WO2019126962A1 - 上行授权的方法和终端设备 - Google Patents

上行授权的方法和终端设备 Download PDF

Info

Publication number
WO2019126962A1
WO2019126962A1 PCT/CN2017/118396 CN2017118396W WO2019126962A1 WO 2019126962 A1 WO2019126962 A1 WO 2019126962A1 CN 2017118396 W CN2017118396 W CN 2017118396W WO 2019126962 A1 WO2019126962 A1 WO 2019126962A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
data amount
data
network device
amount
Prior art date
Application number
PCT/CN2017/118396
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/118396 priority Critical patent/WO2019126962A1/zh
Priority to CN201780091633.XA priority patent/CN110710325B/zh
Publication of WO2019126962A1 publication Critical patent/WO2019126962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method and terminal device for uplink authorization.
  • PDCPs Packet Radio Convergence Protocols
  • RLCs Radio Link Controls
  • the terminal In the new radio (NR), the terminal is allowed to send the uplink data from the PDCP to the RLC before the uplink grant arrives, and then wait until the uplink grant arrives, and then send it to the media access control (Media Access Control, MAC). Therefore, in order to alleviate the transient processing capability requirements of the terminal, how to perform uplink authorization is a problem to be solved in a scenario where a certain splitting bearer of the terminal has a pre-processing.
  • Media Access Control Media Access Control
  • the embodiment of the present application provides a method and a terminal device for uplink authorization, which are beneficial to improving performance of uplink authorization.
  • a method for uplink authorization includes: determining, by the terminal device, a first data amount P reported to the first network device and a second data quantity Q reported to the second network device, the first data The sum of the quantity P and the second data amount Q is equal to the sum of the third data amount C of the packet data convergence protocol PDCP layer buffer of the terminal device and the fourth data amount M of the radio link control RLC layer buffer of the terminal device,
  • the fourth data amount M includes the amount of data waiting to be newly transmitted in the RLC layer buffer, and the terminal device interacts with the first network device by using the first RLC layer, and the terminal device passes the second RLC layer and the second network device. Interacting; the terminal device sends the first data amount P to the first network device and the second data amount Q to the second network device.
  • the amount of data is used to waste resources, which improves the performance of uplink authorization.
  • the amount of data buffered by the RLC layer includes the amount of data waiting to be newly transmitted and/or the amount of data waiting to be retransmitted.
  • the amount of data waiting for the new transmission in the RLC layer buffer includes, before the terminal device receives the uplink authorization information sent by the first network device, from the PDCP layer to the first RLC layer.
  • the fourth data amount M includes a fifth data amount A of the first RLC layer buffer and a sixth data quantity B of the second RLC layer buffer, P ⁇ A, Q ⁇ B.
  • the determining, by the terminal device, the first data amount P and the second data quantity Q the terminal device determining, according to the first information, the first data amount P and the second data quantity Q.
  • the first information is a distribution coefficient a
  • the allocation coefficient a is used to allocate the third data amount C between the first network device and the second network device.
  • P A+a*C
  • Q B+(1-a)*C.
  • the method further includes: the terminal device determining the allocation coefficient a.
  • the allocation coefficient a is specified by the first network device and/or the second network device by signaling.
  • the terminal device determines the first data amount P and the second data amount Q, including: if the sum of the fourth data amount M and the third data amount C is greater than a threshold The terminal device determines the first data amount P and the second data amount Q.
  • the method further includes: receiving, by the terminal device, first uplink grant information sent by the first network device based on the first data amount P, and the second network device is based on the second data volume Q The second uplink authorization information sent.
  • the first network device is a network device of a primary cell group MCG
  • the second network device is a network device of a secondary cell group SCG.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a computer storage medium for storing computer software instructions for performing the method of any of the above first aspect or any of the possible implementations of the first aspect, comprising program of.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 shows a protocol architecture diagram of a split bearer in a dual connectivity scenario.
  • FIG. 3 is a schematic block diagram of a method for uplink authorization according to an embodiment of the present application.
  • FIG. 4 shows a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 5 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system, and a low-density signature (Low). Density Signature (LDS) system, etc., of course, the SCMA system and the LDS system may also be referred to as other names in the communication field; further, the technical solution of the embodiment of the present application can be applied to multi-carrier using non-orthogonal multiple access technology.
  • SCMA sparse code multiple access
  • LDS Density Signature
  • Orthogonal Frequency Division Multiplexing OFDM
  • Filter Bank Multi-Carrier FBMC
  • General Frequency Division Multiplexing Generalized Frequency Division Multiplexing (OFDM)) Frequency Division Multiplexing (GFDM)
  • Filtered Orthogonal Frequency Division Multiplexing Filtered-OFDM, F-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system. And may be an evolved base station (eNB or eNodeB) in the LTE system, or may be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be The embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • CRAN cloud radio access network
  • the embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the PDCP is located in a cell group (Cell Group, CG), which is an anchor cell group (anchor CG), where the CG includes a primary cell group (MCG) and a secondary cell group (Secondary).
  • Cell Group CG
  • anchor CG anchor cell group
  • MCG primary cell group
  • Secondary secondary cell group
  • PDCP can send PDCP Protocol Data Unit (PDU) to RLC in MCG and SCG, so that data can be transmitted by using two connections, data passing through RLC of different cell groups, media access Control (Media Access Control, MAC), then go through the air interface to the terminal (downlink) or the base station (uplink) corresponding MAC, RLC layer, and finally aggregate to PDCP, and finally submit the data to the upper layer.
  • PDU Packet Control Protocol Data Unit
  • the terminal device In LTE, when the upper layer data arrives, it stays at the PDCP layer.
  • the terminal device When the MCG or the SCG has the uplink resource grant to reach the terminal device, the terminal device sends the data down to the RLC layer of the primary cell group or the secondary cell group, and finally sends the data to the RLC layer.
