JP2005251776A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005251776A
JP2005251776A JP2004055811A JP2004055811A JP2005251776A JP 2005251776 A JP2005251776 A JP 2005251776A JP 2004055811 A JP2004055811 A JP 2004055811A JP 2004055811 A JP2004055811 A JP 2004055811A JP 2005251776 A JP2005251776 A JP 2005251776A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
gate electrode
region
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004055811A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Ryuta Tsuchiya
龍太 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004055811A priority Critical patent/JP2005251776A/en
Publication of JP2005251776A publication Critical patent/JP2005251776A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Dram (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fully-depleted SOI transistor in which threshold voltage can be set to an arbitrary value and current can be enlarged and a high speed operation is realized with low power consumption and low leakage current while a characteristic of the fully depleted-type SOI transistor is maintained by conventional manufacture technology. <P>SOLUTION: Desired impurity is introduced into a support substrate just below a region where the hyperfine fully depleted SOI transistor is formed, and threshold voltage is controlled. A gate input signal is applied to a well diffusion layer just below the transistor. Thus, large driving current/low power consumption are realized even with low power voltage by controlling substrate potential through a thin embedded insulating film. The gate input signal is connected to the well diffusion layer by using gate electrode wiring being the lowermost wiring. Consequently, an increase of an occupied area is suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は絶縁ゲート型電界効果トランジスタ、特に絶縁膜上の半導体薄膜に設けられた絶縁ゲート型電界効果トランジスタの高性能化と超微細化、及びその製造方法に関する。   The present invention relates to an insulated gate field effect transistor, and more particularly to a high-performance and ultrafine insulated gate field effect transistor provided in a semiconductor thin film on an insulating film, and a manufacturing method thereof.

SOI(Silicon On Insulator)と称され、支持基板上に絶縁膜を介して配置された薄い単結晶薄膜に構成された絶縁ゲート型電界効果トランジスタ(IGFETと記する)は公知である。更に、IGFET直下の支持基板への電圧印加によりIGFETの閾電圧値を任意に制御する手法も、例えば非特許文献1に示す様に公知であり、図2で示される構造を有している。図において、支持基板1から埋め込み絶縁膜2を介して構成された単結晶Si膜3にはIGFETが製造されており、6、9はソース拡散層、7、8はドレイン拡散層、20はゲート絶縁膜、10、11はゲート電極、4は単結晶Si膜3に構成された素子分離絶縁膜である。IGFET直下の支持基板1には支持基板1とPN接合により電気的に分離されたウエル拡散層5が構成されており、開口を介した金属電極配線13及び14により所望の電圧信号が印加できる構成となっている。ウエル拡散層5への正の電圧印加によりウエル拡散層5上のIGFETがnチャネルIGFETの場合、閾電圧が小さくなる如く、負の電圧印加により閾電圧は正の値で大きくなる如く制御できる。半導体基板上に形成される通常IGFETの閾電圧制御も基板印加電圧の制御により可能であるが、基板に正の電圧を印加した場合、nチャネルIGFETのソース拡散層に対して順方向電圧印加となり、ダイオード順方向電流が避けらず、従って印加電圧値に上限が存在するが、図2の構造においてはIGFETではウエル拡散層5に印加し得る正の印加電圧が十分に高くとも埋め込み絶縁膜の存在によりN導電型ソース拡散層6に流れ込む電流成分が存在せず、印加電圧値の上限は原理的に存在しない特徴を有している。図2で示される公知のIGFETにおいては、閾電圧の制御手段として従来と同様にチャネル領域、即ち単結晶Si膜3の所望領域に任意分布の不純物を導入することも当然可能である。   An insulated gate field effect transistor (referred to as IGFET) which is called SOI (Silicon On Insulator) and is formed of a thin single crystal thin film arranged on a support substrate via an insulating film is known. Further, a method of arbitrarily controlling the threshold voltage value of the IGFET by applying a voltage to the support substrate immediately below the IGFET is known as shown in Non-Patent Document 1, for example, and has a structure shown in FIG. In the figure, an IGFET is manufactured in a single crystal Si film 3 formed from a support substrate 1 through a buried insulating film 2, wherein 6 and 9 are source diffusion layers, 7 and 8 are drain diffusion layers, and 20 is a gate. Insulating films 10 and 11 are gate electrodes, and 4 is an element isolation insulating film composed of a single crystal Si film 3. A well diffusion layer 5 electrically separated from the support substrate 1 by a PN junction is formed on the support substrate 1 immediately below the IGFET, and a desired voltage signal can be applied by the metal electrode wirings 13 and 14 through the openings. It has become. When the IGFET on the well diffusion layer 5 is an n-channel IGFET by applying a positive voltage to the well diffusion layer 5, it can be controlled so that the threshold voltage is reduced and the threshold voltage is increased to a positive value by applying a negative voltage. Although the threshold voltage control of a normal IGFET formed on a semiconductor substrate is also possible by controlling the substrate applied voltage, when a positive voltage is applied to the substrate, a forward voltage is applied to the source diffusion layer of the n-channel IGFET. The diode forward current is unavoidable, and therefore there is an upper limit in the applied voltage value. In the structure of FIG. 2, in the structure of IGFET, even if the positive applied voltage that can be applied to the well diffusion layer 5 is sufficiently high, the buried insulating film Due to the existence, there is no current component flowing into the N conductivity type source diffusion layer 6, and the upper limit of the applied voltage value does not exist in principle. In the known IGFET shown in FIG. 2, it is naturally possible to introduce an impurity having an arbitrary distribution into a channel region, that is, a desired region of the single-crystal Si film 3 as a threshold voltage control means as in the prior art.

IGFETの超微細化が進み、更なる超微細化に対応すべきIGFETにおいてはその閾電圧値の制御とパンチスルーの抑制のためにチャネル領域や基板領域に導入されるべき不純物濃度を上昇させる必要があるが、ゲート長50nm以下の超微細IGFETにおいては要求されるその最大不純物濃度は5x1018/cm以上となる。この状態ではゲート電界起因ドレイン漏洩電流(GIDL)及びバンド・バンド間トンネル電流によるドレイン基板間漏洩電流が無視できなくなってしまう。更に、上記濃度程度の不純物が超微細IGFETのチャネル及び基板領域に導入される場合、ゲート加工寸法のバラツキと相まって導入不純物量の揺らぎが閾電圧値のばらつきを生じさせ、例えば低電圧動作SRAM(スタテック・ランダム・アクセス・メモリ)での書き込み不良等を生じさせる。 As IGFETs are becoming increasingly miniaturized, it is necessary to increase the concentration of impurities to be introduced into the channel region and substrate region in order to control the threshold voltage and suppress punch-through in IGFETs that should support further miniaturization. However, the required maximum impurity concentration in an ultrafine IGFET having a gate length of 50 nm or less is 5 × 10 18 / cm 3 or more. In this state, the drain leakage current (GIDL) due to the gate electric field and the leakage current between drain substrates due to the band-to-band tunneling current cannot be ignored. Further, when impurities of the above-mentioned concentration are introduced into the channel and substrate region of the ultrafine IGFET, fluctuations in the amount of introduced impurities combined with variations in gate processing dimensions cause variations in threshold voltage values. For example, low voltage operation SRAM ( A write failure in the static random access memory).

超微細SOIIGFETにおいて、トランジスタが構成される単結晶シリコン膜3が十分に薄く、且つチャネル領域に導入される不純物が極端に低濃度の構成は完全空乏型と称され、蓄積領域、及び中性領域を有しないため、パンチスルー経路が生じ難い特徴を有している。従って今後の超微細IGFETは完全空乏型SOIIGFET化が必須とされている。然しながら、完全空乏型SOIIGFETでは閾電圧制御はゲート電極材料による仕事関数の選択と図2で示されるウエル電位制御の手法等しか公知ではない。
SOIIGFETに関する他の従来技術としてダブルゲート構造が知られている(例えば、特許文献1を参照)。上記SOIIGFETはSOI層105内にソース拡散層、及びドレイン拡散層をダミーゲート電極と自己整合で形成した後、ダミーゲート電極の逆パターン溝の形成、上記溝から支持基板1への不純物のイオン注入による埋め込みゲートの形成を順次施し、しかる後、上記溝領域にWなどの金属膜を選択的に埋め込み、上部ゲート電極とするものである。SOIIGFET性能向上の手段としてダブルゲート構造の実現も有力な手段であるが、現在公知の手法に基づくダブルゲート構造では高濃度拡散層等をSOI層に悪影響を与えることなく支持基板内に埋め込み形成することが極めて難しく、未だに実用化に至っていない。製造困難性を度外視し、ダブルゲート構造の本質概念を考慮した場合、埋め込みゲートを上部ゲートと正確な位置合わせすることが前提であり、且つ個別素子ごとに配置することが必然的に求められる。埋め込みゲート電極の役割を複数のIGFETで共有するごとき概念は基本的に存在しない。超微細SOIIGFETにおいては埋め込みゲートの位置合わせ誤差は致命的であり、寄生容量のばらつき、駆動電流のばらつきに直結する。従って寄生容量をダイナミック動作安定化のために有効利用するにしても容量ばらつきが本質的に抑制されない限り安定化への利用も実現不可能である。更に、ダブルゲート構造SOIIGFETの閾電圧はSOI層膜厚成分を除くと上部及び埋め込みゲート材料の仕事関数のみにより決定され、実質上所望IGFETごとに閾電圧値を設定することは不可能である。埋め込みゲート電極と上部ゲート電極の接続もIGFET活性領域外、即ち素子分離領域で実施することが前提であり、周辺素子レイアウトに配慮した整合性が必須である。
In the ultrafine SOIIGFET, the structure in which the single crystal silicon film 3 constituting the transistor is sufficiently thin and the impurity introduced into the channel region is extremely low in concentration is referred to as a fully depleted type. Therefore, the punch-through path is difficult to occur. Therefore, future ultrafine IGFETs must be completely depleted SOIIGFETs. However, in a fully depleted SOIIGFET, threshold voltage control is only known by selecting a work function using a gate electrode material and a well potential control method shown in FIG.
A double gate structure is known as another conventional technique related to SOIIGFET (see, for example, Patent Document 1). In the SOIIGFET, a source diffusion layer and a drain diffusion layer are formed in the SOI layer 105 in a self-alignment with the dummy gate electrode, then a reverse pattern groove of the dummy gate electrode is formed, and impurity ions are implanted into the support substrate 1 from the groove. The buried gate is sequentially formed, and then, a metal film such as W is selectively buried in the groove region to form an upper gate electrode. Realization of a double gate structure is an effective means for improving the performance of SOIIGFET, but in a double gate structure based on a currently known method, a high-concentration diffusion layer or the like is embedded in a support substrate without adversely affecting the SOI layer. This is extremely difficult and has not yet been put into practical use. Considering the difficulty of manufacturing and considering the essential concept of the double gate structure, it is assumed that the buried gate is accurately aligned with the upper gate, and it is inevitably required to be arranged for each individual element. There is basically no concept of sharing the role of the buried gate electrode among a plurality of IGFETs. In the ultrafine SOIIGFET, the alignment error of the buried gate is fatal, and directly connected to variations in parasitic capacitance and drive current. Therefore, even if the parasitic capacitance is effectively used for stabilizing the dynamic operation, it cannot be used for stabilization unless capacitance variation is essentially suppressed. Further, the threshold voltage of the double gate structure SOIIGFET is determined only by the work functions of the upper and buried gate materials, excluding the SOI layer thickness component, and it is virtually impossible to set the threshold voltage value for each desired IGFET. The connection between the buried gate electrode and the upper gate electrode is also assumed to be performed outside the IGFET active region, that is, in the element isolation region, and consistency in consideration of the peripheral element layout is essential.

特開2000―208770号公報JP 2000-208770 A

“Variable threshold-voltage SOI CMOSFETs with implanted back-gate electrodes for power-managed low-power and high-speed sub-1-V ULSIs”, T. Kachi et al., 1996 Symp. VLSI Tech. pp.124-125“Variable threshold-voltage SOI CMOSFETs with implanted back-gate electrodes for power-managed low-power and high-speed sub-1-V ULSIs”, T. Kachi et al., 1996 Symp. VLSI Tech. Pp.124-125

本発明が解決しようとする第一の課題は完全空乏型SOIIGFETの閾電圧値は原理的に上部ゲート電極10の仕事関数により主に決定され、他の手段としては図2で示される支持基板内ウエル電位の制御する如き手法しか適用できない問題を解消することである。例えば複数の完全空乏型SOIIGFETにおいて、その閾電圧を各々所望の個別値に設計するためには、IGFETごとに異なるゲート材料を用いて製造するか、個々のIGFETごとにウエル形成とその制御電極を各々形成せねばならず現実的には製造不可能である。本発明の課題は従来の完全空乏型SOIIGFETにおける閾電圧制御に関する根本的な問題を解消する手段を提供し、同一基板内の隣接するIGFETにおいてもゲート材料を変更することなく、完全空乏型の特性を維持したままで任意の閾電圧に制御し得る新構造を提供することである。   The first problem to be solved by the present invention is that the threshold voltage value of a fully depleted SOI IIFET is principally determined by the work function of the upper gate electrode 10, and other means are within the support substrate shown in FIG. The problem is that only the technique of controlling the well potential can be applied. For example, in a plurality of fully depleted SOI IIFETs, in order to design the threshold voltage to a desired individual value, each IGFET is manufactured using a different gate material, or a well formation and its control electrode are provided for each individual IGFET. Each of them must be formed and cannot be manufactured in practice. An object of the present invention is to provide a means for solving a fundamental problem relating to threshold voltage control in a conventional fully depleted type SOIIGFET, and in a fully depleted type characteristic without changing a gate material in an adjacent IGFET in the same substrate. It is to provide a new structure that can be controlled to an arbitrary threshold voltage while maintaining.

本発明が解決しようとする第二の課題は超微細完全空乏型SOIIGFETの更なる性能向上を現在の半導体装置製造技術でも良品歩留まり良く可能とする構造を提供することである。即ち、本発明第二の課題は超微細完全空乏型SOIIGFETにおいて占有面積の増大をもたらすことなく個々のIGFET、又は論理回路を構成する個々のIGFETにおける漏洩電流の増大なしに駆動電流を増大させ、且つパンチスルー現象の更なる抑制による所謂短チャネル効果の抑制等の性能向上を実現し、より微細なSOIIGFETも正常に動作させることにある。上記の性能向上にはサブスッレシュホルド係数と称され、ソース・ドレイン電流のゲート電圧依存特性における閾電圧値付近での勾配を低減し、急峻なオン・オフ動作を可能とし、高速動作と低漏洩電流化を両立させる特性に関しても含まれる。   The second problem to be solved by the present invention is to provide a structure capable of further improving the performance of the ultrafine fully depleted SOIIGFET with a good yield with the current semiconductor device manufacturing technology. That is, the second problem of the present invention is to increase the drive current without increasing the leakage current in individual IGFETs or individual IGFETs constituting a logic circuit without increasing the occupied area in the ultrafine fully depleted SOIIGFET. Further, it is to realize performance improvement such as suppression of the so-called short channel effect by further suppressing the punch-through phenomenon, and to operate a finer SOIIGFET normally. The above-mentioned improvement in performance is called the sub-threshold coefficient, which reduces the slope near the threshold voltage value in the gate voltage dependency of the source / drain current, enables a sharp on / off operation, and reduces the high-speed operation and low It also includes the characteristics that make leakage current compatible.

本発明の第三の課題は半導体物性を制御することにより移動度向上させる手法、例えばシリコン単結晶の格子定数を改変するごとき歪を付与する手法を用いた完全空乏型SOIIGFETにおいて、ダブルゲート構造の如きトランジスタ構造との組合せを可能にすることによる更なる高性能化の概念が従来提案されていなかった事実に対応することである。即ち、本発明は歪シリコン薄膜を有する完全空乏型SOIIGFETにおいて、シリコン単結晶の格子定数を改変した状態を維持したまま更なる高性能化を可能とする新構造を提供することである。   A third problem of the present invention is a fully depleted SOI IIFET using a technique for improving mobility by controlling semiconductor physical properties, for example, a technique for imparting strain such as modifying the lattice constant of a silicon single crystal. The concept of further improving the performance by enabling the combination with such a transistor structure corresponds to the fact that has not been proposed previously. That is, the present invention is to provide a new structure capable of further improving the performance of a fully depleted SOIIGFET having a strained silicon thin film while maintaining the state in which the lattice constant of the silicon single crystal is modified.

本発明の第四の課題はダブルゲート型SOIIGFETの性能向上特性を生かしつつ、実現困難性、埋め込みゲート電極の位置合わせ誤差から生じる駆動電流ばらつき、寄生容量ばらつきの問題を本質的に除去することである。更に埋め込みゲートが個別素子ごとに要求される前提を解消し、複数の素子で埋め込みゲートの役割を共有することにより占有面積の増加を抑制することである。占有面積増大化を抑制する観点において、埋め込みゲートと上部ゲートとの接続領域に関する制約も本質的に解消することも課題に含まれる。本発明の他の課題はダブルゲート構造における閾電圧値が実質的に上部及び埋め込みゲート電極材料で決定され個別素子ごとに任意制御できないことを解消し、所望回路仕様に基づいて素子ごとに任意閾電圧値に制御可能とすることである。   The fourth problem of the present invention is to essentially eliminate the problems of difficulty of realization, drive current variation and parasitic capacitance variation resulting from alignment error of the buried gate electrode, while taking advantage of the performance improvement characteristics of the double gate type SOIIGFET. is there. Furthermore, the premise that a buried gate is required for each individual element is eliminated, and the increase of the occupied area is suppressed by sharing the role of the buried gate among a plurality of elements. From the viewpoint of suppressing an increase in the occupied area, it is included in the problem that the restriction on the connection region between the buried gate and the upper gate is essentially eliminated. Another object of the present invention is to solve the problem that the threshold voltage value in the double gate structure is substantially determined by the upper and buried gate electrode materials and cannot be arbitrarily controlled for each individual element. The voltage value can be controlled.

本発明では単結晶半導体基板、単結晶半導体基板から薄い埋め込み絶縁膜で分離された薄い単結晶半導体薄膜(SOI層)よりなるSOI基板を用いることを前提とする。本発明はゲート長が100nm以下、更には50nm以下の超微細完全空乏型SOIIGFETへの適用を前提とし、埋め込み絶縁膜は50nm以下、望ましくは10nm以下、薄い単結晶半導体薄膜は20nm以下、望ましくは10nm程度の膜厚のSOI基板を用いる。   In the present invention, it is assumed that a single crystal semiconductor substrate and an SOI substrate made of a thin single crystal semiconductor thin film (SOI layer) separated from the single crystal semiconductor substrate by a thin buried insulating film are used. The present invention is premised on application to an ultrafine fully depleted SOI IIFET having a gate length of 100 nm or less, and further 50 nm or less. The buried insulating film is 50 nm or less, preferably 10 nm or less, and the thin single crystal semiconductor thin film is 20 nm or less, preferably An SOI substrate having a thickness of about 10 nm is used.

