fourth, respectively. The threshold voltage of the third and fourth n-type field effect transistors Tn3 and Tn4 has changed as a result of acting as the back gate electrodes of the n-type field effect transistors Tn3 and Tn4. There is fluctuation in the electric potential at normal temperature, which is the thermal potential, ie, kT / q (k is Boltzmann's constant, T is 300 K at absolute temperature, ie, normal temperature, q is elementary charge, ie, 1.6 × 10 −19 C, kT / q. Of room temperature is about 26 mV). Therefore, in order to obtain an increase in the stable region of the semiconductor memory device due to an increase in SNM, it is necessary to change the threshold voltage of the field effect transistor constituting the semiconductor memory device to three times the potential fluctuation, that is, about 78 mV. is there.
 上記の数値計算に用いた素子を用いて、裏面ゲート電極への電圧の印加に伴うしきい値電圧の変化を計算したところ、ここにおいて仮定した電源電圧の1Vを裏面ゲート電極に印加することで、78mVのしきい値電圧の変化量が得られるためには、チャネル領域と裏面ゲート電極との間の絶縁膜の厚さは70nm以下である必要があることが判った。それ故、絶縁膜上に形成された電界効果トランジスタのチャネル領域の下端と、半導体基板上に形成された電界効果トランジスタのゲート電極とゲート電極に接続された配線との内で絶縁膜上に形成された電界効果トランジスタのチャネル領域と重なる領域の上端との、半導体基板の表面に垂直な方向に測った間隔は70nm以下であることが好ましい。 Using the elements used in the above numerical calculation, the change in threshold voltage accompanying the application of the voltage to the back gate electrode was calculated. By applying 1 V of the assumed power supply voltage to the back gate electrode, In order to obtain a change amount of the threshold voltage of 78 mV, it has been found that the thickness of the insulating film between the channel region and the back gate electrode needs to be 70 nm or less. Therefore, it is formed on the insulating film among the lower end of the channel region of the field effect transistor formed on the insulating film and the gate electrode of the field effect transistor formed on the semiconductor substrate and the wiring connected to the gate electrode. The distance measured in the direction perpendicular to the surface of the semiconductor substrate between the upper end of the region overlapping the channel region of the field effect transistor is preferably 70 nm or less.
 また、上に記した二つの場合の、半導体基板上に形成された電界効果トランジスタのゲート電圧の値の差である1V-0.18V=0.82Vの電圧を裏面ゲート電極に印加することに伴い、78mVのしきい値電圧の変化が得られるためには、チャネル領域と裏面ゲート電極との間の絶縁膜の厚さは40nm以下である必要があることが判った。それ故、絶縁膜上に形成された電界効果トランジスタのチャネル領域の下端と、半導体基板上に形成された電界効果トランジスタのゲート電極とゲート電極に接続された配線との内で絶縁膜上に形成された電界効果トランジスタのチャネル領域と重なる領域の上端との、半導体基板の表面に垂直な方向に測った間隔は40nm以下であると更に好ましい。 Also, in the two cases described above, a voltage of 1V−0.18V = 0.82V, which is a difference in gate voltage value of the field effect transistor formed on the semiconductor substrate, is applied to the back gate electrode. Accordingly, it has been found that the thickness of the insulating film between the channel region and the back gate electrode needs to be 40 nm or less in order to obtain a change in threshold voltage of 78 mV. Therefore, it is formed on the insulating film among the lower end of the channel region of the field effect transistor formed on the insulating film and the gate electrode of the field effect transistor formed on the semiconductor substrate and the wiring connected to the gate electrode. More preferably, the distance measured in the direction perpendicular to the surface of the semiconductor substrate with respect to the upper end of the region overlapping the channel region of the field effect transistor is 40 nm or less.
 (第1の実施形態の第1の変形例)
 次に、第1の実施形態の第1の変形例を説明する。
(First modification of the first embodiment)
Next, a first modification of the first embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、立体的な構造が異なっている。即ち本変形例においては、図9に模式的に構造を示すように、半導体基板上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第1及び第2のn型電界効果トランジスタTn1,Tn2とが形成されており、それらの上に形成された絶縁膜上に第3及び第4のn型電界効果トランジスタTn3,Tn4が形成されている。そして、第3のn型電界効果トランジスタTn3のチャネル領域は半導体基板の法線方向より見て第2のn型電界効果トランジスタTn2のゲート電極と重なるように形成されており、第4のn型電界効果トランジスタTn4のチャネル領域は半導体基板の法線方向より見て第1のn型電界効果トランジスタTn1のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 9, the first and second p-type field effect transistors Tp1, Tp2 and the first and second n-type field effect transistors Tn1 are formed on the semiconductor substrate. , Tn2 are formed, and third and fourth n-type field effect transistors Tn3, Tn4 are formed on the insulating film formed thereon. The channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate. The channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
 本変形例の半導体記憶装置の製造工程を、図10を参照して説明する。 The manufacturing process of the semiconductor memory device of this modification will be described with reference to FIG.
 前記図4(a)~図5(i)に示す工程に引き続いて、図10(a)に示すように、例えば化学的気相成長法等の方法により、前記層間絶縁膜9の上にBを含む厚さ20nmのシリコン層(図示せず)を形成し、例えばメサ型素子分離法等の方法により素子分離を行い、半導体層10を形成する。 Subsequent to the steps shown in FIGS. 4A to 5I, as shown in FIG. 10A, B is formed on the interlayer insulating film 9 by a method such as chemical vapor deposition. A silicon layer (not shown) having a thickness of 20 nm including is formed, and element isolation is performed by a method such as a mesa element isolation method to form the semiconductor layer 10.
 次いで、図10(b)に示すように、例えば化学的気相成長法等の方法により、半導体層10上に厚さ5nmのHfO2 膜(図示せず)を形成する。続いて、HfO2 膜(図示せず)の上に、例えば化学的気相成長法等の方法により厚さ50nmのタングステン膜(図示せず)を形成する。そして、前記タングステン膜(図示せず)に、例えば活性イオンエッチング法等の処理を施すことにより一部を選択的に除去し、ゲート電極6を形成する。続いて、HfO2 膜(図示せず)に、例えば活性イオンエッチング法等の処理を施すことにより一部を選択的に除去し、ゲート絶縁膜5を形成する。 Next, as shown in FIG. 10B, an HfO 2 film (not shown) having a thickness of 5 nm is formed on the semiconductor layer 10 by a method such as chemical vapor deposition. Subsequently, a 50 nm thick tungsten film (not shown) is formed on the HfO 2 film (not shown) by a method such as chemical vapor deposition. Then, a part of the tungsten film (not shown) is selectively removed by subjecting the tungsten film (not shown), for example, to a gate electrode 6. Subsequently, a part of the HfO 2 film (not shown) is selectively removed, for example, by performing a process such as an active ion etching method to form the gate insulating film 5.
 次いで、図10(c)に示すように、半導体層10の表面部に、例えばAsを注入することによりエクステンション領域14を形成する。続いて、例えば化学的気相成長法等の方法により厚さ20nmの酸化シリコン膜(図示せず)を形成する。その後、例えば活性イオンエッチング法等の方法を用いてエッチバックすることにより酸化シリコン膜の一部を選択的に除去し、ゲート側壁8を形成する。 Next, as shown in FIG. 10C, the extension region 14 is formed in the surface portion of the semiconductor layer 10 by implanting, for example, As. Subsequently, a silicon oxide film (not shown) having a thickness of 20 nm is formed by a method such as chemical vapor deposition. Thereafter, a part of the silicon oxide film is selectively removed by etching back using a method such as an active ion etching method, and the gate sidewall 8 is formed.
 その次に、例えばAsを注入し、熱工程を施すことによりエクステンション領域14と共にソース・ドレイン領域7を形成する。これ以降は、従来技術と同様にして層間絶縁膜形成工程乃至配線工程等を経て、前記図9に示す構造の半導体記憶装置を形成する。 Next, for example, As is implanted, and the source / drain region 7 is formed together with the extension region 14 by performing a thermal process. Thereafter, the semiconductor memory device having the structure shown in FIG. 9 is formed through an interlayer insulating film forming process or a wiring process in the same manner as in the prior art.
