WO2015003388A1 - 一种削波方法、装置及系统 - Google Patents

一种削波方法、装置及系统 Download PDF

Info

Publication number
WO2015003388A1
WO2015003388A1 PCT/CN2013/079306 CN2013079306W WO2015003388A1 WO 2015003388 A1 WO2015003388 A1 WO 2015003388A1 CN 2013079306 W CN2013079306 W CN 2013079306W WO 2015003388 A1 WO2015003388 A1 WO 2015003388A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission channel
channel
clipping
input signal
delay
Prior art date
Application number
PCT/CN2013/079306
Other languages
English (en)
French (fr)
Inventor
张彦
李晶
王健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/079306 priority Critical patent/WO2015003388A1/zh
Priority to CN201380001844.1A priority patent/CN103718525B/zh
Publication of WO2015003388A1 publication Critical patent/WO2015003388A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping

Definitions

  • the present invention relates to the field of communications, and in particular, to a clipping method, apparatus, and system. Background technique
  • Orthogonal Frequency Division Multiplexing (OFDM) technology is a kind of multi-carrier transmission technology and has many advantages. It has become the core technology of the fourth generation mobile communication.
  • OFDM Orthogonal Frequency Division Multiplexing
  • an OFDM signal is composed of N independently modulated subcarriers in the time domain, since the envelope values of each subcarrier are statistically independent, and the amplitude of the OFDM signal is superposed by N subcarrier signals.
  • N subcarrier signals When the number of subcarriers is large, a large peak-to-average ratio is generated, which requires that the nonlinear devices in the system must have a large dynamic range, and the power amplifier with a large dynamic range has high cost and a large peak. Therefore, the possibility of nonlinear distortion caused by nonlinear devices becomes large.
  • the Active Antenna System also has a problem of high peak-to-average ratio. Therefore, how to reduce the peak-to-average ratio of signals is a key topic in this field.
  • ⁇ Clip algorithm can effectively reduce the signal peak-to-average ratio.
  • peak-superimposed noise is a widely used method.
  • the clipping module in AAS has always borrowed the traditional radio remote unit (Remote Radio Unit, RRU) modules, that is, each channel has its own independent clipping module.
  • RRU Remote Radio Unit
  • Embodiments of the present invention provide a clipping method, apparatus, and system that solve the problem of requiring more system resources to be used for clipping in the prior art.
  • a clipping method for a transmitter, the transmitter comprising: converting the same signal into a different transmission N transmit channels of the signal, the method comprising:
  • the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2;
  • the clipping of the input signal of the reference transmit channel according to the reference cancellation noise includes:
  • the reference delay is a time required to obtain the reference cancellation noise
  • an input signal of each of the N transmit channels except the reference transmit channel including:
  • each of the N transmit channels except the reference transmit channel Obtaining the cancellation noise of the transmission channel by the noise related parameter of the track and the reference cancellation noise;
  • the delay of each of the N transmit channels except the reference transmit channel is obtained by the following steps:
  • the method for obtaining the reference cancellation noise includes any one or more of the following combinations: pulse clipping, peak clipping, and limitation Width wave.
  • the method for obtaining the noise related parameter includes any one or more of the following combinations: minimum mean square error MMSE, linear minimum mean square Error LMMSE, least squares LS, recursive least squares RLS, minimum mean square error LMS.
  • acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel includes any one or more of the following combinations: correlation method, parabolic interpolation method, polynomial interpolation method.
  • a clipping device for use in a transmitter,
  • the transmitter includes N transmit channels for converting the same signal to different transmit signals, the device comprising:
  • an acquiring unit configured to acquire a reference pair denoising sound according to an input signal of the reference transmitting channel; wherein, the reference transmitting channel is any one of the N transmitting channels, and N is an integer greater than or equal to 2;
  • a first clipping unit configured to clip an input signal of the reference transmission channel according to the reference cancellation noise acquired by the acquiring unit
  • a second clipping unit configured to clip an input signal of each of the N transmitting channels except the reference transmitting channel according to the reference cancellation noise acquired by the acquiring unit.
  • the first clipping unit includes:
  • a first delay module configured to delay, according to a reference delay, an input signal of the reference transmit channel to obtain a first input signal of the reference transmit channel, where the reference delay is to obtain the reference cancellation The time required for noise;
  • a first clipping module configured to obtain the reference transmission channel according to the reference cancellation noise acquired by the acquiring unit and the first input signal of the reference transmission channel obtained by the first delay module The input signal after the wave.
  • the second clipping unit includes:
  • a first acquiring module configured to acquire noise related parameters of each of the N transmitting channels except the reference transmitting channel
  • a second acquiring module configured to: according to the noise-related parameter of each of the N transmit channels that are acquired by the first acquiring module, except the reference transmit channel, and the acquired by the acquiring unit Obtaining cancellation noise of the transmitting channel by referring to cancellation noise;
  • a second delay module configured to delay an input signal of the transmit channel according to a delay of each of the N transmit channels except the reference transmit channel Obtaining a first input signal of the transmitting channel
  • a second clipping module configured to obtain, according to the cancellation noise of each of the N transmit channels acquired by the second acquiring module, except the reference transmit channel, and the second delay module
  • the first input signal of the transmitting channel obtains an input signal after clipping of the transmitting channel.
  • the second clipping unit further includes a fifth acquiring module, configured to obtain a delay of each of the N transmitting channels except the reference transmitting channel, and output the second delay Module.
  • the fifth obtaining module includes:
  • a third acquiring module configured to acquire a delay of each of the N transmitting channels except the reference transmitting channel and the reference transmitting channel;
  • a fourth acquiring module configured to: according to the reference delay and each of the N transmit channels acquired by the third acquiring module, except the reference transmit channel and the reference transmit channel Delay in acquiring the transmission channel.