上記課題を解決する手段として本発明においてはSOIIGFETの個々の素子間分離にはSOI層を除去する所謂メサ分離構造を用い、且つ通常基板による素子間分離構造として公知の絶縁分離構造を支持基板に達する構成で所望領域に配置する。絶縁分離構造により囲まれた支持基板領域には不純物の導入によるウエル拡散層領域を構成し、他のウエル領域から電気的に分離させる構成とする。本発明においてはSOIIGFETにおいて、素子分離はメサ分離とSOI層内部における絶縁分離構造を併用する。支持基板に達する絶縁分離構造を用いることの利点は配線工程によりソース・ドレイン拡散層との接続孔の開口において、パターンずれが生じても絶縁分離領域の厚い絶縁膜の存在により支持基板に達する開口の発生でドレイン、又はソース電極が支持基板と短絡する不良の発生を防止することができる。即ち、開口パターンとソース、ドレイン領域の合わせ余裕を余分に確保する必要がなく、占有面積の増加の欠点が解消される。公知のSOI層メサ分離構造においてはSOI層と埋め込み絶縁膜の膜厚が10nm程度と薄い場合、開口パターンとソース、ドレイン領域の合わせ余裕を余分に確保しない限り開口パターンずれにより薄い埋め込み絶縁膜が開口工程で容易に除去され、支持基板との短絡不良が発生する恐れが解消されない。SOI層が薄い場合、主表面から埋め込み酸化膜に達する絶縁分離膜の形成では絶縁分離膜の膜厚も薄すぎるため、開口パターンずれによる短絡不良の解消には不適当である。従って従来公知のメサ分離構造や埋め込み絶縁膜に達するまでの絶縁分離構造においては開口パターンとソース、ドレイン拡散層領域間で十分な合わせ余裕の確保が求められる。即ち、占有面積の増大をもたらす。本発明は従来公知のダブルゲート構造によるSOIIGFETの本質的な性能向上特性を活かしつつ、製造困難、駆動電流や寄生容量ばらつき、更には占有面積増大化等の根本的問題の解消を目指し、埋め込み絶縁膜を実効的なゲート絶縁膜とするSOIIGFETの新規なダイナミック動作を可能とする新方式を提案するものである。   As a means for solving the above problems, in the present invention, a so-called mesa isolation structure for removing the SOI layer is used for isolation between individual elements of the SOIIGFET, and a well-known insulating isolation structure as an element isolation structure by a normal substrate is used as a support substrate. Arranged in a desired area in a reaching configuration. In the support substrate region surrounded by the insulating isolation structure, a well diffusion layer region is formed by introducing impurities and electrically separated from other well regions. In the present invention, in the SOIIGFET, element isolation uses both mesa isolation and an insulating isolation structure inside the SOI layer. The advantage of using the insulation isolation structure that reaches the support substrate is that the connection hole with the source / drain diffusion layer is opened in the wiring process even if there is a pattern shift. Generation | occurrence | production of generation | occurrence | production can prevent generation | occurrence | production of the defect which a drain or a source electrode short-circuits with a support substrate. That is, it is not necessary to secure an extra margin for the opening pattern and the source / drain regions, and the disadvantage of increasing the occupied area is solved. In the known SOI layer mesa isolation structure, when the SOI layer and the buried insulating film are as thin as about 10 nm, a thin buried insulating film is formed due to the deviation of the opening pattern unless an extra margin for the opening pattern and the source and drain regions is secured. It is easily removed in the opening process, and the risk of short circuit failure with the support substrate is not solved. When the SOI layer is thin, the insulating isolation film reaching the buried oxide film from the main surface is too thin to be suitable for eliminating short-circuit defects due to opening pattern deviation. Therefore, in the conventionally known mesa isolation structure and the insulation isolation structure up to the buried insulating film, it is required to secure a sufficient alignment margin between the opening pattern and the source / drain diffusion layer regions. That is, the occupation area is increased. The present invention aims at solving fundamental problems such as difficulty in manufacturing, dispersion of drive current and parasitic capacitance, and increase in occupied area, while taking advantage of the inherent performance improvement characteristics of SOIIGFETs with a conventionally known double gate structure. The present invention proposes a new method that enables a new dynamic operation of an SOIIGFET having an effective gate insulating film.

本発明では一対の相補型SOIIGFETに対して同一のウエル拡散上に構成し、上記ウエルに対してゲート電極に印加する信号と同一信号を印加する手法も用いるがこの点に関しても従来ウエル構成とは全く異なる。主表面から支持基板内部に達する絶縁分離構造の採用は絶縁分離膜で側面が囲まれるウエル拡散領域の寄生容量の低減効果も併せて有する。即ち、ウエル拡散領域に動的信号を印加する場合、寄生容量低減効果により高速動作が可能となる。ウエルを共有する複数のSOIIGFETは所望により相補型の関係でなくとも良い。   In the present invention, a pair of complementary SOIIGFETs are formed on the same well diffusion, and a method of applying the same signal as that applied to the gate electrode to the well is also used. Completely different. The use of the insulating isolation structure that reaches the inside of the support substrate from the main surface also has the effect of reducing the parasitic capacitance of the well diffusion region whose side surface is surrounded by the insulating isolation film. That is, when a dynamic signal is applied to the well diffusion region, high speed operation is possible due to the parasitic capacitance reduction effect. A plurality of SOIIGFETs sharing a well may not have a complementary relationship if desired.

上記第一の課題である完全空乏型SOIIGFETの個々の閾電圧値を制御する手法として本発明ではゲート電極直下のSOI層への不純物導入を避けつつ、ゲート電極直下の支持基板上部領域で最大不純物濃度となるごとき分布で所望量のN導電型、又はP導電型の不純物を選択的に導入する。導入はイオン注入法を用い、分布形状の制御はその加速エネルギの設定に基づく。注入不純物量は本発明半導体装置の場合、1x1019cm-3以下、更には5x1018cm-3以下で十分である。SOI層への不純物導入を避けるのは完全空乏型を保証するためである。支持基板上部領域への不純物導入により直上のSOIIGFETの閾電圧を制御する手法は埋め込み絶縁膜の膜厚が薄い場合、ドレイン容量、即ち寄生容量の増加をもたらす。上記寄生容量の増加を望まない、又は容量値の制御が望ましい場合は支持基板上部の不純物導入領域におけるソース・ドレイン拡散層直下部に導入不純物と反対導電型の不純物を所望量導入し、補償すればよい。補償のための不純物導入はSOIIGFETのゲート電極を注入阻止マスクとするイオン注入に基づくことにより実現できる。これにより寄生容量を任意に制御できるとともに、位置合わせに基づく寄生容量のばらつきの発生も本質的に解消することができる。ウエル拡散領域に動的信号を印加する上でウエル抵抗の低抵抗化が望ましく、ウエル表面近傍における閾電圧制御不純物導入領域を除くウエル深部ではウエル濃度を上昇させてウエル抵抗低減を図る如く不純物分布を制御すればよい。いずれにしても、ウエル領域に導入すべき不純物量は公知のダブルゲート構造における埋め込みゲートに比べて桁違いに低く構成する。不純物濃度の低減は抵抗の増加による性能向上が抑制されるが不純物導入に伴う不具合、SOI層への意図に反した高不純物の導入や結晶欠陥の発生、等から本質的に開放される。更に、ウエル領域形成においては複数の素子で領域を共有できるため接続領域を含め占有面積の低減化の効果も有する。 As a technique for controlling the individual threshold voltage values of the fully depleted SOIIGFET, which is the first problem described above, the present invention avoids introducing impurities into the SOI layer immediately below the gate electrode, while avoiding the maximum impurity in the upper region of the support substrate immediately below the gate electrode. A desired amount of N-conductivity type or P-conductivity type impurities is selectively introduced in a distribution such as a concentration. The introduction uses an ion implantation method, and the control of the distribution shape is based on the setting of the acceleration energy. In the case of the semiconductor device of the present invention, it is sufficient that the implanted impurity amount is 1 × 10 19 cm −3 or less, and further 5 × 10 18 cm −3 or less. The reason for avoiding the introduction of impurities into the SOI layer is to ensure a fully depleted type. The technique of controlling the threshold voltage of the SOIGFET directly above by introducing impurities into the upper region of the support substrate causes an increase in drain capacitance, that is, parasitic capacitance, when the buried insulating film is thin. If it is not desired to increase the parasitic capacitance, or if it is desirable to control the capacitance value, a desired amount of an impurity having a conductivity type opposite to the introduced impurity is introduced immediately below the source / drain diffusion layer in the impurity introduction region above the support substrate. That's fine. Impurity introduction for compensation can be realized by ion implantation using the gate electrode of SOIIGFET as an implantation blocking mask. As a result, the parasitic capacitance can be arbitrarily controlled, and the occurrence of variations in parasitic capacitance based on the alignment can be essentially eliminated. It is desirable to reduce the resistance of the well when applying a dynamic signal to the well diffusion region. Impurity distribution is to increase the well concentration and reduce the well resistance in the deep portion of the well except the threshold voltage control impurity introduction region near the well surface. Can be controlled. In any case, the amount of impurities to be introduced into the well region is configured to be orders of magnitude lower than that of a buried gate in a known double gate structure. The reduction in the impurity concentration suppresses the performance improvement due to the increase in resistance, but it is essentially free from problems due to the introduction of impurities, the introduction of high impurities against the intention of the SOI layer, the occurrence of crystal defects, and the like. Furthermore, since the region can be shared by a plurality of elements in the formation of the well region, there is an effect of reducing the occupied area including the connection region.

本発明においても、閾電圧値は本質的にゲート電極材料に基づく仕事関数により制御可能であるが、本発明構造においては支持基板領域への不純物導入により同一ゲート電極材料を有する隣接トランジスタに対しても閾電圧を変更することができる。完全空乏型SOIIGFETにおいては上部ゲート電極材料としてシリコン単結晶の禁制帯中央付近に対応するごとき仕事関数を有する高融点金属材料、又はそれらの珪化物を用いることにより閾電圧値をほぼ零付近に設定できる。本発明構造においては支持基板領域への1018cm−3程度の不純物の導入により上記閾電圧値を0.2V程度容易に動かすことができる。本発明に基づけばSOI構造であるにも係らず、通常基板と同様の閾電圧制御が可能となり、応用分野が限定されていた完全空乏型SOIIGFETの利用分野を飛躍的に拡大することができる。特に、低消費電力で大駆動能力の超微細半導体装置として応用可能な分野が飛躍的に拡大される。 In the present invention, the threshold voltage value can be essentially controlled by the work function based on the gate electrode material, but in the structure of the present invention, by introducing impurities into the supporting substrate region, the threshold voltage value can be controlled for adjacent transistors having the same gate electrode material. Can also change the threshold voltage. In fully depleted SOIIGFETs, the threshold voltage value is set to nearly zero by using a high melting point metal material having a work function corresponding to the vicinity of the forbidden band center of a silicon single crystal or a silicide thereof as the upper gate electrode material. it can. In the structure of the present invention, the threshold voltage value can be easily moved by about 0.2 V by introducing impurities of about 10 18 cm −3 into the support substrate region. Although the present invention is based on the SOI structure, threshold voltage control similar to that of a normal substrate is possible, and the field of application of fully depleted SOIIGFETs for which application fields are limited can be dramatically expanded. In particular, fields that can be applied as ultra-fine semiconductor devices with low power consumption and large driving capability are dramatically expanded.

上記第二の課題を解消するために本発明においてはゲート電極に印加する入力信号をSOIIGFET直下のウエル拡散層に同一タイミングで印加する。ゲート電極に高電位を印加し、SOIIGFETを導通状態にする場合、薄い埋め込み絶縁膜を介したウエル電位の高電位印加によりSOIIGFETの導通状態は更に加速され、駆動電流の大幅な増大、即ち大電流化がもたらされる。ゲート電位が低電位に印加される場合、ウエル電位も追随して低下するため、より速く非導通状態に達することができる。即ち、上記動作モードにおいては同一漏洩電流の条件においてより駆動電流を増加する特性を実現でき、導通・非導通のスイッチングをより高速に実施することが可能となる。ウエル拡散層側面の絶縁分離化は寄生容量の低減、即ち印加信号の遅延時定数の低減に寄与する。また、埋め込み絶縁膜が薄ければ薄いほど上記駆動電流の増加効果向上に有効であり、理想的にはSOIIGFETのゲート絶縁膜と同等の膜厚条件が望ましい。   In order to solve the second problem, in the present invention, an input signal to be applied to the gate electrode is applied to the well diffusion layer immediately below the SOIIGFET at the same timing. When applying a high potential to the gate electrode to make the SOIIGFET conductive, the conductive state of the SOIIGFET is further accelerated by applying a high potential of the well potential through the thin buried insulating film, and the drive current is greatly increased, that is, a large current Is brought about. When the gate potential is applied to a low potential, the well potential also follows and decreases, so that the non-conduction state can be reached more quickly. That is, in the above operation mode, it is possible to realize a characteristic that the drive current is further increased under the same leakage current condition, and it is possible to perform conduction / non-conduction switching at higher speed. The isolation of the side surface of the well diffusion layer contributes to the reduction of parasitic capacitance, that is, the delay time constant of the applied signal. In addition, the thinner the buried insulating film, the more effective the improvement of the driving current is, and ideally the film thickness condition is equivalent to that of the gate insulating film of SOIIGFET.

上記第二の課題解消において、占有面積の増大を伴えば結果的に寄生容量の増加をまねき性能向上効果は望めない結果となる。本発明においては、占有面積の増大を生じさせず性能向上を達成するために本発明においてはゲート電極形成工程において、上記ウエル領域とゲート電極を直接接続する構成を新たに採用する。ゲート電極により直接ウエル領域と接続させる理由はIGFET構成において、ゲート電極が最下層の配線であることによる。即ち、下層の配線ほど配置密度が高く構成するのが一般的であり、上部配線にて下地ウエル拡散領域に接続するためには下層配線の存在しない領域で実施する必要があり、結果的に占有面積の増大をもたらす。特に高密度レイアウトが要求されるメモリセル領域等においてはゲート電極配線の存在しない領域で上部金属配線により下地ウエル領域との接続を実施する領域は殆ど存在せず占有面積の増大なしでは殆ど困難である。   In solving the second problem, if the occupied area is increased, the parasitic capacitance is increased as a result, and the performance improvement effect cannot be expected. In the present invention, in order to achieve an improvement in performance without causing an increase in the occupied area, the present invention newly adopts a configuration in which the well region and the gate electrode are directly connected in the gate electrode formation step. The reason why the gate electrode is directly connected to the well region is that in the IGFET configuration, the gate electrode is the lowermost wiring. That is, the lower layer wiring is generally configured to have a higher arrangement density. In order to connect the upper wiring to the base well diffusion region, it is necessary to carry out in a region where the lower layer wiring does not exist, resulting in the occupation. This leads to an increase in area. Especially in memory cell areas where high-density layout is required, there is almost no area where the upper metal wiring connects to the underlying well area in areas where no gate electrode wiring exists, and it is almost difficult without increasing the occupied area. is there.

ゲート電極によるウエル領域との接続を可能にするために本発明ではゲート絶縁膜の形成と薄い第一のゲート電極材料、シリコン薄膜、の堆積の後、接続予定ウエル領域上の薄い埋め込み絶縁膜、ゲート絶縁膜、及び第一のゲート電極材料を選択的に除去しておく。続いて第二のゲート電極材料を全面堆積して所望のパターン加工によりゲート電極配線を形成すればよい。これにより所望領域でウエル拡散層とゲート電極が直接接続され、それ以外では通常のゲート電極として作用する配線が形成される。上記手法によりメモリセルのごとく高密度レイアウトを要求される領域においても占有面積の増大を招くことなくウエル領域への配線接続が実施可能となる。
前記第三の課題に関して、本発明に基づく半導体装置においては半導体装置を製造すべき極薄単結晶シリコン膜に予め格子歪を付与した状態で多層構造SOI基板を製造し、その後、本発明の実施例で詳細を記載された手法に従って半導体装置を製造するだけで良い。上記の多層構造SOI基板の製造において、注意すべき点は本発明の実施例で詳細を記載するが、支持基板と極薄単結晶シリコン膜となるべき基板の貼合せ工程の後に実施する貼合せ強度を強化する熱処理の温度を格子歪が緩和されない様に900℃程度以下と低温で実施する点である。歪半導体薄膜へ本発明に基づく半導体装置の特徴と、歪半導体薄膜による移動度上昇効果により大電流動作化は更に一段と改善される。
In order to enable connection with the well region by the gate electrode, in the present invention, after forming the gate insulating film and depositing the thin first gate electrode material, silicon thin film, a thin buried insulating film on the well region to be connected, The gate insulating film and the first gate electrode material are selectively removed. Subsequently, a second gate electrode material may be deposited on the entire surface, and a gate electrode wiring may be formed by a desired pattern processing. As a result, the well diffusion layer and the gate electrode are directly connected in a desired region, and a wiring that functions as a normal gate electrode is formed in the other regions. By the above method, even in a region requiring a high-density layout such as a memory cell, wiring connection to the well region can be performed without increasing the occupied area.
Regarding the third problem, in the semiconductor device according to the present invention, a multilayer SOI substrate is manufactured in a state in which lattice strain is applied in advance to an ultrathin single crystal silicon film on which the semiconductor device is to be manufactured. It is only necessary to manufacture the semiconductor device according to the technique described in detail in the examples. In the manufacturing of the above-mentioned multilayer structure SOI substrate, the points to be noted are described in detail in the embodiments of the present invention, but the bonding is performed after the bonding process of the substrate to be the support substrate and the ultrathin single crystal silicon film. The heat treatment for strengthening the strength is performed at a low temperature of about 900 ° C. or less so that the lattice strain is not relaxed. To the strained semiconductor thin film, the operation of a large current is further improved by the characteristics of the semiconductor device according to the present invention and the effect of increasing the mobility by the strained semiconductor thin film.

尚、薄い埋め込み絶縁膜下部に配置された低抵抗埋め込みゲート電極と、上部ゲート電極で制御する所謂ダブルゲート構造と称される従来構造と、本発明に基づく半導体装置の根本的に異なる。即ち、本発明に基づく半導体装置においてはゲート電極と活性領域下部ウエル領域との接続は該ウエル領域の任意位置でよいのに対して、ダブルゲート構造においては埋め込みゲート電極への正確な位置合わせが要求される。更なる違いは完全空乏型SOIIGFETにおいて、本発明に基づく半導体装置の閾電圧値制御はチャネル領域下部ウエル領域における不純物の導電型、不純物濃度、及びその分布を設定することにより個々のIGFETにおいて任意の値に設定することが容易であるが、所謂ダブルゲート構造においては埋め込みゲート電極の仕事関数で決定されるため、個々のIGFETに対して任意値に制御することは実質的に不可能である。埋め込みゲート電極においてはその抵抗値を低く抑えるため、不純物拡散層を用いて埋め込みゲート電極とする場合においても本質的に高不純物濃度が要求され、仕事関数は固定されてしまう。   The semiconductor device according to the present invention is fundamentally different from a low resistance buried gate electrode disposed under a thin buried insulating film and a conventional structure called a double gate structure controlled by the upper gate electrode. In other words, in the semiconductor device according to the present invention, the connection between the gate electrode and the active region lower well region may be at an arbitrary position of the well region, whereas in the double gate structure, accurate alignment to the buried gate electrode is possible. Required. A further difference is in the fully depleted type SOIIGFET. The threshold voltage value control of the semiconductor device according to the present invention can be arbitrarily set in each IGFET by setting the conductivity type, impurity concentration, and distribution of impurities in the lower well region of the channel region. Although it is easy to set the value, in a so-called double gate structure, since it is determined by the work function of the buried gate electrode, it is practically impossible to control to an arbitrary value for each IGFET. In order to keep the resistance value of the buried gate electrode low, even when an impurity diffusion layer is used to make the buried gate electrode, a high impurity concentration is essentially required, and the work function is fixed.

本発明によれば駆動電流の増大化と漏洩電流の低減化、を達成し得るSOIIGFETを現有製造工程を用いて実現することができる。従って、低電源電圧条件下でも十分に高速動作が可能で、低消費電流化が可能な半導体装置を実現することができる。更に本発明に依れば完全空乏型SOIIGFETではゲート電極材料の変更の手段以外では達成不可能であった隣接IIGFET間での任意閾電圧値設定をゲート電極材料の変更なしで実現できる。従って、回路構成の自由度が大幅に向上した半導体装置を閾電圧のばらつきの問題なしに実現でき、良品歩留まり向上による廉価性も達成される効果がある。更に本発明によれば半導体物性の観点から移動度を1.5倍以上に向上できる格子歪を付与された半導体に対しても適用できるため、絶縁ゲート型電界効果トランジスタの更なる微細化高集積化と相まって、絶縁ゲート型電界効果トランジスタの更なる低消費電力化、高速動作化を可能にする効果がある。   According to the present invention, an SOIIGFET that can achieve an increase in driving current and a reduction in leakage current can be realized by using the existing manufacturing process. Accordingly, it is possible to realize a semiconductor device capable of sufficiently high-speed operation even under a low power supply voltage condition and capable of reducing current consumption. Furthermore, according to the present invention, an arbitrary threshold voltage value can be set between adjacent IIGFETs, which cannot be achieved by means other than the means for changing the gate electrode material, in the fully depleted SOIIGFET without changing the gate electrode material. Therefore, it is possible to realize a semiconductor device having a greatly improved degree of freedom in circuit configuration without problems of variations in threshold voltage, and there is an effect that low cost can be achieved by improving the yield of non-defective products. Furthermore, according to the present invention, it can be applied to a semiconductor having a lattice strain that can improve the mobility by 1.5 times or more from the viewpoint of semiconductor physical properties. Combined with this, there is an effect that the insulated gate field effect transistor can be further reduced in power consumption and operated at high speed.