 第1のn型電界効果トランジスタTn1のゲート電極と第1のp型電界効果トランジスタTp1のゲート電極とは相互に接続され、且つ第2のn型電界効果トランジスタTn2のゲート電極と第2のp型電界効果トランジスタTp2のゲート電極とは相互に接続されている。このため、第1のn型電界効果トランジスタTn1のゲート電極と第1のp型電界効果トランジスタTp1のゲート電極とは相互に等しい電位であり、且つ第2のn型電界効果トランジスタTn2のゲート電極と第2のp型電界効果トランジスタTp2のゲート電極とは相互に等しい電位である。それ故、本変形例の半導体記憶装置においても、第3及び第4のn型電界効果トランジスタTn3,Tn4のしきい値電圧には上記実施形態の半導体記憶装置と同様の変化が生ずる。それ故、本変形例の半導体記憶装置においても上記実施形態の半導体記憶装置と同様の効果が得られる。 The gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are connected to each other, and the gate electrode of the second n-type field effect transistor Tn2 is connected to the second p-type field effect transistor Tn2. The gate electrode of the type field effect transistor Tp2 is mutually connected. Therefore, the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are at the same potential, and the gate electrode of the second n-type field effect transistor Tn2 And the gate electrode of the second p-type field effect transistor Tp2 have the same potential. Therefore, also in the semiconductor memory device of this modification, the same changes as in the semiconductor memory device of the above embodiment occur in the threshold voltages of the third and fourth n-type field effect transistors Tn3 and Tn4. Therefore, the semiconductor memory device of the present modification can achieve the same effects as those of the semiconductor memory device of the above embodiment.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (第1の実施形態の第2の変形例)
 次に、第1の実施形態の第2の変形例を説明する。
(Second modification of the first embodiment)
Next, a second modification of the first embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、立体的な構造が異なっている。即ち本変形例においては、図11に模式的に構造を示すように、半導体基板上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第1及び第2のn型電界効果トランジスタTn1,Tn2とが形成されており、それらの上に形成された絶縁膜上に第3及び第4のn型電界効果トランジスタTn3,Tn4が形成されている。そして、第3のn型電界効果トランジスタTn3のチャネル領域は半導体基板の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されており、第4のn型電界効果トランジスタTn4のチャネル領域は半導体基板の法線方向より見て第1のn型電界効果トランジスタTn1のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 11, the first and second p-type field effect transistors Tp1, Tp2 and the first and second n-type field effect transistors Tn1 are formed on the semiconductor substrate. , Tn2 are formed, and third and fourth n-type field effect transistors Tn3, Tn4 are formed on the insulating film formed thereon. The channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate. The channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
 本変形例の半導体記憶装置の製造工程は、本質的に第1の実施形態ないしその第1の変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device according to the present modification is essentially the same as the manufacturing process according to the first embodiment or the first modification, and a description thereof will be omitted.
 第1のn型電界効果トランジスタTn1のゲート電極と第1のp型電界効果トランジスタTp1のゲート電極とは相互に接続され、且つ第2のn型電界効果トランジスタTn2のゲート電極と第2のp型電界効果トランジスタTp2のゲート電極とは相互に接続されている。このため、第1のn型電界効果トランジスタTn1のゲート電極と第1のp型電界効果トランジスタTp1のゲート電極とは相互に等しい電位であり、且つ第2のn型電界効果トランジスタTn2のゲート電極と第2のp型電界効果トランジスタTp2のゲート電極とは相互に等しい電位である。それ故、本変形例の半導体記憶装置においても、第3及び第4のn型電界効果トランジスタTn3,Tn4のしきい値電圧には上記実施形態の半導体記憶装置と同様の変化が生ずる。それ故、本変形例の半導体記憶装置においても上記実施形態の半導体記憶装置と同様の効果が得られる。 The gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are connected to each other, and the gate electrode of the second n-type field effect transistor Tn2 is connected to the second p-type field effect transistor Tn2. The gate electrode of the type field effect transistor Tp2 is mutually connected. Therefore, the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are at the same potential, and the gate electrode of the second n-type field effect transistor Tn2 And the gate electrode of the second p-type field effect transistor Tp2 have the same potential. Therefore, also in the semiconductor memory device of this modification, the same changes as in the semiconductor memory device of the above embodiment occur in the threshold voltages of the third and fourth n-type field effect transistors Tn3 and Tn4. Therefore, the semiconductor memory device of the present modification can achieve the same effects as those of the semiconductor memory device of the above embodiment.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (第1の実施形態の第3の変形例)
 次に、第1の実施形態の第3の変形例を説明する。
(Third Modification of First Embodiment)
Next, a third modification of the first embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、立体的な構造が異なっている。即ち本変形例においては、図12に模式的に構造を示すように、半導体基板上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第1及び第2のn型電界効果トランジスタTn1,Tn2とが形成されており、それらの上に形成された絶縁膜上に第3及び第4のn型電界効果トランジスタTn3,Tn4が形成されている。そして、第3のn型電界効果トランジスタTn3のチャネル領域は半導体基板の法線方向より見て第2のn型電界効果トランジスタTn2のゲート電極と重なるように形成されており、第4のn型電界効果トランジスタTn4のチャネル領域は半導体基板の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 12, the first and second p-type field effect transistors Tp1, Tp2 and the first and second n-type field effect transistors Tn1 are formed on the semiconductor substrate. , Tn2 are formed, and third and fourth n-type field effect transistors Tn3, Tn4 are formed on the insulating film formed thereon. The channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate. The channel region of the field effect transistor Tn4 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate.
 本変形例の半導体記憶装置の製造工程は、本質的に第1の実施形態ないしその第1ないし第2の変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the first embodiment or the first or second modification thereof, and will not be described.
 第1のn型電界効果トランジスタTn1のゲート電極と第1のp型電界効果トランジスタTp1のゲート電極とは相互に接続され、且つ第2のn型電界効果トランジスタTn2のゲート電極と第2のp型電界効果トランジスタTp2のゲート電極とは相互に接続されている。このため、第1のn型電界効果トランジスタTn1のゲート電極と第1のp型電界効果トランジスタTp1のゲート電極とは相互に等しい電位であり、且つ第2のn型電界効果トランジスタTn2のゲート電極と第2のp型電界効果トランジスタTp2のゲート電極とは相互に等しい電位である。それ故、本変形例の半導体記憶装置においても、第3及び第4のn型電界効果トランジスタTn3,Tn4のしきい値電圧には上記実施形態の半導体記憶装置と同様の変化が生ずる。それ故、本変形例の半導体記憶装置においても上記実施形態の半導体記憶装置と同様の効果が得られる。 The gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are connected to each other, and the gate electrode of the second n-type field effect transistor Tn2 is connected to the second p-type field effect transistor Tn2. The gate electrode of the type field effect transistor Tp2 is mutually connected. Therefore, the gate electrode of the first n-type field effect transistor Tn1 and the gate electrode of the first p-type field effect transistor Tp1 are at the same potential, and the gate electrode of the second n-type field effect transistor Tn2 And the gate electrode of the second p-type field effect transistor Tp2 have the same potential. Therefore, also in the semiconductor memory device of this modification, the same changes as in the semiconductor memory device of the above embodiment occur in the threshold voltages of the third and fourth n-type field effect transistors Tn3 and Tn4. Therefore, the semiconductor memory device of the present modification can achieve the same effects as those of the semiconductor memory device of the above embodiment.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (第2の実施形態)
 次に、本発明の半導体記憶装置の第2の実施形態を説明する。
(Second Embodiment)
Next, a second embodiment of the semiconductor memory device of the present invention will be described.
 図13は、本発明の第2の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。 FIG. 13 is a bird's eye view showing a schematic structure of a semiconductor memory device according to the second embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、図13に構造を模式的に示すように、第1及び第2のp型電界効果トランジスタTp1,Tp2と第3及び第4のn型電界効果トランジスタTn3,Tn4とは半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1及び第2のn型電界効果トランジスタTn1,Tn2が形成されている。そして、第1のn型電界効果トランジスタTn1のチャネル領域は、半導体基板の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極と重なるように形成されており、且つ第2のn型電界効果トランジスタTn2のチャネル領域は、半導体基板の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されている。 The semiconductor memory device of this embodiment has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields are schematically shown in FIG. The effect transistors Tp1, Tp2 and the third and fourth n-type field effect transistors Tn3, Tn4 are formed on the semiconductor substrate, and the first and second n-type electric fields are formed on the interlayer insulating film formed thereon. Effect transistors Tn1 and Tn2 are formed. The channel region of the first n-type field effect transistor Tn1 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the n-type field effect transistor Tn2 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate.
 本実施形態の半導体記憶装置の製造工程は、本質的に第1の実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the first embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は0.18V、第2のp型電界効果トランジスタTp2のゲート電極は1.0Vとなる。それ故、第1のp型電界効果トランジスタTp1のゲート電極の上にチャネル領域が形成されているところの第1のn型電界効果トランジスタTn1のしきい値電圧に比べると、第2のp型電界効果トランジスタTp2のゲート電極の上にチャネル領域が形成されているところの第2のn型電界効果トランジスタTn2のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 0.18V, and the gate electrode of the second p-type field effect transistor Tp2 is 1.0V. Therefore, the second p-type is compared with the threshold voltage of the first n-type field effect transistor Tn1 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1. The threshold voltage of the second n-type field effect transistor Tn2 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第1のn型電界効果トランジスタTn1のしきい値電圧は正の方向に50mV変化し、第2のn型電界効果トランジスタTn2のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、両者のしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果を、図14Aに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L1は大きくなっていること、それに伴ってP1の安定性を示すところのSNMを表す正方形SQ1も大きくなっていることが判る。この場合のSNMの具体的な値は0.188Vである。 Therefore, here, compared with the case shown in FIG. 7, the threshold voltage of the first n-type field effect transistor Tn1 changes by 50 mV in the positive direction, and the second n-type field effect transistor Tn2 has a threshold voltage. The butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction. In other words, the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change. The results are shown in FIG. 14A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. . The specific value of SNM in this case is 0.188V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は1.0V、第2のp型電界効果トランジスタTp2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は図14Aに示した場合の縦軸と横軸とを入れ替えた曲線となる。結果を、図14Bに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L2は大きくなっていること、それに伴ってP2の安定性を示すところのSNMを表す正方形SQ2も大きくなっていることが判る。この場合のSNMの具体的な値は、図14Aに示した場合と等しく0.188Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case shown in FIG. 14A are interchanged. The results are shown in FIG. 14B. It can be seen that the closed curve L2 is larger than the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ2 representing the SNM indicating the stability of P2 is also increased. . The specific value of SNM in this case is 0.188 V, which is the same as that shown in FIG. 14A.