  • Network side The disadvantage of this type of processing is that the terminal device sends the data from the PDCP to the RLC, generates the RLC PDU, and then generates the MAC PDU, which is too high for the instantaneous processing capability of the terminal device.
  • a pre-processing is proposed for the problem, that is, the terminal device is allowed to send data from the PDCP to the RLC to generate an RLC PDU before the uplink resource authorization reaches the terminal device, and wait until the uplink resource authorization is reached.
  • a MAC PDU is generated, thereby alleviating the transient processing capability requirements for the UE.
  • How to perform uplink authorization in the scenario where the terminal device preprocesses the data of a split bearer is a problem that needs to be solved.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • splitting bearer is used as an example of a PDCP connecting two RLCs.
  • a split bearer may also be a PDCP connection of three or four RLCs, and the embodiment of the present application is not limited thereto.
  • FIG. 3 is a schematic block diagram of a method 100 of uplink authorization in an embodiment of the present application. As shown in FIG. 3, the method 100 includes the following parts or all of the contents:
  • the terminal device determines a first data amount P reported to the first network device and a second data quantity Q reported to the second network device, where the sum of the first data amount P and the second data amount Q is equal to the terminal device.
  • the sum of the third data amount C buffered by the PDCP layer of the packet data convergence protocol and the fourth data amount M of the RLC layer buffer of the radio link of the terminal device, the fourth data amount M including waiting for a new transmission in the RLC layer buffer The amount of data, the terminal device interacts with the first network device through the first RLC layer, and the terminal device interacts with the second network device by using the second RLC layer.
  • the terminal device sends the first data amount P to the first network device and the second data amount Q to the second network device.
  • the second data amount includes a third data amount A of the first RLC layer cache and/or a fourth data quantity B of the second RLC layer cache.
  • the embodiment of the present application is directed to a split bearer of the terminal device, and the respective network devices in the two cell groups interact with the terminal device through the link as shown in FIG. 2, where the split bearer
  • the network side PDCP is located in the cell group CG1.
  • the amount of data to be transmitted includes both the data volume buffered by the PDCP layer and the data volume buffered by the RLC layer, and the data volume buffered by the RLC layer may be the data volume of the RLC layer cache on the CG1 link. / or the amount of data buffered by the RLC layer on the CG2 link.
  • the amount of data buffered by the RLC layer may further include the amount of data waiting to be newly transmitted in the RLC layer buffer and the amount of data waiting to be retransmitted in the RLC layer buffer.
  • the amount of data buffered by the RLC layer may include the amount of data entering the RLC layer on the CG1 link and/or the amount of data entering the RLC layer on the CG2 link from the PDCP layer before the UE receives the uplink grant.
  • the data volume of the RLC layer cache described in the multiple embodiments of the present application includes the amount of data waiting for initial transmission, that is, the amount of data that has been pre-processed, and the amount of data buffered by the RLC layer may also be only waiting for weight.
  • the amount of data to be transmitted is not limited as long as the data is cached by the RLC layer.
  • the UE needs to report the amount of data to be scheduled to the network, that is, the Buffer State Report (BSR).
  • BSR Buffer State Report
  • the network allocates resources to the amount of data reported by the UE.
  • the amount of data to be transmitted at this time may be divided into two parts, one part is the amount of data buffered by the RLC layer, for example, may include entering the CG1 and/or CG2 link from the PDCP layer before the UE receives the uplink grant.
  • the data of the RLC layer The other part is the amount of data buffered by the PDCP layer.
  • the data buffered by the PDCP layer can be shared by the respective network devices of CG1 and CG2, that is, the network device of the CG1 can bear part of the data buffered by the PDCP layer, and the network device of the CG2 bears another part of the PDCP layer cache.
  • the terminal device may allocate only the amount of data buffered to the PDCP layer according to the allocation coefficient, that is, the terminal device may report the amount of data cached by the RLC layer on the CG1 link to the network device of the CG1 and determine according to the allocation coefficient.
  • the sum of the amount of data of the PDCP layer buffered by the network device of the CG1, and the terminal device can report the amount of data buffered in the RLC layer of the CG2 link to the network device of the CG2 and the network device of the CG2 determined according to the allocation coefficient.
  • the sum of the other portions of data buffered by the PDCP layer In this way, it is advantageous to avoid waste of resources caused by resource allocation of all data sources of the CG1 and CG2, which are all buffered by the PDCP layer, and improve the performance of the uplink grant.
  • the following scenario may be included: before the terminal device receives the uplink grant, only the RLC layer on the CG1 link caches data or only the RLC layer on the CG2 link caches data, or CG1 Both the RLC layer on the link and the RLC layer on the CG2 link are buffered with data.
  • the determining, by the terminal device, the first data amount P and the second data amount Q the terminal device determining, according to the first information, the first data amount P and the second The amount of data Q.
  • the terminal device may be based on a piece of information, for example, the information may include one bit, 0 indicates that the data amount C buffered by the PDCP layer is all reported to the first network device, and 1 indicates that the data volume buffered by the PDCP layer is all second.
  • the first information is a distribution coefficient a
  • the allocation coefficient a is used to allocate the third data amount C between the first network device and the second network device.
  • a may also be a number between 0 and 1, for example, 0.1, 0.2, 0.5, 0.8, etc., a may also be a value between 0 and 1 in addition to the above list.
  • the sum of the data volume C buffered by the PDCP layer and the data amount M buffered by the RLC layer that is, the data volume C of the PDCP layer buffer, the data volume A of the first RLC layer cache, and the second RLC.
  • the allocation coefficient a may be determined by the terminal device itself, or may be preset by the protocol, and may be pre-stored in the terminal device, or may be controlled by the network device, for example, for example.
  • the signaling may be specified by the first network device and/or the second network device, which is not limited in this application.
