WO2014183627A1 - 一种滤波器调度方法及系统 - Google Patents

一种滤波器调度方法及系统 Download PDF

Info

Publication number
WO2014183627A1
WO2014183627A1 PCT/CN2014/077307 CN2014077307W WO2014183627A1 WO 2014183627 A1 WO2014183627 A1 WO 2014183627A1 CN 2014077307 W CN2014077307 W CN 2014077307W WO 2014183627 A1 WO2014183627 A1 WO 2014183627A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse shaping
shaping filter
module
peak
cancellation pulse
Prior art date
Application number
PCT/CN2014/077307
Other languages
English (en)
French (fr)
Inventor
赵兴山
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310423268.1A external-priority patent/CN104468444B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/022,431 priority Critical patent/US10009205B2/en
Priority to JP2016515452A priority patent/JP6336047B2/ja
Priority to EP14798209.4A priority patent/EP3048767B1/en
Priority to KR1020167010057A priority patent/KR101868244B1/ko
Publication of WO2014183627A1 publication Critical patent/WO2014183627A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • the present invention relates to the field of communications, and in particular, to a filter scheduling method and system for scheduling a CPG (offset pulse shaping filter) in a digital intermediate frequency processing system.
  • CPG offset pulse shaping filter
  • SDR technology software radio technology
  • FPGA or ASIC implementation digital intermediate frequency processing
  • the peak clipping technology is digital intermediate frequency processing.
  • One of the core functions helps to reduce the peak-to-average ratio of the signal.
  • the commonly used peak clipping algorithm is PC-CFR (peak cancle - crest factor reduction).
  • PC-CFR peak cancle - crest factor reduction
  • the hardware device currently implementing the PC-CFR algorithm generally uses a multi-stage peak clipping module cascade method, wherein each level peak clipping module is configured with a fixed number of CPGs to process a fixed number of peak cancellation tasks, and the latter stage.
  • the peak clipping processing structure continues to process the remaining peak cancellation tasks, and after successive peak clipping processing, the peak cancellation data is output; as shown in FIG. 2, the existing peak clipping module generally includes peak detection, peak search window, and peak scheduling.
  • the function module of the peak pulse calculation and processing and the CPG filter processing wherein the CPG filter module includes CPG1, CPG2, ..., CPGn, where n is the number of CPGs configured for each level peak clipping module, wherein the number of CPGs determines the number The maximum number of peaks that can be processed by the level clipping module.
  • each peak clipping module is configured with different threshold values for peak search.
  • the threshold configuration value of the previous level peak clipping module is higher than the latter threshold configuration, that is, the front peak clipping module.
  • Priority is given to processing large peaks, small peaks are reserved for subsequent peak clipping module processing, and CPG filters are exclusive to each level clipping module. It is possible to have the following conditions in peak search: detected in some levels of peak clipping module The number of peaks is less than the number of CPG filters in this stage, which will result in waste of CPG filters; and the number of peaks detected in some stages of peak clipping modules exceeds the number of CPG filters in the stage, due to insufficient number of CPG filters. The peaks that the level clipping module needs to process cannot be processed.
  • the present invention provides a filter scheduling method and system, which solves the problem of the prior art peak clipping module
  • the present invention provides a filter scheduling method.
  • the method is applied to a filter scheduling system.
  • the filter scheduling system includes at least two peak clipping modules, a CPG scheduling module, and a CPG shared resource pool, and CPG sharing.
  • the resource pool includes at least one CPG;
  • the CPG scheduling method includes: a CPG call request generated and sent by the peak clipping module to the CPG scheduling module; the CPG scheduling module responds to the CPG from the CPG shared resource pool according to the scheduling policy and the CPG call request.
  • the peak module configures the CPG to generate a cancellation pulse; the CPG scheduling module receives the cancellation pulse generated by the configured CPG according to the CPG call request, and transmits to the peak clipping module corresponding to the CPG call request to complete the peak cancellation processing.
  • the scheduling policy is a priority scheduling policy
  • the foregoing embodiment further includes: the CPG scheduling module sets a scheduling priority for each peak clipping module before the CPG scheduling module configures the CPG for the peak clipping module corresponding to the CPG calling request; the CPG scheduling module is The step of configuring the CPG by the peak clipping module includes: when receiving two or more CPG call requests, detecting the scheduling priority of each peak clipping module, and preferentially configuring the CPG for the peak clipping module with high scheduling priority.
  • the foregoing embodiment further includes: the CPG scheduling module sets a maximum configuration number for each peak clipping module before the CPG scheduling module configures the CPG for the peak clipping module corresponding to the CPG call request; CPG The step of configuring the CPG for the peak clipping module by the scheduling module includes: when receiving the CPG call request, determining whether the CPG configured by the peak clipping module corresponding to the CPG call request reaches the maximum configuration number, and if so, not configuring the CPG; otherwise, configuring the CPG .
  • the foregoing embodiment further includes: the CPG scheduling module sets a flag bit for each CPG in the CPG shared resource pool, and the flag bit is used to record whether the corresponding CPG is in an idle state; the CPG scheduling module configures the CPG for the peak clipping module includes: The peak clipping module configures the CPG in an idle state, and updates the state of the configured CPG to a non-idle state.
  • the above embodiment after receiving the cancellation pulse generated by the configured cancellation pulse shaping filter, before being transmitted to the peak clipping module, further includes: canceling the pulse shaping filter scheduling module to synthesize the received cancellation pulse; transmitting the cancellation pulse to The steps of the peak clipping module are specifically as follows: transmitting a new cancellation pulse formed by the synthesis to the peak clipping module.
  • the step of generating the CPG call request by the peak clipping module in the above embodiment includes: generating a CPG call request according to the number of peaks that need to be processed by itself, and the CPG call request carrying the peak clipping module needs to be processed. Peak number information and peak parameters of each peak; CPG scheduling module is configured for peak clipping module
  • the steps of the CPG include: configuring the peak clipping module with the same number of peaks as the CPG call request
  • the CPG call request includes: determining whether to generate a CPG call request according to the number of peaks that need to be processed and the number of CPGs in the CPG, and generating a CPG call request when the number of peaks to be processed is greater than the number of CPGs in the CPG call request, CPG The call request includes the difference between the number of peaks to be processed by the peak clipping module and the number of CPGs in the peak and the peak parameters of the excess peaks.
  • the steps of configuring the CPG for the peak clipping module by the CPG scheduling module include: configuring the peak clipping module and calling the CPG
  • the CPG that carries the same difference is transmitted to the CPG of each configuration, and the CPG of each configuration generates a cancellation pulse according to the peak parameters received by each, and at the same time, the peak clipping module is set.
  • the CPG generates cancellation pulses based on the peak parameters of the remaining peaks, respectively.
  • the present invention provides a filter scheduling system.
  • the system includes: including at least two peak clipping modules, a CPG scheduling module, and a CPG shared resource pool, where the CPG shared resource pool includes at least one CPG;
  • the peak module is set to generate and send a CPG call request to the CPG scheduling module;
  • the CPG scheduling module is configured to configure the CPG from the CPG shared resource pool for the CPG call request according to the scheduling policy and the CPG call request to generate the offset a pulse; is further configured to receive an offset pulse generated by the configured CPG according to the CPG call request, and transmit to the peak clipping module corresponding to the CPG call request to complete peak cancellation processing;
  • the CPG in the CPG shared resource pool is used to generate according to the CPG call request
  • the offset pulse is transmitted to the CPG scheduling module.
  • the present invention provides a filter scheduling method and system.
  • the CPG scheduling module configures the CPG shared resource pool as a peak clipping module when receiving a CPG call request generated by the peak clipping module.
  • the CPG filter satisfies the requirement of the CPG of the peak clipping module, which ensures that the peak clipping module can complete the peak clipping task that needs to be processed to the greatest extent, and solves the number of CPG filters in the peak clipping module existing in the prior art.
  • FIG. 1 is a schematic diagram of a cascade of multi-level peak clipping modules in the prior art
  • FIG. 2 is a schematic diagram of the internal structure of a single-stage peak clipping module in the prior art
  • FIG. 3 is a schematic diagram of a filter scheduling method according to a first embodiment of the present invention
  • FIG. 4 is a schematic diagram of a filter scheduling method according to a second embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a filter scheduling system according to a fourth embodiment of the present invention
  • FIG. 7 is a schematic diagram of a filter scheduling method according to a fifth embodiment of the present invention
  • FIG. 9 is a schematic diagram of a filter scheduling method according to a seventh embodiment of the present invention.
  • FIG. DETAILED DESCRIPTION OF THE INVENTION The present invention will now be further illustrated by the following detailed description in conjunction with the accompanying drawings.
  • FIG. 3 is a schematic diagram of a filter scheduling method according to a first embodiment of the present invention.
  • the filter scheduling method provided by the present invention includes the following steps:
  • S301 a CPG call request generated and sent by the peak clipping module; wherein, when the CPG is not set in the peak clipping module, the step of generating a CPG call request by the peak clipping module comprises: generating a CPG call request according to the number of peaks that need to be processed by the peak cutting module, The CPG call request carries the peak number information to be processed by the peak clipping module and the peak parameter of each peak; when the CPG is set in the peak clipping module, the steps of the peak clipping module generating the CPG call request include: The number and the number of CPGs within it determine whether to generate a CPG call request, and generate a CPG call request when the number of peaks that need to be processed is greater than the number of CPGs therein.
  • the CPG call request includes the number of peaks to be processed by the peak clipping module and the inner CPG.
  • the CPG scheduling module performs CPG scheduling; for example, the CPG scheduling module requests the corresponding peak clipping module for the CPG from the CPG shared resource pool according to the scheduling policy and the CPG call request.