以下の実施例においては便宜上その必要があるときは、複数のセクションまたは実施例に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明の関係にある。
また、以下の実施例において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施例において、その構成要素(要素ステップ等も含む)は特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. Some or all of the modifications, details, and supplementary explanations exist.
Further, in the following examples, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), unless explicitly stated and in principle limited to a specific number in principle, It is not limited to the specific number, and it may be more or less than the specific number.
Further, in the following embodiments, it is needless to say that the constituent elements (including element steps and the like) are not necessarily essential unless otherwise specified and apparently essential in principle. .

同様に以下の実施例において、構成要素等の形状、位置関係に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、本実施例を説明するための全図において同一機能を有するものは同一の符号を付し、その繰り返しの説明は省略する。
以下、本発明の実施例を図面に基づいて詳細に説明する。各部の材質、導電型、及び製造条件等は本実施例の記載に限定されるものではなく、各々多くの変形が可能であることは言うまでもない。
Similarly, in the following embodiments, when referring to the shape and positional relationship of components and the like, it is substantially approximate to the shape, etc., unless otherwise specified or otherwise considered in principle. It shall also include similar items. The same applies to the above numerical values and ranges.
Also, components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Needless to say, the material, conductivity type, manufacturing conditions, and the like of each part are not limited to those described in the present embodiment, and many modifications are possible.

<実施例1>
図3から図5、及び図7は本発明の第一の実施例による半導体装置の製造工程順を示す断面図、図1及び図8はその完成断面図、図6は完成レイアウト図である。説明の都合上半導体基板、及び半導体膜の導電型を固定して説明するが導電型の組み合わせは任意でよく、本実施例記載の導電型に限定されない。面方位(100)、P導電型、抵抗率10ohm・cm、直径20cmの単結晶Siよりなり、主表面が鏡面研磨された半導体基板1に10nm厚のシリコン熱酸化膜2を形成して第一の半導体基板とした。上記第一の基板に公知の超薄膜SOI基板の製造法に基づき水素のイオン注入を実施した。注入量は5x1016/cmとした。イオン注入の結果、単結晶Si基板主表面からおよそ40nmの深さに結晶欠陥層31が形成された。この状態より表面にシリコン酸化膜を有しない第一の半導体基板と同一仕様の第二の半導体基板の各々に親水化処理を施した後、室温で主表面どうしを密着させた。次に密着させた二枚のSi基板を500℃に加熱したがこの熱処理により結晶欠陥層に微小空孔の形成とその増大化が生じ、結晶欠陥層部分で単結晶Si基板が剥離され、支持基板1上に10nm厚のシリコン熱酸化膜2、及びその上に約20nm厚の単結晶Si薄膜3が密着された。この状態より1100℃の高温熱処理を施すことによりシリコン熱酸化膜2と支持基板1間の接着強度が格段に向上し、通常の単結晶基板並みの接着強度となった。この状態より単結晶Si薄膜3の表面、即ち剥離面を砥粒を含まない表面研磨法により鏡面研磨し、単結晶Si薄膜3下部に薄い埋め込みゲート絶縁膜2、が支持基板1上に順に構成されたSOI基板を製造した。上記したSOI基板は上記手法に基づき製造する必要はなく、同様な仕様の市販基板の購入に基づいても何ら問題はない。
<Example 1>
3 to 5 and FIG. 7 are cross-sectional views showing the order of manufacturing steps of the semiconductor device according to the first embodiment of the present invention, FIGS. 1 and 8 are completed cross-sectional views, and FIG. 6 is a completed layout view. For convenience of explanation, the semiconductor substrate and the semiconductor film will be described with the conductivity type fixed, but the combination of conductivity types may be arbitrary, and is not limited to the conductivity type described in this embodiment. A silicon thermal oxide film 2 having a thickness of 10 nm is formed on a semiconductor substrate 1 made of single crystal Si having a plane orientation (100), a P conductivity type, a resistivity of 10 ohm · cm, and a diameter of 20 cm. The semiconductor substrate was made. Hydrogen ion implantation was performed on the first substrate based on a known ultra-thin SOI substrate manufacturing method. The injection amount was 5 × 10 16 / cm 2 . As a result of the ion implantation, a crystal defect layer 31 was formed at a depth of about 40 nm from the main surface of the single crystal Si substrate. From this state, each of the second semiconductor substrates having the same specifications as the first semiconductor substrate having no silicon oxide film on the surface was subjected to a hydrophilic treatment, and the main surfaces were brought into close contact with each other at room temperature. Next, the two Si substrates that were brought into close contact with each other were heated to 500 ° C., but this heat treatment resulted in the formation and increase of microvoids in the crystal defect layer, and the single crystal Si substrate was peeled off at the crystal defect layer portion and supported. A silicon thermal oxide film 2 having a thickness of 10 nm was adhered on the substrate 1, and a single crystal Si thin film 3 having a thickness of about 20 nm was adhered thereon. By applying a high-temperature heat treatment at 1100 ° C. from this state, the adhesive strength between the silicon thermal oxide film 2 and the support substrate 1 was remarkably improved, and the adhesive strength was comparable to that of a normal single crystal substrate. From this state, the surface of the single crystal Si thin film 3, that is, the peeled surface is mirror-polished by a surface polishing method that does not include abrasive grains, and a thin embedded gate insulating film 2 is formed on the support substrate 1 in order under the single crystal Si thin film 3 The manufactured SOI substrate was manufactured. The SOI substrate described above does not need to be manufactured based on the above method, and there is no problem even if it is based on the purchase of a commercially available substrate having similar specifications.

上記SOI基板において、薄い単結晶Si膜3と薄い埋め込み絶縁膜2を介したイオン注入により支持基板1の所望領域に選択的にN導電型のウエル拡散層5を形成した。更に、チャネル領域が形成されるべき予定領域下部の支持基体1部に閾電圧制御拡散層領域52、及び53もイオン注入により形成した。続いて10nmの厚さでシリコン酸化膜18と100nm厚のシリコン窒化膜19を薄い単結晶Si膜3上に堆積してから単結晶Si膜3の活性領域を確定するパターニングをシリコン酸化膜18、シリコン窒化膜19とともに施した。続いて上記パターニングに用いたレジストマスクを阻止マスクとして用いたイオン注入により埋め込み絶縁膜2直下の支持基板1表面近傍に高濃度でAsを注入し、N導電型高濃度拡散層50を形成した(図3)。   In the SOI substrate, an N conductivity type well diffusion layer 5 was selectively formed in a desired region of the support substrate 1 by ion implantation through the thin single crystal Si film 3 and the thin buried insulating film 2. Further, threshold voltage control diffusion layer regions 52 and 53 were also formed by ion implantation in one part of the support base below the region where the channel region is to be formed. Subsequently, a silicon oxide film 18 having a thickness of 10 nm and a silicon nitride film 19 having a thickness of 100 nm are deposited on the thin single crystal Si film 3, and then patterning for determining an active region of the single crystal Si film 3 is performed. It was applied together with the silicon nitride film 19. Subsequently, As is implanted at a high concentration in the vicinity of the surface of the support substrate 1 immediately below the buried insulating film 2 by ion implantation using the resist mask used for the patterning as a blocking mask, an N conductivity type high concentration diffusion layer 50 is formed ( FIG. 3).

図3の状態より所望領域に第二のレジストマスクを残置し、第一のレジストマスク90との合成マスクにより所望領域の支持基板1と埋め込み酸化膜2を選択除去した。尚、一対の相補型IGFETを構成する素子間に関しては同一のウエル拡散層5上に配置される如くパターニングした。相補型IGFET間の素子分離は薄い単結晶Si薄膜3を選択除去することにより実施した。(図4)
図4の状態よりレジストマスクを除去してから公知の素子分離絶縁膜の形成法に基づいて露出Si領域への薄い熱酸化膜の形成とパターニング領域を埋める程度の膜厚で厚いシリコン酸化膜4の全面堆積を施した。続いて、シリコン窒化膜(図示せず)の堆積と先のパターニングで選択残置した領域上、及び該領域から一定間隔までのシリコン窒化膜を選択的に除去することにより露出された厚いシリコン酸化膜を化学的機械的研磨により除去した。研磨の終点は最後に堆積したシリコン窒化膜とパターン上に残置されているシリコン窒化膜19である。続いてシリコン窒化膜19等を熱燐酸により選択除去して単結晶Si薄膜3表面を露出させてから熱酸化膜1.8nmの形成とその表面をNOガスにより窒化することにより0.2nmの窒化膜を主表面に積層形成し、ゲート絶縁膜20とした。ゲート絶縁膜4を形成する前の状態における単結晶Si薄膜20の膜厚は表面洗浄処理等により10nmにまで低減されていた。続いてゲート絶縁膜20上に10nm厚の第一の多結晶Si膜21を化学気相堆積法により堆積してからウエル領域との接続領域における第一の多結晶Si膜21とゲート絶縁膜20を選択的に除去した。(図5)
図5の状態より40nm厚の第二の多結晶Si膜22と主にシリコン窒化膜で構成されるゲート保護膜23を全面に堆積してから従来公知のIGFETの製造方法によりそのパターニングによるゲート電極とゲート保護膜23の形成を実施した。上記ゲート電極の幅、即ちゲート長の最小値は50nm、ゲート電極の高さはゲート保護絶縁膜23も含めて100nmである。ここにおいて、ウエル拡散層との接続領域上におけるゲート電極の多結晶Siはウエル領域のN導電型高濃度拡散層50と直接接続される。本実施例においてはN導電型IGFETとP導電型IGFETの何れのゲート電極50に対しても低抵抗化のための不純物は導入していない。尚、露出された領域の薄いゲート絶縁膜4もこのとき同時に除去した。
From the state of FIG. 3, the second resist mask is left in the desired region, and the support substrate 1 and the buried oxide film 2 in the desired region are selectively removed by a synthetic mask with the first resist mask 90. The elements constituting the pair of complementary IGFETs were patterned so as to be disposed on the same well diffusion layer 5. The element separation between the complementary IGFETs was performed by selectively removing the thin single crystal Si thin film 3. (Figure 4)
After removing the resist mask from the state shown in FIG. 4, a thick silicon oxide film 4 is formed so as to fill the patterning region and form a thin thermal oxide film on the exposed Si region based on a known element isolation insulating film formation method. The whole surface was deposited. Subsequently, a thick silicon oxide film exposed by selectively removing the silicon nitride film on the region left by selective deposition and deposition of a silicon nitride film (not shown) and a predetermined distance from the region. Was removed by chemical mechanical polishing. The polishing end point is the silicon nitride film deposited last and the silicon nitride film 19 left on the pattern. Subsequently, the silicon nitride film 19 and the like are selectively removed with hot phosphoric acid to expose the surface of the single crystal Si thin film 3, and then a thermal oxide film of 1.8 nm is formed and the surface is nitrided with NO gas, thereby nitriding to a thickness of 0.2 nm. A film was stacked on the main surface to form a gate insulating film 20. The film thickness of the single crystal Si thin film 20 in the state before forming the gate insulating film 4 was reduced to 10 nm by surface cleaning treatment or the like. Subsequently, a first polycrystalline Si film 21 having a thickness of 10 nm is deposited on the gate insulating film 20 by chemical vapor deposition, and then the first polycrystalline Si film 21 and the gate insulating film 20 in the connection region with the well region are deposited. Was selectively removed. (Figure 5)
From the state of FIG. 5, a gate protection film 23 composed of a second polycrystalline Si film 22 having a thickness of 40 nm and mainly a silicon nitride film is deposited on the entire surface, and then a gate electrode formed by patterning by a conventionally known IGFET manufacturing method. Then, the gate protective film 23 was formed. The minimum width of the gate electrode, that is, the gate length is 50 nm, and the height of the gate electrode is 100 nm including the gate protective insulating film 23. Here, the polycrystalline Si of the gate electrode on the connection region with the well diffusion layer is directly connected to the N conductivity type high concentration diffusion layer 50 in the well region. In this embodiment, no impurity for reducing the resistance is introduced into any of the gate electrodes 50 of the N conductivity type IGFET and the P conductivity type IGFET. The thin gate insulating film 4 in the exposed region was also removed at this time.

次にN導電型IGFET領域にはAsイオンを、又P導電型IGFET領域にはBFイオンを、各々1keV、及び600eVの加速エネルギーにより注入量4x1015/cmの条件でゲート保護絶縁膜51を注入阻止マスクとするイオン注入を施し、極浅のN導電型高濃度ソース拡散層6、極浅のN導電型高濃度ドレイン拡散層7と極浅のP導電型高濃度ソース拡散層9、極浅のP導電型高濃度ドレイン拡散層8を単結晶Si膜3の主表面領域に形成した。上記イオン注入により単結晶Si膜3の底面領域は僅かに単結晶性を保持し、その上部は殆ど非晶質層された。この状態より数十ナノ秒程度の照射時間によるレーザー照射により半導体表面温度を1200℃程度に上昇させ、導入不純物の熱的活性化を施した。上記活性化熱処理は1秒以下の短時間高温ランプ照射等の他の手法に基づいても何ら問題ない。続いて、70nm膜厚のシリコン酸化膜とシリコン窒化膜の積層膜を全面に堆積してから異方性ドライエッチングを施してゲート電極側壁部に選択残置させてゲート側壁絶縁膜26とした。次に化学気相反応により、全面に15nm厚のアルミナ(Al)膜、100nm厚のシリコン酸化膜12、及び50nm厚のシリコン窒化膜を順次堆積してから化学的機械的研磨を施してゲート電極上の凸部を除去することにより表面の平坦化を施した。研磨の終点は最上面のシリコン窒化膜であり。次にソース・ドレイン拡散層との接続領域に開口を施した。上記開口において、アルミナ膜はシリコン酸化膜のエッチング速度に比べて20倍以上の耐性を示し、ゲート側壁絶縁膜の削れを十分に防止することができた。この状態より化学気相反応により前記開口が完全に埋まる膜厚で多結晶Si膜を全面に堆積してから平坦化された開口面での化学的機械的研磨を再度実施して多結晶Si25を開口内部にのみ選択的に残置させた。尚、化学的機械的研磨によるソース・ドレイン接続口への多結晶Siの選択残置の替わりに公知の選択エピタキシャル法を用いて露出された単結晶Si領域上に60nm厚でSi膜を選択的に堆積させる手法を用いても良い。しかる後、N導電型IGFET上、及びP導電型IGFET上の各々の多結晶Si膜領域に各々AsとBの高濃度イオン注入を施して、N導電型高濃度積上げ領域25とした。(図7)
図7の状態よりゲート保護膜23を選択的に除去し、ゲート多結晶Si膜を露出させてからスパッタ法により30nm厚のNi(ニッケル)膜を全面に被着させ、露出されているゲート電極22の全領域、及びN導電型高濃度積上げ領域25の少なくとも上部領域を450℃の熱処理により選択的に珪化させて、珪化ゲート電極22、珪化金属ソース、ドレイン領域28とした。上記珪化処理において、不純物未添加のシリコンゲート電極はゲート絶縁膜に接する領域まで全てニッケル珪化膜に変換され、低抵抗化された。ソース・ドレイン拡散層上の積上げSi膜は全てが珪化されず、底面領域には低抵抗の多結晶Si膜が残置され、薄い単結晶Si内の極めて浅いソース・ドレイン拡散層6、7は保存された。上記珪化処理の後、絶縁膜上の未反応のNi膜のみを塩酸と過酸化水素水の混合水溶液により選択的にエッチング液で除去してから再度、配線層間絶縁膜の堆積と平坦化研磨、及び配線層間絶縁膜15、17を含む配線工程等を実施し、更に第二の配線工程を経て半導体装置を製造した。(図8)
本実施例に基づく半導体装置の完成平面図を図6に、図6におけるabでの完成断面図を図1に、図6におけるcdでの完成断面図を図8に示す。図6におけるefでの完成断面図はP導電型IGFETに対応するが、図8の導電型を逆にした同一構成であるので表示を省略した。図6において、51はゲート電極22とウエル拡散層領域との接続領域である。図6において、左半分はN導電型IGFET、右半分がP導電型IGFETであり、6はN導電型高濃度ソース領域、7はN導電型高濃度ドレイン領域、8はP導電型高濃度ソース領域、9はP導電型高濃度ドレイン領域でN導電型IGFETとP導電型IGFET領域は外部領域からは素子分離絶縁膜4で、相互のIGFET間は薄いSi膜のメサ分離領域49により互いに隔離されている。
Next, an As ion is applied to the N-conducting IGFET region, and a BF 2 ion is applied to the P-conducting IGFET region under the conditions of an implantation amount of 4 × 10 15 / cm 2 with acceleration energy of 1 keV and 600 eV, respectively. Are implanted using an implantation blocking mask as a mask, and an ultra-shallow N-conductivity type high-concentration source diffusion layer 6, an ultra-shallow N-conduction type high-concentration drain diffusion layer 7, and an ultra-shallow P-conduction type high-concentration source diffusion layer 9, An extremely shallow P conductivity type high concentration drain diffusion layer 8 was formed in the main surface region of the single crystal Si film 3. By the ion implantation, the bottom region of the single crystal Si film 3 was slightly monocrystalline and its upper part was almost amorphous. From this state, the semiconductor surface temperature was raised to about 1200 ° C. by laser irradiation with an irradiation time of about several tens of nanoseconds, and the introduced impurities were thermally activated. The activation heat treatment has no problem even if it is based on other methods such as short-time high-temperature lamp irradiation of 1 second or less. Subsequently, a laminated film of a silicon oxide film and a silicon nitride film having a thickness of 70 nm was deposited on the entire surface, and then anisotropic dry etching was performed to selectively leave the gate electrode side wall portion to form the gate side wall insulating film 26. Next, an alumina (Al 2 O 3 ) film having a thickness of 15 nm, a silicon oxide film 12 having a thickness of 100 nm, and a silicon nitride film having a thickness of 50 nm are sequentially deposited on the entire surface by chemical vapor reaction, and then chemical mechanical polishing is performed. Then, the surface was flattened by removing the protrusions on the gate electrode. The polishing end point is the uppermost silicon nitride film. Next, an opening was made in the connection region with the source / drain diffusion layer. In the opening, the alumina film showed a resistance of 20 times or more as compared with the etching rate of the silicon oxide film, and the gate sidewall insulating film was sufficiently prevented from being scraped. From this state, a polycrystalline Si film is deposited over the entire surface by a chemical vapor reaction so that the opening is completely filled, and then chemical mechanical polishing is performed again on the planarized opening surface to form polycrystalline Si 25. It was left selectively only inside the opening. In addition, instead of selectively leaving polycrystalline Si at the source / drain connection port by chemical mechanical polishing, a Si film having a thickness of 60 nm is selectively formed on a single-crystal Si region exposed using a known selective epitaxial method. A technique of depositing may be used. Thereafter, high-concentration ion implantations of As and B were performed on the polycrystalline Si film regions on the N-conductivity type IGFET and the P-conductivity type IGFET, respectively, to form an N-conductivity type high-concentration stacked region 25. (Fig. 7)
The gate protective film 23 is selectively removed from the state of FIG. 7 to expose the gate polycrystalline Si film, and then a 30 nm thick Ni (nickel) film is deposited on the entire surface by sputtering, and the exposed gate electrode The entire region 22 and at least the upper region of the N conductivity type high concentration accumulation region 25 were selectively silicided by a heat treatment at 450 ° C. to form a silicide gate electrode 22, a silicide metal source, and a drain region 28. In the silicidation process, the silicon gate electrode to which no impurities were added was converted into a nickel silicide film up to the region in contact with the gate insulating film, and the resistance was reduced. The stacked Si film on the source / drain diffusion layer is not entirely silicided, a low-resistance polycrystalline Si film is left in the bottom region, and the very shallow source / drain diffusion layers 6 and 7 in the thin single crystal Si are preserved. It was done. After the above silicidation treatment, only the unreacted Ni film on the insulating film is selectively removed with an etching solution using a mixed aqueous solution of hydrochloric acid and hydrogen peroxide, and then again, the interlayer insulating film is deposited and planarized. In addition, a wiring process including the wiring interlayer insulating films 15 and 17 was performed, and a semiconductor device was manufactured through a second wiring process. (Figure 8)
FIG. 6 is a completed plan view of the semiconductor device according to this embodiment, FIG. 1 is a completed sectional view at ab in FIG. 6, and FIG. 8 is a completed sectional view at cd in FIG. The completed sectional view at ef in FIG. 6 corresponds to the P-conductivity type IGFET, but the display is omitted because it has the same configuration in which the conductivity type in FIG. 8 is reversed. In FIG. 6, reference numeral 51 denotes a connection region between the gate electrode 22 and the well diffusion layer region. In FIG. 6, the left half is an N conductivity type IGFET, the right half is a P conductivity type IGFET, 6 is an N conductivity type high concentration source region, 7 is an N conductivity type high concentration drain region, and 8 is a P conductivity type high concentration source. A region 9 is a P-conductivity type high-concentration drain region, and an N-conductivity type IGFET and a P-conduction type IGFET region are separated from each other by an element isolation insulating film 4, and the IGFETs are separated from each other by a thin Si film mesa isolation region 49. Has been.