  • the terminal device determines the first data amount P and the second data amount Q, including: if the sum of the fourth data amount M and the third data amount C is greater than a threshold The terminal device determines the first data amount P and the second data amount Q.
  • the amount of data to be transmitted is the sum of the data amount A, the data amount B, and the data amount C in the embodiment of the present application is greater than a threshold.
  • a threshold may be set for the amount of data to be transmitted. If the amount of data to be transmitted is less than the threshold, the terminal device may report the amount of data buffered by the PDCP layer and the amount of data cached by the RLC layer on the MSG link to the MSG network. If the amount of the data to be transmitted is greater than the threshold, the solution of the embodiment of the present application may be used, and the performance of the uplink authorization may be further improved.
  • the first network device is a network device in a primary cell group MCG
  • the second network device is a network device in a secondary cell group SCG. That is, the above CG1 and CG2 may be MCG and SCG, respectively. If the PDCP is located in the MSG, the splitting bearer is the splitting bearer of the primary cell group. If the PDCP is located in the SCG, the splitting bearer is the splitting bearer of the secondary cell group.
  • the method further includes: receiving, by the terminal device, first uplink grant information sent by the first network device based on the first data amount P, and the second network device is based on the second data The second uplink grant information sent by the quantity Q.
  • the network device sends the uplink authorization information to the terminal device, and indicates the uplink resource allocated based on the data amount to the terminal device.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • the method for uplink authorization according to the embodiment of the present application is described in detail above.
  • the apparatus for uplink authorization according to the embodiment of the present application will be described below with reference to FIG. 4 and FIG. 5.
  • the technical features described in the method embodiments are applicable to the following device implementation. example.
  • FIG. 4 shows a schematic block diagram of a terminal device 200 of an embodiment of the present application.
  • the terminal device 200 includes:
  • the determining unit 210 is configured to determine a first data amount P reported to the first network device and a second data quantity Q reported to the second network device, where a sum of the first data amount P and the second data amount Q is equal to the The sum of the third data amount C buffered by the PDCP layer of the packet data convergence protocol of the terminal device and the fourth data amount M of the RLC layer buffer of the radio link of the terminal device, the fourth data amount M including the waiting in the RLC layer buffer.
  • the newly transmitted data amount, the terminal device interacts with the first network device by using the first RLC layer, and the terminal device interacts with the second network device by using the second RLC layer;
  • the sending unit 220 is configured to send the first data amount P to the first network device and the second data amount Q to the second network device.
  • the terminal device in the embodiment of the present invention helps to avoid resource waste caused by resource allocation of all data sources of the CG1 and CG2, which are cached by the PDCP layer, and improves the performance of the uplink grant.
  • the amount of data waiting for the new transmission in the RLC layer buffer includes: entering, by the PDCP layer, the first data before the terminal device receives the uplink authorization information sent by the first network device.
  • the fourth data quantity M includes a fifth data quantity A of the first RLC layer buffer and a sixth data quantity B of the second RLC layer buffer, P ⁇ A, Q ⁇ B.
  • the determining unit is specifically configured to: determine, by the terminal device, the first data amount P and the second data amount Q according to the first information.
  • the first information is a distribution coefficient a
  • the allocation coefficient a is used to allocate the third data amount C between the first network device and the second network device.
  • P A+a*C
  • Q B+(1-a)*C.
  • the determining unit is further configured to: determine the allocation coefficient a.
  • the allocation coefficient a is specified by the first network device and/or the second network device by signaling.
  • the determining unit is specifically configured to: when the sum of the fourth data amount M and the third data amount C is greater than a threshold, determine the first data amount P and the first Two data amount Q.
  • the terminal device further includes: a receiving unit, configured to receive first uplink grant information that is sent by the first network device based on the first data volume P, and the second network device is based on the The second uplink grant information sent by the second data amount Q.
  • a receiving unit configured to receive first uplink grant information that is sent by the first network device based on the first data volume P, and the second network device is based on the The second uplink grant information sent by the second data amount Q.
  • the first network device is a network device of a primary cell group MCG
  • the second network device is a network device of a secondary cell group SCG.
  • terminal device 200 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 200 respectively implement the terminal in the method of FIG.
  • the corresponding process of the device is not described here for brevity.
  • the embodiment of the present application further provides a terminal device 300, which may be the terminal device 200 in FIG. 3, which can be used to execute the content of the terminal device corresponding to the method 100 of FIG.
  • the terminal device 300 includes an input interface 310, an output interface 320, a processor 330, and a memory 340.
  • the input interface 310, the output interface 320, the processor 330, and the memory 340 can be connected by a bus system.
  • the memory 340 is for storing programs, instructions or codes.
  • the processor 330 is configured to execute a program, an instruction or a code in the memory 340 to control the input interface 310 to receive a signal, control the output interface 320 to transmit a signal, and complete the operations in the foregoing method embodiments.
  • the terminal device in the embodiment of the present application is advantageous in avoiding waste of resources caused by resource allocation of all data sources of the CG1 and CG2, which are buffered by the PDCP layer, and improves the performance of the uplink authorization.
  • the processor 330 may be a central processing unit (CPU), and the processor 330 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 340 can include read only memory and random access memory and provides instructions and data to the processor 330. A portion of the memory 340 may also include a non-volatile random access memory. For example, the memory 340 can also store information of the device type.
  • each content of the above method may be completed by an integrated logic circuit of hardware in the processor 330 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 330, and the processor 330 reads the information in the memory 340 and completes the contents of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the determining unit of the terminal device 200 may be implemented by the processor 330 in FIG. 5, and the transmitting unit of the terminal device 200 may be implemented by the output interface 320 in FIG.