  • the configured CPG generates the cancellation pulse required by the peak clipping module; wherein, when the scheduling policy is priority scheduling In the strategy, before the CPG scheduling module configures the CPG for the CPR call request corresponding peak clipping module, the CPG scheduling module further sets a scheduling priority for each peak clipping module;
  • the step of configuring the CPG by the CPG scheduling module for the peak clipping module includes: when receiving two or more CPG call requests, detecting the scheduling priority of each peak clipping module, and preferentially configuring the CPG for the peak clipping module with high scheduling priority.
  • the CPG scheduling module When the scheduling policy is to limit the single-level maximum configuration resource policy, before the CPG scheduling module configures the CPG for the CPG calling request corresponding peak clipping module, the CPG scheduling module further sets a maximum configuration number for each peak clipping module; the CPG scheduling module is The step of configuring the CPG by the peak clipping module includes: when receiving the CPG call request, determining whether the CPG configured by the peak clipping module corresponding to the CPG call request reaches the maximum configuration number, and if so, not configuring the CPG; otherwise, configuring the CPG; When the CPG is not set in the peak module, the CPG scheduling module configures the CPG for the peak clipping module.
  • the method includes: configuring, for the peak clipping module, the same number of CPGs as the number of peaks carried by the CPG call request, and transmitting the peak parameters of each peak separately.
  • each configured CPG generates a cancellation pulse according to the peak parameters received;
  • the CPG scheduling module configures the CPG for the peak clipping module to include:
  • the CPG calls the same number of CPGs carried by the request, and transmits the peak parameters of the excess peaks to the CPGs of each configuration.
  • the CPG cancellation pulse is generated according to the respective peak of the received parameters, and, provided in the CPG clipping module according to rest respectively generate the cancellation pulse peak value parameter of each peak;
  • the CPG scheduling module forwards the cancellation pulse generated by the CPG to the peak clipping module.
  • the step may be as follows: The CPG scheduling module receives the cancellation pulse generated by the configured CPG according to the CPG call request, and transmits the offset pulse corresponding to the CPG call request. a peak module; wherein, after receiving the cancellation pulse generated by the configured CPG, before transmitting to the peak clipping module, the CPG scheduling module further includes: the CPG scheduling module synthesizes the received cancellation pulse; and transmits the cancellation pulse to the peak clipping
  • the steps of the module are specifically as follows: The new offset pulse formed by the synthesis is transmitted to the peak clipping module.
  • FIG. 4 is a schematic diagram of a filter scheduling method according to a second embodiment of the present invention. As shown in FIG. 4, in the embodiment, the filter scheduling method provided by the present invention includes the following steps:
  • S401 The CPG scheduling module sets a flag bit for each CPG in the CPG shared resource pool, and the flag bit is used to record whether the corresponding CPG is in an idle state;
  • S402 a CPG call request generated and sent by the peak clipping module; the step and the step in FIG. S301 is similar, not in the details;
  • the CPG scheduling module performs CPG scheduling according to the flag information of each CPG.
  • the CPG scheduling module searches for a CPG from the CPG shared resource pool according to the scheduling policy and the CPG call request, and configures the CPG in the idle state for the peak clipping module, and The state of the CPG is updated to a non-idle state, and the CPG is prevented from being repeatedly requisitioned;
  • the CPG scheduling module forwards the cancellation pulse generated by the CPG to the peak clipping module; the step is similar to step S303 in FIG. 3, and is not described herein;
  • FIG. 5 is a schematic diagram of a filter scheduling system according to a third embodiment of the present invention.
  • the filter scheduling system 5 provided by the present invention includes: at least one peak clipping module 51 (FIG. 5)
  • the CPG scheduling module 52 is configured to configure a CPG from the CPG shared resource pool 53 for the CPG call request corresponding to the CPG call request to generate a cancellation pulse according to the scheduling policy and the CPG call request, and is further configured to receive the generated CPG according to the CPG call request. Offset the pulse and transmit to the peak clipping module corresponding to the CPG call request to complete the peak cancellation process;
  • the CPG in the CPG shared resource pool 53 is set to the cancellation pulse generated according to the CPG call request and transmitted to the CPG scheduling module.
  • the CPG scheduling module 52 in FIG. 5 is further configured to set each peak clipping module before configuring the CPG for the peak clipping module corresponding to the CPG call request. Scheduling priority; when the CPG scheduling module configures the CPG for the peak clipping module, it is set to receive two When the CPG calls the request, it detects the scheduling priority of each peak clipping module, and preferentially configures the CPG for the peak clipping module with high scheduling priority.
  • the CPG scheduling module 52 when the scheduling policy is to limit the single-level maximum configuration resource policy, is further configured to set a maximum configuration number for each peak clipping module before configuring the CPG for the peak clipping module corresponding to the CPG call request.
  • the CPG scheduling module 52 configures the CPG for the peak clipping module, it is set to determine whether the CPG configured by the peak clipping module corresponding to the CPG call request reaches the maximum configuration number when receiving the CPG call request, and if so, the CPG is not configured. Otherwise, configure the CPG.
  • the CPG scheduling module 52 is further configured to set each CPG setting flag bit in the CPG shared resource pool, and the flag bit is used to record whether the corresponding CPG is in an idle state; the CPG scheduling module 52 configures the CPG for the peak clipping module. When it is set to find and configure the CPG in the idle state for the peak clipping module, the status of the configured CPG is updated to be non-idle.
  • the CPG scheduling module 52 is further configured to synthesize the received cancellation pulse before transmitting to the peak clipping module 51; transmitting the cancellation pulse to the peak clipping At block 51, the CPG scheduling module 52 is configured to transmit a new offset pulse formed by the synthesis to the peak clipping module.
  • the peak clipping node 51 is configured to generate a CPG call request according to the number of peaks that need to be processed when the CPG call request is generated, and the CPG call request carries the peak clipping.
  • the peak parameters of the peaks are respectively transmitted to the CPGs of the respective configurations, and the CPGs of the respective configurations generate cancellation pulses according to the peak parameters received respectively; when the CPG is set in the peak clipping module 51, the peak clipping module 51 generates a CPG call request.
  • the CPG scheduling module 52 is configured for the peak clipping module.
  • FIG. 6 is a schematic structural diagram of a filter scheduling system according to a fourth embodiment of the present invention
  • FIG. 7 is a filter scheduling method according to a fifth embodiment of the present invention.
  • the filter scheduling system 5 includes three peak clipping modules 51 (the peak clipping modules 511, 512, and 513, wherein the peak clipping module 512 is not shown), and none of the three peak clipping modules 51 are present.
  • the CPG is set, the scheduling priorities of the three peak clipping modules 51 are sequentially reduced, and the peak processing module in the peak clipping module 51 includes the peak detection module, the peak window search module, the peak pulse calculation module, and the peak pulse scheduling shown in FIG. 2 .
  • the scheduling policy in the CPG scheduling module 52 is a priority scheduling policy.
  • the CPG shared resource pool 53 is provided with 24 CPGs (not shown in FIG. 6). As shown in FIG. 7, the filter provided in this embodiment is provided.
  • the scheduling method includes the following steps: S701: The peak processing module in each peak clipping module checks the number of peaks to be processed and the peak parameters; the step includes: configuring peak clipping thresholds of each level clipping module, each level The peak clipping module performs peak detection according to the peak clipping threshold of each stage, and performs peak window search according to the configured peak window length, and obtains the number of peak points and peak parameters that need to be processed respectively.
  • the step may specifically include the following steps:
  • the Fs/4 frequency shifting module performs Fs/4 frequency shifting; the local oscillator of frequency can be expressed as:
  • the peak check module performs peak search; the main functions are as follows: Amplitude and phase calculation; Realized by Cordic vector mode, 8-stage flow structure can meet the requirements; Four-point search; First, four-point comparison search is performed on the above output, that is, comparison The adjacent 4 data, if the first two numbers are different from the slope determined by the last two numbers, such as one with a negative slope and the other with a non-negative slope, the peak is considered to be present, then the middle two data are compared to find the peak; The adjacent four data are A, B, C and D respectively.
  • the peak window search module performs peak window search to ensure the length of one window. Only one maximum value is output; the window pulse search is performed on the peak pulse to ensure that only one maximum value is output within one window length. Since the peak value appears to be dense, the peak clipping processing effect is affected, and the peak-to-average ratio can be effectively reduced. Therefore, a secondary search mechanism is introduced; the movement of the sliding window during windowing search has the following characteristics: After the end of a window, it is waited until the peak pulse occurs again, and the next window is considered to have no peak pulse in the middle.
  • the window count is not started; in a window, if the current time value is larger than the temporary maximum value, the temporary value is replaced by the current value, and the counter is cleared, and the calculation window size is restarted, that is, the window is restarted.
  • the window count is restarted; otherwise, the maximum peak value in the window remains unchanged, and the window count continues to accumulate; until the end of the window.
  • windowed search is that only when the window ends, which peak is the largest in the window, so the original data needs to be delayed in the implementation, so that the maximum peak effective flag in the window is aligned with the maximum peak itself; The first peak in the window is the maximum peak value in the window. Then, at the end of the window, the maximum peak position is known, and the maximum effective flag is generated, so that the maximum peak value and the effective flag spacing are the window length, so the number of data delay clock cycles can be obtained. At least it should be the window length value.
  • the peak pulse calculation module obtains peak IQ data according to the peak amplitude and phase information. Through the execution of step S701, each peak clipping module in the present application calculates the number of peaks to be processed and the peak parameters (including peak IQ data and peak values). Pulse position information);
  • each peak clipping module generates a CPG call request; the peak processing module in each peak clipping module generates a CPG call request according to the number of peaks to be processed and each peak parameter; if the peak clipping module 511 needs to process 12 peaks, then The generated CPG call request includes the peak parameters of the 12 peaks;