ゲート電極22は金属珪化膜により構成された。これにより本実施例に基づく半導体装置においては完全空乏型SOIIGFETにも係らず、N導電型IGFETとP導電型IGFETの何れにおいてもその閾電圧値をほぼ0Vに設定することができた。また、チャネルを構成する単結晶Si薄膜3が最終的に10nmと極薄に構成されたにも係らず、ソース、ドレイン領域が積上げ構造で構成され、更にその積上げ構造の大半が金属珪化膜で構成できたために半導体と金属珪化膜間の接触抵抗の増大や直列抵抗の増大の問題から解消することができた。更に、本実施例に基づく半導体装置においてはN導電型IGFETとP導電型IGFETに共通するゲート電極22が各々のIGFETの下部に構成されたウエル領域にゲート電極と直列の関係で接続された構成を有しており、相補型IGFETのゲート入力信号が薄い埋め込み酸化膜2を介して各々のIGFETの裏面側からも印加される構成となっている。これにより入力電位が接地電位から正の高電位に切り替わった場合、N導電型IGFETは導通状態に、P導電型IGFETは遮断状態に切り替わるが、ウエル電位も接地電位から正の高電位に切り替わるため、薄い埋め込み絶縁膜2を介してN導電型IGFETは閾電圧値を低下させるごとく作用し、より導通状態を強めるごとく、P導電型IGFETは閾電圧値をより増加させるごとく作用し、遮断状態を強める如く作用する。即ち、N導電型IGFETはより大電流動作化、大駆動電流化する如く作用し、P導電型IGFETはより漏洩電流を低減する如く作用する。入力電位が正の高電位から接地電位に切り替わった場合はその逆の作用となる。従って、N導電型IGFETとP導電型IGFETを対とする相補型IGFET構成、即ちインバータ回路においてはその出力電位の切り替えがより高速に実現する如く作用する。   The gate electrode 22 was composed of a metal silicide film. As a result, in the semiconductor device according to the present embodiment, the threshold voltage value can be set to approximately 0 V in both the N-conducting IGFET and the P-conducting IGFET regardless of the fully depleted SOIIGFET. In addition, despite the fact that the single crystal Si thin film 3 constituting the channel is finally formed to be as thin as 10 nm, the source and drain regions have a stacked structure, and most of the stacked structure is a metal silicide film. Since it was constructed, it was possible to solve the problem of increase in contact resistance between the semiconductor and the metal silicide film and increase in series resistance. Further, in the semiconductor device according to this embodiment, the gate electrode 22 common to the N-conductivity type IGFET and the P-conductivity type IGFET is connected to the well region formed below each IGFET in a serial relationship with the gate electrode. The gate input signal of the complementary IGFET is also applied from the back side of each IGFET through the thin buried oxide film 2. As a result, when the input potential is switched from the ground potential to a positive high potential, the N conductivity type IGFET is switched to the conductive state and the P conductivity type IGFET is switched to the cutoff state, but the well potential is also switched from the ground potential to the positive high potential. Through the thin buried insulating film 2, the N-conductivity type IGFET acts to decrease the threshold voltage value, and as the conduction state increases, the P-conduction type IGFET acts to increase the threshold voltage value and Acts like strengthening. That is, the N conductivity type IGFET acts to increase the current operation and the drive current, and the P conductivity type IGFET acts to further reduce the leakage current. When the input potential is switched from a positive high potential to the ground potential, the opposite effect occurs. Accordingly, in the complementary IGFET configuration in which the N conductivity type IGFET and the P conductivity type IGFET are paired, that is, in the inverter circuit, the switching of the output potential acts so as to be realized at higher speed.

本実施例に基づく半導体装置において、IGFETの大駆動電流化が実現できるがウエル拡散層5に関する寄生容量の付加を考慮する必要がある。本実施例において、素子間絶縁分離構造によりウエル拡散層5の周辺を分離した構成を採用することによりウエル拡散層5の寄生容量が大幅に低減された効果を有している。ウエル拡散層5の底面寄生容量の低減とウエル抵抗の低減を両立させることは可能であり、ウエル底面領域では低濃度に、埋め込み絶縁膜近傍においては高濃度不純物分布となるごとく不純物分布を設定すれば良い。これにより図2で示される従来公知構造のウエル構造に比べて、同一ウエル占有面積構成においても寄生容量を約1桁程度低減することができた。更に、本実施例に基づく半導体装置においては最下層配線であるゲート電極で直接ウエル拡散層と接続できるので、上部配線と無関係に接続領域を設定できる。これにより従来公知の構造における如く上部配線による接続で下層配線のレイアウトを考慮した余裕領域における接続を必要としないので占有面積の増加なしに半導体装置の大電流化、高駆動能力化が実現できた。占有面積の増加を伴わない特徴は寄生容量の更なる低減にも効果を発揮する。従って、本実施例に基づく半導体装置の適用可能回路は多岐にわたり、後述するごときSRAMのメモリセルやI/Oバッファ回路、さらには集積回路の動作速度を規定するクリティカルパスの駆動領域等に適用するのが最も有効である。   In the semiconductor device according to this embodiment, a large driving current of the IGFET can be realized, but it is necessary to consider the addition of parasitic capacitance related to the well diffusion layer 5. In this embodiment, by adopting a configuration in which the periphery of the well diffusion layer 5 is separated by the element isolation structure, the parasitic capacitance of the well diffusion layer 5 is greatly reduced. It is possible to achieve both the reduction of the bottom parasitic capacitance of the well diffusion layer 5 and the reduction of the well resistance. The impurity distribution should be set so that the impurity concentration is low in the well bottom region and high in the vicinity of the buried insulating film. It ’s fine. As a result, the parasitic capacitance can be reduced by about one digit even in the same well occupation area configuration as compared with the well structure of the known structure shown in FIG. Further, in the semiconductor device according to the present embodiment, since it can be directly connected to the well diffusion layer by the gate electrode which is the lowermost layer wiring, the connection region can be set regardless of the upper wiring. As a result, it is possible to realize a large current and high driving capability of the semiconductor device without increasing the occupied area because the connection with the upper wiring does not require the connection in the margin area considering the layout of the lower wiring as in the conventionally known structure. . Features that do not increase the occupied area are effective in further reducing the parasitic capacitance. Accordingly, there are a wide variety of circuits applicable to the semiconductor device according to the present embodiment, which are applied to SRAM memory cells, I / O buffer circuits, and critical path drive regions that define the operating speed of the integrated circuit as described later. Is most effective.

本実施例に基づく半導体装置においてはダブルゲート構造と称され、素子構造の提案はなされているが未だに超微細IGFETの実現がなされていないダブルゲートIGFETと同等の効果を有するが、埋め込みゲート電極を構成する低抵抗埋め込み領域の現実的構成方法の導入に関する諸問題から本質的に解消されている。 本実施例に基づく半導体装置においては従来公知のSOI基板を用いて製造したインバータに比べて同一占有面積で、スイッチング速度で約1.5倍の高速動作を示すことが確認された。
本実施例に基づく半導体装置において、薄い埋め込み絶縁膜2としては漏洩電流が無視できる膜厚範囲内で可能な限り薄膜化されることが望ましく、10nm以下更に好ましくはゲート絶縁膜20と同程度の2nm程度の膜厚であることが望ましい。
In the semiconductor device based on the present embodiment, it is called a double gate structure and has an effect equivalent to that of a double gate IGFET for which an element structure has been proposed but an ultrafine IGFET has not yet been realized. It is essentially eliminated from various problems related to the introduction of a practical construction method of the low resistance buried region to be constructed. It has been confirmed that the semiconductor device based on this embodiment exhibits a high-speed operation of about 1.5 times the switching speed with the same occupied area as compared with an inverter manufactured using a conventionally known SOI substrate.
In the semiconductor device according to the present embodiment, it is desirable that the thin buried insulating film 2 be as thin as possible within a film thickness range in which leakage current is negligible, and it is preferably 10 nm or less, more preferably about the same as the gate insulating film 20. A film thickness of about 2 nm is desirable.

本実施例に基づく半導体装置において、ゲート電極材料はNi珪化膜に限定されることなくNi、Co、Ti、W、Ta、Mo、Cr、Al、Pt、Pa、Ru等の金属、金属珪化膜、又は金属窒化膜のうちその仕事関数が単結晶Si薄膜20の禁制帯のほぼ中央に位置する材料であればよい。   In the semiconductor device according to this embodiment, the gate electrode material is not limited to the Ni silicide film, but is a metal such as Ni, Co, Ti, W, Ta, Mo, Cr, Al, Pt, Pa, Ru, or a metal silicide film. Alternatively, any material may be used as long as the work function of the metal nitride film is approximately in the center of the forbidden band of the single crystal Si thin film 20.

<実施例2>
図9は本発明の第2の実施例による半導体装置の完成平面図である。本実施例においては前記実施例1に従って半導体装置を製造したが、レイアウトを異にしてゲート電極22によるウエル拡散層との直接接続領域をIGFETのドレイン拡散層7及び9を介した領域でゲート電極と並列配置して行なった。これによりウエル接続領域からチャネル領域に達する経路はチャネル幅に対応する如く構成される。一般にIGFETにおいてはチャネル長に対してチャネル幅を大きく設計するのが通常であり、従って接続領域からチャネル底部に達する経路を大きく構成することができ、実効的なウエル抵抗を低減することができる。N導電型IGFETの場合について説明する。ドレイン電位が高電位にある場合はドレイン拡散層直下ウエル領域表面はドレイン拡散層をゲート電極とし、薄い埋め込み絶縁膜をゲート絶縁膜とするN導電型層の形成によりゲート接続領域とSOIIGFETチャネル直下領域間に等価的な第二のIGFETが形成され導通状態となる。即ち、ドレイン電位に依存して、ゲート入力電位は上記第二のIGFETによる低抵抗なウエル表面領域を介してSOIIGFETチャネル直下領域に高速で印加され、埋め込み絶縁膜2を介してSOIIGFETの閾電圧を低下させる如く、駆動電流を増加させる如く作用する。
<Example 2>
FIG. 9 is a completed plan view of the semiconductor device according to the second embodiment of the present invention. In the present embodiment, the semiconductor device was manufactured according to the first embodiment. However, the gate electrode 22 was directly connected to the well diffusion layer with a different layout, and the gate electrode 22 was formed in the region via the drain diffusion layers 7 and 9 of the IGFET. And performed in parallel. Thereby, the path from the well connection region to the channel region is configured to correspond to the channel width. In general, in the IGFET, the channel width is usually designed to be larger than the channel length. Therefore, a path extending from the connection region to the bottom of the channel can be made large, and the effective well resistance can be reduced. The case of an N conductivity type IGFET will be described. When the drain potential is high, the surface of the well region immediately below the drain diffusion layer forms the gate connection region and the region directly below the SOIIGFET channel by forming an N-conductivity type layer having the drain diffusion layer as a gate electrode and a thin buried insulating film as a gate insulating film. An equivalent second IGFET is formed between them and becomes conductive. That is, depending on the drain potential, the gate input potential is applied at high speed to the region immediately below the SOIIGFET channel via the low resistance well surface region of the second IGFET, and the threshold voltage of the SOIIGFET is set via the buried insulating film 2. It acts to increase the drive current as it decreases.

P導電型IGFETにおいては閾電圧値を上昇させ、漏洩電流をより低減させる方向に作用する。即ち、相補型SOIIGFETによるインバータにおいてはインバータの出力電位が等価的に構成されるIGFETの導通によりより高速に高電位から接地電位に接近する。出力電位が接地電位にあり、入力電位が高電位から接地電位にスイッチングされた場合はP導電型SOIIGFETの直下において、類似の等価的IGFETが形成され、P導電型SOIIGFETの導通状態を改善させ、出力電位を速やかに接地電位から高電位にスイッチングする如く作用する。図9で示される本実施例に基づくSOIIGFETでは出力電位の動的な振る舞いに対応してより高速動作が可能となる如く作用する。   In the P-conduction type IGFET, the threshold voltage value is increased, and the leakage current is further reduced. That is, in an inverter using a complementary SOIIGFET, the output potential of the inverter approaches the ground potential from the high potential at a higher speed due to the conduction of the IGFET that is configured equivalently. When the output potential is at the ground potential and the input potential is switched from the high potential to the ground potential, a similar equivalent IGFET is formed immediately below the P conductivity type SOIIGFET, and the conduction state of the P conductivity type SOIIIFET is improved. The output potential is quickly switched from the ground potential to the high potential. The SOIIGFET based on the present embodiment shown in FIG. 9 operates so as to be able to operate at a higher speed corresponding to the dynamic behavior of the output potential.

<実施例3>
図10は本発明の第三の実施例による半導体装置の製造工程順を示す断面図でゲート電極と直交する領域における断面図、図11はその完成断面図である。本実施例においては基本的に前記実施例に準じてSOIIGFETに基づく半導体装置を製造したが、ゲート絶縁膜形成に先立って薄い単結晶Si膜3と薄い埋め込み絶縁膜2を介したウエル拡散層5表面領域にSOIIGFETの閾電圧を調整用の不純物領域導入をイオン注入により実施した。N導電型SOIIGFET直下においてはP導電型不純物領域52を、P導電型SOIIGFET直下ではN導電型不純物領域53を導入したが、注入不純物量は最大不純物濃度で1x1019/cm以下で所望の回路構成に従い選択的にその量を設定し導入してから前記実施例に基づく製造工程を実施してゲート側壁絶縁膜26の形成まで行なった。所望の回路構成に基づいて上記の閾電圧調整の注入イオン種はN導電型SOIIGFET直下でN導電型イオン種であったり、P導電型SOIIGFET直下でP導電型イオン種であっても何ら問題ない。(図10)
図10の状態よりゲート保護膜23とゲート側壁絶縁膜26を注入素子マスクとするイオン注入により先に注入した閾電圧調整用の注入イオンを補償すべき濃度及び加速エネルギーで反対導電型のイオンを注入し真性不純物領域に近づける不純物補償領域54及び55を形成した。その後、前記実施例1に従って半導体装置を製造した。(図11)
本実施例に基づく半導体装置においてはSOIIGFETのドレイン接合底面容量が薄い埋め込み絶縁膜2の容量と不純物補償領域における空乏層容量の直列接続により決定されるため真性不純物濃度で近似される空乏層容量の採用は大幅な寄生容量の低下をもたらし、SOIIGFETの高速動作化に寄与することができ、且つ閾電圧値も完全空乏型SOIIGFETにもかかわらず任意の値で設計することが併せて可能となった。なお、本実施例に基づく閾電圧制御不純物領域の導入はゲート電極形成前に導入するため、通常基板で微細IGFETのパンチスルー抑制用の所謂ポケット不純物導入におけるごときゲート電極端をイオン注入マスク端とする不純物導入法と異なりゲート電極形状に基づく閾電圧のばらつき増大の問題から解消されることは言うまでもない。
<Example 3>
FIG. 10 is a cross-sectional view showing the order of manufacturing steps of a semiconductor device according to the third embodiment of the present invention, a cross-sectional view in a region orthogonal to the gate electrode, and FIG. 11 is a completed cross-sectional view. In this embodiment, a semiconductor device based on SOIIGFET is basically manufactured according to the above embodiment, but prior to the formation of the gate insulating film, the well diffusion layer 5 via the thin single crystal Si film 3 and the thin buried insulating film 2 is used. An impurity region for adjusting the threshold voltage of SOIIGFET was introduced into the surface region by ion implantation. A P-conductivity type impurity region 52 is introduced immediately below the N-conductivity type SOIIIFET, and an N-conductivity type impurity region 53 is introduced just below the P-conductivity-type SOIIGFET. However, the desired impurity circuit has a maximum impurity concentration of 1 × 10 19 / cm 3 or less. After selectively setting and introducing the amount in accordance with the structure, the manufacturing process based on the above-described embodiment was carried out until the gate sidewall insulating film 26 was formed. There is no problem even if the implantation ion species for adjusting the threshold voltage based on a desired circuit configuration is an N-conducting ion species directly under the N-conducting SOIIGFET or a P-conducting ion species immediately under the P-conducting SOIIGFET. . (Fig. 10)
In the state of FIG. 10, ions of opposite conductivity type are implanted at a concentration and acceleration energy to compensate for the threshold voltage adjusting implanted ions previously implanted by ion implantation using the gate protective film 23 and the gate sidewall insulating film 26 as an implantation element mask. Impurity compensation regions 54 and 55 which are implanted and approach the intrinsic impurity region are formed. Thereafter, a semiconductor device was manufactured according to Example 1. (Fig. 11)
In the semiconductor device according to the present embodiment, the drain junction bottom capacitance of the SOIIGFET is determined by the series connection of the capacitance of the buried insulating film 2 and the depletion layer capacitance in the impurity compensation region, so that the depletion layer capacitance approximated by the intrinsic impurity concentration is obtained. Adoption results in a significant reduction in parasitic capacitance, which can contribute to the high-speed operation of the SOIIIFET, and the threshold voltage value can be designed with any value regardless of the fully depleted SOIIGFET. . Since the introduction of the threshold voltage control impurity region based on the present embodiment is introduced before the gate electrode is formed, the gate electrode end as in the so-called pocket impurity introduction for punch-through suppression of the fine IGFET on the normal substrate is used as the ion implantation mask end. Needless to say, this method eliminates the problem of increased variation in threshold voltage based on the gate electrode shape, unlike the impurity introduction method.