  • the receiving unit of the terminal device 200 can be implemented by the input interface 310 in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种上行授权的方法和终端设备,该方法包括:终端设备确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,该第一数据量P和该第二数据量Q之和等于该终端设备的分组数据汇聚协议PDCP层缓存的第三数据量C和该终端设备的无线链路控制RLC层缓存的第四数据量M之和,该第四数据量M包括该RLC层缓存中等待新传的数据量,该终端设备通过第一RLC层与该第一网络设备进行交互,该终端设备通过第二RLC层与该第二网络设备进行交互;该终端设备向该第一网络设备发送该第一数据量P和向该第二网络设备发送该第二数据量Q。本申请实施例的方法和终端设备,有利于提高上行授权的性能。

Description

上行授权的方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种上行授权的方法和终端设备。
背景技术
当数据承载采用分裂承载(split bearer)的协议架构时,一个分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)下面分别连接两个或者更多的无线链路控制(Radio Link Control,RLC),不同小区组中的网络设备分别通过不同的RLC与终端设备进行交互。
在新无线(New Radio,NR)中,允许终端在上行授权到达之前,就把上行数据从PDCP下发到RLC中,等到上行授权到达之后,再发送到媒体接入控制(Media Access Control,MAC),从而减轻对于终端的瞬时处理能力要求,在终端的某个分裂承载有预处理的场景下,如何进行上行授权是需要解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种上行授权的方法和终端设备,有利于提高上行授权的性能。
第一方面,提供了一种上行授权的方法,该方法包括:终端设备确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,该第一数据量P和该第二数据量Q之和等于该终端设备的分组数据汇聚协议PDCP层缓存的第三数据量C和该终端设备的无线链路控制RLC层缓存的第四数据量M之和,该第四数据量M包括该RLC层缓存中等待新传的数据量,该终端设备通过第一RLC层与该第一网络设备进行交互,该终端设备通过第二RLC层与该第二网络设备进行交互;该终端设备向该第一网络设备发送该第一数据量P和向该第二网络设备发送该第二数据量Q。
由终端设备确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,有利于避免由于第一网络设备和第二网络设备均为PDCP层缓存的所有数据量进行资源分配而导致的资源浪费,提高了上行授权的性能。
RLC层缓存的数据量包括等待新传的数据量和/或等待重传的数据量。
在一种可能的实现方式中,该RLC层缓存中等待新传的数据量包括在该终端设备接收到该第一网络设备发送的上行授权信息之前,从该PDCP层进入到该第一RLC层进行预处理的数据量,和/或,在该终端设备接收到该第二网络设备发送的上行授权信息之前,从该PDCP层进入到该第二RLC层进行预处理的数据量。
在一种可能的实现方式中,该第四数据量M包括该第一RLC层缓存的第五数据量A和该第二RLC层缓存的第六数据量B,P≥A,Q≥B。
在一种可能的实现方式中,该终端设备确定该第一数据量P和该第二数据量Q,包括:该终端设备根据第一信息,确定该第一数据量P和该第二数据量Q。
在一种可能的实现方式中,该第一信息为分配系数a,该分配系数a用于在该第一网络设备和该第二网络设备之间分配该第三数据量C。
在一种可能的实现方式中,P=A+a*C,Q=B+(1-a)*C。
在一种可能的实现方式中,若a*(A+B+C)<A,P=A且Q=B+C。
在一种可能的实现方式中,若(1-a)*(A+B+C)<B,P=A+C且Q=B。
在一种可能的实现方式中,若a*(A+B+C)>A且(1-a)*(A+B+C)>B,P=a*(A+B+C)且Q=(1-a)*(A+B+C)。
在一种可能的实现方式中,a=0,或a=1,或0<a<1。
在一种可能的实现方式中,该方法还包括:该终端设备确定该分配系数a。
在一种可能的实现方式中,该分配系数a由该第一网络设备和/或该第二网络设备通过信令指定的。
在一种可能的实现方式中,该终端设备确定该第一数据量P和该第二数据量Q,包括:在该第四数据量M和该第三数据量C之和大于门限的情况下,该终端设备确定该第一数据量P和该第二数据量Q。
在一种可能的实现方式中,该方法还包括:该终端设备接收该第一网络设备基于该第一数据量P发送的第一上行授权信息和该第二网络设备基于该第二数据量Q发送的第二上行授权信息。
在一种可能的实现方式中,该第一网络设备为主小区组MCG的网络设备,该第二网络设备为辅小区组SCG的网络设备。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述各方面所设计的程序。
第五方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了双连接场景下的分裂承载的协议架构图。
图3示出了本申请实施例的上行授权的方法的示意性框图。
图4示出了本申请实施例的终端设备的示意性框图。
图5示出了本申请实施例的终端设备的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、 通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服 务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
本领域技术人员理解,可以将一个PDCP下面分别连接两个或者更多RLC,这样的一个承载可以称为是分裂承载。下面将结合图2简单介绍在双连接场景下的分裂承载的协议架构。对于上下行来讲,PDCP位于某一个小区组(Cell Group,CG),该CG即为锚小区组(anchor CG),其中CG包括主小区组(Main Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG),PDCP可以将PDCP协议数据单元(Protocol Data Unit,PDU)发送到MCG和SCG中的RLC,从而可以利用两个连接进行数据传输,数据经过不同小区组的RLC,媒体接入控制(Media Access Control,MAC),再经过空口到达终端(下行)或者基站(上行)相应的MAC,RLC层,最后再汇聚到PDCP,从而最终将数据递交到高层。