  • the number of idle CPGs in the CPG shared resource pool is greater than or equal to the sum of the number of peaks that need to be processed by the three peak clipping modules: For example, the peak clipping module 511 needs to process 8 peaks, and the peak clipping module 512 needs to process peak values. Number is
  • the peak clipping module 513 needs to process the number of peaks to four; at this time, the CPG scheduling module 52 configures 8 CPGs for the peak clipping module 511, 8 CPGs for the peak clipping module 512, and 4 for the peak clipping module 513.
  • the peak clipping module 511 needs to process 12 peaks
  • the peak clipping module 512 needs to process 8 peaks
  • the peak clipping module 513 needs to process 4 peaks
  • the module 52 is configured with 12 CPGs for the peak clipping module 511, 8 CPGs for the peak clipping module 512, and 4 CPGs for the peak clipping module 513;
  • the number of idle CPGs in the CPG shared resource pool is smaller than the sum of the number of peaks that need to be processed by the three peak clipping modules: For example, the peak clipping module 511 needs to process 14 peaks, and the peak clipping module 512 needs to process the peak number. Eight, the peak clipping module 513 needs to process the number of peaks to four; at this time, the CPG scheduling module 52 configures 14 CPGs for the peak clipping module 511, eight CPGs for the peak clipping module 512, and two for the peak clipping module 513.
  • CPG ;
  • the CPG generates a cancellation pulse according to the peak parameter to be processed, and sends the cancellation pulse to the CPG scheduling module.
  • the CPG scheduling module configures the CPG numbered "1" in the CPG shared resource pool to the peak clipping module 511 for processing the peak clipping module.
  • the CPG numbered "1" needs to process the first peak, then, the CPG numbered "1" generates a cancellation pulse according to the peak parameter of the first peak carried by the CPG call request sent by the peak clipping module 511, specifically:
  • the CPG filter coefficient numbered "1" is stored in the RAM, and the read address of the RAM is generated by the CPG scheduling module, and the first peak IQ data to be processed by the peak clipping module 511 is compared with all coefficients of the CPG according to the data rate. Multiply the CPG filtering process for the peak point, and add the alignment at the output to obtain the cancellation pulse;
  • the CPG scheduling module sends the cancellation pulse generated by the CPG in the CPG shared resource pool to the configured peak clipping module; for example, the CPG scheduling module will be numbered “1", “2", “3”, “4", and 5 "CPG configuration to peak clipping module 511, then in this step, CPG scheduling module will generate offsets generated by CPGs numbered "1", “2", “3”, “4" and "5"
  • the pulse is superimposed by the summation module SUM1, and the cancellation pulse of the SUM1 output is sent to the peak clipping module 511;
  • the peak clipping module performs peak cancellation processing by using the obtained cancellation pulse; for example, the peak clipping module 511 uses the cancellation pulse sent by the CPG scheduling module to subtract the original data after the delay output by the delay module, and completes the offset of the peak. After processing, the processed data is outputted by the -Fs/4 frequency shifting module to the next level peak clipping module (such as the peak clipping module 512). In the embodiment shown in FIGS.
  • the filter scheduling system 5 includes three peak clipping modules 51 (peak clipping modules 511, 512, and 513, wherein the peak clipping module 512 is not shown), Each of the three peak clipping modules 51 is provided with eight CPGs, and the maximum number of configurations for the three peak clipping modules 51 is 12, 10, 8, and the peak processing module in the peak clipping module 51 includes the The peak detection module, the peak window search module, the peak pulse calculation module and the peak pulse scheduling module are shown; the scheduling policy in the CPG scheduling module 52 is to limit the single-level maximum configuration resource policy, and the CPG shared resource pool 53 is provided with 24 CPGs ( FIG. 8 is not shown in FIG. 8. It can be seen from FIG. 9 that the filter scheduling method provided by this embodiment includes the following steps:
  • each peak clipping module 51 checks the number of peaks to be processed and each peak parameter; This step is similar to step S701 in FIG. 7, and S902 is not described again: each peak clipping module generates a CPG call request; each peak clipping module determines whether to generate a CPG call request according to the number of peaks in each of the peak numbers that need to be processed, Generating a CPG call request when the number of peaks that need to be processed is greater than the number of CPGs therein, and the CPG call request includes a difference information between the number of peaks to be processed by the peak clipping module and the number of CPGs therein and the peak parameter of each peak; For example, the peak clipping module 511 needs to process 22 peaks.
  • the peak clipping module 511 passes the detected first 8 peaks to its internal CPG for processing to generate a cancellation pulse, and adds the peak parameters and position information of the last 14 peaks to the CPG call request to be transmitted to
  • the CPG scheduling module requests the additional 14 CPGs to generate cancellation pulses based on the peak parameters of the 14 peaks; for example, the peak clipping module 512 needs to process 8 peaks, At this time, the number of peaks that need to be processed is equal to the number of CPGs therein, and there is no need to generate a CPG call request.
  • the peak clipping module 512 passes the detected eight peaks to the internal CPG for processing.
  • the peak clipping module 513 needs to process 6 peaks.
  • the number of peaks that need to be processed is smaller than the number of CPGs therein, and the CPG call request does not need to be generated.
  • the peak clipping module is used. 513 passes the detected 6 peaks to its internal CPG for processing to generate a cancellation pulse;
  • the CPG scheduling module 52 performs CPG scheduling; at this time, it is assumed that there are 24 CPGs in the CPG shared resource pool that are in an idle state; when the single-level maximum configuration resource policy is adopted, the following occurs:
  • the number of idle CPGs in the CPG shared resource pool is greater than or equal to the sum of the number of peaks that need to be processed by the three peak clipping modules: For example, the peak clipping module 511 needs to process the peak number of 16 (ie, an additional CPG scheduling module configuration is required) 8 CPG), the peak clipping module 512 needs to process 16 peaks (that is, an additional CPG scheduling module is required to configure 8 CPGs), and the peak clipping module 513 needs to process 12 peaks (ie, an additional CPG scheduling module configuration is required) 4 CPG); At this time, the CPG scheduling module 52 configures 8 CPGs for the peak clipping module 511, 8 CPGs for the peak clipping module 512, and 4 CPGs for the peak clipping module 513; For example, the peak clipping module 511 needs to process 22 peaks (ie, an additional CPG scheduling module is required to configure 14 CPGs, and the CPG scheduling module can set up to 12 CPGs for the peak clipping module 511), and the peak
  • the number of idle CPGs in the CPG shared resource pool is smaller than the sum of the number of peaks that need to be processed by the three peak clipping modules:
  • the peak clipping module 511 needs to process 22 peaks (that is, an additional CPG scheduling module configuration is required) CPG, and the CPG scheduling module can set up to 12 CPGs for the peak clipping module 511.
  • the peak clipping module 512 needs to process 16 peaks (that is, an additional CPG scheduling module is required to configure 8 CPGs), and the peak clipping module 513
  • the number of peaks to be processed is 12 (that is, an additional CPG scheduling module is required to configure 4 CPGs).
  • the CPG scheduling module 52 configures 12 CPGs for the peak clipping module 511 and 8 CPGs for the peak clipping module 512.
  • the peak module 513 is configured with four CPGs;
  • S904 The CPG generates a cancellation pulse according to the peak parameter to be processed, and sends the cancellation pulse to the CPG scheduling module. This step is similar to step S704 in the embodiment shown in FIG. 7, and is not described herein;
  • the CPG scheduling module sends the cancellation pulse generated by the CPG in the CPG shared resource pool to the configured peak clipping module; the step is similar to the step S705 in the embodiment shown in FIG. 7, and is not described herein;
  • the peak clipping module performs peak cancellation processing by using the cancellation pulse transmitted by the CPG scheduling module and the cancellation pulse generated by itself; for example, the peak clipping module 511 needs to process 16 peaks, then the CPG scheduling module configures 8 CPGs.
  • the peak clipping module 511 itself generates 8 canceling sub-pulses, which are superimposed and outputted by the summation module SUM in the peak clipping module 511, which is called a first canceling pulse; the CPG scheduling module is configured with 8 The CPGs will also generate 8 offset sub-pulses, which are superimposed and outputted by the CPG scheduling module 52 for the summation module SUM1 configured by the peak clipping module 511, which is called a second cancellation pulse; The canceling pulse and the second canceling pulse are subtracted from the delayed original data outputted by the delay module, and the peak cancellation processing is completed, and then the processed data is outputted to the next level by the -Fs/4 frequency shifting module.
  • Peak module (such as peak clipping module 512);
  • the peak clipping module 512 needs to process 8 peaks.
  • the CPG scheduling module does not configure the CPG.
  • the peak clipping module 512 itself generates 8 offset sub-pulses, and the 8 offset sub-pulses are clipped by the peak.
  • the summation module SUM in the module 511 performs superimposed output, which is called a first canceling pulse; the peak shaving module 512 uses the first canceling pulse generated by itself to subtract the original data after the delay outputted by the delay module to complete the peak value.
  • the processed data is output to the next level peak clipping module (such as the peak clipping module 513) through the -Fs/4 frequency shifting module.
  • the implementation of the present invention has at least the following beneficial effects: First, by setting a CPG shared resource pool, the CPG scheduling module receives the CPG call request from the CPG when the CPG scheduling request is received.
  • the module is equipped with a CPG filter, which satisfies the requirement of the CPG of the peak clipping module, and ensures that the peak clipping module can complete the peak clipping task that needs to be processed to the greatest extent, and solves the CPG filtering in the peak clipping module existing in the prior art. If the number of devices is smaller than the number of peaks that need to be processed, the peak clipping task of the peak clipping module cannot be completed completely.
  • different CPG scheduling is performed under different scheduling strategies, such as The CPG is preferentially scheduled for the peak-cutting module with high scheduling priority, which ensures that the peak-cutting module with high scheduling priority can complete the peak-cutting task that needs to be processed, making the scheduling of the CPG more flexible.
  • the peak-cutting module can be selected Set the exclusive CPG. If it is not set, you can avoid the waste of CPG resources in the peak clipping module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Power Engineering (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明提供了一种滤波器调度方法及系统,该方法包括:削峰模块生成并发送的CPG调用请求至CPG调度模块;CPG调度模块根据调度策略及CPG调用请求,从CPG共享资源池为CPG调用请求对应的削峰模块配置CPG以产生抵消脉冲;CPG调度模块接收所配置CPG生成的抵消脉冲,并传输至与CPG调用请求对应的削峰模块以完成峰值抵消处理。通过本发明的实施,CPG调度模块在接收到削峰模块发生的CPG调用请求时,从CPG资源池为削峰模块配置CPG滤波器,解决了现有技术存在的当削峰模块内CPG滤波器数目小于其需要处理的峰值个数时所导致的该级削峰模块的削峰任务无法全部完成的问题。