<実施例4>
図12は本発明の第4の実施例による半導体装置の製造工程順を示す断面図、図13はその完成断面図である。本実施例では前記実施例1におけるSOI基板の製法において異なる。単結晶Si基板32の主表面にエピタキシャル法によりSiとGe(ゲルマニュウム)の混晶層31を成長させた。該混晶層31はではGeの組成比を0から40%まで増加させて成長させた3μm層厚の領域とGeの組成比が40%一定の2μm層厚の領域で構成した。該混晶層31は歪緩和層と称される。該歪緩和層31の形成に連続して10nm厚のSi歪層30を成長させた。Si歪層30における格子歪量は約1.6%であることをラマン分光法による単結晶Si格子間隔からのずれとして確認した。尚、上記エピタキシャルに先立ちエピタキシャル成長後のウエーハの反りが補償され、平坦となるごとく単結晶Si基板32の裏面にシリコン窒化膜(図示せず)を堆積してから主表面側から公知の超薄膜SOI基板の製造法に基づく水素のイオン注入を実施した。イオン注入の結果、Si歪層30表面からおよそ40nmの深さに結晶欠陥層(図示せず)が形成された。ここで表面に10nm厚のシリコン酸化膜2を成長させた単結晶Si基板1を別途準備した。(図12)
前記実施例1に基づいて二枚の基板を貼合せ、結晶欠陥層での剥離を利用してSi歪層33上部の歪緩和層32内で剥離させた。接着強度を強化するための熱処理はSi歪層30での歪緩和を最小限にする目的で900℃で実施した。この状態より剥離面を砥粒を含まない表面研磨法により鏡面研磨と混晶層選択エッチングにより薄い歪緩和層31を完全に除去し、10nm厚の単結晶Si歪層30、10nm厚の薄い埋め込みゲート絶縁膜2が支持基板1上に順に構成されたSOI基板を製造した。前記実施例1に準じて歪Si層を有する多層構造SOI基板に活性領域を画定する埋め込み酸化膜2に達する深さの素子間分離絶縁領域4の形成、ウエル拡散層5の形成、高濃度拡散層50の形成、所望領域における単結晶Si歪層30の選択除去とその後のゲート絶縁膜21の形成を実施例1に基づいて行なった。次にゲート電極を形成したが、本実施例においては第一のゲート電極膜として膜厚20nmでGeが30%添加され、Bも高濃度に添加された多結晶SiGe膜を堆積し、ウエル拡散層領域との接続領域において第一のゲート電極膜、ゲート絶縁膜21、及び薄い埋め込み絶縁膜2を選択的に除去してから第二のゲート電極膜を全面に堆積した。第二のゲート電極膜としては40nm厚の多結晶Si膜220を化学気相反応により積層で堆積し、40nm膜厚のゲート保護膜23と共にゲート長30nmとなるごとく加工した。ゲート絶縁膜直上のゲート電極材料として高濃度P型不純物多結晶SiGe膜を用いた理由はゲート電極材料の仕事関数によりnチャネル完全空乏型SOIIGFETにおける閾電圧値をほぼ0V近傍に設定できるためである。ゲート電極220、及びゲート保護膜23を注入阻止マスクとするAsイオン注入とその活性化熱処理による高濃度ソース拡散層6、高濃度ドレイン拡散層7、ゲート側壁絶縁膜26、N型高濃度積上げソース領域、N型高濃度積上げドレイン領域を前記実施例1に従って形成した。N型高濃度積上げソース領域及びN型高濃度積上げドレイン領域の選択形成は前期実施例1に依らず高濃度にP(燐)が添加された非晶質、又は多結晶Si膜の化学気相堆積に基づいても何ら問題ない。この状態からやはり前記実施例1に準じてゲート保護絶縁膜23の選択除去と積上げソース、ドレイン領域、ゲート電極上部領域、高濃度領域15などに選択的な珪化処理を行い、積上げ金属珪化ソース、ドレイン領域、ゲート珪化膜等の形成した。引き続き、配線層間絶縁膜12の堆積と所望領域への開口を施してから開口部への配線金属の埋め込みと平坦化処理、配線電極15,17を含む配線工程等を実施し、更に第二の配線工程を経て半導体装置を製造した。(図13)
本実施例に基づく半導体装置においてはBが高濃度に添加された多結晶SiGe膜による30nm長のゲート電極構成により閾電圧値がほぼ0Vに設定され、且つ高駆動能力を有し、従来構造の相補型IGFETインバータに比べてほぼ2倍の高速動作が実証された。高速動作化は本実施例に基づくSOIIGFETの大幅な駆動電流増大化と漏洩電流低減効果によるものと考えられる。その第一の理由は本実施例に基づくSOIIGFETが(100)面に平行方向に約1.6%の格子歪量を有する単結晶Si薄膜に構成された事実に基づく。結晶格子歪の導入によりSi単結晶の導電帯、及び荷電子帯、及び導電帯の縮退が解け、軽い正孔有効質量成分が導電の主体となること、及びエネルギー谷同士の散乱が抑制されること、等の効果により電子、及び正孔のいずれもが移動度の向上となって現れた結果と思われる。Si単結晶での格子歪導入量はSiGe混晶層31におけるGe含有率により制御されるが、本実施例に基づく半導体装置の製造において、SiGe混晶層31のGe含有量を変化させ、Si単結晶膜30の格子歪量を2%以上から0.01%以下に制御した半導体基板を用いて別途製造したが格子歪量の増大と共にSOIIGFETの電流駆動能力は格子歪量が0.01%程度から増大する傾向は見られるが格子歪量2%程度でその傾向は完全に飽和した。逆に格子歪量の増大に伴ってSi単結晶膜30内に発生する結晶欠陥量も急激に増大する。上記の結果より、Si単結晶膜30の格子歪量は0.01%以上、2%以下であることが望ましい。本実施例において、SOI基板の製造工程中にSi単結晶膜30に歪を生じさせるSiGe混晶層31を支持基板1との貼り合せ工程の後に完全に除去しているが、支持基板1との貼り合せにより歪は保持されており、格子歪が導入されたSi単結晶層30への結晶欠陥の発生もSiGe混晶層31の除去により製造工程中の熱処理による結晶欠陥の新たな発生も防止することが出来た。
<Example 4>
FIG. 12 is a sectional view showing the order of manufacturing steps of a semiconductor device according to the fourth embodiment of the present invention, and FIG. 13 is a completed sectional view thereof. This embodiment is different in the method of manufacturing the SOI substrate in the first embodiment. A mixed crystal layer 31 of Si and Ge (germanium) was grown on the main surface of the single crystal Si substrate 32 by an epitaxial method. The mixed crystal layer 31 is composed of a 3 μm thick region grown by increasing the Ge composition ratio from 0 to 40% and a 2 μm thick region having a constant Ge composition ratio of 40%. The mixed crystal layer 31 is referred to as a strain relaxation layer. In succession to the formation of the strain relaxation layer 31, a Si strain layer 30 having a thickness of 10 nm was grown. It was confirmed that the amount of lattice strain in the Si strained layer 30 was about 1.6% as a deviation from the single crystal Si lattice spacing by Raman spectroscopy. Prior to the above-described epitaxial process, the warpage of the wafer after the epitaxial growth is compensated, and a silicon nitride film (not shown) is deposited on the back surface of the single crystal Si substrate 32 so as to become flat, and then a known ultra-thin SOI from the main surface side. Hydrogen ion implantation based on the substrate manufacturing method was performed. As a result of the ion implantation, a crystal defect layer (not shown) was formed at a depth of about 40 nm from the surface of the Si strained layer 30. Here, a single crystal Si substrate 1 having a 10 nm thick silicon oxide film 2 grown on the surface was separately prepared. (Fig. 12)
Based on Example 1, two substrates were bonded and peeled in the strain relaxation layer 32 above the Si strained layer 33 using peeling at the crystal defect layer. The heat treatment for enhancing the adhesive strength was performed at 900 ° C. for the purpose of minimizing strain relaxation in the Si strained layer 30. From this state, the thin strain relaxation layer 31 is completely removed by mirror polishing and mixed crystal layer selective etching of the peeled surface by a surface polishing method that does not include abrasive grains, and a 10 nm thick single crystal Si strained layer 30 and a 10 nm thick embedded thin film. An SOI substrate in which the gate insulating film 2 was sequentially formed on the support substrate 1 was manufactured. In accordance with the first embodiment, formation of an inter-element isolation insulating region 4 having a depth reaching the buried oxide film 2 defining the active region, formation of the well diffusion layer 5, and high concentration diffusion on the multilayer structure SOI substrate having the strained Si layer Formation of the layer 50, selective removal of the single crystal Si strained layer 30 in the desired region, and subsequent formation of the gate insulating film 21 were performed based on Example 1. Next, a gate electrode was formed. In this embodiment, a polycrystalline SiGe film having a thickness of 20 nm and 30% Ge and B added at a high concentration is deposited as a first gate electrode film, and well diffusion is performed. After selectively removing the first gate electrode film, the gate insulating film 21 and the thin buried insulating film 2 in the connection region with the layer region, the second gate electrode film was deposited on the entire surface. As the second gate electrode film, a polycrystalline Si film 220 with a thickness of 40 nm was deposited by a chemical vapor reaction and processed together with a gate protection film 23 with a thickness of 40 nm so as to have a gate length of 30 nm. The reason why the high-concentration P-type impurity polycrystalline SiGe film is used as the gate electrode material immediately above the gate insulating film is that the threshold voltage value in the n-channel fully-depleted SOI IIFET can be set to about 0 V by the work function of the gate electrode material. . High-concentration source diffusion layer 6, high-concentration drain diffusion layer 7, gate sidewall insulating film 26, N-type high-concentration stacked source by As ion implantation using gate electrode 220 and gate protective film 23 as an implantation blocking mask and its activation heat treatment A region, N-type high concentration stacked drain region was formed according to Example 1 above. The selective formation of the N-type high-concentration stacked source region and the N-type high-concentration stacked drain region is performed in the chemical vapor phase of an amorphous or polycrystalline Si film to which P (phosphorus) is added at a high concentration regardless of the first embodiment. There is no problem based on the deposition. From this state, the selective removal of the gate protection insulating film 23 and selective silicidation treatment are performed on the stacked source / drain region, the gate electrode upper region, the high concentration region 15 and the like in accordance with the first embodiment. A drain region, a gate silicide film, and the like were formed. Subsequently, after depositing the wiring interlayer insulating film 12 and opening the desired region, the wiring metal is embedded and planarized in the opening, and the wiring process including the wiring electrodes 15 and 17 is performed. A semiconductor device was manufactured through a wiring process. (Fig. 13)
In the semiconductor device according to the present embodiment, the threshold voltage value is set to almost 0 V by the gate electrode structure of 30 nm length by the polycrystalline SiGe film to which B is added at a high concentration, and has a high driving capability, and has a conventional structure. High-speed operation almost twice that of complementary IGFET inverters has been demonstrated. The high-speed operation is considered to be due to the significant increase in drive current and the leakage current reduction effect of the SOIIGFET based on this embodiment. The first reason is based on the fact that the SOIIGFET according to this example is formed of a single crystal Si thin film having a lattice strain amount of about 1.6% in the direction parallel to the (100) plane. By introducing crystal lattice strain, the degeneration of the conduction band, valence band, and conduction band of the Si single crystal is solved, the light hole effective mass component becomes the main subject of conduction, and the scattering of energy valleys is suppressed. This is considered to be a result of the appearance of both electrons and holes with improved mobility. The amount of lattice strain introduced in the Si single crystal is controlled by the Ge content in the SiGe mixed crystal layer 31, but in the manufacture of the semiconductor device based on the present embodiment, the Ge content in the SiGe mixed crystal layer 31 is changed to change the Si content. The single crystal film 30 is separately manufactured using a semiconductor substrate in which the lattice strain amount is controlled from 2% to 0.01%. However, as the lattice strain amount increases, the current drive capability of the SOIIGFET is 0.01%. Although a tendency to increase from the degree is seen, the tendency is completely saturated when the lattice strain is about 2%. On the contrary, the amount of crystal defects generated in the Si single crystal film 30 increases rapidly as the lattice strain increases. From the above results, the lattice strain amount of the Si single crystal film 30 is desirably 0.01% or more and 2% or less. In this embodiment, the SiGe mixed crystal layer 31 that causes distortion in the Si single crystal film 30 during the manufacturing process of the SOI substrate is completely removed after the bonding process with the support substrate 1. Strain is maintained by bonding, and crystal defects are generated in the Si single crystal layer 30 in which lattice strain is introduced, or new crystal defects are generated by heat treatment during the manufacturing process by removing the SiGe mixed crystal layer 31. I was able to prevent it.

本実施例に基づくSOIIGFETの大幅な駆動電流増大化と漏洩電流低減効果の第二の理由はゲート入力電位が支持基板1内に形成されたSOIIGFET直下のウエル拡散領域5にも直接印加される構成に基づくものと考えられる。ウエル拡散領域5へのゲート入力電位の印加は薄い埋め込み絶縁膜2を介してSOIIGFETを導通状態においてはより駆動電流が大きくなる如く閾電圧値を低下させ、非導通状態へのスイッチング時にはより速やかに漏洩電流が低減される如くより閾電圧値を上昇させるごとく作用する。本実施例に基づくSOIIGFETの大幅な性能向上は上記二つの理由に基づくものと考えられる。   The second reason for the significant increase in driving current and the reduction in leakage current of the SOIIGFET according to this embodiment is that the gate input potential is directly applied to the well diffusion region 5 directly below the SOIIGFET formed in the support substrate 1. It is thought that it is based on. Application of the gate input potential to the well diffusion region 5 lowers the threshold voltage value so that the drive current becomes larger in the conductive state of the SOIIGFET through the thin buried insulating film 2, and more quickly at the time of switching to the non-conductive state. It works as if the threshold voltage value is further increased so that the leakage current is reduced. The significant performance improvement of the SOIIGFET based on this embodiment is considered to be based on the above two reasons.

<実施例5>
本実施例では前記実施例1において、P導電型SOIIGFETのみを製造した。即ち、ソース、ドレイン拡散層への不純物導入は高濃度Bに依った。前記実施例1との主な違いは単結晶Si薄膜3内に構成するP導電型IGFETのソース・ドレイン拡散層の向きを通常の<110>方向ではなく、<100>方向となる如く配置したこと、及び主トランジスタであるP導電型IGFETのチャネル領域下部の埋め込みゲート絶縁膜2を介したウエル拡散層領域5に閾電圧調整用の不純物領域53を導入したことである。不純物導入はイオン注入法により単結晶Si薄膜3と埋め込みゲート絶縁膜2を貫通する如く行なった。注入種はP導電型IGFETにおける閾電圧値を正方向に変更して、駆動電流と漏洩電流を増やすためにはBやInをまた、閾電圧値を負方向に変更して駆動電流と漏洩電流を低下させるためにはAs(砒素)、P(燐)、Sb(アンチモン)等を用いれば良い。注入量は1x1014/cm以下でよく、従って貫通領域の単結晶Si薄膜3及び埋め込み絶縁膜2での注入損傷は実効的に無視できる程度に抑えることができる。注入領域の制御はゲート絶縁膜20の形成前に注入阻止マスクを確定して実施する。これはこの段階で注入阻止マスクを用いることなく全面注入し、ゲート電極形成後、該ゲート電極22、又はゲート側壁絶縁膜26を注入阻止マスクとした反対導電型イオンの注入により所望領域以外の注入不純物を補償させ、実効的にゲート電極22と自己整合の関係でウエル拡散層領域5に補償不純物領域55を残置しても良い。閾電圧値は単結晶Si薄膜3内の不純物量、ゲート電極の仕事関数、上記不純物領域53内の不純物量、及びゲート絶縁膜、埋め込みゲート絶縁膜の各膜厚により決定される。本実施例によるSOIIGFETでは単結晶Si薄膜3は10nmと極薄で、且つ内部の不純物量は無視できるほど低濃度で完全空乏状態にあり、ゲート絶縁膜4、埋め込み絶縁膜2の各膜厚もシリコン酸化膜換算膜厚で2nmから10nm程度と極薄であるため、ゲート電極の仕事関数と不純物領域53内の不純物総量とその分布状態でほぼ決定される。本実施例によるSOIIGFETではゲート電極材料として金属珪化膜を用いることにより閾電圧値をほぼ0Vになる如く設定し、所望回路構成に従って同一半導体基板の各構成IGFETごとに所望不純物を所望量だけ選択的に導入した不純物領域53を形成した。本実施例においてはゲート電極5と接続され、且つウエル拡散層5と接続される高濃度領域50は占有面積低減の観点から一箇所とした。本実施例に基づいて製造されたP導電型IGFETにおいては完全空乏型SOIIGFETであるにも係らず、所望回路構成に従って閾電圧値を同一ゲート材料で絵構成された隣接IGFET間においても互いに独立な任意値に設定することができ、且つゲート入力電位を薄い埋め込み絶縁膜を介して有効にSOIIGFETの基板電位制御に作用させることにより大駆動電流化と低漏洩電流化を達成できた。更に、本実施例に基づくP導電型IGFETにおいてはソース・ドレイン方向が<100>方向に配置された効果により正孔移動度の向上効果も併せて発揮され、前記実施例1に基づくソース・ドレイン方向が<110>方向に配置されたP導電型IGFETに比較しても約10%の駆動電流向上を閾電圧値の変動、及び漏洩電流の増大なしに達成された。
<Example 5>
In this example, only the P-conductivity type SOIIGFET was manufactured in Example 1 described above. That is, the introduction of impurities into the source and drain diffusion layers depended on the high concentration B. The main difference from the first embodiment is that the orientation of the source / drain diffusion layers of the P-conductivity type IGFET formed in the single crystal Si thin film 3 is not the normal <110> direction but the <100> direction. That is, the impurity region 53 for adjusting the threshold voltage is introduced into the well diffusion layer region 5 through the buried gate insulating film 2 below the channel region of the P-conductivity type IGFET which is the main transistor. Impurities were introduced so as to penetrate the single crystal Si thin film 3 and the buried gate insulating film 2 by ion implantation. For the implantation type, the threshold voltage value in the P-conductivity type IGFET is changed in the positive direction to increase the drive current and leakage current, and B and In are changed, and the threshold voltage value is changed in the negative direction and the drive current and leakage current are changed. As (Ar), P (phosphorus), Sb (antimony), etc. may be used to reduce the above. The implantation amount may be 1 × 10 14 / cm 2 or less, so that the implantation damage in the single crystal Si thin film 3 and the buried insulating film 2 in the penetrating region can be suppressed to an extent that can be effectively ignored. The implantation region is controlled by determining an implantation blocking mask before forming the gate insulating film 20. In this step, the entire surface is implanted without using an implantation blocking mask, and after the formation of the gate electrode, implantation of an opposite conductivity type using the gate electrode 22 or the gate side wall insulating film 26 as an implantation blocking mask is performed. The compensation impurity region 55 may be left in the well diffusion layer region 5 in a self-aligned relationship with the gate electrode 22 by effectively compensating the impurity. The threshold voltage value is determined by the amount of impurities in the single-crystal Si thin film 3, the work function of the gate electrode, the amount of impurities in the impurity region 53, and the thicknesses of the gate insulating film and the buried gate insulating film. In the SOIIGFET according to the present embodiment, the single crystal Si thin film 3 is as extremely thin as 10 nm, and the amount of impurities inside is completely depleted with a negligible concentration. The thicknesses of the gate insulating film 4 and the buried insulating film 2 are also different. Since the equivalent thickness of the silicon oxide film is as thin as about 2 nm to 10 nm, it is almost determined by the work function of the gate electrode, the total amount of impurities in the impurity region 53 and their distribution state. In the SOIIGFET according to this embodiment, a threshold voltage value is set to be almost 0 V by using a metal silicide film as a gate electrode material, and a desired impurity is selectively selected in a desired amount for each IGFET on the same semiconductor substrate according to a desired circuit configuration. Impurity regions 53 introduced into the were formed. In this embodiment, the high-concentration region 50 connected to the gate electrode 5 and connected to the well diffusion layer 5 is provided at one place from the viewpoint of reducing the occupied area. Although the P-conductivity type IGFET manufactured based on this embodiment is a fully depleted type SOIIGFET, the threshold voltage value is independent from each other between adjacent IGFETs that are configured with the same gate material according to the desired circuit configuration. A large driving current and a low leakage current can be achieved by setting the gate input potential to an effective value and controlling the substrate potential of the SOIIGFET through a thin buried insulating film. Further, in the P-conductivity type IGFET based on the present embodiment, the effect of improving the hole mobility is also exhibited due to the effect that the source / drain directions are arranged in the <100> direction. Even when compared with a P-conductivity type IGFET whose direction is arranged in the <110> direction, an improvement in driving current of about 10% was achieved without variation in threshold voltage value and increase in leakage current.