在LTE中,上层数据到达后停留在PDCP层,当MCG或者SCG有上行资源授权到达终端设备时,终端设备再把数据向下送到主小区组或者辅小区组的RLC层,从而最终发给网络侧。这样的处理方式坏处在于只有等到上行资源授权达到终端设备时,终端设备才会将数据从PDCP下发到RLC,产生RLC PDU,并进而产生MAC PDU,对于终端设备的瞬时处理能力要求太高。
在NR中,对于该问题提出了预处理(pre-processing),即允许终端设备在上行资源授权达到终端设备之前,就把数据从PDCP下发到RLC,产生RLC PDU,等到上行资源授权达到之后,进而产生MAC PDU,从而减轻对于UE的瞬时处理能力要求。如何在终端设备对某个分裂承载的数据进行预处理的场景下进行上行授权是需要解决的问题。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请中多处以一个分裂承载为一个PDCP连接两个RLC为例进行描述,一个分裂承载还可以是一个PDCP连接三个或四个RLC,本 申请实施例并不限于此。
图3示出了本申请实施例的上行授权的方法100的示意性框图。如图3所示,该方法100包括以下部分内容或全部内容:
S110,终端设备确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,该第一数据量P和该第二数据量Q之和等于该终端设备的分组数据汇聚协议PDCP层缓存的第三数据量C和该终端设备的无线链路控制RLC层缓存的第四数据量M之和,该第四数据量M包括该RLC层缓存中等待新传的数据量,该终端设备通过第一RLC层与该第一网络设备进行交互,该终端设备通过第二RLC层与该第二网络设备进行交互。
S120,该终端设备向该第一网络设备发送该第一数据量P和向该第二网络设备发送该第二数据量Q。
可选地,该第二数据量包括该第一RLC层缓存的第三数据量A和/或该第二RLC层缓存的第四数据量B。
具体而言,本申请实施例针对的是终端设备的某一个分裂承载,两个小区组内各自的网络设备是通过如图2所示的链路与终端设备进行交互,其中,该分裂承载的网络侧PDCP位于小区组CG1。在本申请实施例中,待传输的数据量既包括PDCP层缓存的数据量,又包括RLC层缓存的数据量,RLC层缓存的数据量可以是CG1链路上的RLC层缓存的数据量和/或CG2链路上的RLC层缓存的数据量。其中,RLC层缓存的数据量又可以包括RLC层缓存中等待新传的数据量和RLC层缓存中等待重传的数据量。所谓RLC层缓存的数据量可以包括在UE接收到上行授权之前,预先从PDCP层进入CG1链路上的RLC层的数据量和/或进入CG2链路上的RLC层的数据量。应理解,本申请实施例多处描述的该RLC层缓存的数据量是包括等待初传的数据量,即包括已进行预处理的数据量,该RLC层缓存的数据量也可以是只有等待重传的数据量,只要该RLC层缓存有数据即可,本申请实施例对此不构成限定。
本领域技术人员理解,UE需要向网络上报被调度的数据量,也就是缓冲区状态报告(Buffer State Report,BSR),网络在接收到BSR之后才会对UE上报的数据量进行资源分配。而此时的待传输数据量可能会分为两部分,一部分是RLC层缓存的数据量,例如,可以包括在UE接收到上行授权之前,预先从PDCP层进入到CG1和/或CG2链路上的RLC层的数据。另外一部 分是PDCP层缓存的数据量。对于PDCP层缓存的数据,可以由CG1和CG2各自的网络设备共同承担,也就是说可以由CG1的网络设备承担PDCP层缓存的部分数据,而由CG2的网络设备来承担PDCP层缓存的另外一部分数据。例如,终端设备可以只对该PDCP层缓存的数据量根据分配系数进行分配,也就是说,终端设备可以向CG1的网络设备上报CG1链路上RLC层缓存的数据量以及根据分配系数确定的应该由CG1的网络设备承担的PDCP层缓存的部分数据量之和,而终端设备可以向CG2的网络设备上报在CG2链路RLC层缓存的数据量以及根据分配系数确定的由CG2的网络设备承担的PDCP层缓存的另外一部分数据量之和。这样,有利于避免由于CG1和CG2各自的网络设备均为PDCP层缓存的所有数据量进行资源分配而导致的资源浪费,提高了上行授权的性能。
应理解,在本申请实施例中,可以包括以下场景:终端设备在接收到上行授权之前,只有CG1链路上的RLC层缓存有数据或者只有CG2链路上的RLC层缓存有数据,或者CG1链路上的RLC层和CG2链路上的RLC层均缓存有数据。
可选地,在本申请实施例中,该终端设备确定该第一数据量P和该第二数据量Q,包括:该终端设备根据第一信息,确定该第一数据量P和该第二数据量Q。
具体地,终端设备可以根据一个信息,例如该信息可以包括一个比特位,0表示将PDCP层缓存的数据量C全部向第一网络设备上报,1表示将PDCP层缓存的数据量全部向第二网络设备上报,也就是说该信息为0的情况下,P=A+C,Q=B;该信息为1的情况下,P=A,Q=B+C。应理解,本申请实施例对该信息通过什么方式体现以及通过什么规则确定数据量P和数据量Q不作限定,只要数据量P和数据量Q是由终端设备分配的即可。
可选地,在本申请实施例中,该第一信息为分配系数a,该分配系数a用于在该第一网络设备和该第二网络设备之间分配该第三数据量C。其中,a可以为0,例如,可以是P=A,Q=B+C;a也可以为1,例如,可以是P=A+C,Q=B。a还可以是0和1之间的数,例如可以是0.1,0.2,0.5,0.8等,a也可以是除上述列举之外0和1之间的数值。
可选地,该终端设备可以根据分配系数a,只针对PDCP层缓存的数据量C来确定数据量P和数据量Q,例如,可以使P=A+a*C,Q=B+(1-a)*C。 也就是说,第一网络设备不仅要调度自己链路上RLC层缓存的数据,还要调度数据量为a*C的PDCP缓存的部分数据。第二网络设备不仅要调度自己链路上RLC层缓存的数据,还要调度数据量为(1-a)*C的PDCP层缓存的数据。
可选地,该终端设备也可以针对PDCP层缓存的数据量C和RLC层缓存的数据量M之和也就是PDCP层缓存的数据量C、第一RLC层缓存的数据量A和第二RLC层缓存的数据量之和来确定数据量P和数据量Q。例如,若a*(A+B+C)≤A,P=A且Q=B+C。若(1-a)*(A+B+C)≤B,P=A+C且Q=B。若a*(A+B+C)>A且(1-a)*(A+B+C)>B,P=a*(A+B+C)且Q=(1-a)*(A+B+C)。也就是说,在确定数据量P和数据量Q之前,可以先将a*(A+B+C)与数据量A进行比较,由于在终端设备接收到上行授权之前,已经有数据量A的数据缓存在第一RLC层,那么终端设备至少要向第一网络设备上报数据量A,如果a*(A+B+C)<A,那么终端设备可以向第一网络设备上报的数据量P=A,或者也可以向第一网络设备上报大于A,且小于或等于(A+C)的数据量。终端设备可以向第二网络设备上报数据量Q=(B+C),或者向第二网络设备上报的数据量Q为所有待传输数据量与向第一网络设备上报的数据量之差。如果a*(A+B+C)>A,那么终端设备要进一步判断(1-a)*(A+B+C)与数据量B的大小关系,若进一步地(1-a)*(A+B+C)>B,那么终端设备可以向第一网络设备上报的数据量P=a*(A+B+C),终端设备可以向第二网络设备上报的数据量Q=(1-a)*(A+B+C)。如果(1-a)*(A+B+C)<B,那么终端设备至少保证向第二网络设备上报的数据量Q=B,向第一网络设备上报的数据量P为所有待传输数据量与向第二网络设备上报的数据量之差。