Description

一种滤波器调度方法及系统 技术领域 本发明涉及通信领域, 尤其涉及一种用于对数字中频处理系统中的 CPG (抵消脉 冲成型滤波器) 进行调度的滤波器调度方法及系统。 背景技术
SDR技术 (软件无线电技术) 是无线通信领域内的新兴技术, 随着 SDR技术的 发展, 数字中频处理的硬件实现方式(FPGA或 ASIC实现)也随之兴起, 而削峰技术 是数字中频处理的核心功能之一,有助于降低信号的峰均比, 目前常用的削峰算法为 PC-CFR (peak cancle - crest factor reduction, 波峰对消波峰因子降低) 算法。 如图 1所示, 目前实现 PC-CFR算法的硬件装置一般使用多级削峰模块级联的方 式, 其中每级削峰模块配置固定个数的 CPG来处理固定数量的峰值抵消任务, 后级削 峰处理结构继续处理余下的峰值抵消任务, 经过连续几级的削峰处理后输出波峰抵消 后数据; 如图 2所示, 现有的削峰模块一般包含峰值检测、 峰值搜索窗、 峰值调度、 峰值脉冲计算与处理和 CPG滤波处理等功能模块, 其中 CPG滤波模块包括 CPG1、 CPG2、 ……、 CPGn,其中, n为每级削峰模块配置的 CPG数目, 其中, CPG的数目 决定了该级削峰模块所能处理的峰值最大数目。 在多级削峰模块中, 每个削峰模块会配置不同的门限值用来进行峰值搜索, 一般 前一级削峰模块的门限配置值高于后级门限配置, 即前级削峰模块优先处理大峰值, 小峰值留给后级削峰模块处理, 而 CPG滤波器是每级削峰模块独享的, 有可能在峰值 搜索中出现以下情况: 某些级削峰模块中检测到的峰值数目小于该级 CPG滤波器数目,此时将导致 CPG 滤波器的浪费; 而某些级削峰模块中检测到的峰值数目超过该级 CPG滤波器数目, 因 CPG滤波器数目数量不够导致该级削峰模块需要处理的峰值无法处理。 因此,如何提供一种可以解决因 CPG滤波器数目不够所导致的峰值无法完全处理 问题的方法, 是本领域技术人员亟待解决的技术问题。 发明内容 本发明提供了一种滤波器调度方法及系统, 解决了现有技术存在的当削峰模块内
CPG滤波器数目小于其需要处理的峰值个数时所导致的该级削峰模块的削峰任务无法 全部完成的问题。 本发明提供了一种滤波器调度方法, 在一个实施例中, 该方法应用于滤波器调度 系统中, 滤波器调度系统包括至少二个削峰模块、 CPG调度模块及 CPG共享资源池, CPG共享资源池包括至少一个 CPG; CPG调度方法包括:削峰模块生成并发送的 CPG 调用请求至 CPG调度模块; CPG调度模块根据调度策略及 CPG调用请求,从 CPG共 享资源池为 CPG调用请求对应的削峰模块配置 CPG以产生抵消脉冲; CPG调度模块 接收所配置 CPG根据 CPG调用请求生成的抵消脉冲,并传输至与 CPG调用请求对应 的削峰模块以完成峰值抵消处理。 当调度策略为优先级调度策略时, 上述实施例在 CPG调度模块为 CPG调用请求 对应的削峰模块配置 CPG之前还包括: CPG调度模块为每个削峰模块设置调度优先 级; CPG调度模块为削峰模块配置 CPG的步骤包括: 当接收到两个及以上 CPG调用 请求时, 检测各削峰模块的调度优先级, 优先为调度优先级高的削峰模块配置 CPG。 当调度策略为限制单级最大配置资源策略时,上述实施例在 CPG调度模块为 CPG 调用请求对应的削峰模块配置 CPG之前还包括: CPG调度模块为每个削峰模块设置 最大配置数; CPG调度模块为削峰模块配置 CPG的步骤包括: 当接收到 CPG调用请 求时, 判断为 CPG调用请求对应的削峰模块配置的 CPG是否达到最大配置数, 若是, 则不配置 CPG, 否则, 配置 CPG。 上述实施例还包括: CPG调度模块为 CPG共享资源池中各 CPG设置标志位, 标 志位用于记录其对应 CPG是否处于空闲状态; CPG调度模块为削峰模块配置 CPG的 步骤包括: 查找并为削峰模块配置处于空闲状态的 CPG, 更新所配置 CPG的状态为 非空闲状态。 上述实施例在接收所配置抵消脉冲成型滤波器生成的抵消脉冲之后, 传输至与削 峰模块之前,还包括:抵消脉冲成型滤波器调度模块将所接收到的抵消脉冲进行合成; 传输抵消脉冲至与削峰模块的步骤具体为: 传输合成形成的新抵消脉冲至削峰模块。 当削峰模块内未设置 CPG时, 上述实施例中的削峰模块生成 CPG调用请求的步 骤包括: 根据自身所需要处理的峰值个数生成 CPG调用请求, CPG调用请求携带削 峰模块需要处理的峰值个数信息及各峰值的峰值参数; CPG调度模块为削峰模块配置 CPG 的步骤包括: 为削峰模块配置与 CPG调用请求所携带的峰值个数相同个数的
CPG,将各峰值的峰值参数分别传输到各配置的 CPG,各配置的 CPG根据各自接收到 的峰值参数产生抵消脉冲; 当削峰模块内设置有 CPG时, 上述实施例中的削峰模块生成 CPG调用请求的步 骤包括: 根据自身所需要处理的峰值个数及其内 CPG个数判断是否生成 CPG调用请 求, 当其需要处理的峰值个数大于其内 CPG个数时生成 CPG调用请求, CPG调用请 求包括削峰模块需要处理的峰值个数与其内 CPG个数的差值信息及多余各峰值的峰 值参数; CPG调度模块为削峰模块配置 CPG的步骤包括: 为削峰模块配置与 CPG调 用请求所携带的差值相同个数的 CPG, 将多余各峰值的峰值参数分别传输到各配置的 CPG, 各配置的 CPG根据各自接收到的峰值参数产生抵消脉冲, 同时, 削峰模块内设 置的 CPG分别根据其余各峰值的峰值参数产生抵消脉冲。 本发明提供了一种滤波器调度系统, 在一个实施例中, 该系统包括: 包括至少二 个削峰模块、 CPG调度模块及 CPG共享资源池, CPG共享资源池包括至少一个 CPG; 其中, 削峰模块, 设置为生成并发送的 CPG调用请求至 CPG调度模块; CPG调度模 块, 设置为根据调度策略及 CPG调用请求, 从 CPG共享资源池为 CPG调用请求对应 的削峰模块配置 CPG以产生抵消脉冲;还设置为接收所配置 CPG根据 CPG调用请求 生成的抵消脉冲, 并传输至与 CPG调用请求对应的削峰模块以完成峰值抵消处理; CPG共享资源池中的 CPG用于根据 CPG调用请求生成的抵消脉冲,并传输至 CPG调 度模块。 本发明的有益效果: 本发明提供滤波器调度方法及系统, 通过设置 CPG共享资源 池, CPG调度模块在接收到削峰模块发生的 CPG调用请求时, 从该 CPG共享资源池 为削峰模块配置 CPG滤波器, 满足了该削峰模块对 CPG的需求, 保证了该削峰模块 可以最大程度的完成其需要处理的削峰任务, 解决了现有技术存在的当削峰模块内 CPG滤波器数目小于其需要处理的峰值个数时所导致的该级削峰模块的削峰任务无法 全部完成的问题; 进一步的, 本发明通过设置调度策略, 在不同的调度策略下进行不 同的 CPG调度, 如可以优先为调度优先级高的削峰模块调度 CPG, 保证了调度优先 级高的削峰模块可以完成其需要处理的削峰任务。 附图说明 图 1为现有技术中多级削峰模块级联的示意图; 图 2为现有技术中单级削峰模块内部的结构示意图; 图 3为本发明第一实施例提供的滤波器调度方法的示意图; 图 4为本发明第二实施例提供的滤波器调度方法的示意图; 图 5为本发明第三实施例提供的滤波器调度系统的示意图; 图 6为本发明第四实施例提供的滤波器调度系统的结构示意图; 图 7为本发明第五实施例提供的滤波器调度方法的示意图; 图 8为本发明第六实施例提供的滤波器调度系统的结构示意图; 图 9为本发明第七实施例提供的滤波器调度方法的示意图。 具体实施方式 现通过具体实施方式结合附图的方式对本发明做出进一步的诠释说明。 图 3为本发明第一实施例提供的滤波器调度方法的示意图, 由图 3可知, 在本实 施例中, 本发明提供的滤波器调度方法包括以下步骤:
S301 : 削峰模块生成并发送的 CPG调用请求; 其中, 当削峰模块内未设置 CPG时, 削峰模块生成 CPG调用请求的步骤包括: 根据自身所需要处理的峰值个数生成 CPG调用请求, CPG调用请求携带削峰模块需 要处理的峰值个数信息及各峰值的峰值参数; 当削峰模块内设置有 CPG时, 削峰模块生成 CPG调用请求的步骤包括: 根据自 身所需要处理的峰值个数及其内 CPG个数判断是否生成 CPG调用请求, 当其需要处 理的峰值个数大于其内 CPG个数时生成 CPG调用请求, CPG调用请求包括削峰模块 需要处理的峰值个数与其内 CPG个数的差值信息及多余各峰值的峰值参数; S302: CPG调度模块进行 CPG调度; 例如, CPG调度模块根据调度策略及 CPG调用请求, 从 CPG共享资源池为 CPG 调用请求对应的削峰模块配置 CPG, 被配置的 CPG产生该削峰模块需要的抵消脉冲; 其中, 当调度策略为优先级调度策略时, 在 CPG调度模块为 CPG调用请求对应 的削峰模块配置 CPG之前还包括: CPG调度模块为每个削峰模块设置调度优先级; CPG调度模块为削峰模块配置 CPG的步骤包括: 当接收到两个及以上 CPG调用请求 时, 检测各削峰模块的调度优先级, 优先为调度优先级高的削峰模块配置 CPG。 当调度策略为限制单级最大配置资源策略时, 在 CPG调度模块为 CPG调用请求 对应的削峰模块配置 CPG之前还包括: CPG调度模块为每个削峰模块设置最大配置 数; CPG调度模块为削峰模块配置 CPG的步骤包括: 当接收到 CPG调用请求时, 判 断为 CPG调用请求对应的削峰模块配置的 CPG是否达到最大配置数, 若是, 则不配 置 CPG, 否则, 配置 CPG; 当削峰模块内未设置 CPG时, CPG调度模块为削峰模块配置 CPG的步骤包括: 为削峰模块配置与 CPG调用请求所携带的峰值个数相同个数的 CPG, 将各峰值的峰 值参数分别传输到各配置的 CPG, 各配置的 CPG根据各自接收到的峰值参数产生抵 消脉冲; 当削峰模块内设置有 CPG时, CPG调度模块为削峰模块配置 CPG的步骤包括: 为削峰模块配置与 CPG调用请求所携带的差值相同个数的 CPG, 将多余各峰值的峰 值参数分别传输到各配置的 CPG, 各配置的 CPG根据各自接收到的峰值参数产生抵 消脉冲,同时,削峰模块内设置的 CPG分别根据其余各峰值的峰值参数产生抵消脉冲;
S303 : CPG调度模块将 CPG产生的抵消脉冲转发至削峰模块; 该步骤可以采用以下处理: CPG调度模块接收所配置 CPG根据 CPG调用请求生 成的抵消脉冲, 并传输至与 CPG调用请求对应的削峰模块; 其中, CPG调度模块在接收所配置 CPG生成的抵消脉冲之后, 传输至与削峰模 块之前, 还包括: CPG调度模块将所接收到的抵消脉冲进行合成; 传输抵消脉冲至与 削峰模块的步骤具体为: 传输合成形成的新抵消脉冲至削峰模块。