 本実施形態においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this embodiment, various modifications as described in the above embodiment are possible, and similar effects can be obtained.
 (第2の実施形態の変形例)
 次に、第2の実施形態の変形例を説明する。
(Modification of the second embodiment)
Next, a modification of the second embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、立体的な構造が異なっている。即ち本変形例においては、図15に構造を模式的に示すように、第1から第4のn型電界効果トランジスタTn1~Tn4は半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1及び第2のp型電界効果トランジスタTp1,Tp2が形成されている。そして、第1のp型電界効果トランジスタTp1のチャネル領域は、半導体基板の法線方向より見て第1のn型電界効果トランジスタTn1のゲート電極と重なるように形成されており、且つ第2のp型電界効果トランジスタTp2のチャネル領域は、半導体基板の法線方向より見て第2のn型電界効果トランジスタTn2のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in the present modification, as schematically shown in FIG. 15, the first to fourth n-type field effect transistors Tn1 to Tn4 are formed on the semiconductor substrate, and the interlayer insulation formed thereon is formed. First and second p-type field effect transistors Tp1 and Tp2 are formed on the film. The channel region of the first p-type field effect transistor Tp1 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the p-type field effect transistor Tp2 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate.
 本変形例の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、変形例の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は0.18V、第2のn型電界効果トランジスタTn2のゲート電極は1.0Vとなる。それ故、第1のn型電界効果トランジスタTn1のゲート電極の上にチャネル領域が形成されているところの第1のp型電界効果トランジスタTp1のしきい値電圧に比べると、第2のn型電界効果トランジスタTn2のゲート電極の上にチャネル領域が形成されているところの第2のp型電界効果トランジスタTp2のしきい値電圧は、負の方向に変化している。 Next, the results of numerical calculations related to the semiconductor memory device having the modified structure will be described. First, consider a case where the potential of the bit line BL is set to the power supply voltage and the potential of the inverted bit line BL ′ is set to the ground potential at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 0.18V, and the gate electrode of the second n-type field effect transistor Tn2 is 1.0V. Therefore, compared with the threshold voltage of the first p-type field effect transistor Tp1 in which the channel region is formed on the gate electrode of the first n-type field effect transistor Tn1, the second n-type The threshold voltage of the second p-type field effect transistor Tp2 in which the channel region is formed on the gate electrode of the field effect transistor Tn2 changes in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第1のp型電界効果トランジスタTp1のしきい値電圧は正の方向に50mV変化し、第2のp型電界効果トランジスタTp2のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、両者のしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果を、図16Aに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L1は大きくなっていること、それに伴ってP1の安定性を示すところのSNMを表す正方形SQ1も大きくなっていることが判る。この場合のSNMの具体的な値は0.156Vである。 Therefore, here, the threshold voltage of the first p-type field effect transistor Tp1 changes by 50 mV in the positive direction as compared with the case shown in FIG. 7, and the second p-type field effect transistor Tp2 has a threshold voltage. The butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction. In other words, the threshold voltage in the case where there is no change is adjusted so that the threshold voltage of the both becomes the value described here as a result of the change. The results are shown in FIG. 16A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. . The specific value of SNM in this case is 0.156V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は1.0V、第2のn型電界効果トランジスタTn2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は図16Aに示した場合の縦軸と横軸とを入れ替えた曲線となる。結果を、図16Bに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L2は大きくなっていること、それに伴ってP2の安定性を示すところのSNMを表す正方形SQ2も大きくなっていることが判る。この場合のSNMの具体的な値は、図16Aに示した場合と等しく0.156Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 1.0V, and the gate electrode of the second n-type field effect transistor Tn2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case shown in FIG. 16A are interchanged. The results are shown in FIG. 16B. It can be seen that the closed curve L2 is larger than the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ2 representing the SNM indicating the stability of P2 is also increased. . The specific value of the SNM in this case is 0.156 V, which is the same as that shown in FIG. 16A.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (第3の実施形態)
 次に、本発明の半導体記憶装置の第3の実施形態を説明する。
(Third embodiment)
Next, a third embodiment of the semiconductor memory device of the present invention will be described.
 図17は、本発明の第3の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。 FIG. 17 is a bird's eye view showing a schematic structure of a semiconductor memory device according to the third embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、図17に模式的に構造を示すように、第1及び第2のp型電界効果トランジスタTp1,Tp2は半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1から第4のn型電界効果トランジスタTn1~Tn4が形成されている。そして、第1及び第4のn型電界効果トランジスタTn1,Tn4のチャネル領域は、半導体基板の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極と重なるように形成されており、且つ第2及び第3のn型電界効果トランジスタTn2,Tn3のチャネル領域は、半導体基板の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されている。 The semiconductor memory device of the present embodiment has a circuit similar to that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields as schematically shown in FIG. The effect transistors Tp1 and Tp2 are formed on a semiconductor substrate, and first to fourth n-type field effect transistors Tn1 to Tn4 are formed on an interlayer insulating film formed thereon. The channel regions of the first and fourth n-type field effect transistors Tn1 and Tn4 are formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate. The channel regions of the second and third n-type field effect transistors Tn2 and Tn3 are formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate. .
 本実施形態の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は0.18V、第2のp型電界効果トランジスタTp2のゲート電極は1.0Vとなる。それ故、第1のp型電界効果トランジスタTp1のゲート電極の上にチャネル領域が形成されているところの第1及び第4のn型電界効果トランジスタTn1,Tn4のしきい値電圧に比べると、第2のp型電界効果トランジスタTp2のゲート電極の上にチャネル領域が形成されているところの第2及び第3のn型電界効果トランジスタTn2,Tn3のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 0.18V, and the gate electrode of the second p-type field effect transistor Tp2 is 1.0V. Therefore, compared with the threshold voltages of the first and fourth n-type field effect transistors Tn1 and Tn4 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1, The threshold voltages of the second and third n-type field effect transistors Tn2 and Tn3 where the channel region is formed on the gate electrode of the second p-type field effect transistor Tp2 change in the negative direction. is doing.
 それで、ここでは前記図7に示した場合と比較して、第1及び第4のn型電界効果トランジスタTn1,Tn4のしきい値電圧は正の方向に50mV変化し、第2及び第3のn型電界効果トランジスタTn2,Tn3のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、それらのしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果を、図18Aに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L1は大きくなっていること、それに伴ってP1の安定性を示すところのSNMを表す正方形SQ1も大きくなっていることが判る。この場合のSNMの具体的な値は0.213Vである。 Therefore, here, compared with the case shown in FIG. 7, the threshold voltages of the first and fourth n-type field effect transistors Tn1 and Tn4 change by 50 mV in the positive direction, and the second and third The butterfly curve was calculated on the assumption that the threshold voltages of the n-type field effect transistors Tn2 and Tn3 were changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The results are shown in FIG. 18A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. . The specific value of SNM in this case is 0.213V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は1.0V、第2のp型電界効果トランジスタTp2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は図18Aに示した場合の縦軸と横軸とを入れ替えた曲線となる。結果を、図18Bに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L2は大きくなっていること、それに伴ってP2の安定性を示すところのSNMを表す正方形SQ2も大きくなっていることが判る。この場合のSNMの具体的な値は、図18Aに示した場合と等しく0.213Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case illustrated in FIG. 18A are interchanged. The results are shown in FIG. 18B. It can be seen that the closed curve L2 is larger than the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ2 representing the SNM indicating the stability of P2 is also increased. . The specific value of SNM in this case is 0.213 V, which is the same as that shown in FIG. 18A.
 本実施形態においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this embodiment, various modifications as described in the above embodiment are possible, and similar effects can be obtained.