本実施例に基づくIGFETは完全空乏型の動作機構に基づき、チャネル領域を構成する単結晶Si薄膜3にはパンチスルー抑制の不純物導入が不要である。このため、通常基板に製造される超微細IGFETで問題となるパンチスルー抑止不純物量の増大によるドレイン基板間の直接トンネル電流による漏洩電流増加の問題、及び導入不純物量の増大に伴い増大される導入不純物量の相対的揺らぎ量増大による閾電圧ばらつきの増大等の基本的致命的欠点から解消される。従って良品歩留まりの飛躍的向上も併せて達成できる。上記の完全空乏型動作機構を維持するためにはSOI構造において、ゲート長に比べて十分に薄く、且つ真性半導体に近い単結晶半導体薄膜に超微細IGFETを製造することが条件である。電源電圧が1V以下の場合、単結晶Si薄膜3の膜厚はゲート電極長の1/3以下、望むらくは1/5以下であることが完全空乏化のためには好ましい。   The IGFET based on this embodiment is based on a fully depleted operation mechanism, and it is not necessary to introduce punch-through suppression impurities into the single crystal Si thin film 3 constituting the channel region. For this reason, the problem of increased leakage current due to direct tunneling current between drain substrates due to an increase in the amount of punch-through suppression impurities, which is a problem in ultra-fine IGFETs manufactured on a normal substrate, and the introduction increased as the amount of introduced impurities increases This eliminates fundamental fatal defects such as an increase in threshold voltage variation due to an increase in the relative fluctuation amount of impurities. Accordingly, a dramatic improvement in the yield of good products can be achieved. In order to maintain the above fully depleted operation mechanism, it is necessary to manufacture an ultrafine IGFET in a single crystal semiconductor thin film that is sufficiently thinner than the gate length and close to an intrinsic semiconductor in the SOI structure. When the power supply voltage is 1 V or less, the thickness of the single crystal Si thin film 3 is preferably 1/3 or less of the gate electrode length, and preferably 1/5 or less for complete depletion.

<実施例6>
図14は本発明の第6の実施例による半導体装置の製造工程順を示す断面図である。前記実施例1に従って製造された半導体装置においては同一ウエル拡散層領域5上に構成される複数のSOIIGFET間の素子分離は薄い単結晶Si膜3のメサ分離に基づいている。この構成でゲート電極22で直接ウエル拡散層領域5との接続を実施する場合、メサエッチング端におけるゲート電極22と薄い単結晶Si膜3間で短絡が生じる恐れがあり、良品歩留まりの低下が心配される。上記短絡はゲート電極22とメサエッチングされた薄い単結晶Si膜3の側面部分であることが確率的に大きい。本実施例による半導体装置においては、上記短絡の防止を目的として、薄い単結晶Si膜3膜厚が40nmと厚い仕様のSOI基板を予め準備した。前記実施例1におけるウエル拡散層5の形成の後、薄い単結晶Si膜3主表面を熱酸化法等により20nm厚の絶縁膜33を全面に形成してから絶縁膜33と薄い単結晶Si膜3の活性化領域を確定するパターニングを実施した。しかる後、30n厚で別種類の絶縁膜、例えばシリコン窒化膜34の全面堆積とその異方性エッチングにより上記活性化領域パターンの側壁部分にのみ絶縁膜34を残置した。上記側壁残置の絶縁膜34の製法に関しては絶縁膜33をエッチングマスクに用い、露出された薄い単結晶Si膜3の側壁からSi膜3を所望厚さだけ選択的に除去してから除去部分に絶縁膜34を埋め込み残置しても良い。(図14)
図14の状態より残置された絶縁膜34を残したままで絶縁膜33を選択的に除去してから前記実施例1に従って半導体装置を製造した。本実施例に基づく半導体装置においてはウエル拡散層5に接続されるゲート電極22と薄い単結晶Si膜3膜内に構成されるソース、ドレイン領域間の短絡不良が完全に解消されることが判明した。
<Example 6>
FIG. 14 is a cross-sectional view showing the order of manufacturing steps of a semiconductor device according to the sixth embodiment of the present invention. In the semiconductor device manufactured according to the first embodiment, element isolation between a plurality of SOIIGFETs formed on the same well diffusion layer region 5 is based on mesa isolation of a thin single crystal Si film 3. When the gate electrode 22 is directly connected to the well diffusion layer region 5 with this configuration, a short circuit may occur between the gate electrode 22 and the thin single crystal Si film 3 at the end of the mesa etching, and there is a concern that the yield of good products may be reduced. Is done. It is probable that the short circuit is a side portion of the gate electrode 22 and the thin mesa-etched thin single crystal Si film 3. In the semiconductor device according to this example, an SOI substrate having a thin specification with a thin single crystal Si film 3 having a thickness of 40 nm was prepared in advance for the purpose of preventing the short circuit. After the formation of the well diffusion layer 5 in the first embodiment, the main surface of the thin single crystal Si film 3 is formed on the entire surface by a thermal oxidation method or the like, and then the insulating film 33 and the thin single crystal Si film are formed. Patterning to determine 3 active areas was performed. Thereafter, the insulating film 34 was left only on the side wall portion of the activated region pattern by depositing the whole surface of another type of insulating film having a thickness of 30 n, for example, a silicon nitride film 34 and anisotropic etching thereof. With respect to the method of manufacturing the insulating film 34 with the side wall remaining, the insulating film 33 is used as an etching mask, and the Si film 3 is selectively removed from the exposed side wall of the thin single crystal Si film 3 by a desired thickness and then removed. The insulating film 34 may be buried and left. (Fig. 14)
After selectively removing the insulating film 33 while leaving the insulating film 34 left from the state of FIG. 14, the semiconductor device was manufactured according to the first embodiment. In the semiconductor device according to the present embodiment, it is found that the short-circuit failure between the gate electrode 22 connected to the well diffusion layer 5 and the source and drain regions formed in the thin single crystal Si film 3 is completely eliminated. did.

<実施例7>
図15は本発明の第7の実施例による半導体装置の製造工程順を示す断面図、図16はその完成断面図である。本実施例に基づく半導体装置においては完全空乏型SOIIGFETを主要構成素子とし、一部高耐圧特性を要求される回路群をも含む半導体装置に関する形態である。特に外部信号の入出力に関する静電破壊防止回路等を含む半導体装置に関する。薄い単結晶Si膜3を加工する前記実施例1の活性領域確定工程において、静電破壊防止回路等を配置すべき領域の薄い単結晶Si膜3と薄い埋め込み絶縁膜2を選択除去し、支持基板1主表面を露出させた。続いてウエル接続孔濃度拡散層50、素子間分離絶縁膜4、ゲート絶縁膜20、及び第一のゲート電極材料膜21の形成を実施例1に従って行なってからウエル接続孔濃度拡散層50の所望領域上のゲート絶縁膜20と第一のゲート電極材料膜21を選択的に除去した。(図15)
図15の状態から第二のゲート電極材料膜の全面堆積から始まる前記実施例1に基づき半導体装置を製造した。本実施例の半導体装置においては支持基板1上にもIGFETを薄い単結晶Si膜上と同様に構成した。(図16)
本実施例に基づく半導体装置においては実施例1に基づく低電圧電源でも駆動能力が高い完全空乏型SOIIGFETと高耐圧特性に優れた通常基板上のIGFETを一体化した半導体装置を実現することができた。
<Example 7>
FIG. 15 is a cross-sectional view showing the order of manufacturing steps of a semiconductor device according to a seventh embodiment of the present invention, and FIG. 16 is a completed cross-sectional view thereof. The semiconductor device according to the present embodiment is a semiconductor device that includes a fully depleted SOIIGFET as a main constituent element and also includes a circuit group that partially requires high breakdown voltage characteristics. In particular, the present invention relates to a semiconductor device including an electrostatic breakdown prevention circuit related to input / output of an external signal. In the active region determination step of the first embodiment for processing the thin single crystal Si film 3, the thin single crystal Si film 3 and the thin buried insulating film 2 in the region where the electrostatic breakdown prevention circuit or the like is to be disposed are selectively removed and supported. The main surface of the substrate 1 was exposed. Subsequently, the well connection hole concentration diffusion layer 50, the inter-element isolation insulating film 4, the gate insulating film 20, and the first gate electrode material film 21 are formed according to the first embodiment, and then the desired well connection hole concentration diffusion layer 50 is formed. The gate insulating film 20 and the first gate electrode material film 21 on the region were selectively removed. (Fig. 15)
A semiconductor device was manufactured based on Example 1 starting from the entire deposition of the second gate electrode material film in the state of FIG. In the semiconductor device of this example, the IGFET was also configured on the support substrate 1 in the same manner as on the thin single crystal Si film. (Fig. 16)
In the semiconductor device based on the present embodiment, it is possible to realize a semiconductor device in which a fully-depleted SOI IIFET having high driving capability even with a low voltage power source based on Embodiment 1 and an IGFET on a normal substrate excellent in high withstand voltage characteristics are integrated. It was.

<実施例8>
図17は本発明の第8の実施例による半導体装置のレイアウト図、図18はその等価回路図である。前記実施例1に従って6個のトランジスタで単位セルが構成されるSRAMを含む半導体装置を製造した。図17及び図18において、Tr1及びTr2はデータの入出力を制御する転送素子であり、Ld1とDr1及びLd2とDr2の二対の相補型トランジスタで記憶ノードを構成している。Ld1及びLd2の各トランジスタはP導電型トランジスタ、Dr1及びDr2とTr1、及びTr2はN導電型トランジスタである。図17において、51はウエル接続孔濃度拡散層50とゲート電極の接続孔であり、図18の容量素子はウエル拡散層5とトランジスタの基板ノードを対向電極とする薄い埋め込み絶縁膜2による容量を等価的に示している。記憶ノードを構成する対の相補型トランジスタは共通のウエル拡散層領域上に構成され、二対は素子間分離絶縁膜4で周囲を絶縁分離されている。即ち、Ld1とDr1、及びLd2とDr2は各々ウエル拡散層領域を共有している。転送素子は囲まれた素子間分離絶縁膜内で反対導電型のウエルにより共通の支持基板に電気的に接続されている。即ち、記憶ノードを構成する対の相補型トランジスタと転送素子の各々の直下の支持基板領域間はPN接合によるウエル拡散層で分離構成されている。本実施例による半導体装置、SRAMにおいては対を形成する相補型トランジスタの駆動能力がゲート入力信号のウエル拡散層印加の効果により格段に向上するため、対転送素子比での駆動能力が増加する。これによりSRAM読み出しモードにおける不安定性が解消され、低電源電圧下でも安定して動作することが可能となった。これにより、消費電力の大幅な向上が達成されたSRAMを実現することが出来た。さらに、上記効果をもたらすウエル拡散層印加のためのレイアウト上の問題も最下層配線であるゲート電極配線を用い、ゲート電極と直列に接続することにより占有面積の増加を全く要せず実現することが出来た。本実施例によるSRAMにおいて、ウエル拡散層に基づく寄生容量が記憶ノードに付加される。上記寄生容量は動的動作時に転送素子を介して流れる電流を緩和する作用を有し、安定動作化を更に向上させる特徴を有している。尚、本実施例に基づく半導体装置においては補償拡散層54、55の如く寄生容量を低減させる作用を有する構成は実施せず、より寄生要領の増加を図ることが望ましい。本実施例に基づく半導体装置においては従来に比べて動作電圧を低下させても安定動作が保証され、従ってより低消費電力のSRAMを実現することが可能となった。
<Example 8>
FIG. 17 is a layout diagram of a semiconductor device according to an eighth embodiment of the present invention, and FIG. 18 is an equivalent circuit diagram thereof. In accordance with the first embodiment, a semiconductor device including an SRAM in which a unit cell is configured by six transistors was manufactured. 17 and 18, Tr1 and Tr2 are transfer elements that control data input / output, and a storage node is configured by two pairs of complementary transistors Ld1 and Dr1 and Ld2 and Dr2. Each of the transistors Ld1 and Ld2 is a P-conductivity type transistor, and Dr1, Dr2 and Tr1, and Tr2 are N-conductivity type transistors. In FIG. 17, 51 is a connection hole between the well connection hole concentration diffusion layer 50 and the gate electrode, and the capacitor element in FIG. 18 has a capacitance due to the thin diffusion insulating film 2 with the well diffusion layer 5 and the substrate node of the transistor as the counter electrode. It is shown equivalently. A pair of complementary transistors constituting the storage node is formed on a common well diffusion layer region, and the two pairs are insulated and isolated by an element isolation insulating film 4. That is, Ld1 and Dr1, and Ld2 and Dr2 each share a well diffusion layer region. The transfer element is electrically connected to a common support substrate by a well of opposite conductivity type in the enclosed inter-element isolation insulating film. That is, the pair of complementary transistors constituting the storage node and the supporting substrate region immediately below each of the transfer elements are separated by a well diffusion layer by a PN junction. In the semiconductor device and SRAM according to the present embodiment, the driving capability of complementary transistors forming a pair is remarkably improved by the effect of applying the well diffusion layer of the gate input signal, so that the driving capability in the ratio of the transfer element increases. As a result, the instability in the SRAM read mode is eliminated, and it is possible to operate stably even under a low power supply voltage. As a result, it was possible to realize an SRAM in which a significant improvement in power consumption was achieved. Furthermore, the layout problem for applying the well diffusion layer that brings about the above effect can be realized by using the gate electrode wiring which is the lowermost layer wiring and connecting it in series with the gate electrode without requiring any increase in the occupied area. Was made. In the SRAM according to this embodiment, a parasitic capacitance based on the well diffusion layer is added to the storage node. The parasitic capacitance has a function of relaxing current flowing through the transfer element during dynamic operation, and has a feature of further improving stable operation. In the semiconductor device according to the present embodiment, it is desirable not to implement the structure having the effect of reducing the parasitic capacitance, such as the compensation diffusion layers 54 and 55, and to increase the parasitic procedure. In the semiconductor device according to the present embodiment, stable operation is ensured even when the operating voltage is lowered as compared with the prior art, and therefore it is possible to realize an SRAM with lower power consumption.

<実施例9>
図19は本発明の第9の実施例による半導体装置のレイアウト図、図20及び図21はその等価回路図、図21は本発明の第9の実施例による半導体装置を構成する各トランジスタの電流電圧特性を示す図である。図20と図21の違いはトランジスタの導電型、及び電位関係が逆転した関係であり、いずれの形式においても通常メモリ動作が可能である。前記実施例1に従って2対の相補型トランジスタによる4個のトランジスタで単位セルが構成されるSRAMを含む半導体装置を製造した。図19において、Gはトランジスタのゲート電極を、Lはソース・ドレイン活性領域とウエル拡散層接続領域を、WLはワード線、DLはデータ線を示す。図中のTr、Drは図21及び図22の各トランジスタに対応し、各々転送トランジスタとドライバトランジスタを表す。Cp1とCp2はTr1とDr1、及びTr2とDr2の各々が配置され共有するウエル拡散層と支持基板間PN接合による各寄生容量を示している。Tr1とDr1、Tr2とDr2は各々ウエル拡散層領域を共有している。図20と図21における無記号の容量素子はウエル拡散層とSOI層間の薄い埋め込み絶縁膜に基づく容量素子を示している。尚、図20及び図21において容量素子を有しない2個のp導電型IGFETと2個のn導電型IGFETで単位セルが構成されるSRAM自体は公知であり、図20を例にとるとp導電型IGFETよりなるTr1、Tr2の閾電圧値をn導電型IGFETよりなるDr1、Dr2の閾電圧値より低く構成しておく。図20においてワード線、及び両ビット線が“1”電位に保持されたスタンドバイの状態において、Dr2とTr2の接続ノードに“1”、Dr1とTr1の接続ノードに“0”電位が記憶された状態を仮定した場合、Tr2とDr2の閾電圧値の差によりDr2とTr2の接続ノードは“1”状態を保持する如くTr2がロード素子の役割を兼用した給電動作を行いSRAM動作を保証する。この時反対側のTr1とDr1の接続ノードは“0”電位にあるが、このノードはDr1が導通状態にありVss電位が給電されるため“0”電位が保持される。ただし、Tr1の閾電圧値が相対的に低いためTr1の閾電圧値に対応する漏洩電流は避けられない。上記4個のトランジスタにより単位セルが構成される公知のSRAMの第一の問題点は構成トランジスタの閾電圧値が厳密に制御されていなければSRAMとしての動作が保証されないこと、及びTr1、又はTr2の低い閾電圧値に基づく漏洩電流が避けられないことである。長所は占有面積が6トランジスタに基づく通常のSRAMに比べて小さくできることである。
<Example 9>
19 is a layout diagram of a semiconductor device according to a ninth embodiment of the present invention, FIGS. 20 and 21 are equivalent circuit diagrams thereof, and FIG. 21 is a current of each transistor constituting the semiconductor device according to the ninth embodiment of the present invention. It is a figure which shows a voltage characteristic. The difference between FIG. 20 and FIG. 21 is the relationship in which the transistor conductivity type and the potential relationship are reversed, and normal memory operation is possible in either type. In accordance with the first embodiment, a semiconductor device including an SRAM in which a unit cell is composed of four transistors by two pairs of complementary transistors was manufactured. In FIG. 19, G indicates a gate electrode of a transistor, L indicates a source / drain active region and well diffusion layer connection region, WL indicates a word line, and DL indicates a data line. Tr and Dr in the figure correspond to the transistors in FIGS. 21 and 22, and represent a transfer transistor and a driver transistor, respectively. Cp1 and Cp2 indicate the respective parasitic capacitances due to the well diffusion layer and the support substrate PN junction that are shared by each of Tr1 and Dr1, and Tr2 and Dr2. Tr1 and Dr1, and Tr2 and Dr2 each share a well diffusion layer region. 20 and 21 indicate a capacitive element based on a thin buried insulating film between the well diffusion layer and the SOI layer. In FIG. 20 and FIG. 21, the SRAM itself in which a unit cell is composed of two p-conductivity type IGFETs and two n-conductivity type IGFETs that do not have a capacitive element is well known. The threshold voltage values of Tr1 and Tr2 made of conductive IGFET are set lower than the threshold voltage values of Dr1 and Dr2 made of n conductive IGFET. In FIG. 20, in the standby state in which the word line and both bit lines are held at “1” potential, “1” is stored in the connection node of Dr2 and Tr2, and “0” potential is stored in the connection node of Dr1 and Tr1. Assuming this condition, Tr2 performs a power supply operation that also serves as a load element so that the connection node of Dr2 and Tr2 maintains the "1" state due to the difference in threshold voltage value between Tr2 and Dr2, thereby guaranteeing the SRAM operation. . At this time, the connection node of Tr1 and Dr1 on the opposite side is at “0” potential, but this node is held at “0” potential because Dr1 is in a conducting state and the Vss potential is supplied. However, since the threshold voltage value of Tr1 is relatively low, a leakage current corresponding to the threshold voltage value of Tr1 is unavoidable. The first problem of the known SRAM in which the unit cell is constituted by the four transistors is that the operation as the SRAM cannot be guaranteed unless the threshold voltage value of the constituent transistor is strictly controlled, and Tr1 or Tr2 The leakage current based on the low threshold voltage value is inevitable. The advantage is that the occupied area can be reduced as compared with a normal SRAM based on 6 transistors.

本実施例に基づく半導体装置、4個のトランジスタで単位セルが構成されるSRAMにおいてはウエル拡散層を共有する相補型IGFET二対により単位セルが構成されるが各相補型IGFETはその一方のゲート電極がウエル拡散層に接続され、薄い埋め込み絶縁膜を介して一対の相補型トランジスタの基板電位が制御される構成を有している。これによりドライバトランジスタDr1及びDr2において、図22より明らかなごとく、従来構造同一寸法のトランジスタに比べて電源電圧1V、漏洩電流が同一の条件においてNチャネルIGFETで1.3倍、PチャネルIGFETで1.4倍の駆動能力を有しており、高速動作化が可能となる。   In the semiconductor device according to this embodiment, in which the unit cell is composed of four transistors, the unit cell is composed of two pairs of complementary IGFETs sharing a well diffusion layer, but each complementary IGFET has one gate thereof. The electrode is connected to the well diffusion layer, and the substrate potential of the pair of complementary transistors is controlled through a thin buried insulating film. As a result, in the driver transistors Dr1 and Dr2, as apparent from FIG. 22, the power supply voltage is 1 V and the leakage current is 1.3 times that of the conventional transistor having the same dimensions, and the N-channel IGFET is 1.3 times the P-channel IGFET. .4 times the driving capability, enabling high-speed operation.