S304: 削峰模块利用抵消脉冲完成峰值抵消处理; 其中, 当削峰模块内未设置 CPG时, 削峰模块利用抵消脉冲完成峰值抵消处理的 步骤具体为: 接收 CPG调度模块返回的所有抵消脉冲, 利用这些抵消脉冲完成峰值抵 消处理; 其中, 当削峰模块内设置有 CPG时, 削峰模块利用抵消脉冲完成峰值抵消处理的 步骤具体为: 接收 CPG调度模块返回的所有抵消脉冲, 并与自身内设置的 CPG所产 生的所有抵消脉冲进行配合使用, 利用这些抵消脉冲完成峰值抵消处理。 图 4为本发明第二实施例提供的滤波器调度方法的示意图, 由图 4可知, 在本实 施例中, 本发明提供的滤波器调度方法包括以下步骤:
S401 : CPG调度模块为 CPG共享资源池中各 CPG设置标志位, 标志位用于记录 其对应 CPG是否处于空闲状态; S402: 削峰模块生成并发送的 CPG调用请求;该步骤与图 3中步骤 S301相类似, 不在赘述;
S403: CPG调度模块根据各 CPG的标志位信息进行 CPG调度; 其中, CPG调度模块根据调度策略及 CPG调用请求, 从 CPG共享资源池查找并 为削峰模块配置处于空闲状态的 CPG, 并将所配置 CPG的状态更新为非空闲状态, 避免该 CPG被重复征用;
S404: CPG调度模块将 CPG产生的抵消脉冲转发至削峰模块; 该步骤与图 3中 步骤 S303相类似, 不在赘述;
S405 : 削峰模块利用抵消脉冲完成峰值抵消处理; 该步骤与图 3 中步骤 S304相 类似, 不在赘述。 图 5为本发明第三实施例提供的滤波器调度系统的示意图, 由图 5可知, 在本实 施例中, 本发明提供的滤波器调度系统 5包括: 至少一个削峰模块 51 (如图 5中的削 峰模块 511、 512、 ……、 51n)、 CPG调度模块 52及 CPG共享资源池 53, CPG共享 资源池包括至少一个 CPG; 其中, 削峰模块 51, 设置为生成并发送的 CPG调用请求至 CPG调度模块 52;
CPG调度模块 52,设置为根据调度策略及 CPG调用请求,从 CPG共享资源池 53 为 CPG调用请求对应的削峰模块配置 CPG以产生抵消脉冲; 还用于接收所配置 CPG 根据 CPG调用请求生成的抵消脉冲, 并传输至与 CPG调用请求对应的削峰模块以完 成峰值抵消处理;
CPG共享资源池 53中的 CPG, 设置为根据 CPG调用请求生成的抵消脉冲, 并传 输至 CPG调度模块。 其中, 在其他实施例中, 当调度策略为优先级调度策略时, 图 5中的 CPG调度模 块 52还设置为在为 CPG调用请求对应的削峰模块配置 CPG之前,为每个削峰模块设 置调度优先级; CPG调度模块在为削峰模块配置 CPG时, 设置为当接收到两个及以 上 CPG调用请求时, 检测各削峰模块的调度优先级, 优先为调度优先级高的削峰模块 配置 CPG。 在其他实施例中, 当调度策略为限制单级最大配置资源策略时, CPG调度模块 52 还设置为在为 CPG调用请求对应的削峰模块配置 CPG之前, 为每个削峰模块设置最 大配置数; CPG调度模块 52在为削峰模块配置 CPG时,设置为当接收到 CPG调用请 求时, 判断为 CPG调用请求对应的削峰模块配置的 CPG是否达到最大配置数, 若是, 则不配置 CPG, 否则, 配置 CPG。 其中, 在其他实施例中, CPG调度模块 52还设置为 CPG共享资源池中各 CPG 设置标志位, 标志位用于记录其对应 CPG是否处于空闲状态; CPG调度模块 52在为 削峰模块配置 CPG时, 设置为查找并为削峰模块配置处于空闲状态的 CPG, 更新所 配置 CPG的状态为非空闲状态。 在其他实施例中, CPG调度模块 52在接收所配置 CPG生成的抵消脉冲之后, 传 输至与削峰模块 51之前,还设置为将所接收到的抵消脉冲进行合成;传输抵消脉冲至 与削峰模块 51时, CPG调度模块 52, 设置为传输合成形成的新抵消脉冲至削峰模块。 在其他实施例中, 当削峰模块 51内未设置 CPG时, 削峰结 51在生成 CPG调用 请求时, 设置为根据自身所需要处理的峰值个数生成 CPG调用请求, CPG调用请求 携带削峰模块需要处理的峰值个数信息及各峰值的峰值参数; CPG调度模块 52在为 削峰模块配置 CPG时, 设置为为削峰模块配置与 CPG调用请求所携带的峰值个数相 同个数的 CPG, 将各峰值的峰值参数分别传输到各配置的 CPG, 各配置的 CPG根据 各自接收到的峰值参数产生抵消脉冲; 当削峰模块 51内设置有 CPG时, 削峰模块 51在生成 CPG调用请求时, 设置为 根据自身所需要处理的峰值个数及其内 CPG个数判断是否生成 CPG调用请求, 当其 需要处理的峰值个数大于其内 CPG个数时生成 CPG调用请求, CPG调用请求包括削 峰模块需要处理的峰值个数与其内 CPG个数的差值信息及多余各峰值的峰值参数; CPG调度模块 52在为削峰模块配置 CPG时, 设置为为削峰模块 51配置与 CPG调用 请求所携带的差值相同个数的 CPG, 将多余各峰值的峰值参数分别传输到各配置的 CPG, 各配置的 CPG根据各自接收到的峰值参数产生抵消脉冲, 同时, 削峰模块内设 置的 CPG分别根据其余各峰值的峰值参数产生抵消脉冲。 现结合具体应用实例对本发明做进一步的诠释说明; 图 6为本发明第四实施例提 供的滤波器调度系统的结构示意图, 图 7为本发明第五实施例提供的滤波器调度方法 的示意图; 图 8为本发明第六实施例提供的滤波器调度系统的结构示意图, 图 9为本 发明第七实施例提供的滤波器调度方法的示意图; 在图 6及 7所示的实施例中, 做如下设定: 滤波器调度系统 5包括 3个削峰模块 51 (削峰模块 511、 512及 513, 其中, 削峰模块 512未示出), 这 3个削峰模块 51内 均未设置 CPG, 这 3个削峰模块 51的调度优先级依次降低, 且削峰模块 51内的峰值 处理模块包括图 2所示的峰值检测模块、 峰值窗搜索模块、 峰值脉冲计算模块及峰值 脉冲调度模块; CPG调度模块 52中的调度策略为优先级调度策略, CPG共享资源池 53内设置有 24个 CPG (图 6未一一示出), 由图 7可知, 本实施例所提供的滤波器调 度方法包括以下步骤: S701 : 各削峰模块中的峰值处理模块检查需要处理的峰值个数及各峰值参数; 该 步骤包括: 配置各级削峰模块的削峰门限值, 各级削峰模块根据每级各自的削峰门限进行峰 值检测, 根据配置的峰值窗长度, 进行峰值窗搜索, 得到各自需要处理的峰值点个数 及各峰值参数; 该步骤具体可以包括以下步骤:
Fs/4移频模块进行 Fs/4移频; 频率为 的本振可以表示为:
Figure imgf000010_0001
f π
sin(2 t) = ύΥί 2 Ιππ ·■— ^ ·■ηnιT) = sm(—n) / 4上变频时, 输出为: η 4k : I = = Q(n)
η = 4^ + 1 : I = ~Q(n) ■ = I(n)
η = 4^ + 2 : I ( = ~Q(n)
η = 4^ + 3 : (n) M下变频时, 输出为: n = 4k : Qout = Q(n)
n = 4k + \ : Qout = -I(n)
n = 4k + 2 : Q。ut = ~Q n)
n = 4k + 3: Iout = ~Q(n) Qout = I(n) 从上述计算公式可以看出, M移频时只需要对输入数据进行交换或取反即可实 不需要乘法器, 可节省资源。 峰值检查模块进行峰值搜索; 主要实现以下四个功能: 幅度与相位计算; 采用 Cordic矢量模式实现, 8级流水结构即可满足要求; 四点搜索; 首先对上述输出进行四点比较搜索, 即比较相邻的 4个数据, 如果前 两个数与后两个数确定的斜率不同, 比如一个是负斜率, 另一个是非负斜率, 则认为 出现峰值, 接着比较中间 2个数据, 找到峰值; 假设相邻的 4个数据分别为 A, B, C 和 D, 如果 且 C≥ , 则认为 B和 C之间存在峰值, 如果 S≥C, 则认为 B点 是峰值, 否则, 认为 C点是峰值; 与削峰门限值比较; 接着将找到的峰值与削峰门限值进行比较, 如果峰值大于削 峰门限值, 则认为峰值有效, 否则, 认为无效; 峰值是否有效可通过一个指示信号来 表示; 对峰值幅度处理; 最后对峰值幅度进行处理, 即用峰值幅度减去削峰门限值, 得 到新的峰值幅度; 但峰值相位信息保持不变, 对于非峰值点, 则直接将其幅度设为零; 同时, 峰值是否有效可通过一个指示信号来表示; 峰值窗搜索模块进行峰值窗搜索, 以保证在一个窗长度内只输出一个最大值; 对峰值脉冲进行加窗搜索, 以保证在一个窗长度内只输出一个最大值, 由于在峰 值出现比较密集时会影响削峰处理效果, 为了保证峰均比能有效降低, 所以引入了这 样一种二次搜索机制; 加窗搜索时滑动窗的移动具有如下特点: 一个窗口结束后, 一 直要等到再次出现峰值脉冲时, 才认为下一个窗开始, 对于中间没有峰值脉冲部分, 则不启动窗计数; 在一个窗口内, 如果当前时刻值比暂存的最大值还大, 则用当前值 取代暂存值, 并且计数器清零, 重新开始计算窗口大小, 即窗口重新启动。 下面介绍 加窗搜索实现方法: 首先设置窗大小计数器, 当检测到峰值后, 开始对窗计数, 并将该峰值作为窗内 最大峰值初始值, 在窗计数未满时, 即窗未结束前, 遇到新的峰值, 就将该峰值与当 前窗内最大峰值进行比较, 如果当前峰值大, 就用该峰值替换窗内最大峰值, 同时重 新启动窗计数; 反之, 则窗内最大峰值保持不变, 窗计数继续累加; 直到窗结束。 加 窗搜索的一个效果就是只有在窗结束时才能知道窗内哪个峰值是最大的, 所以在实现 时需要对原始数据进行延迟, 这样才能使得窗内最大峰值有效标志与最大峰值本身对 齐; 如果窗内第一个峰值是窗内最大峰值, 那么在窗结束时, 才知道最大峰值位置, 并产生最大值有效标志, 这样最大峰值与有效标志间距是窗长度, 所以可以得出数据 延迟时钟周期数至少应该是窗长度值。 峰值脉冲计算模块根据峰值幅度和相位信息得到峰值 IQ数据; 通过步骤 S701的执行,本申请中各削峰模块均计算得到了各自需要处理的峰值个 数及各峰值参数 (包括峰值 IQ数据及峰值脉冲的位置信息);
S702: 各削峰模块生成 CPG调用请求; 各削峰模块中的峰值处理模块根据各自需要处理的峰值个数及各峰值参数生成 CPG调用请求; 如削峰模块 511需要处理 12个峰值, 则其生成的 CPG调用请求中包 括这 12个峰值的峰值参数; S703 : CPG调度模块 52进行 CPG调度; 此时假定 CPG共享资源池中有 24个处于空闲状态的 CPG; 当采用优先级调度策 略时, 会出现以下两种情况:
CPG共享资源池中的空闲 CPG个数大于或等于这 3个削峰模块需要处理峰值个 数的总和: 如, 削峰模块 511需要处理峰值个数为 8个, 削峰模块 512需要处理峰值个数为
8个, 削峰模块 513需要处理峰值个数为 4个; 此时, CPG调度模块 52为削峰模块 511配置 8个 CPG , 为削峰模块 512配置 8个 CPG, 为削峰模块 513配置 4个 CPG; 又如: 削峰模块 511需要处理峰值个数为 12个, 削峰模块 512需要处理峰值个数 为 8个, 削峰模块 513需要处理峰值个数为 4个; 此时, CPG调度模块 52为削峰模 块 511配置 12个 CPG , 为削峰模块 512配置 8个 CPG, 为削峰模块 513配置 4个 CPG;
CPG共享资源池中的空闲 CPG个数小于这 3个削峰模块需要处理峰值个数的总 和: 如, 削峰模块 511需要处理峰值个数为 14个, 削峰模块 512需要处理峰值个数为 8个, 削峰模块 513需要处理峰值个数为 4个; 此时, CPG调度模块 52为削峰模块 511配置 14个 CPG ,为削峰模块 512配置 8个 CPG,为削峰模块 513配置 2个 CPG;
S704: CPG根据需要处理的峰值参数生成抵消脉冲, 并发送至 CPG调度模块; 如 CPG调度模块将 CPG共享资源池中编号为 " 1 " 的 CPG配置给削峰模块 511, 用于处理削峰模块 511需要处理的第一个峰值, 那么, 编号为 " 1 " 的 CPG根据削峰 模块 511所发送的 CPG调用请求的所携带的第一个峰值的峰值参数生成抵消脉冲,具 体的可以为: 将编号为 " 1 " 的 CPG滤波器系数存放在 RAM中, 由 CPG调度模块产生 RAM 的读取地址, 将削峰模块 511需要处理的第一个峰值 IQ数据按数据速率与该 CPG的 所有系数相乘实现对峰值点的 CPG滤波处理, 并在输出端对齐相加, 得到抵消脉冲;
S705: CPG调度模块将 CPG共享资源池中 CPG产生的抵消脉冲发送给所配置的 削峰模块; 如: CPG调度模块将编号为 " 1 "、 "2"、 "3 "、 "4"及 "5 " 的 CPG配置给削峰模 块 511, 那么在该步骤中, CPG调度模块则将编号为 " 1 "、 "2"、 "3 "、 "4"及 "5 "的 CPG所产生的抵消子脉冲经过求和模块 SUM1进行叠加,将 SUM1输出的抵消脉冲发 送给削峰模块 511 ;
S706: 削峰模块利用得到的抵消脉冲进行峰值抵消处理; 如,削峰模块 511利用 CPG调度模块发送的抵消脉冲与其经延时模块输出的延时 后的原始数据相减, 完成对峰值的抵消处理, 再经过 -Fs/4移频模块输出处理后的数据 到下一级削峰模块 (如削峰模块 512)。 在图 8及 9所示的实施例中, 做如下设定: 滤波器调度系统 5包括 3个削峰模块 51 (削峰模块 511、 512及 513, 其中, 削峰模块 512未示出), 这 3个削峰模块 51内 均设置有 8个 CPG, 为这 3个削峰模块 51设置的最大配置数依次为 12、 10、 8, 且削 峰模块 51内的峰值处理模块包括图 2所示的峰值检测模块、峰值窗搜索模块、峰值脉 冲计算模块及峰值脉冲调度模块; CPG调度模块 52中的调度策略为限制单级最大配 置资源策略, CPG共享资源池 53内设置有 24个 CPG (图 8未一一示出), 由图 9可 知, 本实施例所提供的滤波器调度方法包括以下步骤:
S901 : 各削峰模块 51检查需要处理的峰值个数及各峰值参数; 该步骤与图 7中的步骤 S701相类似, 不再赘述 S902: 各削峰模块生成 CPG调用请求; 各削峰模块根据各自需要处理的峰值个数其内 CPG个数判断是否生成 CPG调用 请求, 当其需要处理的峰值个数大于其内 CPG个数时生成 CPG调用请求, CPG调用 请求包括削峰模块需要处理的峰值个数与其内 CPG个数的差值信息及多余各峰值的 峰值参数; 如, 削峰模块 511 需要处理 22个峰值, 此时, 其需要处理的峰值个数大于其内 CPG个数,则需要生成 CPG调用请求,此时生成的 CPG调用请求包含 14个峰值的峰 值参数, 按照常规配置方法, 削峰模块 511将检测到的前 8个峰值交由其内部的 CPG 进行处理以产生抵消脉冲, 将后 14个峰值的峰值参数及位置信息添加到 CPG调用请 求中传送到 CPG调度模块, 以请求额外的 14个 CPG根据这 14个峰值的峰值参数生 成抵消脉冲; 又如, 削峰模块 512需要处理 8个峰值, 此时, 其需要处理的峰值个数等于其内 CPG个数, 则不需要生成 CPG调用请求, 按照常规配置方法, 削峰模块 512将检测 到的 8个峰值交由其内部的 CPG进行处理以产生抵消脉冲; 又如, 削峰模块 513需要处理 6个峰值, 此时, 其需要处理的峰值个数小于其内 CPG个数, 则不需要生成 CPG调用请求, 按照常规配置方法, 削峰模块 513将检测 到的 6个峰值交由其内部的 CPG进行处理以产生抵消脉冲;
S903: CPG调度模块 52进行 CPG调度; 此时假定 CPG共享资源池中有 24个处于空闲状态的 CPG; 当采用限制单级最大 配置资源策略时, 会出现以下情况:
CPG共享资源池中的空闲 CPG个数大于或等于这 3个削峰模块额外需要处理峰 值个数的总和: 如, 削峰模块 511需要处理峰值个数为 16个 (即额外需要 CPG调度模块配置 8 个 CPG), 削峰模块 512需要处理峰值个数为 16个(即额外需要 CPG调度模块配置 8 个 CPG), 削峰模块 513需要处理峰值个数为 12个(即额外需要 CPG调度模块配置 4 个 CPG); 此时, CPG调度模块 52为削峰模块 511配置 8个 CPG , 为削峰模块 512 配置 8个 CPG, 为削峰模块 513配置 4个 CPG; 又如, 削峰模块 511需要处理峰值个数为 22个 (即额外需要 CPG调度模块配置 14个 CPG, 而 CPG调度模块设置的最多可以为削峰模块 511配置 12个 CPG), 削峰 模块 512需要处理峰值个数为 14个 (即额外需要 CPG调度模块配置 6个 CPG), 削 峰模块 513需要处理峰值个数为 12个 (即额外需要 CPG调度模块配置 4个 CPG); 此时, CPG调度模块 52为削峰模块 511配置 12个 CPG , 为削峰模块 512配置 6个 CPG, 为削峰模块 513配置 4个 CPG;
CPG共享资源池中的空闲 CPG个数小于这 3个削峰模块额外需要处理峰值个数 的总和: 如, 削峰模块 511需要处理峰值个数为 22个 (即额外需要 CPG调度模块配 置 14个 CPG, 而 CPG调度模块设置的最多可以为削峰模块 511配置 12个 CPG), 削 峰模块 512需要处理峰值个数为 16个 (即额外需要 CPG调度模块配置 8个 CPG), 削峰模块 513需要处理峰值个数为 12个(即额外需要 CPG调度模块配置 4个 CPG); 此时, CPG调度模块 52为削峰模块 511配置 12个 CPG , 为削峰模块 512配置 8个 CPG, 为削峰模块 513配置 4个 CPG;
S904: CPG根据需要处理的峰值参数生成抵消脉冲, 并发送至 CPG调度模块; 该步骤与图 7所示实施例中的步骤 S704相类似, 不在赘述;
S905 : CPG调度模块将 CPG共享资源池中 CPG产生的抵消脉冲发送给所配置的 削峰模块; 该步骤与图 7所示实施例中的步骤 S705相类似, 不在赘述;
S906:削峰模块利用 CPG调度模块传输的抵消脉冲及自身产生的抵消脉冲进行峰 值抵消处理; 如, 削峰模块 511需要处理 16个峰值, 那么, CPG调度模块为其配置 8个 CPG, 此时, 削峰模块 511 自身会产生 8个抵消子脉冲, 这 8个抵消子脉冲由削峰模块 511 内的求和模块 SUM进行叠加输出, 称为第一抵消脉冲; CPG调度模块为其配置的 8 个 CPG也将产生 8个抵消子脉冲,这 8个抵消子脉冲由 CPG调度模块 52为削峰模块 511配置的求和模块 SUM1进行叠加输出, 称为第二抵消脉冲; 削峰模块 511利用第 一抵消脉冲与第二抵消脉冲与其经延时模块输出的延时后的原始数据相减, 完成对峰 值的抵消处理, 再经过 -Fs/4移频模块输出处理后的数据到下一级削峰模块(如削峰模 块 512); 又如, 削峰模块 512需要处理 8个峰值, 那么, CPG调度模块不为其配置 CPG, 此时, 削峰模块 512自身会产生 8个抵消子脉冲,, 这 8个抵消子脉冲由削峰模块 511 内的求和模块 SUM进行叠加输出, 称为第一抵消脉冲; 削峰模块 512利用自身产生 的第一抵消脉冲与其延时模块输出的延时后的原始数据相减,完成对峰值的抵消处理, 再经过 -Fs/4移频模块输出处理后的数据到下一级削峰模块 (如削峰模块 513 )。 综上可知, 通过本发明的实施, 至少存在以下有益效果: 首先, 通过设置 CPG共享资源池, CPG调度模块在接收到削峰模块发生的 CPG 调用请求时, 从该 CPG共享资源池为削峰模块配置 CPG滤波器, 满足了该削峰模块 对 CPG的需求, 保证了该削峰模块可以最大程度的完成其需要处理的削峰任务, 解决 了现有技术存在的当削峰模块内 CPG滤波器数目小于其需要处理的峰值个数时所导 致的该级削峰模块的削峰任务无法全部完成的问题; 其次, 通过设置调度策略, 在不同的调度策略下进行不同的 CPG调度, 如可以优 先为调度优先级高的削峰模块调度 CPG, 保证了调度优先级高的削峰模块可以完成其 需要处理的削峰任务, 使得 CPG的调度更加灵活; 再次, 可以选择在削峰模块中是否设置专享的 CPG, 如不设置, 则可以避免削峰 模块内的 CPG资源浪费, 如果设置, 则可以适量的降低 CPG共享资源池内的 CPG数 目; 也即, 这种机制使得 CPG的设置更加灵活; 最后, 通过为 CPG共享资源池中的 CPG设置标志位, 避免了 CPG被重复征用现 象的出现。 以上仅是本发明的具体实施方式而已, 并非对本发明做任何形式上的限制, 凡是 依据本发明的技术实质对以上实施方式所做的任意简单修改、等同变化、结合或修饰, 均仍属于本发明技术方案的保护范围。 工业实用性 通过上述实施例及优选实施方式,解决了现有技术存在的当削峰模块内 CPG滤波 器数目小于其需要处理的峰值个数时所导致的该级削峰模块的削峰任务无法全部完成 的问题, 进而使得 CPG的调度更加灵活。