 (第3の実施形態の変形例)
 次に、第3の実施形態の変形例を説明する。
(Modification of the third embodiment)
Next, a modification of the third embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、立体的な構造が異なっている。即ち本変形例においては、図19に模式的に構造を示すように、第1及び第2のn型電界効果トランジスタTn1,Tn2は半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第3及び第4のn型電界効果トランジスタTn3,Tn4が形成されている。そして、第1のp型電界効果トランジスタTp1及び第4のn型電界効果トランジスタTn4のチャネル領域は、半導体基板の法線方向より見て第1のn型電界効果トランジスタTn1のゲート電極と重なるように形成されており、且つ第2のp型電界効果トランジスタTp2及び第3のn型電界効果トランジスタTn3のチャネル領域は、半導体基板の法線方向より見て第2のn型電界効果トランジスタTn2のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in the present modification, as schematically shown in FIG. 19, the first and second n-type field effect transistors Tn1 and Tn2 are formed on the semiconductor substrate, and the interlayer insulation formed on them. First and second p-type field effect transistors Tp1 and Tp2 and third and fourth n-type field effect transistors Tn3 and Tn4 are formed on the film. The channel regions of the first p-type field effect transistor Tp1 and the fourth n-type field effect transistor Tn4 overlap with the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate. The channel regions of the second p-type field effect transistor Tp2 and the third n-type field effect transistor Tn3 are formed in the second n-type field effect transistor Tn2 as viewed from the normal direction of the semiconductor substrate. It is formed so as to overlap with the gate electrode.
 本変形例の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は0.18V、第2のn型電界効果トランジスタTn2のゲート電極は1.0Vとなる。それ故、第1のn型電界効果トランジスタTn1のゲート電極の上にチャネル領域が形成されているところの第1のp型電界効果トランジスタTp1及び第4のn型電界効果トランジスタTn4のしきい値電圧に比べると、第2のn型電界効果トランジスタTn2のゲート電極の上にチャネル領域が形成されているところの第2のp型電界効果トランジスタTp2及び第3のn型電界効果トランジスタTn3のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 0.18V, and the gate electrode of the second n-type field effect transistor Tn2 is 1.0V. Therefore, the threshold values of the first p-type field effect transistor Tp1 and the fourth n-type field effect transistor Tn4 in which the channel region is formed on the gate electrode of the first n-type field effect transistor Tn1. Compared to the voltage, the second p-type field effect transistor Tp2 and the third n-type field effect transistor Tn3 in which the channel region is formed on the gate electrode of the second n-type field effect transistor Tn2 are used. The threshold voltage is changing in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第1のp型電界効果トランジスタTp1及び第4のn型電界効果トランジスタTn4のしきい値電圧は正の方向に50mV変化し、第2のp型電界効果トランジスタTp2及び第3のn型電界効果トランジスタTn3のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、それらのしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果を、図20Aに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L1は大きくなっていること、それに伴ってP1の安定性を示すところのSNMを表す正方形SQ1も大きくなっていることが判る。この場合のSNMの具体的な値は0.182Vである。 Therefore, here, compared with the case shown in FIG. 7, the threshold voltages of the first p-type field effect transistor Tp1 and the fourth n-type field effect transistor Tn4 change by 50 mV in the positive direction. The butterfly curve was calculated on the assumption that the threshold voltages of the p-type field effect transistor Tp2 and the third n-type field effect transistor Tn3 were changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The results are shown in FIG. 20A. It can be seen that the closed curve L1 is larger than that in the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ1 representing the SNM indicating the stability of P1 is also increased. . The specific value of SNM in this case is 0.182V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は1.0V、第2のn型電界効果トランジスタTn2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は図20Aに示した場合の縦軸と横軸とを入れ替えた曲線となる。結果を、図20Bに示す。図7に示したしきい値電圧に変化の無い場合と比較すると閉曲線L2は大きくなっていること、それに伴ってP2の安定性を示すところのSNMを表す正方形SQ2も大きくなっていることが判る。この場合のSNMの具体的な値は、図20Aに示した場合と等しく0.182Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 1.0V, and the gate electrode of the second n-type field effect transistor Tn2 is 0.18V. Therefore, the butterfly curve is a curve in which the vertical axis and the horizontal axis in the case shown in FIG. 20A are interchanged. The results are shown in FIG. 20B. It can be seen that the closed curve L2 is larger than the case where there is no change in the threshold voltage shown in FIG. 7, and accordingly, the square SQ2 representing the SNM indicating the stability of P2 is also increased. . The specific value of the SNM in this case is 0.182 V, which is the same as that shown in FIG. 20A.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (第4の実施形態)
 次に、本発明の半導体記憶装置の第4の実施形態を説明する。
(Fourth embodiment)
Next, a fourth embodiment of the semiconductor memory device of the present invention will be described.
 図21は、本発明の第4の実施形態に係わる半導体記憶装置の概略構造を示す鳥瞰図である。なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。 FIG. 21 is a bird's eye view showing a schematic structure of a semiconductor memory device according to the fourth embodiment of the present invention. The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、図21に構造を模式的に示すように、第1及び第2のp型電界効果トランジスタTp1,Tp2は半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1から第4のn型電界効果トランジスタTn1~Tn4が形成されている。そして、第1のn型電界効果トランジスタTn1のチャネル領域は、半導体基板の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極と重なるように形成されており、且つ第2のn型電界効果トランジスタTn2のチャネル領域は、半導体基板の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されている。 The semiconductor memory device of this embodiment has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields are schematically shown in FIG. The effect transistors Tp1 and Tp2 are formed on a semiconductor substrate, and first to fourth n-type field effect transistors Tn1 to Tn4 are formed on an interlayer insulating film formed thereon. The channel region of the first n-type field effect transistor Tn1 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the n-type field effect transistor Tn2 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate.
 本実施形態の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は0.18V、第2のp型電界効果トランジスタTp2のゲート電極は1.0Vとなる。それ故、第1のp型電界効果トランジスタTp1のゲート電極の上にチャネル領域が形成されているところの第1のn型電界効果トランジスタTn1のしきい値電圧に比べると、第2のp型電界効果トランジスタTp2のゲート電極の上にチャネル領域が形成されているところの第2のn型電界効果トランジスタTn2のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 0.18V, and the gate electrode of the second p-type field effect transistor Tp2 is 1.0V. Therefore, the second p-type is compared with the threshold voltage of the first n-type field effect transistor Tn1 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1. The threshold voltage of the second n-type field effect transistor Tn2 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第1のn型電界効果トランジスタTn1のしきい値電圧は正の方向に50mV変化し、第2のn型電界効果トランジスタTn2のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、それらのしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果は、前記図14Aに示した第2の実施形態の半導体記憶装置に対する計算結果と等しい。それ故、この場合のSNMの具体的な値は0.188Vである。 Therefore, here, compared with the case shown in FIG. 7, the threshold voltage of the first n-type field effect transistor Tn1 changes by 50 mV in the positive direction, and the second n-type field effect transistor Tn2 has a threshold voltage. The butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the semiconductor memory device of the second embodiment shown in FIG. 14A. Therefore, the specific value of SNM in this case is 0.188V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は1.0V、第2のp型電界効果トランジスタTp2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は、前記図14Bに示した第2の実施形態の半導体記憶装置に対する計算結果と等しい。それ故、この場合のSNMの具体的な値は0.188Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is equal to the calculation result for the semiconductor memory device of the second embodiment shown in FIG. 14B. Therefore, the specific value of SNM in this case is 0.188V.
 本実施形態においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this embodiment, various modifications as described in the above embodiment are possible, and similar effects can be obtained.
 (第4の実施形態の変形例)
 次に、第4の実施形態の変形例を説明する。
(Modification of the fourth embodiment)
Next, a modification of the fourth embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、図22に模式的に構造を示すように第1及び第2のn型電界効果トランジスタTn1,Tn2は半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第3及び第4のn型電界効果トランジスタTn3,Tn4とが形成されている。そして、第1のp型電界効果トランジスタTp1のチャネル領域は、半導体基板の法線方向より見て第1のn型電界効果トランジスタTn1のゲート電極と重なるように形成されており、且つ第2のp型電界効果トランジスタTp2のチャネル領域は、半導体基板の法線方向より見て第2のn型電界効果トランジスタTn2のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second n-type field effects are schematically shown in FIG. The transistors Tn1 and Tn2 are formed on a semiconductor substrate, and first and second p-type field effect transistors Tp1 and Tp2 and third and fourth n-type field effect transistors are formed on an interlayer insulating film formed thereon. Tn3 and Tn4 are formed. The channel region of the first p-type field effect transistor Tp1 is formed so as to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate, and the second region The channel region of the p-type field effect transistor Tp2 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate.