また、転送IGFETが非動作条件となるワード線信号条件(図20において“1”電位、図21においては“0”電位)において、記憶ノードの蓄積電位に基づいた電位がウエル拡散層に印加され、記憶ノードの電位を保持する如く薄い埋め込み絶縁膜を介して転送IGFETに印加される。即ち、転送IGFETはメモリセルの記憶ノード電位を保持するロードIGFETの役割を保持するごとく作用する。具体的には図20において、ワード線信号が“1”でTr1、Tr2は非道通状態、Tr2とDr2接続ノードが“1”に記憶保持された状態で、Tr2のウエル拡散層側には“0”電位が印加されTr2が低閾電圧状態に変換されるため、記憶ノード電位“1”状態を保持する如くビット線電位“1”がTr2を介して伝達される。この時、Tr1のウエル拡散層には“1”が印加され遮断状態となり高閾電圧状態が保持されるため、Tr1とDr1接続ノード電位“0”はビット線電位“1”から遮断された状態が保持される。本実施例に基づく半導体装置で正常なSRAM動作が可能となるためには図22の電流電圧特性でゲート電圧零VにおけるTrとDrの漏洩電流絶対値の差が十分に大きいことが条件であるが、本実施例に基づく半導体装置においてはその値は3桁にも達することがわかる。更に本実施例に基づく半導体装置においてはTr1とTr2のウエル拡散層側からの印加状態は接続ノードの動的電位に基づき、自動的に反対の電位、“0”電位と“1” 電位、が印加される関係になる。即ち、各々の転送IGFETは遮断状態ではより遮断状態に、給電状態ではより給電状態となる如く閾電圧がウエル拡散層電位により制御され、閾電圧値が固定された従来の4トランジスタSRAMに比べて漏洩電流が桁違いに低減される。更に、4トランジスタにより単位セルが構成されるSRAMの欠点であった閾電圧値のばらつきによる動作不安定性も完全空乏型SOIトランジスタの固有の特徴である閾電圧値のばらつき低減効果により本質的に問題ない。これにより従来、6個のIGFETで単位セルが構成されたSRAM動作を本実施例に基づく半導体装置においては4個のIGFETで構成できる特徴を有している。上記実施例8に比べれば本実施例のSRAMでは動作に不安定性が増すが、構成素子数が少ないため低漏洩電流特性で、より高密度化が可能となる特徴を有している。更に記憶ノードに接続されるウエル拡散層に基づく寄生容量Cp1、Cp2の付加効果により動的動作時に転送IGFETを介して流れる電流を緩和する作用を有し、安定動作化を更に向上させる特徴を有している。尚、本実施例に基づく半導体装置においては補償拡散層54、55の如く寄生容量を低減させる作用を有する構成は実施せず、より寄生要領の増加を図ることが望ましい。本実施例に基づく半導体装置においては従来に比べて動作電圧を低下させても安定動作が保証され、従ってより低消費電力のSRAMを更に占有面積を低減して実現することが可能となった。なお、SRAMの周辺回路、及び他の論理回路の構成において、その基板領域の構成はSRAMと同様なウエル拡散層の構成にしても良く、他のイオン注入条件に設定してもよい。ウエル拡散層への電圧印加に関しても所望により一定電位の印加、または印加しない等、回路構成に従って任意に設定すればよい。   Further, under a word line signal condition (“1” potential in FIG. 20 and “0” potential in FIG. 21) in which the transfer IGFET is inoperative, a potential based on the storage potential of the storage node is applied to the well diffusion layer. The transfer IGFET is applied through a thin buried insulating film so as to maintain the potential of the storage node. That is, the transfer IGFET acts as if it holds the role of a load IGFET that holds the storage node potential of the memory cell. Specifically, in FIG. 20, the word line signal is “1”, Tr1 and Tr2 are in the non-passing state, and the Tr2 and Dr2 connection nodes are stored and held at “1”. Since the “0” potential is applied and Tr2 is converted to the low threshold voltage state, the bit line potential “1” is transmitted through Tr2 so as to maintain the storage node potential “1” state. At this time, “1” is applied to the well diffusion layer of Tr1, and the high threshold voltage state is maintained because Tr1 and the Dr1 connection node potential “0” are disconnected from the bit line potential “1”. Is retained. In order to enable normal SRAM operation in the semiconductor device according to the present embodiment, it is a condition that the difference between the absolute values of the leakage currents of Tr and Dr at a gate voltage of zero V is sufficiently large in the current-voltage characteristics of FIG. However, it can be seen that in the semiconductor device according to the present embodiment, the value reaches three digits. Furthermore, in the semiconductor device according to the present embodiment, the application state of Tr1 and Tr2 from the well diffusion layer side is based on the dynamic potential of the connection node, and the opposite potentials, “0” potential and “1” potential are automatically set. It becomes a relationship to be applied. That is, each transfer IGFET is controlled by the well diffusion layer potential so that the transfer IGFET is more cut off in the cut-off state and more in the power feed state than in the conventional four-transistor SRAM in which the threshold voltage value is fixed. Leakage current is reduced by orders of magnitude. Furthermore, the operational instability due to variations in threshold voltage values, which is a drawback of SRAMs in which unit cells are composed of four transistors, is essentially a problem due to the effect of reducing variations in threshold voltage values, which is a unique feature of fully depleted SOI transistors. Absent. Thus, conventionally, the SRAM operation in which the unit cell is configured by six IGFETs can be configured by four IGFETs in the semiconductor device according to the present embodiment. Compared to the eighth embodiment, the SRAM of this embodiment is more unstable in operation, but has a feature that a higher density can be achieved with a low leakage current characteristic because the number of constituent elements is small. Furthermore, it has the effect of relaxing the current flowing through the transfer IGFET during dynamic operation due to the added effect of the parasitic capacitances Cp1 and Cp2 based on the well diffusion layer connected to the storage node, and further improves the stable operation. doing. In the semiconductor device according to the present embodiment, it is desirable not to implement the structure having the effect of reducing the parasitic capacitance, such as the compensation diffusion layers 54 and 55, and to increase the parasitic procedure. In the semiconductor device according to the present embodiment, stable operation is ensured even when the operating voltage is lowered as compared with the conventional one. Therefore, it is possible to realize a lower power consumption SRAM with a further reduced area. In the configuration of the peripheral circuit of the SRAM and other logic circuits, the substrate region may be configured as a well diffusion layer similar to the SRAM, or may be set to other ion implantation conditions. The voltage application to the well diffusion layer may be arbitrarily set according to the circuit configuration, such as applying a constant potential or not applying it as desired.

<実施例10>
図23は本発明の第10の実施例による半導体装置の等価回路を示す図である。前記実施例1に従ってトランジスタが直列に接続される論理回路、NAND回路を製造した。図10は三対の相補型IGFET、TP1とTN1、TP2とTN2、TP3とTN3による3入力NAND回路でIN1、IN2、IN3はそれぞれ入力信号端子を示し、OUTは出力信号端子である。容量素子はSOI層と基板内拡散層間の埋め込み絶縁膜に基づく容量素子である。本実施例に基づく半導体装置においては三対の相補型IGFETが構成された領域下部のウエル拡散層を共通化し、該ウエル拡散層とIN1を電気的に接続させる構成とした。上記接続はN導電型IGFET領域部分の植える拡散層のみとし、P導電型IGFET下部領域のウエル拡散層は別配線により電源電圧線と接続させる構成も寄生容量低減の観点から可能である。上記ウエル拡散層へのIN1信号線接続によりTN2及びTN3の各チャネル領域には薄い埋め込み絶縁膜を介してIN1の信号が印加される。これにより従来のNAND論理回路の欠点であった基板バイアス効果に基づくTN3およびTN2のTN1に比較した電流低下(該当IGFETにおけるソース基板間バイアスによる閾電圧上昇効果)が全ての入力端子にN導電型IGFETを導通させる“1”信号が入力された状態においてTN2及びTN3の閾電圧値を低下させるように作用するため高速な動作が可能となった。なお、IN1に“1”の信号、IN3が“0”の非導通信号の入力で直列接続のN導電型IGFETが非導通の状態の場合は若干の漏洩電流が流れること、及びIN1にウエル拡散層容量が付加される等の若干の問題も生じるため本実施例に基づく半導体装置はクリティカルパスの如くもともと付加容量が大きく、多少の容量付加が無視される如き論理部分の高速動作化に適用することが好ましい。
<Example 10>
FIG. 23 is a diagram showing an equivalent circuit of the semiconductor device according to the tenth embodiment of the present invention. In accordance with the first embodiment, a logic circuit and a NAND circuit in which transistors are connected in series were manufactured. FIG. 10 shows a three-input NAND circuit composed of three pairs of complementary IGFETs, TP1 and TN1, TP2 and TN2, TP3 and TN3, IN1, IN2, and IN3 are input signal terminals, and OUT is an output signal terminal. The capacitive element is a capacitive element based on a buried insulating film between the SOI layer and the in-substrate diffusion layer. In the semiconductor device according to the present embodiment, the well diffusion layer in the lower part of the region where the three pairs of complementary IGFETs are configured is shared, and the well diffusion layer and IN1 are electrically connected. It is possible to connect only the diffusion layer planted in the N conductivity type IGFET region and connect the well diffusion layer in the lower region of the P conductivity type IGFET to the power supply voltage line by another wiring from the viewpoint of reducing the parasitic capacitance. By connecting the IN1 signal line to the well diffusion layer, a signal of IN1 is applied to each channel region of TN2 and TN3 through a thin buried insulating film. As a result, the current drop (the threshold voltage rise effect due to the source-substrate bias in the corresponding IGFET) based on the substrate bias effect, which is a drawback of the conventional NAND logic circuit, compared to the TN1 of the TN3 and NTN conductivity type at all input terminals. In the state where the “1” signal for turning on the IGFET is input, the threshold voltage values of TN2 and TN3 are lowered, so that high-speed operation becomes possible. Note that when a non-conducting signal is input to IN1 and a non-conducting signal with IN3 being "0", a slight leakage current flows when the N-conducting IGFET connected in series is non-conducting, and well diffusion to IN1 Since some problems such as the addition of layer capacitance also occur, the semiconductor device according to the present embodiment is applied to high-speed operation of the logic part such that the additional capacitance is originally large like a critical path and some capacitance addition is ignored. It is preferable.

<実施例11>
図24は、図18に示すLd1、Ld2の基板に接続された容量を取り除いた場合の等価回路図である。前記実施例1に従って6個のトランジスタで単位セルが構成されるSRAMを含む半導体装置を製造した。図24において、Tr1及びTr2はデータの入出力を制御する転送素子であり、Ld1とDr1及びLd2とDr2の二対の相補型トランジスタで記憶ノードを構成している。Ld1及びLd2の各トランジスタはP導電型トランジスタ、Dr1及びDr2とTr1、及びTr2はN導電型トランジスタである。
本実施例によれば、SRAMにおけるデータの書き込みマージンを向上させることが可能となる。
<Example 11>
FIG. 24 is an equivalent circuit diagram in the case where the capacitors connected to the substrates Ld1 and Ld2 shown in FIG. 18 are removed. In accordance with the first embodiment, a semiconductor device including an SRAM in which a unit cell is configured by six transistors was manufactured. In FIG. 24, Tr1 and Tr2 are transfer elements that control input / output of data, and a storage node is configured by two pairs of complementary transistors of Ld1 and Dr1 and Ld2 and Dr2. Each of the transistors Ld1 and Ld2 is a P-conductivity type transistor, and Dr1, Dr2 and Tr1, and Tr2 are N-conductivity type transistors.
According to the present embodiment, it is possible to improve the data write margin in the SRAM.

本発明の第1の実施例による半導体装置のゲート電極と平行な領域の断面図。1 is a cross-sectional view of a region parallel to a gate electrode of a semiconductor device according to a first embodiment of the present invention. 従来の基板電位制御方式のSOI構造トランジスタを示す断面図。Sectional drawing which shows the SOI structure transistor of the conventional substrate potential control system. 本発明の第1の実施例による半導体装置の製造工程順を示す断面図。Sectional drawing which shows the manufacturing process order of the semiconductor device by 1st Example of this invention. 本発明の第1の実施例による半導体装置の製造工程順を示す断面図。Sectional drawing which shows the manufacturing process order of the semiconductor device by 1st Example of this invention. 本発明の第1の実施例による半導体装置の製造工程順を示す断面図。Sectional drawing which shows the manufacturing process order of the semiconductor device by 1st Example of this invention. 本発明の第1の実施例による半導体装置を示す平面図。1 is a plan view showing a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施例による半導体装置の製造工程順を示すゲート電極との直交断面図。FIG. 4 is a cross-sectional view orthogonal to the gate electrode showing the order of manufacturing steps of the semiconductor device according to the first embodiment of the present invention. 本発明の第1の実施例による半導体装置のゲート電極と直交する完成断面図。FIG. 3 is a completed cross-sectional view orthogonal to the gate electrode of the semiconductor device according to the first embodiment of the present invention. 本発明の第2の実施例による半導体装置の完成平面図。FIG. 7 is a completed plan view of a semiconductor device according to a second embodiment of the present invention. 本発明の第3の実施例による半導体装置の製造工程順を示すゲート電極との直交断面図。Sectional drawing with a gate electrode which shows the manufacturing process order of the semiconductor device by 3rd Example of this invention. 本発明の第3の実施例による半導体装置のゲート電極と直交する完成断面図。FIG. 10 is a completed cross-sectional view orthogonal to the gate electrode of the semiconductor device according to the third embodiment of the present invention. 本発明の第4の実施例による半導体装置の製造工程順を示す断面図。Sectional drawing which shows the order of the manufacturing process of the semiconductor device by the 4th Example of this invention. 本発明の第4の実施例による半導体装置の完成断面図。FIG. 7 is a completed sectional view of a semiconductor device according to a fourth embodiment of the present invention. 本発明の第6の実施例による半導体装置の製造工程順を示す断面図。Sectional drawing which shows the order of the manufacturing process of the semiconductor device by the 6th Example of this invention. 本発明の第7の実施例による半導体装置の製造工程順を示す断面図。Sectional drawing which shows the order of the manufacturing process of the semiconductor device by the 7th Example of this invention. 本発明の第7の実施例による半導体装置の完成断面図。FIG. 10 is a completed sectional view of a semiconductor device according to a seventh embodiment of the present invention. 本発明の第8の実施例による半導体装置のレイアウト図。FIG. 10 is a layout diagram of a semiconductor device according to an eighth embodiment of the present invention. 本発明の第8の実施例による半導体装置の等価回路図。The equivalent circuit diagram of the semiconductor device by the 8th Example of this invention. 本発明の第9の実施例による半導体装置のレイアウト図。FIG. 20 is a layout diagram of a semiconductor device according to a ninth embodiment of the present invention. 本発明の第9の実施例による半導体装置の等価回路図。The equivalent circuit schematic of the semiconductor device by the 9th Example of this invention. 本発明の第9の実施例による半導体装置の等価回路図。The equivalent circuit schematic of the semiconductor device by the 9th Example of this invention. 本発明の第9の実施例による半導体装置の各トランジスタ特性を示す図。The figure which shows each transistor characteristic of the semiconductor device by the 9th Example of this invention. 本発明の第10の実施例による半導体装置の等価回路図。The equivalent circuit schematic of the semiconductor device by the 10th Example of this invention. 本発明の第11の実施例による半導体装置の等価回路図。The equivalent circuit schematic of the semiconductor device by the 11th Example of this invention.

符号の説明Explanation of symbols

1…支持基板、2…埋め込み酸化膜、3…単結晶半導体薄膜、4…素子間分離絶縁膜、5…ウエル拡散層、6…N型高濃度ソース拡散層、7…N型高濃度ドレイン拡散層、8…P型高濃度ソース拡散層、9…P型高濃度ドレイン拡散層、10,11,22,100…ゲート電極、12…配線層館絶縁膜、13…配線接続孔金属、14…ソース電極、15…接地電極、16…出力ノード電極、17…電源電位電極、18,24,33,34…絶縁膜、19…シリコン窒化膜、20…ゲート絶縁膜、21…第一のシリコン膜、23…ゲート保護絶縁膜、25…ソース、ドレイン積上げ半導体、26…ゲート側壁絶縁膜、27…配線接続孔、28…金属珪化膜、33…保護絶縁膜、34…側壁保護絶縁膜、50…ウエル接続孔濃度拡散層、51…ゲートウエル接続孔、52,53…閾電圧制御拡散層、54,55…補償拡散層。
DESCRIPTION OF SYMBOLS 1 ... Support substrate, 2 ... Embedded oxide film, 3 ... Single crystal semiconductor thin film, 4 ... Inter-element isolation insulating film, 5 ... Well diffusion layer, 6 ... N type high concentration source diffusion layer, 7 ... N type high concentration drain diffusion 8 ... P-type high-concentration source diffusion layer, 9 ... P-type high-concentration drain diffusion layer, 10, 11, 22, 100 ... gate electrode, 12 ... wiring layer insulating film, 13 ... wiring connection hole metal, 14 ... Source electrode, 15 ... ground electrode, 16 ... output node electrode, 17 ... power supply potential electrode, 18, 24, 33,34 ... insulating film, 19 ... silicon nitride film, 20 ... gate insulating film, 21 ... first silicon film , 23 ... Gate protective insulating film, 25 ... Source, drain stacked semiconductor, 26 ... Gate side wall insulating film, 27 ... Wiring connection hole, 28 ... Metal silicide film, 33 ... Protective insulating film, 34 ... Side wall protective insulating film, 50 ... Well connection hole concentration diffusion layer, 51 ... Gateway Connecting holes, 52 and 53 ... threshold voltage control diffusion layers, 54, 55 ... compensation diffusion layer.