Claims

权 利 要 求 书
1. 一种滤波器调度方法, 应用于滤波器调度系统中, 所述滤波器调度系统包括至 少二个削峰模块、 抵消脉冲成型滤波器调度模块及抵消脉冲成型滤波器共享资 源池,所述抵消脉冲成型滤波器共享资源池包括至少一个抵消脉冲成型滤波器; 所述抵消脉冲成型滤波器调度方法包括:
所述削峰模块生成并发送的抵消脉冲成型滤波器调用请求至所述抵消脉冲 成型滤波器调度模块;
所述抵消脉冲成型滤波器调度模块根据调度策略及所述抵消脉冲成型滤波 器调用请求, 从所述抵消脉冲成型滤波器共享资源池为所述抵消脉冲成型滤波 器调用请求对应的削峰模块配置抵消脉冲成型滤波器以产生抵消脉冲;
所述抵消脉冲成型滤波器调度模块接收所配置抵消脉冲成型滤波器根据所 述抵消脉冲成型滤波器调用请求生成的抵消脉冲, 并传输至与所述抵消脉冲成 型滤波器调用请求对应的削峰模块以完成峰值抵消处理。
2. 如权利要求 1所述的滤波器调度方法, 其中, 当所述调度策略为优先级调度策 略时, 在所述抵消脉冲成型滤波器调度模块为所述抵消脉冲成型滤波器调用请 求对应的削峰模块配置抵消脉冲成型滤波器之前还包括: 所述抵消脉冲成型滤 波器调度模块为每个削峰模块设置调度优先级; 所述抵消脉冲成型滤波器调度 模块为削峰模块配置抵消脉冲成型滤波器的步骤包括: 当接收到两个及以上抵 消脉冲成型滤波器调用请求时, 检测各削峰模块的调度优先级, 优先为调度优 先级高的削峰模块配置抵消脉冲成型滤波器。
3. 如权利要求 1所述的滤波器调度方法, 其中, 当所述调度策略为限制单级最大 配置资源策略时, 在所述抵消脉冲成型滤波器调度模块为所述抵消脉冲成型滤 波器调用请求对应的削峰模块配置抵消脉冲成型滤波器之前还包括: 所述抵消 脉冲成型滤波器调度模块为每个削峰模块设置最大配置数; 所述抵消脉冲成型 滤波器调度模块为削峰模块配置抵消脉冲成型滤波器的步骤包括: 当接收到抵 消脉冲成型滤波器调用请求时, 判断为所述抵消脉冲成型滤波器调用请求对应 的削峰模块配置的抵消脉冲成型滤波器是否达到最大配置数, 若是, 则不配置 抵消脉冲成型滤波器, 否则, 配置抵消脉冲成型滤波器。
4. 如权利要求 1所述的滤波器调度方法, 其中, 还包括: 所述抵消脉冲成型滤波 器调度模块为抵消脉冲成型滤波器共享资源池中各抵消脉冲成型滤波器设置标 志位, 所述标志位用于记录其对应抵消脉冲成型滤波器是否处于空闲状态; 所 述抵消脉冲成型滤波器调度模块为削峰模块配置抵消脉冲成型滤波器的步骤包 括: 查找并为所述削峰模块配置处于空闲状态的抵消脉冲成型滤波器, 更新所 配置抵消脉冲成型滤波器的状态为非空闲状态。
5. 如权利要求 1所述的滤波器调度方法, 其中, 所述抵消脉冲成型滤波器调度模 块在接收所配置抵消脉冲成型滤波器生成的抵消脉冲之后, 传输至与所述削峰 模块之前, 还包括: 所述抵消脉冲成型滤波器调度模块将所接收到的抵消脉冲 进行合成; 所述传输抵消脉冲至与所述削峰模块的步骤具体为: 传输合成形成 的新抵消脉冲至所述削峰模块。
6. 如权利要求 1至 5任一项所述的滤波器调度方法, 其中, 当所述削峰模块内未设置抵消脉冲成型滤波器时, 所述削峰模块生成抵消 脉冲成型滤波器调用请求的步骤包括: 根据自身所需要处理的峰值个数生成所 述抵消脉冲成型滤波器调用请求, 所述抵消脉冲成型滤波器调用请求携带所述 削峰模块需要处理的峰值个数信息及各峰值的峰值参数; 所述抵消脉冲成型滤 波器调度模块为削峰模块配置抵消脉冲成型滤波器的步骤包括: 为所述削峰模 块配置与所述抵消脉冲成型滤波器调用请求所携带的峰值个数相同个数的抵消 脉冲成型滤波器, 将各峰值的峰值参数分别传输到各配置的抵消脉冲成型滤波 器, 各配置的抵消脉冲成型滤波器根据各自接收到的峰值参数产生所述抵消脉 冲;
当所述削峰模块内设置有抵消脉冲成型滤波器时, 所述削峰模块生成抵消 脉冲成型滤波器调用请求的步骤包括: 根据自身所需要处理的峰值个数及其内 抵消脉冲成型滤波器个数判断是否生成所述抵消脉冲成型滤波器调用请求, 当 其需要处理的峰值个数大于其内抵消脉冲成型滤波器个数时, 生成抵消脉冲成 型滤波器调用请求, 所述抵消脉冲成型滤波器调用请求包括所述削峰模块需要 处理的峰值个数与其内抵消脉冲成型滤波器个数的差值信息及多余各峰值的峰 值参数; 所述抵消脉冲成型滤波器调度模块为削峰模块配置抵消脉冲成型滤波 器的步骤包括: 为所述削峰模块配置与所述抵消脉冲成型滤波器调用请求所携 带的差值相同个数的抵消脉冲成型滤波器, 将多余各峰值的峰值参数分别传输 到各配置的抵消脉冲成型滤波器, 各配置的抵消脉冲成型滤波器根据各自接收 到的峰值参数产生所述抵消脉冲, 同时, 所述削峰模块内设置的抵消脉冲成型 滤波器分别根据其余各峰值的峰值参数产生抵消脉冲。
7. 一种滤波器调度系统, 包括至少二个削峰模块、 抵消脉冲成型滤波器调度模块 及抵消脉冲成型滤波器共享资源池, 所述抵消脉冲成型滤波器共享资源池包括 至少一个抵消脉冲成型滤波器; 其中,
所述削峰模块, 设置为生成并发送的抵消脉冲成型滤波器调用请求至所述 抵消脉冲成型滤波器调度模块;
所述抵消脉冲成型滤波器调度模块, 设置为根据调度策略及所述抵消脉冲 成型滤波器调用请求, 从所述抵消脉冲成型滤波器共享资源池为所述抵消脉冲 成型滤波器调用请求对应的削峰模块配置抵消脉冲成型滤波器以产生抵消脉 冲; 还设置为接收所配置抵消脉冲成型滤波器根据所述抵消脉冲成型滤波器调 用请求生成的抵消脉冲, 并传输至与所述抵消脉冲成型滤波器调用请求对应的 削峰模块以完成峰值抵消处理;
所述抵消脉冲成型滤波器共享资源池中的抵消脉冲成型滤波器, 设置为根 据所述抵消脉冲成型滤波器调用请求生成的抵消脉冲, 并传输至所述抵消脉冲 成型滤波器调度模块。
8. 如权利要求 7所述的滤波器调度系统, 其中, 当所述调度策略为优先级调度策 略时, 所述抵消脉冲成型滤波器调度模块, 还设置为在为所述抵消脉冲成型滤 波器调用请求对应的削峰模块配置抵消脉冲成型滤波器之前, 为每个削峰模块 设置调度优先级; 所述抵消脉冲成型滤波器调度模块在为削峰模块配置抵消脉 冲成型滤波器时,设置为当接收到两个及以上抵消脉冲成型滤波器调用请求时, 检测各削峰模块的调度优先级, 优先为调度优先级高的削峰模块配置抵消脉冲 成型滤波器。
9. 如权利要求 7所述的滤波器调度系统, 其中, 当所述调度策略为限制单级最大 配置资源策略时, 所述抵消脉冲成型滤波器调度模块还设置为在为所述抵消脉 冲成型滤波器调用请求对应的削峰模块配置抵消脉冲成型滤波器之前, 为每个 削峰模块设置最大配置数; 所述抵消脉冲成型滤波器调度模块在为削峰模块配 置抵消脉冲成型滤波器时, 设置为当接收到抵消脉冲成型滤波器调用请求时, 判断为所述抵消脉冲成型滤波器调用请求对应的削峰模块配置的抵消脉冲成型 滤波器是否达到最大配置数, 若是, 则不配置抵消脉冲成型滤波器, 否则, 配 置抵消脉冲成型滤波器。
10. 如权利要求 7所述的滤波器调度系统, 其中, 所述抵消脉冲成型滤波器调度模 块还设置为为抵消脉冲成型滤波器共享资源池中各抵消脉冲成型滤波器设置标 志位, 所述标志位用于记录其对应抵消脉冲成型滤波器是否处于空闲状态; 所 述抵消脉冲成型滤波器调度模块在为削峰模块配置抵消脉冲成型滤波器时, 设 置为查找并为所述削峰模块配置处于空闲状态的抵消脉冲成型滤波器, 更新所 配置抵消脉冲成型滤波器的状态为非空闲状态。
11. 如权利要求 7所述的滤波器调度系统, 其中, 所述抵消脉冲成型滤波器调度模 块在接收所配置抵消脉冲成型滤波器生成的抵消脉冲之后, 传输至与所述削峰 模块之前, 还设置为将所接收到的抵消脉冲进行合成; 所述传输抵消脉冲至与 所述削峰模块时, 所述抵消脉冲成型滤波器调度模块, 设置为传输合成形成的 新抵消脉冲至所述削峰模块。
12. 如权利要求 7至 11任一项所述的滤波器调度系统, 其中, 当所述削峰模块内未设置抵消脉冲成型滤波器时, 所述削峰模块在生成抵 消脉冲成型滤波器调用请求时, 设置为根据自身所需要处理的峰值个数生成所 述抵消脉冲成型滤波器调用请求, 所述抵消脉冲成型滤波器调用请求携带所述 削峰模块需要处理的峰值个数信息及各峰值的峰值参数; 所述抵消脉冲成型滤 波器调度模块在为削峰模块配置抵消脉冲成型滤波器时, 设置为为所述削峰模 块配置与所述抵消脉冲成型滤波器调用请求所携带的峰值个数相同个数的抵消 脉冲成型滤波器, 将各峰值的峰值参数分别传输到各配置的抵消脉冲成型滤波 器, 各配置的抵消脉冲成型滤波器根据各自接收到的峰值参数产生所述抵消脉 冲;
当所述削峰模块内设置有抵消脉冲成型滤波器时, 所述削峰模块在生成抵 消脉冲成型滤波器调用请求时, 设置为根据自身所需要处理的峰值个数及其内 抵消脉冲成型滤波器个数判断是否生成所述抵消脉冲成型滤波器调用请求, 当 其需要处理的峰值个数大于其内抵消脉冲成型滤波器个数时, 生成抵消脉冲成 型滤波器调用请求, 所述抵消脉冲成型滤波器调用请求包括所述削峰模块需要 处理的峰值个数与其内抵消脉冲成型滤波器个数的差值信息及多余各峰值的峰 值参数; 所述抵消脉冲成型滤波器调度模块在为削峰模块配置抵消脉冲成型滤 波器时, 设置为为所述削峰模块配置与所述抵消脉冲成型滤波器调用请求所携 带的差值相同个数的抵消脉冲成型滤波器, 将多余各峰值的峰值参数分别传输 到各配置的抵消脉冲成型滤波器, 各配置的抵消脉冲成型滤波器根据各自接收 到的峰值参数产生所述抵消脉冲, 同时, 所述削峰模块内设置的抵消脉冲成型 滤波器分别根据其余各峰值的峰值参数产生抵消脉冲。
PCT/CN2014/077307 2013-09-16 2014-05-12 一种滤波器调度方法及系统 WO2014183627A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/022,431 US10009205B2 (en) 2013-09-16 2014-05-12 Cancellation pulse generator scheduling method and system
JP2016515452A JP6336047B2 (ja) 2013-09-16 2014-05-12 フィルタースケジューリング方法及びシステム
EP14798209.4A EP3048767B1 (en) 2013-09-16 2014-05-12 Filter scheduling method and system
KR1020167010057A KR101868244B1 (ko) 2013-09-16 2014-05-12 필터 스케쥴링 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310423268.1 2013-09-16
CN201310423268.1A CN104468444B (zh) 2013-09-16 一种滤波器调度方法及系统