 本変形例の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は0.18V、第2のn型電界効果トランジスタTn2のゲート電極は1.0Vとなる。それ故、第1のn型電界効果トランジスタTn1のゲート電極の上にチャネル領域が形成されているところの第1のp型電界効果トランジスタTp1のしきい値電圧に比べると、第2のn型電界効果トランジスタTn2のゲート電極の上にチャネル領域が形成されているところの第2のp型電界効果トランジスタTp2のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 0.18V, and the gate electrode of the second n-type field effect transistor Tn2 is 1.0V. Therefore, compared with the threshold voltage of the first p-type field effect transistor Tp1 in which the channel region is formed on the gate electrode of the first n-type field effect transistor Tn1, the second n-type The threshold voltage of the second p-type field effect transistor Tp2 in which the channel region is formed on the gate electrode of the field effect transistor Tn2 changes in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第1のp型電界効果トランジスタTp1のしきい値電圧は正の方向に50mV変化し、第2のp型電界効果トランジスタTp2のしきい値電圧は負の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、それらのしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果は、図16Aに示した第2の実施形態の変形例に対する計算結果と等しい。それ故、SNMの具体的な値は0.156Vである。 Therefore, here, the threshold voltage of the first p-type field effect transistor Tp1 changes by 50 mV in the positive direction as compared with the case shown in FIG. 7, and the second p-type field effect transistor Tp2 has a threshold voltage. The butterfly curve was calculated on the assumption that the threshold voltage had changed by 50 mV in the negative direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the modification of the second embodiment shown in FIG. 16A. Therefore, the specific value of SNM is 0.156V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は1.0V、第2のn型電界効果トランジスタTn2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は、前記図16Bに示した第2の実施形態の変形例に示した場合の計算結果と等しい。それ故、SNMの具体的な値は0.156Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 1.0V, and the gate electrode of the second n-type field effect transistor Tn2 is 0.18V. Therefore, the butterfly curve is equal to the calculation result in the case of the modification of the second embodiment shown in FIG. 16B. Therefore, the specific value of SNM is 0.156V.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (第5の実施形態)
 次に、本発明の半導体記憶装置の第5の実施形態を説明する。
(Fifth embodiment)
Next, a fifth embodiment of the semiconductor memory device of the present invention will be described.
 図23は、本発明の第5の実施形態に係わる半導体記憶装置を示す回路構成図である。 FIG. 23 is a circuit diagram showing a semiconductor memory device according to the fifth embodiment of the present invention.
なお、図2と同一部分には同一符号を付して、その詳しい説明は省略する。 The same parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、図23に構造を模式的に示すように、第1及び第2のp型電界効果トランジスタTp1,Tp2は半導体基板上に形成され、第1及び第2のp型電界効果トランジスタTp1,Tp2の上に形成された層間絶縁膜の上に、第1から第4のn型電界効果トランジスタTn1~Tn4が形成されている。そして、第3のn型電界効果トランジスタTn3のチャネル領域は、半導体基板の法線方向より見て第2のp型電界効果トランジスタTp2のゲート電極と重なるように形成されており、且つ第4のn型電界効果トランジスタTn4のチャネル領域は、半導体基板の法線方向より見て第1のp型電界効果トランジスタTp1のゲート電極と重なるように形成されている。 The semiconductor memory device of this embodiment has the same circuit as that of the first embodiment shown in FIG. 1, but the first and second p-type electric fields are schematically shown in FIG. The effect transistors Tp1 and Tp2 are formed on the semiconductor substrate, and the first to fourth n-type field effects are formed on the interlayer insulating film formed on the first and second p-type field effect transistors Tp1 and Tp2. Transistors Tn1 to Tn4 are formed. The channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second p-type field effect transistor Tp2 when viewed from the normal direction of the semiconductor substrate, and the fourth The channel region of the n-type field effect transistor Tn4 is formed so as to overlap the gate electrode of the first p-type field effect transistor Tp1 when viewed from the normal direction of the semiconductor substrate.
 本実施形態の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present embodiment is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は0.18V、第2のp型電界効果トランジスタTp2のゲート電極は1.0Vとなる。それ故、第1のp型電界効果トランジスタTp1のゲート電極の上にチャネル領域が形成されているところの第4のn型電界効果トランジスタTn4のしきい値電圧に比べると、第2のp型電界効果トランジスタTp2のゲート電極の上にチャネル領域が形成されているところの第3のn型電界効果トランジスタTn3のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 0.18V, and the gate electrode of the second p-type field effect transistor Tp2 is 1.0V. Therefore, the second p-type is compared with the threshold voltage of the fourth n-type field effect transistor Tn4 in which the channel region is formed on the gate electrode of the first p-type field effect transistor Tp1. The threshold voltage of the third n-type field effect transistor Tn3 where the channel region is formed on the gate electrode of the field effect transistor Tp2 changes in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第3のn型電界効果トランジスタTn3のしきい値電圧は負の方向に50mV変化し、第4のn型電界効果トランジスタTn4のしきい値電圧は正の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、それらのしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果は前記図8Aに示した第1の実施形態の半導体記憶装置に対する計算結果と等しい。それ故、この場合のSNMの具体的な値は0.170Vである。 Therefore, here, compared with the case shown in FIG. 7, the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the negative direction, and the fourth n-type field effect transistor Tn4 has a threshold voltage. The butterfly curve was calculated on the assumption that the threshold voltage was changed by 50 mV in the positive direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the semiconductor memory device of the first embodiment shown in FIG. 8A. Therefore, the specific value of SNM in this case is 0.170V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は1.0V、第2のp型電界効果トランジスタTp2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は前記図8Bに示した第1の実施形態の半導体記憶装置に対する計算結果と等しい。それ故、この場合のSNMの具体的な値は0.170Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is equal to the calculation result for the semiconductor memory device of the first embodiment shown in FIG. 8B. Therefore, the specific value of SNM in this case is 0.170V.
 本実施形態においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this embodiment, various modifications as described in the above embodiment are possible, and similar effects can be obtained.
 (第5の実施形態の変形例)
 次に、第5の実施形態の変形例を説明する。
(Modification of the fifth embodiment)
Next, a modification of the fifth embodiment will be described.
 本変形例の半導体記憶装置は、図1に示す第1の実施形態と同様の回路を有しているが、立体的な構造が異なっている。即ち本変形例においては、図24に構造を模式的に示すように、第1及び第2のn型電界効果トランジスタTn1,Tn2は半導体基板上に形成され、それらの上に形成された層間絶縁膜上に第1及び第2のp型電界効果トランジスタTp1,Tp2と第3及び第4のn型電界効果トランジスタTn3,Tn4とが形成されている。そして、第3のn型電界効果トランジスタTn3のチャネル領域は、半導体基板の法線方向より見て第2のn型電界効果トランジスタTn2のゲート電極と重なるように形成されており、且つ第4のn型電界効果トランジスタTn4のチャネル領域は、半導体基板の法線方向より見て第1のn型電界効果トランジスタTn1のゲート電極と重なるように形成されている。 The semiconductor memory device of this modification has the same circuit as that of the first embodiment shown in FIG. 1, but has a different three-dimensional structure. That is, in this modification, as schematically shown in FIG. 24, the first and second n-type field effect transistors Tn1 and Tn2 are formed on the semiconductor substrate, and the interlayer insulation formed on them. First and second p-type field effect transistors Tp1 and Tp2 and third and fourth n-type field effect transistors Tn3 and Tn4 are formed on the film. The channel region of the third n-type field effect transistor Tn3 is formed so as to overlap the gate electrode of the second n-type field effect transistor Tn2 when viewed from the normal direction of the semiconductor substrate, and the fourth The channel region of the n-type field effect transistor Tn4 is formed to overlap the gate electrode of the first n-type field effect transistor Tn1 when viewed from the normal direction of the semiconductor substrate.
 本変形例の半導体記憶装置の製造工程は、本質的に上記実施形態ないしその変形例の製造工程と同様であるので省略する。 The manufacturing process of the semiconductor memory device of the present modification is essentially the same as the manufacturing process of the above-described embodiment or its modification, and will not be described.
 次に、本実施形態の構造を持つ半導体記憶装置に関する数値計算の結果を記す。まず、
書き込み時にビット線BLの電位を電源電圧、反転ビット線BL’の電位を接地電位とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP1となる。それ故、第1のn型電界効果トランジスタTn1のゲート電極は0.18V、第2のn型電界効果トランジスタTn2のゲート電極は1.0Vとなる。それ故、第1のn型電界効果トランジスタTn1のゲート電極の上にチャネル領域が形成されているところの第4のn型電界効果トランジスタTn4のしきい値電圧に比べると、第2のn型電界効果トランジスタTn2のゲート電極の上にチャネル領域が形成されているところの第3のn型電界効果トランジスタTn3のしきい値電圧は、負の方向に変化している。
Next, the result of numerical calculation regarding the semiconductor memory device having the structure of this embodiment will be described. First,
Consider a case where the potential of the bit line BL is the power supply voltage and the potential of the inverted bit line BL ′ is the ground potential during writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P1. Therefore, the gate electrode of the first n-type field effect transistor Tn1 is 0.18V, and the gate electrode of the second n-type field effect transistor Tn2 is 1.0V. Therefore, as compared with the threshold voltage of the fourth n-type field effect transistor Tn4 in which the channel region is formed on the gate electrode of the first n-type field effect transistor Tn1, the second n-type The threshold voltage of the third n-type field effect transistor Tn3 where the channel region is formed on the gate electrode of the field effect transistor Tn2 changes in the negative direction.