可选地,在本申请实施例中,该分配系数a可以是由终端设备自行确定的,也可以是由协议规定的,预先存储在终端设备的,或者也可以是由网络设备控制的,例如可以通过第一网络设备和/或第二网络设备的信令指定,本申请对此不构成限定。
可选地,在本申请实施例中,该终端设备确定第一数据量P和第二数据量Q,包括:在该第四数据量M和该第三数据量C之和大于门限的情况下,该终端设备确定该第一数据量P和该第二数据量Q。
可选地,该待传输数据量也就是本申请实施例中的数据量A、数据量B和数据量C之和大于门限。可以为待传输数据量设置一个门限,若该待传输 数据量小于门限,那么终端设备可以将PDCP层缓存的数据量以及MSG链路上的RLC层缓存的数据量之和一起上报给MSG的网络设备;若该待传输数据量大于门限,那么可以采用本申请实施例的方案,进一步地可以提高上行授权的性能。
可选地,在本申请实施例中,该第一网络设备为主小区组MCG中的网络设备,该第二网络设备为辅小区组SCG中的网络设备。也就是说,上述CG1和CG2可以分别为MCG和SCG。若PDCP位于MSG,则该分裂承载为主小区组分裂承载,若PDCP位于SCG,则该分裂承载为辅小区组分裂承载。
可选地,在本申请实施例中,该方法还包括:该终端设备接收该第一网络设备基于该第一数据量P发送的第一上行授权信息和该第二网络设备基于该第二数据量Q发送的第二上行授权信息。
本领域技术人员理解,终端设备在向网络设备上报了数据量之后,网络设备向终端设备发送上行授权信息,向终端设备指示基于该数据量分配的上行资源。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。并且相关内容在上述方法100中已经作了详尽描述,为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的上行授权的方法,下面将结合图4和图5,描述根据本申请实施例的上行授权的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图4示出了本申请实施例的终端设备200的示意性框图。如图4所示,该终端设备200包括:
确定单元210,用于确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,该第一数据量P和该第二数据量Q之和等于该终端设备的分组数据汇聚协议PDCP层缓存的第三数据量C和该终端设备的无线链路控制RLC层缓存的第四数据量M之和,该第四数据量M包括该RLC层缓存中等待新传的数据量,该终端设备通过第一RLC层与该第一网 络设备进行交互,该终端设备通过第二RLC层与该第二网络设备进行交互;
发送单元220,用于向该第一网络设备发送该第一数据量P和向该第二网络设备发送该第二数据量Q。
本申请实施例的终端设备,有利于避免由于CG1和CG2各自的网络设备均为PDCP层缓存的所有数据量进行资源分配而导致的资源浪费,提高了上行授权的性能。
可选地,在本申请实施例中,该RLC层缓存中等待新传的数据量包括在该终端设备接收到该第一网络设备发送的上行授权信息之前,从该PDCP层进入到该第一RLC层进行预处理的数据量,和/或,在该终端设备接收到该第二网络设备发送的上行授权信息之前,从该PDCP层进入到该第二RLC层进行预处理的数据量。
可选地,在本申请实施例中,该第四数据量M包括该第一RLC层缓存的第五数据量A和该第二RLC层缓存的第六数据量B,P≥A,Q≥B。
可选地,在本申请实施例中,该确定单元具体用于:该终端设备根据第一信息,确定该第一数据量P和该第二数据量Q。
可选地,在本申请实施例中,该第一信息为分配系数a,该分配系数a用于在该第一网络设备和该第二网络设备之间分配该第三数据量C。
可选地,在本申请实施例中,P=A+a*C,Q=B+(1-a)*C。
可选地,在本申请实施例中,若a*(A+B+C)<A,P=A且Q=B+C。
可选地,在本申请实施例中,若(1-a)*(A+B+C)<B,P=A+C且Q=B。
可选地,在本申请实施例中,若a*(A+B+C)>A且(1-a)*(A+B+C)>B,P=a*(A+B+C)且Q=(1-a)*(A+B+C)。
可选地,在本申请实施例中,a=0,或a=1,或0<a<1。
可选地,在本申请实施例中,该确定单元还用于:确定该分配系数a。
可选地,在本申请实施例中,该分配系数a由该第一网络设备和/或该第二网络设备通过信令指定的。
可选地,在本申请实施例中,该确定单元具体用于:在该第四数据量M和该第三数据量C之和大于门限的情况下,确定该第一数据量P和该第二数据量Q。
可选地,在本申请实施例中,该终端设备还包括:接收单元,用于接收该第一网络设备基于该第一数据量P发送的第一上行授权信息和该第二网 络设备基于该第二数据量Q发送的第二上行授权信息。
可选地,在本申请实施例中,该第一网络设备为主小区组MCG的网络设备,该第二网络设备为辅小区组SCG的网络设备。
应理解,根据本申请实施例的终端设备200可对应于本申请方法实施例中的终端设备,并且终端设备200中的各个单元的上述和其它操作和/或功能分别为了实现图3方法中终端设备的相应流程,为了简洁,在此不再赘述。
如图5所示,本申请实施例还提供了一种终端设备300,该终端设备300可以是图3中的终端设备200,其能够用于执行与图3方法100对应的终端设备的内容。该终端设备300包括:输入接口310、输出接口320、处理器330以及存储器340,该输入接口310、输出接口320、处理器330和存储器340可以通过总线系统相连。该存储器340用于存储包括程序、指令或代码。该处理器330,用于执行该存储器340中的程序、指令或代码,以控制输入接口310接收信号、控制输出接口320发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的终端设备,有利于避免由于CG1和CG2各自的网络设备均为PDCP层缓存的所有数据量进行资源分配而导致的资源浪费,提高了上行授权的性能。
应理解,在本申请实施例中,该处理器330可以是中央处理单元(Central Processing Unit,CPU),该处理器330还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器340可以包括只读存储器和随机存取存储器,并向处理器330提供指令和数据。存储器340的一部分还可以包括非易失性随机存取存储器。例如,存储器340还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器330中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只 读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器330,处理器330读取存储器340中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,终端设备200的确定单元可以由图5中的处理器330实现,终端设备200的发送单元可以由图5中的输出接口320实现。终端设备200的接收单元可以由图5中的输入接口310实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分 可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (28)