Claims (28)

半導体基板上に形成された第1の絶縁膜を介して配置された単結晶半導体薄膜と、
前記単結晶半導体薄膜上に形成された第2の絶縁膜を介して配置されたゲート電極とを少なくとも含む完全空乏型絶縁ゲート電界効果型のトランジスタを複数有し、
前記ゲート電極は、金属または金属珪化物を含む膜からなり、
前記半導体基板領域内にあって前記ゲート電極の下方に位置する領域に、閾電圧を制御する第1不純物領域が形成されていることを特徴とする半導体装置。
A single crystal semiconductor thin film disposed via a first insulating film formed on a semiconductor substrate;
A plurality of fully depleted insulated gate field effect transistors including at least a gate electrode disposed via a second insulating film formed on the single crystal semiconductor thin film;
The gate electrode is made of a film containing metal or metal silicide,
A semiconductor device, wherein a first impurity region for controlling a threshold voltage is formed in a region located in the semiconductor substrate region and below the gate electrode.
前記ゲート電極は、その仕事関数が前記単結晶半導体薄膜の禁制帯エネルギー準位の近傍に位置する準位を有する金属、または金属珪化膜よりなる材料を含む膜からなり、
前記膜が前記第1の絶縁膜に接して形成されていることを特徴とする請求項1記載の半導体装置。
The gate electrode is made of a metal having a level whose work function is located in the vicinity of the forbidden band energy level of the single crystal semiconductor thin film, or a film containing a material made of a metal silicide film,
2. The semiconductor device according to claim 1, wherein the film is formed in contact with the first insulating film.
半導体基板上に形成された第1の絶縁膜を介して配置された単結晶半導体薄膜と、前記単結晶半導体薄膜上に形成された第2の絶縁膜を介して配置されたゲート電極とを少なくとも含む完全空乏型絶縁ゲート電界効果型のトランジスタを複数有し、
前記ゲート電極は、金属または金属珪化物を含む膜からなり、
前記ゲート電極と逆のパターンをマスクとして不純物を導入することで、前記ゲート電極に対して自己整合となるように前記半導体基板領域内に形成された閾電圧を制御する第1不純物領域有することを特徴とする半導体装置。
At least a single crystal semiconductor thin film disposed via a first insulating film formed on a semiconductor substrate and a gate electrode disposed via a second insulating film formed on the single crystal semiconductor thin film Including a plurality of fully depleted insulated gate field effect transistors,
The gate electrode is made of a film containing metal or metal silicide,
A first impurity region for controlling a threshold voltage formed in the semiconductor substrate region so as to be self-aligned with the gate electrode by introducing impurities using a pattern opposite to the gate electrode as a mask; A featured semiconductor device.
前記トランジスタは、第1導電型を有するトランジスタと前記導電型と反対の導電型である第2導電型を有するトランジスタからなる相補型トランジスタで構成されていることを特徴とする請求項1に記載の半導体装置。   2. The transistor according to claim 1, wherein the transistor includes a complementary transistor including a transistor having a first conductivity type and a transistor having a second conductivity type opposite to the conductivity type. Semiconductor device. 前記ゲート電極の材料は、Ni、Co、Ti、W、Ta、Mo、Cr、Al、Pt、Pa、Ru、又はこれらなる金属珪化膜、或いは金属窒化膜よりなることを特徴とする請求項1に記載の半導体装置。   2. The material of the gate electrode is made of Ni, Co, Ti, W, Ta, Mo, Cr, Al, Pt, Pa, Ru, or a metal silicide film or metal nitride film thereof. A semiconductor device according to 1. 前記第1不純物層は、前記トランジスタ毎に所望の導電型、及び所望の不純物量に設定されていることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first impurity layer is set to have a desired conductivity type and a desired impurity amount for each of the transistors. 前記単結晶半導体薄膜内にあって前記ゲート電極直下に位置する領域を狭持するように第2不純物領域が形成され、前記第2不純物領域には複数の前記トランジスタの少なくとも一つのゲート電極に印加される信号と同一の信号が印加されるように構成されていることを特徴とする請求項1に記載の半導体装置。   A second impurity region is formed so as to sandwich a region located in the single crystal semiconductor thin film and immediately below the gate electrode, and applied to at least one gate electrode of the plurality of transistors in the second impurity region. 2. The semiconductor device according to claim 1, wherein the same signal as that to be applied is applied. 前記第2不純物領域の少なくとも一側面は、絶縁膜を含む構造体に接していることを特徴とする請求項7記載の半導体装置。   8. The semiconductor device according to claim 7, wherein at least one side surface of the second impurity region is in contact with a structure including an insulating film. 前記単結晶半導体薄膜には、第1導電型よりなる第2不純物領域を有する第1トランジスタと、前記第1導電型とその導電型を異にする第2の導電型よりなる第2不純物領域を有する第2トランジスタとが形成され、前記第1および第2トランジスタにより一対のトランジスタが構成されていることを特徴とする請求項1記載の半導体装置。   The single crystal semiconductor thin film includes a first transistor having a second impurity region of a first conductivity type, and a second impurity region of a second conductivity type different from the first conductivity type. The semiconductor device according to claim 1, wherein a second transistor is formed, and a pair of transistors is formed by the first and second transistors. 前記第2不純物領域に信号電位を印加する接続電極は、前記トランジスタのゲート電極製造工程とその一部を同じくする工程により構成された電極であって、前記第2不純物領域の所望領域に配置されていることを特徴とする請求項1に記載の半導体装置。   The connection electrode for applying a signal potential to the second impurity region is an electrode configured by a step that is the same as the gate electrode manufacturing step of the transistor, and is disposed in a desired region of the second impurity region. The semiconductor device according to claim 1, wherein: 前記接続電極は、ゲート電極を共有する第1及び第2の導電型よりなる一対のトランジスタと直列に配置されていることを特徴とする請求項10に記載の半導体装置。   11. The semiconductor device according to claim 10, wherein the connection electrode is arranged in series with a pair of transistors of the first and second conductivity types sharing a gate electrode. 前記接続電極は、第1及び第2の導電型よりなる一対のトランジスタの共有するゲート電極と並列に配置されたことを特徴とする請求項10に半導体装置。   11. The semiconductor device according to claim 10, wherein the connection electrode is arranged in parallel with a gate electrode shared by a pair of transistors having the first and second conductivity types. 前記トランジスタが形成された単結晶半導体薄膜は互いに分離され、前記単結晶半導体薄膜の少なくとも側面領域には絶縁膜が形成されていることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the single crystal semiconductor thin film in which the transistor is formed is separated from each other, and an insulating film is formed at least in a side region of the single crystal semiconductor thin film. 前記トランジスタのソース、及びドレインとなる前記第2不純物領域の直下に位置し、前記第1の絶縁膜に接する前記半導体基板領域において、前記第1の不純物領域に存在する不純物を補償するように第3の不純物領域が導入されることを特徴とする請求項1に記載の半導体装置。   The semiconductor substrate region located immediately below the second impurity region serving as the source and drain of the transistor and in contact with the first insulating film compensates for impurities present in the first impurity region. 3. The semiconductor device according to claim 1, wherein three impurity regions are introduced. 前記単結晶半導体薄膜は、単結晶シリコン膜で構成されていることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the single crystal semiconductor thin film is formed of a single crystal silicon film. 前記単結晶半導体薄膜は、単結晶シリコン膜であり、かつ0.01%以上2%以下の引っ張り歪応力が前記単結晶シリコン膜の少なくとも一方向に印加されていることを特徴とする請求項1に記載の半導体装置。   2. The single crystal semiconductor thin film is a single crystal silicon film, and a tensile strain stress of 0.01% to 2% is applied in at least one direction of the single crystal silicon film. A semiconductor device according to 1. 前記単結晶半導体薄膜の膜厚は、前記ゲート電極の電極長よりも薄く構成されたことを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the single crystal semiconductor thin film has a film thickness smaller than an electrode length of the gate electrode. 前記第1の絶縁膜の膜厚は、前記ゲート電極の電極長よりも薄く構成されたことを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the first insulating film is thinner than an electrode length of the gate electrode. 前記単結晶シリコン膜は(100)面で構成され、かつ前記ソース及びドレイン拡散層は前記ゲート電極を介して前記単結晶シリコン膜の<100>方向と垂直、又は平行に配置されたことを特徴とする請求項14に記載の半導体装置。   The single crystal silicon film has a (100) plane, and the source and drain diffusion layers are arranged perpendicularly or parallel to the <100> direction of the single crystal silicon film via the gate electrode. The semiconductor device according to claim 14. 前記ソース及びドレイン拡散層領域は、前記単結晶半導体薄膜上に積層化された半導体膜を有することを特徴とする請求項14に記載の半導体装置。   The semiconductor device according to claim 14, wherein the source and drain diffusion layer regions include a semiconductor film stacked on the single crystal semiconductor thin film. 前記ゲート電極を共有する相補型半導体装置が二対と、データ信号の入出力を制御するトランジスタ二個により構成された単位セルを有し、
前記第2の不純物領域は、前記対をなす相補型半導体装置の下方に位置し、前記ゲート電極に電気的に接続され、かつ前記第2の不純物領域の各々は互いに電気的に分離されていることを特徴とする半導体装置。
The complementary semiconductor device sharing the gate electrode has a unit cell composed of two pairs and two transistors for controlling input / output of data signals,
The second impurity region is located below the pair of complementary semiconductor devices, is electrically connected to the gate electrode, and each of the second impurity regions is electrically isolated from each other. A semiconductor device.
前記第2の不純物領域と前記半導体基板間とで構成されるPN接合容量がメモリノードに接続されていることを特徴とする請求項7に記載の半導体装置。   8. The semiconductor device according to claim 7, wherein a PN junction capacitor formed between the second impurity region and the semiconductor substrate is connected to a memory node. 半導体基板上に形成された第1の絶縁膜を介して配置された単結晶半導体薄膜と、
前記単結晶半導体薄膜上に形成された第2の絶縁膜を介して配置されたゲート電極とを少なくとも含む完全空乏型絶縁ゲート電界効果型のトランジスタを複数有し、
前記複数のトランジスタは、少なくとも第1導電型トランジスタと第2導電型トランジスタとからなる対の二組で構成された単位セルと、
前記一対を構成するトランジスタ領域の下部に位置する半導体基板領域に、外部とPN接合で分離された共通する第2不純物領域と、
前記第2不純物領域が各々の対を構成する半導体装置の少なくとも一方のゲート電極と電気的に互いに接続されていることを特徴とする半導体装置。
A single crystal semiconductor thin film disposed via a first insulating film formed on a semiconductor substrate;
A plurality of fully depleted insulated gate field effect transistors including at least a gate electrode disposed via a second insulating film formed on the single crystal semiconductor thin film;
The plurality of transistors include at least unit cells each composed of two pairs of a first conductivity type transistor and a second conductivity type transistor;
A common second impurity region separated from the outside by a PN junction in a semiconductor substrate region located below the transistor region constituting the pair;
The semiconductor device, wherein the second impurity region is electrically connected to at least one gate electrode of the semiconductor device constituting each pair.
第1導電型よりなる転送トランジスタと第2導電型よりなるドライバトランジスタとが直列接続された単位セルを含む半導体装置において、
前記単位セルを構成するトランジスタは、チャネル領域を挟み込むごとく構成された第1のゲート電極と容量素子が付加された第2のゲート電極とにより制御される完全空乏型絶縁ゲート電界効果型トランジスタからなり、前記ドライバトランジスタの第1のゲートは直列接続された前記転送トランジスタの第2のゲートとに電気的に接続されて前記転送トランジスタを非導通状態に作用するごとく構成されたことを特徴とする半導体装置。
In a semiconductor device including a unit cell in which a transfer transistor of a first conductivity type and a driver transistor of a second conductivity type are connected in series,
The transistor constituting the unit cell is composed of a fully-depleted insulated gate field effect transistor controlled by a first gate electrode configured as if sandwiching a channel region and a second gate electrode to which a capacitor element is added. The semiconductor device is configured such that the first gate of the driver transistor is electrically connected to the second gate of the transfer transistor connected in series to actuate the transfer transistor in a non-conducting state. apparatus.
請求項1から22記載の半導体装置は、該半導体装置が構成された同一半導体基板の主表面に構成された半導体装置と電気的に接続されてなることを特徴とする半導体装置。   23. The semiconductor device according to claim 1, wherein the semiconductor device is electrically connected to a semiconductor device formed on a main surface of the same semiconductor substrate on which the semiconductor device is formed. 半導体基板上に少なくとも第1の絶縁膜を介して配置された第1の半導体薄膜内の不純物導入領域と、前記半導体薄膜上に形成された第2の絶縁膜上のゲート電極からなる複数の絶縁ゲート電界効果型トランジスタを含む半導体装置の製造方法において、
前記第1の半導体薄膜上に前記第2の絶縁膜と第2の半導体薄膜とを順に形成する工程と、
前記第2の絶縁膜と前記第2の半導体薄膜とを所望のパターンをマスクとして選択的に除去する工程と、
前記第2の半導体薄膜上を含む主面上に第3の半導体膜を形成する工程と、
前記第3の半導体薄膜をパターニングする工程と、
前記第2の半導体薄膜と前記第3の半導体薄膜とからなる積層膜をパターニングする工程とを有することを特徴とする半導体装置の製造方法。
A plurality of insulations comprising an impurity introduction region in a first semiconductor thin film disposed on a semiconductor substrate via at least a first insulating film, and a gate electrode on a second insulating film formed on the semiconductor thin film In a method for manufacturing a semiconductor device including a gate field effect transistor,
Forming the second insulating film and the second semiconductor thin film in order on the first semiconductor thin film;
Selectively removing the second insulating film and the second semiconductor thin film using a desired pattern as a mask;
Forming a third semiconductor film on a main surface including the second semiconductor thin film;
Patterning the third semiconductor thin film;
A method of manufacturing a semiconductor device, comprising: patterning a laminated film composed of the second semiconductor thin film and the third semiconductor thin film.
前記第3の絶縁膜と前記半導体薄膜とを同一パターンにより選択的に除去する工程と、
前記除去工程により露出した前記半導体薄膜の側面の一部を選択的に除去する工程と、
前記半導体薄膜の選択除去した領域に第4の絶縁膜を選択残置し、かつ前記半導体薄膜表面上の前記第3の絶縁膜を除去する工程とを含むこと特徴とする請求項26に記載の半導体装置の製造方法。
Selectively removing the third insulating film and the semiconductor thin film in the same pattern;
Selectively removing a part of the side surface of the semiconductor thin film exposed by the removing step;
27. A step of selectively leaving a fourth insulating film in a selectively removed region of the semiconductor thin film and removing the third insulating film on the surface of the semiconductor thin film. Device manufacturing method.
前記単結晶半導体薄膜上に第2の絶縁膜を介して形成された半導体膜と、
前記半導体上に堆積されたゲート保護膜と、
前記半導体膜と前記ゲート保護膜を含む膜からなるゲート電極の側面に形成されたゲート側壁絶縁膜とを備え、
前記ゲート保護膜および前記ゲート側壁絶縁膜を不純物注入マスクとして前記第2不純物領域に不純物を注入し、前記第1の不純物領域に存在する不純物を補償するように第3不純物領域を形成することを特徴とする請求項26に記載の半導体装置の製造方法。
A semiconductor film formed on the single crystal semiconductor thin film via a second insulating film;
A gate protection film deposited on the semiconductor;
A gate sidewall insulating film formed on a side surface of a gate electrode made of a film including the semiconductor film and the gate protective film;
Impurities are implanted into the second impurity region using the gate protective film and the gate sidewall insulating film as an impurity implantation mask, and a third impurity region is formed so as to compensate for the impurities present in the first impurity region. 27. A method of manufacturing a semiconductor device according to claim 26, wherein:
JP2004055811A 2004-03-01 2004-03-01 Semiconductor device and its manufacturing method Pending JP2005251776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055811A JP2005251776A (en) 2004-03-01 2004-03-01 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055811A JP2005251776A (en) 2004-03-01 2004-03-01 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005251776A true JP2005251776A (en) 2005-09-15

Family

ID=35032010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055811A Pending JP2005251776A (en) 2004-03-01 2004-03-01 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005251776A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103629A (en) * 2005-10-04 2007-04-19 Renesas Technology Corp Semiconductor memory device
JP2007179602A (en) * 2005-12-27 2007-07-12 Hitachi Ltd Semiconductor device
JP2008010645A (en) * 2006-06-29 2008-01-17 Toshiba Corp Semiconductor memory device
US7713828B2 (en) 2006-11-20 2010-05-11 Elpida Memory, Inc. Semiconductor device and method of forming the same
JP2010130009A (en) * 2008-11-26 2010-06-10 Siltronic Ag METHOD OF POLISHING SEMICONDUCTOR WAFER HAVING STRAIN-RELAXED LAYER OF Si1-xGex
US8035147B2 (en) 2007-06-26 2011-10-11 Hitachi, Ltd. Semiconductor device
US8093130B2 (en) 2007-01-31 2012-01-10 Elpida Memory, Inc. Method of manufacturing a semiconductor device having raised source and drain of differing heights
US8183635B2 (en) 2009-04-10 2012-05-22 Hitachi, Ltd. Semiconductor device
JP2013105981A (en) * 2011-11-16 2013-05-30 Renesas Electronics Corp Semiconductor device
JP2013105982A (en) * 2011-11-16 2013-05-30 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
JP2014130920A (en) * 2012-12-28 2014-07-10 Lapis Semiconductor Co Ltd Double-well structure soi radiation sensor and method of manufacturing the same
US9287292B2 (en) 2007-11-28 2016-03-15 Renesas Electronics Corporation Semiconductor device and method for controlling semiconductor device
US10115452B2 (en) 2016-06-15 2018-10-30 Renesas Electronics Corporation Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208770A (en) * 1999-01-08 2000-07-28 Toshiba Corp Semiconductor device and its manufacture
JP2002164544A (en) * 2000-11-28 2002-06-07 Sony Corp Semiconductor device
JP2003110109A (en) * 2001-09-28 2003-04-11 Sharp Corp Semiconductor device, method of manufacturing the same, and portable electronic apparatus
JP2003188383A (en) * 2001-12-14 2003-07-04 Hitachi Ltd Semiconductor integrated circuit device and its fabricating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208770A (en) * 1999-01-08 2000-07-28 Toshiba Corp Semiconductor device and its manufacture
JP2002164544A (en) * 2000-11-28 2002-06-07 Sony Corp Semiconductor device
JP2003110109A (en) * 2001-09-28 2003-04-11 Sharp Corp Semiconductor device, method of manufacturing the same, and portable electronic apparatus
JP2003188383A (en) * 2001-12-14 2003-07-04 Hitachi Ltd Semiconductor integrated circuit device and its fabricating method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995377B2 (en) 2005-10-04 2011-08-09 Renesas Electronics Corporation Semiconductor memory device
US8203868B2 (en) 2005-10-04 2012-06-19 Renesas Electronics Corporation Semiconductor memory device
JP2007103629A (en) * 2005-10-04 2007-04-19 Renesas Technology Corp Semiconductor memory device
JP2007179602A (en) * 2005-12-27 2007-07-12 Hitachi Ltd Semiconductor device
JP2008010645A (en) * 2006-06-29 2008-01-17 Toshiba Corp Semiconductor memory device
US7713828B2 (en) 2006-11-20 2010-05-11 Elpida Memory, Inc. Semiconductor device and method of forming the same
US8093130B2 (en) 2007-01-31 2012-01-10 Elpida Memory, Inc. Method of manufacturing a semiconductor device having raised source and drain of differing heights
US8035147B2 (en) 2007-06-26 2011-10-11 Hitachi, Ltd. Semiconductor device
US9287292B2 (en) 2007-11-28 2016-03-15 Renesas Electronics Corporation Semiconductor device and method for controlling semiconductor device
US11695014B2 (en) 2007-11-28 2023-07-04 Renesas Electronics Corporation Semiconductor device and method for controlling semiconductor device
US11211406B2 (en) 2007-11-28 2021-12-28 Renesas Electronics Corporation Semiconductor device and method for controlling semiconductor device
JP2010130009A (en) * 2008-11-26 2010-06-10 Siltronic Ag METHOD OF POLISHING SEMICONDUCTOR WAFER HAVING STRAIN-RELAXED LAYER OF Si1-xGex
US8338302B2 (en) 2008-11-26 2012-12-25 Siltronic Ag Method for polishing a semiconductor wafer with a strained-relaxed Si1−xGex layer
US8183635B2 (en) 2009-04-10 2012-05-22 Hitachi, Ltd. Semiconductor device
JP2013105982A (en) * 2011-11-16 2013-05-30 Renesas Electronics Corp Semiconductor device and semiconductor device manufacturing method
JP2013105981A (en) * 2011-11-16 2013-05-30 Renesas Electronics Corp Semiconductor device
JP2014130920A (en) * 2012-12-28 2014-07-10 Lapis Semiconductor Co Ltd Double-well structure soi radiation sensor and method of manufacturing the same
US10115452B2 (en) 2016-06-15 2018-10-30 Renesas Electronics Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US11695014B2 (en) Semiconductor device and method for controlling semiconductor device
US6998722B2 (en) Semiconductor latches and SRAM devices
EP0535681B1 (en) Semiconductor body, its manufacturing method, and semiconductor device using the body
US7709314B2 (en) Semiconductor switching devices and fabrication methods
JP5039989B2 (en) Highly manufacturable SRAM cell in a substrate with hybrid crystal orientation
US6828689B2 (en) Semiconductor latches and SRAM devices
US7432560B2 (en) Body-tied-to-source MOSFETs with asymmetrical source and drain regions and methods of fabricating the same
JP2012169640A (en) Semiconductor device
JP2008536334A (en) Hybrid bulk-SOI6T-SRAM cell for improved cell stability and performance
JP5364108B2 (en) Manufacturing method of semiconductor device
TWI469324B (en) A body controlled double channel transistor and circuits comprising the same
US6856030B2 (en) Semiconductor latches and SRAM devices
US11908899B2 (en) MOSFET and memory cell having improved drain current through back bias application
JP2005251776A (en) Semiconductor device and its manufacturing method
KR101458332B1 (en) Semiconductor device, method for manufacturing same, and nonvolatile semiconductor memory device
US11894039B2 (en) Fft-dram
US20230066387A1 (en) Device and Method for Tuning Threshold Voltage
JPH0695528B2 (en) Method for manufacturing semiconductor device
US20230032523A1 (en) Gate-all-around high-density and high-speed sram cells
JP2009141296A (en) Method of driving semiconductor apparatus
JPH08236643A (en) Static memory cell
JPH09260505A (en) Semiconductor integrated circuit device and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517