 それで、ここでは前記図7に示した場合と比較して、第3のn型電界効果トランジスタTn3のしきい値電圧は負の方向に50mV変化し、第4のn型電界効果トランジスタTn4のしきい値電圧は正の方向に50mV変化しているとして、バタフライ曲線を計算した。即ち、それらのしきい値電圧が変化の結果、ここに記した値となるように変化の無い場合のしきい値電圧を調節しておく。結果は、前記図8Aに示した第1の実施形態に対する計算結果と等しい。それ故、SNMの具体的な値は0.170Vである。 Therefore, here, compared with the case shown in FIG. 7, the threshold voltage of the third n-type field effect transistor Tn3 changes by 50 mV in the negative direction, and the fourth n-type field effect transistor Tn4 has a threshold voltage. The butterfly curve was calculated on the assumption that the threshold voltage was changed by 50 mV in the positive direction. That is, the threshold voltages in the case where there is no change are adjusted so that those threshold voltages become the values described here as a result of the change. The result is equal to the calculation result for the first embodiment shown in FIG. 8A. Therefore, the specific value of SNM is 0.170V.
 次に、書き込み時にビット線BLの電位を接地電位、反転ビット線BL’の電位を電源電圧とした場合を考える。この場合には、上述のように書き込み後にビット線BLの電位と反転ビット線BL’の電位とワード線WLの電位とが電源電圧の電位にある場合には、V1とV2とは図中のP2となる。それ故、第1のp型電界効果トランジスタTp1のゲート電極は1.0V、第2のp型電界効果トランジスタTp2のゲート電極は0.18Vとなる。それ故、バタフライ曲線は前記図8Bに示した第1の実施形態に対する計算結果と等しい。それ故、SNMの具体的な値は0.170Vである。 Next, consider a case where the potential of the bit line BL is set to the ground potential and the potential of the inverted bit line BL ′ is set to the power supply voltage at the time of writing. In this case, as described above, when the potential of the bit line BL, the potential of the inverted bit line BL ′, and the potential of the word line WL are at the power supply voltage after writing, V1 and V2 are P2. Therefore, the gate electrode of the first p-type field effect transistor Tp1 is 1.0V, and the gate electrode of the second p-type field effect transistor Tp2 is 0.18V. Therefore, the butterfly curve is equal to the calculation result for the first embodiment shown in FIG. 8B. Therefore, the specific value of SNM is 0.170V.
 本変形例においても、上記実施形態に記したような種々の変形が可能であり、同様の効果が得られる。 Also in this modification, various modifications as described in the above embodiment are possible, and the same effect can be obtained.
 (変形例)
 なお、本発明は上述した各実施形態に限定されるものではない。
(Modification)
The present invention is not limited to the above-described embodiments.
 本発明の特徴である、上側の電界効果トランジスタのチャネルを下側の電界効果トランジスタのゲート電極上に重ねることに関して、必ずしも上側のトランジスタのチャネル領域の全体が下側のトランジスタのゲート電極に重なる必要はなく、一部が重なるようにしても良い。さらに、ゲート電極自体ではなく、ゲート電極に接続された配線に重なるようにしても良い。即ち、上側のトランジスタのチャネル領域の少なくとも一部が下側のトランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に重なるようにすればよい。 With respect to overlapping the channel of the upper field effect transistor on the gate electrode of the lower field effect transistor, which is a feature of the present invention, the entire channel region of the upper transistor must necessarily overlap the gate electrode of the lower transistor. Instead, some of them may overlap. Further, the wiring may be overlapped with the wiring connected to the gate electrode, not the gate electrode itself. That is, at least a part of the channel region of the upper transistor may overlap with at least a part of the gate electrode of the lower transistor and a wiring connected to the gate electrode.
 また、各トランジスタの構成は、図3に示す構造に限定されるものではなく、仕様に応じて適宜変更可能である。さらに、各部の膜厚や材料等も、仕様に応じて適宜変更可能である。 Further, the configuration of each transistor is not limited to the structure shown in FIG. 3, and can be appropriately changed according to the specification. Furthermore, the film thickness, material, and the like of each part can be appropriately changed according to the specifications.
 本発明の幾つかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 1…シリコン基板(半導体基板)
 2…素子分離領域
 3…nウエル領域
 4…pウエル領域
 5…ゲート絶縁膜
 6…ゲート電極
 7…ソース・ドレイン領域
 8…ゲート側壁
 9…層間絶縁膜
 10…半導体層
 11…チャネル領域
 12…HfO2 膜
 13…タングステン膜
 14…エクステンション領域
1 ... Silicon substrate (semiconductor substrate)
2 ... Element isolation region 3 ... n well region 4 ... p well region 5 ... gate insulating film 6 ... gate electrode 7 ... source / drain region 8 ... gate sidewall 9 ... interlayer insulating film 10 ... semiconductor layer 11 ... channel region 12 ... HfO 2 films 13 ... tungsten film 14 ... extension area

Claims (11)

  1.  半導体基板と、
     前記半導体基板に形成された第1,第2のp型電界効果トランジスタ及び第1,第2のn型電界効果トランジスタと、
     前記第1,第2のp型電界効果トランジスタ上及び前記第1,第2のn型電界効果トランジスタ上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第3及び第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域と各基板電極とは電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と各基板電極とは電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、
    前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第3及び第4のn型電界効果トランジスタは平面構造を有し、
     前記第3のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線と、前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線との少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第4のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線と、前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線との少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First and second p-type field effect transistors and first and second n-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second p-type field effect transistors and on the first and second n-type field effect transistors;
    Third and fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region and each substrate electrode are connected to a wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    Each gate electrode of the third and fourth n-type field effect transistors is connected to a word line,
    A source region of the third n-type field effect transistor is connected to a bit line; a source region of the fourth n-type field effect transistor is connected to an inverted bit line;
    The third and fourth n-type field effect transistors have a planar structure,
    At least a part of the channel region of the third n-type field effect transistor includes a gate electrode of the second p-type field effect transistor, a wiring connected to the gate electrode, and the second n-type field effect transistor And at least part of the gate electrode and the wiring connected to the gate electrode so as to overlap when viewed from the normal direction of the semiconductor substrate,
    At least a part of the channel region of the fourth n-type field effect transistor includes a gate electrode of the first p-type field effect transistor, a wiring connected to the gate electrode, and the first n-type field effect transistor A semiconductor memory device formed so as to overlap at least a part of the gate electrode and a wiring connected to the gate electrode when viewed from the normal direction of the semiconductor substrate.
  2.  半導体基板と、
     前記半導体基板に形成された第1及び第2のp型電界効果トランジスタと、
     前記第1及び第2のp型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1及び第2のn型電界効果トランジスタと、
     前記半導体基板に形成された第3及び第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域と各基板電極とは電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と、前記第3及び第4のn型電界効果トランジスタの各基板電極は電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、
    前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第1及び第2のn型電界効果トランジスタは平面構造を有し、
     前記第1のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第2のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First and second p-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second p-type field effect transistors;
    First and second n-type field effect transistors formed on the insulating film;
    Third and fourth n-type field effect transistors formed on the semiconductor substrate;
    Including
    Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region and each substrate electrode of the third and fourth n-type field effect transistors are connected to a wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    Each gate electrode of the third and fourth n-type field effect transistors is connected to a word line,
    A source region of the third n-type field effect transistor is connected to a bit line; a source region of the fourth n-type field effect transistor is connected to an inverted bit line;
    The first and second n-type field effect transistors have a planar structure;
    At least part of the channel region of the first n-type field effect transistor is formed on the gate electrode of the first p-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the second n-type field effect transistor is formed on the gate electrode of the second p-type field effect transistor and at least part of the wiring connected to the gate electrode. A semiconductor memory device formed so as to overlap when viewed from the line direction.
  3.  半導体基板と、
     前記半導体基板に形成された第1及び第2のp型電界効果トランジスタと、
     前記第1及び第2のp型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1乃至第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域と各基板電極とは電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域は電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、
    前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第1乃至第4のn型電界効果トランジスタは平面構造を有し、
     前記第1のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第2のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第3のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第4のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First and second p-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second p-type field effect transistors;
    First to fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region is connected to a wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    Each gate electrode of the third and fourth n-type field effect transistors is connected to a word line,
    A source region of the third n-type field effect transistor is connected to a bit line; a source region of the fourth n-type field effect transistor is connected to an inverted bit line;
    The first to fourth n-type field effect transistors have a planar structure,
    At least part of the channel region of the first n-type field effect transistor is formed on the gate electrode of the first p-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the second n-type field effect transistor is formed on the gate electrode of the second p-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the third n-type field effect transistor is formed on the gate electrode of the second p-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the fourth n-type field effect transistor is formed on the gate electrode of the first p-type field effect transistor and at least part of the wiring connected to the gate electrode. A semiconductor memory device formed so as to overlap when viewed from the line direction.