Publications (1)

Publication Number Publication Date
WO2014183627A1 true WO2014183627A1 (zh) 2014-11-20

Family

ID=51897714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077307 WO2014183627A1 (zh) 2013-09-16 2014-05-12 一种滤波器调度方法及系统

Country Status (5)

Country Link
US (1) US10009205B2 (zh)
EP (1) EP3048767B1 (zh)
JP (1) JP6336047B2 (zh)
KR (1) KR101868244B1 (zh)
WO (1) WO2014183627A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135644A (zh) * 2022-05-18 2023-11-28 中国移动通信有限公司研究院 一种峰值对消处理方法、装置和计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523833A (ja) 2017-06-09 2020-08-06 ナノセミ, インク.Nanosemi, Inc. クレストファクタ低減
WO2019094713A1 (en) * 2017-11-13 2019-05-16 Nanosemi, Inc. Spectrum shaping crest factor reduction
US10594530B2 (en) * 2018-05-29 2020-03-17 Qualcomm Incorporated Techniques for successive peak reduction crest factor reduction
US10623222B2 (en) * 2018-08-30 2020-04-14 Xilinx, Inc. Vectorized peak detection for signal processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946217A (zh) * 2005-10-06 2007-04-11 美国博通公司 多模通信设备及其内处理多个通信信号的方法
CN102170416A (zh) * 2010-12-27 2011-08-31 武汉邮电科学研究院 一种基于滑动窗峰值检测的削峰结构及削峰方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039416A1 (en) * 1999-11-29 2001-05-31 Golden Bridge Technology, Inc. Second level collision resolution for packet data communications
US7697591B2 (en) * 2002-08-26 2010-04-13 Texas Instruments Incorporated Crest factor reduction processor for wireless communications
JP4296471B2 (ja) * 2002-10-10 2009-07-15 住友電気工業株式会社 ピーク電力抑圧方法及び装置
GB2401516A (en) * 2003-04-17 2004-11-10 Univ Southampton Peak-to-average power ratio reduction by subtracting shaped pulses from a baseband signal
JP4398791B2 (ja) * 2004-05-25 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ 送信機および送信制御方法
US7995975B2 (en) * 2006-12-21 2011-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for signal peak-to-average ratio reduction
US7729380B2 (en) * 2007-01-21 2010-06-01 Motorola, Inc. Method and device for selectively transmitting voice bursts and regenerated header bursts
JP5212402B2 (ja) * 2010-02-24 2013-06-19 住友電気工業株式会社 ピーク電力抑制回路とこの回路を有する通信装置
JP5201158B2 (ja) * 2010-02-24 2013-06-05 住友電気工業株式会社 信号処理回路とこの回路を有する通信装置
US8619903B2 (en) * 2010-10-14 2013-12-31 Kathrein-Werke Kg Crest factor reduction for a multicarrier-signal with spectrally shaped single-carrier cancelation pulses
US8599961B2 (en) * 2010-10-14 2013-12-03 KATREIN-Werke KG Crest factor reduction method and circuit for a multi-carrier signal
US8503950B1 (en) * 2011-08-02 2013-08-06 Xilinx, Inc. Circuit and method for crest factor reduction
KR20130080939A (ko) * 2012-01-06 2013-07-16 삼성전자주식회사 입력 신호의 피크 제거 방법 및 장치
US9100253B2 (en) * 2012-08-07 2015-08-04 Freescale Semiconductor, Inc. Block-based crest factor reduction
US8861304B1 (en) * 2012-09-24 2014-10-14 Altera Corporation Circuitry for generating peak cancelling pulses
US9077408B1 (en) * 2012-10-01 2015-07-07 Altera Corporation Circuitry and techniques for calculating scaling factors for crest factor reduction
US8937993B2 (en) * 2013-05-17 2015-01-20 Scintera Networks Llc Crest factor reduction for brand-limited multi-carrier signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946217A (zh) * 2005-10-06 2007-04-11 美国博通公司 多模通信设备及其内处理多个通信信号的方法
CN102170416A (zh) * 2010-12-27 2011-08-31 武汉邮电科学研究院 一种基于滑动窗峰值检测的削峰结构及削峰方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135644A (zh) * 2022-05-18 2023-11-28 中国移动通信有限公司研究院 一种峰值对消处理方法、装置和计算机可读存储介质

Also Published As

Publication number Publication date
KR20160059482A (ko) 2016-05-26
JP6336047B2 (ja) 2018-06-06
EP3048767A1 (en) 2016-07-27
CN104468444A (zh) 2015-03-25
JP2016538734A (ja) 2016-12-08
KR101868244B1 (ko) 2018-06-15
EP3048767B1 (en) 2021-02-24
EP3048767A4 (en) 2017-02-15
US20170026216A1 (en) 2017-01-26
US10009205B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2014183627A1 (zh) 一种滤波器调度方法及系统
US8134992B1 (en) Message-based coexistence interface between wireless devices
WO2020063086A1 (zh) 基于物联网的数据传输方法及通信装置
TW202224372A (zh) Harq處理方法、用戶設備和基地台
US8804583B2 (en) System and method for medium access control enabling both full-duplex and half-duplex communications
WO2016033948A1 (zh) 一种发送窗口流量控制方法和终端
WO2016015473A1 (zh) 一种自干扰信道估计方法和设备
WO2017161967A1 (zh) 包每秒流量监管方法、装置和计算机存储介质
CN109981235B (zh) 一种FlexE Group协商方法及网元
EP2498474A1 (en) Communication terminal and communication method
EP2913966A1 (en) Method and router device for neighbor relationship processing
WO2022143464A1 (zh) 确定传输时延的方法、装置、设备及存储介质
US10554368B2 (en) Wireless data-acknowledgement communication using frame aggregation
WO2014127259A2 (en) Proportional scheduling in communications systems
WO2017070849A1 (zh) 一种同频干扰的消除方法及装置
WO2015003388A1 (zh) 一种削波方法、装置及系统
CN109274528B (zh) 一种异步多包接收机制下p坚持CSMA吞吐率的确定方法
US20160112312A1 (en) Communication apparatus, information processing apparatus, and method of controlling communication apparatus
CN111148270A (zh) 基于服务质量的长距离多信道通信随机接入方法及系统
CA3075193A1 (en) Sequence-based signal processing method and apparatus
WO2019126962A1 (zh) 上行授权的方法和终端设备
CN104468444B (zh) 一种滤波器调度方法及系统
WO2018045490A1 (zh) 一种发送导频符号的方法和装置
CN114285704B (zh) 上行信道估计方法、芯片、系统及存储介质
WO2021204243A1 (zh) 信息处理方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014798209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014798209

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167010057

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022431

Country of ref document: US