  1. 一种上行授权的方法,其特征在于,包括:
    终端设备确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,所述第一数据量P和所述第二数据量Q之和等于所述终端设备的分组数据汇聚协议PDCP层缓存的第三数据量C和所述终端设备的无线链路控制RLC层缓存的第四数据量M之和,所述第四数据量M包括所述RLC层缓存中等待新传的数据量,所述终端设备通过第一RLC层与所述第一网络设备进行交互,所述终端设备通过第二RLC层与所述第二网络设备进行交互;
    所述终端设备向所述第一网络设备发送所述第一数据量P和向所述第二网络设备发送所述第二数据量Q。
  2. 根据权利要求1所述的方法,其特征在于,所述RLC层缓存中等待新传的数据量包括在所述终端设备接收到所述第一网络设备发送的上行授权信息之前,从所述PDCP层进入到所述第一RLC层进行预处理的数据量,和/或,在所述终端设备接收到所述第二网络设备发送的上行授权信息之前,从所述PDCP层进入到所述第二RLC层进行预处理的数据量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第四数据量M包括所述第一RLC层缓存的第五数据量A和所述第二RLC层缓存的第六数据量B,P≥A,Q≥B。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备确定所述第一数据量P和所述第二数据量Q,包括:
    所述终端设备根据第一信息,确定所述第一数据量P和所述第二数据量Q。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息为分配系数a,所述分配系数a用于在所述第一网络设备和所述第二网络设备之间分配所述第三数据量C。
  6. 根据权利要求5所述的方法,其特征在于,P=A+a*C,Q=B+(1-a)*C。
  7. 根据权利要求5所述的方法,其特征在于,若a*(A+B+C)<A,P=A且Q=B+C。
  8. 根据权利要求5所述的方法,其特征在于,若(1-a)*(A+B+C)<B,P=A+C且Q=B。
  9. 根据权利要求5所述的方法,其特征在于,若a*(A+B+C)>A且(1-a)*(A+B+C)>B,P=a*(A+B+C)且Q=(1-a)*(A+B+C)。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,a=0,或a=1,或0<a<1。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定所述分配系数a。
  12. 根据权利要求5至10中任一项所述的方法,其特征在于,所述分配系数a由所述第一网络设备和/或所述第二网络设备通过信令指定的。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述终端设备确定所述第一数据量P和所述第二数据量Q,包括:
    在所述第四数据量M和所述第三数据量C之和大于门限的情况下,所述终端设备确定所述第一数据量P和所述第二数据量Q。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述第一网络设备基于所述第一数据量P发送的第一上行授权信息和所述第二网络设备基于所述第二数据量Q发送的第二上行授权信息。
  15. 一种终端设备,其特征在于,包括:
    确定单元,用于确定向第一网络设备上报的第一数据量P和向第二网络设备上报的第二数据量Q,所述第一数据量P和所述第二数据量Q之和等于所述终端设备的分组数据汇聚协议PDCP层缓存的第三数据量C和所述终端设备的无线链路控制RLC层缓存的第四数据量M之和,所述第四数据量M包括所述RLC层缓存中等待新传的数据量,所述终端设备通过第一RLC层与所述第一网络设备进行交互,所述终端设备通过第二RLC层与所述第二网络设备进行交互;
    发送单元,用于向所述第一网络设备发送所述第一数据量P和向所述第二网络设备发送所述第二数据量Q。
  16. 根据权利要求15所述的终端设备,其特征在于,所述RLC层缓存中等待新传的数据量包括在所述终端设备接收到所述第一网络设备发送的上行授权信息之前,从所述PDCP层进入到所述第一RLC层进行预处理的 数据量,和/或,在所述终端设备接收到所述第二网络设备发送的上行授权信息之前,从所述PDCP层进入到所述第二RLC层进行预处理的数据量。
  17. 根据权利要求15或16所述的终端设备,其特征在于,所述第四数据量M包括所述第一RLC层缓存的第五数据量A和所述第二RLC层缓存的第六数据量B,P≥A,Q≥B。
  18. 根据权利要求17所述的终端设备,其特征在于,所述确定单元具体用于:
    所述终端设备根据第一信息,确定所述第一数据量P和所述第二数据量Q。
  19. 根据权利要求18所述的终端设备,其特征在于,所述第一信息为分配系数a,所述分配系数a用于在所述第一网络设备和所述第二网络设备之间分配所述第三数据量C。
  20. 根据权利要求19所述的终端设备,其特征在于,P=A+a*C,Q=B+(1-a)*C。
  21. 根据权利要求19所述的终端设备,其特征在于,若a*(A+B+C)<A,P=A且Q=B+C。
  22. 根据权利要求19所述的终端设备,其特征在于,若(1-a)*(A+B+C)<B,P=A+C且Q=B。
  23. 根据权利要求19所述的终端设备,其特征在于,若a*(A+B+C)>A且(1-a)*(A+B+C)>B,P=a*(A+B+C)且Q=(1-a)*(A+B+C)。
  24. 根据权利要求19至23中任一项所述的终端设备,其特征在于,a=0,或a=1,或0<a<1。
  25. 根据权利要求19至24中任一项所述的终端设备,其特征在于,所述确定单元还用于:
    确定所述分配系数a。
  26. 根据权利要求19至24中任一项所述的终端设备,其特征在于,所述分配系数a由所述第一网络设备和/或所述第二网络设备通过信令指定的。
  27. 根据权利要求15至26中任一项所述的终端设备,其特征在于,所述确定单元具体用于:
    在所述第四数据量M和所述第三数据量C之和大于门限的情况下,确定所述第一数据量P和所述第二数据量Q。