  4.  半導体基板と、
     前記半導体基板に形成された第1及び第2のp型電界効果トランジスタと、
     前記第1及び第2のp型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1乃至第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域と各基板電極とは電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域は電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、
    前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第1及び第2のn型電界効果トランジスタは平面構造を有し、
     前記第1のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第2のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されていることを特徴とする半導体記憶装置。
    A semiconductor substrate;
    First and second p-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second p-type field effect transistors;
    First to fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region is connected to a wiring whose potential is kept at the ground potential,
    The drain regions of the first p-type field effect transistor and the first n-type field effect transistor, the gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor, and the first 3 are connected to the drain region of the n-type field effect transistor,
    The drain regions of the second p-type field effect transistor and the second n-type field effect transistor, the gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor, and the first 4 is connected to the drain region of the n-type field effect transistor,
    Each gate electrode of the third and fourth n-type field effect transistors is connected to a word line,
    A source region of the third n-type field effect transistor is connected to a bit line; a source region of the fourth n-type field effect transistor is connected to an inverted bit line;
    The first and second n-type field effect transistors have a planar structure;
    At least part of the channel region of the first n-type field effect transistor is formed on the gate electrode of the first p-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the second n-type field effect transistor is formed on the gate electrode of the second p-type field effect transistor and at least part of the wiring connected to the gate electrode. A semiconductor memory device, wherein the semiconductor memory devices are formed so as to overlap each other when viewed from the line direction.
  5.  半導体基板と、
     前記半導体基板に形成された第1及び第2のp型電界効果トランジスタと、
     前記第1及び第2のp型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1乃至第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域と各基板電極とは電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域は電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第3及び第4のn型電界効果トランジスタは平面構造を有し、
     前記第3のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第4のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のp型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されていることを特徴とする半導体記憶装置。
    A semiconductor substrate;
    First and second p-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second p-type field effect transistors;
    First to fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region and each substrate electrode of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the first and second n-type field effect transistors is The source region is connected to a wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    The gate electrodes of the third and fourth n-type field effect transistors are connected to a word line, the source region of the third n-type field effect transistor is connected to a bit line, and the fourth n-type field effect The source region of the transistor is connected to the inverted bit line,
    The third and fourth n-type field effect transistors have a planar structure,
    At least part of the channel region of the third n-type field effect transistor is formed on the gate electrode of the second p-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the fourth n-type field effect transistor is formed on the gate electrode of the first p-type field effect transistor and at least part of the wiring connected to the gate electrode. A semiconductor memory device, wherein the semiconductor memory devices are formed so as to overlap each other when viewed from the line direction.
  6.  半導体基板と、
     前記半導体基板に形成された第1乃至第4のn型電界効果トランジスタと、
     前記第1乃至第4のn型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1及び第2のp型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタのソース領域は電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と、前記第1乃至第4のn型電界効果トランジスタの各基板電極とは電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第1及び第2のp型電界効果トランジスタは平面構造を有し、
     前記第1のp型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第2のp型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First to fourth n-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first to fourth n-type field effect transistors;
    First and second p-type field effect transistors formed on the insulating film;
    Including
    The source regions of the first and second p-type field effect transistors are connected to a wiring whose potential is maintained at a power supply voltage, and each of the source regions of the first and second n-type field effect transistors, The substrate electrodes of the first to fourth n-type field effect transistors are connected to a wiring whose potential is maintained at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    The gate electrodes of the third and fourth n-type field effect transistors are connected to a word line, the source region of the third n-type field effect transistor is connected to a bit line, and the fourth n-type field effect The source region of the transistor is connected to the inverted bit line,
    The first and second p-type field effect transistors have a planar structure;
    At least a part of the channel region of the first p-type field effect transistor is formed on the gate electrode of the first n-type field effect transistor and at least a part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least a part of the channel region of the second p-type field effect transistor is formed on the gate electrode of the second n-type field effect transistor and at least a part of the wiring connected to the gate electrode. A semiconductor memory device formed so as to overlap when viewed from the line direction.
  7.  半導体基板と、
     前記半導体基板に形成された第1及び第2のn型電界効果トランジスタと、
     前記第1及び第2のn型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1,第2のp型電界効果トランジスタ及び第3,第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域は電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と各基板電極とは電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、
    前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第1,第2のp型電界効果トランジスタ及び前記第3,第4のn型電界効果トランジスタは平面構造を有し、
     前記第1のp型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第2のp型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第3のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第4のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First and second n-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second n-type field effect transistors;
    First and second p-type field effect transistors and third and fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region of the first and second p-type field effect transistors is connected to a wiring whose potential is maintained at a power supply voltage, and each source region and each substrate of the first and second n-type field effect transistors The electrode is connected to the wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    Each gate electrode of the third and fourth n-type field effect transistors is connected to a word line,
    A source region of the third n-type field effect transistor is connected to a bit line; a source region of the fourth n-type field effect transistor is connected to an inverted bit line;
    The first and second p-type field effect transistors and the third and fourth n-type field effect transistors have a planar structure,
    At least a part of the channel region of the first p-type field effect transistor is formed on the gate electrode of the first n-type field effect transistor and at least a part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least a part of the channel region of the second p-type field effect transistor is formed on the gate electrode of the second n-type field effect transistor and at least a part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least part of the channel region of the third n-type field effect transistor is formed on the gate electrode of the second n-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least a part of the channel region of the fourth n-type field effect transistor is formed on the gate electrode of the first n-type field effect transistor and at least a part of the wiring connected to the gate electrode. A semiconductor memory device formed so as to overlap when viewed from the line direction.
  8.  半導体基板と、
     前記半導体基板に形成された第1及び第2のn型電界効果トランジスタと、
     前記第1及び第2のn型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1,第2のp型電界効果トランジスタ及び第3,第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域は電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と各基板電極とは電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、
    前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第1及び第2のp型電界効果トランジスタは平面構造を有し、
     前記第1のp型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第2のp型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First and second n-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second n-type field effect transistors;
    First and second p-type field effect transistors and third and fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region of the first and second p-type field effect transistors is connected to a wiring whose potential is maintained at a power supply voltage, and each source region and each substrate of the first and second n-type field effect transistors The electrode is connected to the wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    Each gate electrode of the third and fourth n-type field effect transistors is connected to a word line,
    A source region of the third n-type field effect transistor is connected to a bit line; a source region of the fourth n-type field effect transistor is connected to an inverted bit line;
    The first and second p-type field effect transistors have a planar structure;
    At least a part of the channel region of the first p-type field effect transistor is formed on the gate electrode of the first n-type field effect transistor and at least a part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least a part of the channel region of the second p-type field effect transistor is formed on the gate electrode of the second n-type field effect transistor and at least a part of the wiring connected to the gate electrode. A semiconductor memory device formed so as to overlap when viewed from the line direction.
  9.  半導体基板と、
     前記半導体基板に形成された第1及び第2のn型電界効果トランジスタと、
     前記第1及び第2のn型電界効果トランジスタの上に形成された絶縁膜と、
     前記絶縁膜の上に形成された第1,第2のp型電界効果トランジスタ及び第3,第4のn型電界効果トランジスタと、
     を含み、
     前記第1及び第2のp型電界効果トランジスタの各ソース領域は電位が電源電圧に保たれた配線に接続され、且つ前記第1及び第2のn型電界効果トランジスタの各ソース領域と各基板電極とは電位が接地電位に保たれた配線に接続され、
     前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ドレイン領域と、前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ゲート電極と、前記第3のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第2のp型電界効果トランジスタ及び前記第2のn型電界効果トランジスタの各ドレイン領域と、前記第1のp型電界効果トランジスタ及び前記第1のn型電界効果トランジスタの各ゲート電極と、前記第4のn型電界効果トランジスタのドレイン領域とは相互に接続され、
     前記第3及び第4のn型電界効果トランジスタの各ゲート電極はワード線に接続され、前記第3のn型電界効果トランジスタのソース領域はビット線に接続され、前記第4のn型電界効果トランジスタのソース領域は反転ビット線に接続され、
     前記第3及び第4のn型電界効果トランジスタは平面構造を有し、
     前記第3のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第2のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成され、
     前記第4のn型電界効果トランジスタのチャネル領域の少なくとも一部は、前記第1のn型電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の少なくとも一部に、前記半導体基板の法線方向から見て重なるように形成されている半導体記憶装置。
    A semiconductor substrate;
    First and second n-type field effect transistors formed on the semiconductor substrate;
    An insulating film formed on the first and second n-type field effect transistors;
    First and second p-type field effect transistors and third and fourth n-type field effect transistors formed on the insulating film;
    Including
    Each source region of the first and second p-type field effect transistors is connected to a wiring whose potential is maintained at a power supply voltage, and each source region and each substrate of the first and second n-type field effect transistors The electrode is connected to the wiring whose potential is kept at the ground potential,
    Drain regions of the first p-type field effect transistor and the first n-type field effect transistor; gate electrodes of the second p-type field effect transistor and the second n-type field effect transistor; A drain region of the third n-type field effect transistor is connected to each other;
    Drain regions of the second p-type field effect transistor and the second n-type field effect transistor; gate electrodes of the first p-type field effect transistor and the first n-type field effect transistor; A drain region of the fourth n-type field effect transistor is connected to each other;
    The gate electrodes of the third and fourth n-type field effect transistors are connected to a word line, the source region of the third n-type field effect transistor is connected to a bit line, and the fourth n-type field effect The source region of the transistor is connected to the inverted bit line,
    The third and fourth n-type field effect transistors have a planar structure,
    At least part of the channel region of the third n-type field effect transistor is formed on the gate electrode of the second n-type field effect transistor and at least part of the wiring connected to the gate electrode. It is formed to overlap when seen from the line direction,
    At least a part of the channel region of the fourth n-type field effect transistor is formed on the gate electrode of the first n-type field effect transistor and at least a part of the wiring connected to the gate electrode. A semiconductor memory device formed so as to overlap when viewed from the line direction.