  28. 根据权利要求15至27中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收单元,用于接收所述第一网络设备基于所述第一数据量P发送的第一上行授权信息和所述第二网络设备基于所述第二数据量Q发送的第二上行授权信息。
PCT/CN2017/118396 2017-12-25 2017-12-25 上行授权的方法和终端设备 WO2019126962A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/118396 WO2019126962A1 (zh) 2017-12-25 2017-12-25 上行授权的方法和终端设备
CN201780091633.XA CN110710325B (zh) 2017-12-25 2017-12-25 上行授权的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118396 WO2019126962A1 (zh) 2017-12-25 2017-12-25 上行授权的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2019126962A1 true WO2019126962A1 (zh) 2019-07-04

Family

ID=67063702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118396 WO2019126962A1 (zh) 2017-12-25 2017-12-25 上行授权的方法和终端设备

Country Status (2)

Country Link
CN (1) CN110710325B (zh)
WO (1) WO2019126962A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169051A1 (zh) * 2022-03-09 2023-09-14 Oppo广东移动通信有限公司 数据传输方法、装置、电子设备和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541099A (zh) * 2008-03-21 2009-09-23 中兴通讯股份有限公司 缓冲区状态报告方法及装置、数据量设置方法
WO2015109534A1 (zh) * 2014-01-24 2015-07-30 华为技术有限公司 上报/获取缓冲区状态的方法、用户设备及网络设备
CN106105304A (zh) * 2014-02-24 2016-11-09 英特尔公司 Lte网络中的双连接性中的协调上行授权分配的缓冲区状态报告的增强
WO2017007147A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Method for triggering buffer status report in dual connectivity and a device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541099A (zh) * 2008-03-21 2009-09-23 中兴通讯股份有限公司 缓冲区状态报告方法及装置、数据量设置方法
WO2015109534A1 (zh) * 2014-01-24 2015-07-30 华为技术有限公司 上报/获取缓冲区状态的方法、用户设备及网络设备
CN106105304A (zh) * 2014-02-24 2016-11-09 英特尔公司 Lte网络中的双连接性中的协调上行授权分配的缓冲区状态报告的增强
WO2017007147A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Method for triggering buffer status report in dual connectivity and a device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169051A1 (zh) * 2022-03-09 2023-09-14 Oppo广东移动通信有限公司 数据传输方法、装置、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN110710325B (zh) 2021-03-09
CN110710325A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2019192596A1 (zh) 传输数据的方法及其装置和系统
US20190141702A1 (en) Data Transmission Method, Network Device, And Terminal Device
US11582644B2 (en) System for performing split bearer operation using packet data convergence protocol (PDCP)
US11229044B2 (en) Uplink transmission method, and terminal device
WO2018227814A1 (zh) 数据指示方法、装置、通信系统
WO2020007302A1 (zh) 一种通信方法及相关设备
EP3634076A1 (en) Method and device for processing data
KR20220050964A (ko) 업링크 신호 송신 방법 및 장치, 및 업링크 신호 수신 방법 및 장치
US11252746B2 (en) Method for data transmission, terminal device and network device
WO2019126962A1 (zh) 上行授权的方法和终端设备
WO2022155924A1 (zh) 无线通信方法、终端设备和网络设备
WO2019126963A1 (zh) 上行授权的方法、网络设备和终端设备
WO2020103714A1 (zh) 一种缓存管理的方法及相应设备
WO2021088004A1 (zh) 一种信道处理方法及装置、终端设备
WO2021026847A1 (zh) 无线通信的方法和设备
WO2019213893A1 (zh) 通信方法和终端设备
WO2019028824A1 (zh) 用于传输数据的方法、终端设备和网络设备
CA3064631C (en) Method and device for transmitting data
WO2018145269A1 (zh) 业务的传输方法、终端和网络设备
WO2019061037A1 (zh) 用于数据处理的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935993

Country of ref document: EP

Kind code of ref document: A1