  10.  前記半導体基板の表面に垂直な方向において、前記半導体基板に形成された前記電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の内で前記絶縁膜上に形成された前記電界効果トランジスタのチャネル領域と重なる領域の上端と、前記絶縁膜上に形成された前記電界効果トランジスタのチャネル領域の下端との間隔が70nm以下である請求項1乃至9の何れかに記載の半導体記憶装置。 The field effect transistor formed on the insulating film among the gate electrode of the field effect transistor formed on the semiconductor substrate and a wiring connected to the gate electrode in a direction perpendicular to the surface of the semiconductor substrate. 10. The semiconductor memory device according to claim 1, wherein an interval between an upper end of a region overlapping with the channel region and a lower end of the channel region of the field effect transistor formed on the insulating film is 70 nm or less.
  11.  前記半導体基板の表面に垂直な方向において、前記半導体基板に形成された前記電界効果トランジスタのゲート電極及び該ゲート電極に接続された配線の内で前記絶縁膜上に形成された前記電界効果トランジスタのチャネル領域と重なる領域の上端と、前記絶縁膜上に形成された前記電界効果トランジスタのチャネル領域の下端との間隔が40nm以下である請求項1乃至9の何れかに記載の半導体記憶装置。 The field effect transistor formed on the insulating film among the gate electrode of the field effect transistor formed on the semiconductor substrate and a wiring connected to the gate electrode in a direction perpendicular to the surface of the semiconductor substrate. 10. The semiconductor memory device according to claim 1, wherein a distance between an upper end of a region overlapping with the channel region and a lower end of the channel region of the field effect transistor formed on the insulating film is 40 nm or less.
PCT/JP2014/051221 2013-05-14 2014-01-22 Semiconductor storage device WO2014185085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013102480A JP2014222740A (en) 2013-05-14 2013-05-14 Semiconductor storage device
JP2013-102480 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185085A1 true WO2014185085A1 (en) 2014-11-20

Family

ID=51898073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051221 WO2014185085A1 (en) 2013-05-14 2014-01-22 Semiconductor storage device

Country Status (3)

Country Link
JP (1) JP2014222740A (en)
TW (1) TW201444027A (en)
WO (1) WO2014185085A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116143A1 (en) * 2015-12-29 2017-07-06 재단법인 나노기반소프트일렉트로닉스연구단 3d static ram core cell having vertically stacked structure, and static ram core cell assembly comprising same
FR3064396A1 (en) * 2017-03-27 2018-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives MEMORY CELL SRAM
WO2020246344A1 (en) * 2019-06-03 2020-12-10 株式会社ソシオネクスト Semiconductor storage device
WO2020255656A1 (en) * 2019-06-21 2020-12-24 株式会社ソシオネクスト Semiconductor storage device
WO2020255801A1 (en) * 2019-06-17 2020-12-24 株式会社ソシオネクスト Semiconductor storage device
WO2020255655A1 (en) * 2019-06-21 2020-12-24 株式会社ソシオネクスト Semiconductor storage device
WO2020262643A1 (en) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging apparatus
US12127388B2 (en) 2019-06-03 2024-10-22 Socionext Inc. Semiconductor storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195212A (en) 2015-04-01 2016-11-17 株式会社東芝 Semiconductor integrated circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221654A (en) * 1988-07-08 1990-01-24 Mitsubishi Electric Corp Static random-access memory device
JPH0513766A (en) * 1991-07-05 1993-01-22 Sony Corp Semiconductor memory device and manufacture thereof
JPH11233789A (en) * 1998-02-12 1999-08-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2005203780A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Node-contact structure, semiconductor device having the same, wiring structure thereof, and manufacturing method thereof
JP2009295975A (en) * 2008-06-02 2009-12-17 Commiss Energ Atom Sram memory cell having transistors integrated at several levels and threshold voltage vt of which is dynamically adjustable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221654A (en) * 1988-07-08 1990-01-24 Mitsubishi Electric Corp Static random-access memory device
JPH0513766A (en) * 1991-07-05 1993-01-22 Sony Corp Semiconductor memory device and manufacture thereof
JPH11233789A (en) * 1998-02-12 1999-08-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2005203780A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Node-contact structure, semiconductor device having the same, wiring structure thereof, and manufacturing method thereof
JP2009295975A (en) * 2008-06-02 2009-12-17 Commiss Energ Atom Sram memory cell having transistors integrated at several levels and threshold voltage vt of which is dynamically adjustable

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116143A1 (en) * 2015-12-29 2017-07-06 재단법인 나노기반소프트일렉트로닉스연구단 3d static ram core cell having vertically stacked structure, and static ram core cell assembly comprising same
US10692935B2 (en) 2015-12-29 2020-06-23 Center For Advanced Soft Electronics 3D static RAM core cell having vertically stacked structure, and static RAM core cell assembly comprising same
FR3064396A1 (en) * 2017-03-27 2018-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives MEMORY CELL SRAM
EP3382709A1 (en) * 2017-03-27 2018-10-03 Commissariat à l'Energie Atomique et aux Energies Alternatives Sram memory cell
WO2020246344A1 (en) * 2019-06-03 2020-12-10 株式会社ソシオネクスト Semiconductor storage device
US12127388B2 (en) 2019-06-03 2024-10-22 Socionext Inc. Semiconductor storage device
WO2020255801A1 (en) * 2019-06-17 2020-12-24 株式会社ソシオネクスト Semiconductor storage device
US20220108992A1 (en) * 2019-06-17 2022-04-07 Socionext Inc. Semiconductor storage device
WO2020255655A1 (en) * 2019-06-21 2020-12-24 株式会社ソシオネクスト Semiconductor storage device
US20220115389A1 (en) * 2019-06-21 2022-04-14 Socionext Inc. Semiconductor storage device
US11915744B2 (en) 2019-06-21 2024-02-27 Socionext Inc. 2-port SRAM comprising a CFET
WO2020255656A1 (en) * 2019-06-21 2020-12-24 株式会社ソシオネクスト Semiconductor storage device
WO2020262643A1 (en) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging apparatus
JP7541977B2 (en) 2019-06-26 2024-08-29 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device

Also Published As

Publication number Publication date
JP2014222740A (en) 2014-11-27
TW201444027A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
WO2014185085A1 (en) Semiconductor storage device
JP4880867B2 (en) THIN FILM MEMORY, ARRAY, ITS OPERATION METHOD AND MANUFACTURING METHOD
US10332588B2 (en) Static random access memory device having interconnected stacks of transistors
JP5064200B2 (en) Floating body memory cell with double gate
JP4004040B2 (en) Semiconductor device
US8227864B2 (en) CMOS semiconductor device
JP5528667B2 (en) Semiconductor device and method for controlling semiconductor device
JP3936830B2 (en) Semiconductor device
JP5775065B2 (en) Integrated circuit fabricated from SOI with transistors having distinctly different threshold voltages
JP2007081335A (en) Semiconductor device
TW200945556A (en) Semiconductor device and method of manufacturing semiconductor device
TW201135870A (en) Method of manufacturing semiconductor device, and semiconductor device
JPWO2019065208A1 (en) Semiconductor device
KR20190008065A (en) The vertical-type gateless and capacitorless dram cell based on germanium and the method for manufacturing thereof
KR101458332B1 (en) Semiconductor device, method for manufacturing same, and nonvolatile semiconductor memory device
JP2005251776A (en) Semiconductor device and its manufacturing method
US20080128787A1 (en) Semiconductor device and manufacturing method thereof
JP2014096479A (en) Semiconductor device and manufacturing method of the same
JP5432379B2 (en) Semiconductor device
JP5861196B2 (en) Semiconductor device
WO2010150407A1 (en) Semiconductor device
JP6467472B2 (en) Semiconductor device
JP5745006B2 (en) Semiconductor device and method for controlling semiconductor device
JPH04320036A (en) Semiconductor device and its manufacture
JP5905752B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798449

Country of ref document: EP

Kind code of ref document: A1