  • the method for obtaining the reference cancellation noise includes any one or more of the following combinations: pulse clipping, peak clipping, and limitation Width wave.
  • the method for obtaining the noise related parameter includes any one or more of the following combinations: minimum mean square error MMSE, linear minimum mean square Error LMMSE, least squares LS, recursive least squares RLS, minimum mean square error LMS.
  • acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel includes any one or more of the following combinations: correlation method, parabolic interpolation method, polynomial interpolation method.
  • a clipping device for use in a transmitter,
  • the transmitter includes N transmit channels for converting the same signal to different transmit signals, the apparatus comprising: a processor;
  • the processor is configured to acquire reference cancellation noise according to an input signal of a reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2; Capturing an input signal of the reference transmit channel with reference to cancellation noise; clipping an input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise .
  • the processor is configured to perform clipping on an input signal of the reference transmit channel according to the reference cancellation noise, and the method further includes:
  • the processor is further configured to delay the input signal of the reference transmit channel according to a reference delay to obtain a first input signal of the reference transmit channel, where the reference delay is to obtain the reference cancellation Time required for noise; obtaining an input signal after clipping of the reference transmission channel according to the reference cancellation noise and the first input signal of the reference transmission channel.
  • the processor is configured to: according to the reference cancellation noise, each of the N transmit channels except the reference transmit channel Clipping the input signals of the transmitting channels further includes:
  • the processor is further configured to acquire a noise-related parameter of each of the N transmit channels except the reference transmit channel; and according to each of the N transmit channels except the reference transmit channel
  • the noise-related parameters of the transmitting channels and the reference cancellation noise acquire the cancellation noise of the transmitting channel; and the transmitting channel according to the delay of each of the N transmitting channels except the reference transmitting channel
  • the input signal is delayed to obtain a first input signal of the transmitting channel; and the transmitting channel is obtained according to cancellation noise and a first input signal of each of the N transmitting channels except the reference transmitting channel
  • the input signal after clipping.
  • the processor is further configured to obtain, among the N transmit channels, the reference The delay of each transmission channel outside the transmission channel includes:
  • the processor is further configured to delay an input signal of the transmit channel according to a delay of each of the N transmit channels except the reference transmit channel to obtain a Acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel before an input signal; according to the reference delay and the N transmit channels The delay of each of the transmission channels outside the reference transmission channel and the reference transmission channel acquires a delay of the transmission channel.
  • the method for obtaining the reference cancellation noise includes any one or more of the following combinations: pulse clipping, peak clipping, and limitation Width wave.
  • the method for obtaining the noise related parameter includes any one or more of the following combinations: minimum mean square error MMSE, linear minimum mean square Error LMMSE, least squares LS, recursive least squares RLS, minimum mean square error LMS.
  • acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel includes any one or more of the following combinations: correlation method, parabolic interpolation method, polynomial interpolation method.
  • an AAS comprising a transmitter, the transmitter comprising N transmit channels for converting the same signal into different transmit signals, the AAS further comprising: a clipping device.
  • the clipping device is configured to acquire reference cancellation noise according to an input signal of the reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2; Decoding the input signal of the reference transmit channel with reference to the cancellation noise; and cutting the input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise wave.
  • a transceiver including a transmitter,
  • the launcher includes N transmit channels for converting the same signal to different transmit signals, the transceiver further comprising: a clipping device.
  • the clipping device is configured to acquire reference cancellation noise according to an input signal of the reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2; Decoding the input signal of the reference transmit channel with reference to the cancellation noise; and cutting the input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise wave.
  • the clipping method, device and system provided by the embodiments of the present invention use N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and according to the input of the reference transmission channel
  • the signal acquisition reference cancels the noise, and then according to the input cancellation signal of the reference cancellation noise to the reference transmission channel and the input signals of each of the N transmission channels except the reference transmission channel, by using the reference cancellation noise Sharing each of the N transmit channels except the reference transmit channel saves the clipping resources to the original 1/N. It can avoid a certain correlation between the signals of different channels.
  • the system resources caused by the wave module are relatively large, and the power consumption of the system is also reduced, and the effect is most obvious in the AAS, which greatly improves the performance and competitiveness of the AAS.
  • FIG. 1 is a flowchart of a clipping method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the composition of an AAS in an application scenario according to the prior art provided by the present invention
  • FIG. 3 is a flowchart of a clipping method according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of a configuration of a clipping device according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of another clipping device according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another clipping device according to another embodiment of the present invention.
  • FIG. A schematic diagram of an AAS composition is provided in another embodiment.
  • FIG. 9 is a schematic diagram of a transceiver structure according to another embodiment of the present invention. detailed description
  • the clipping method, apparatus and system provided in all embodiments of the present invention are applicable to a transmitter comprising N transmitting channels for converting the same signal into a transmitted signal having a certain correlation, N being greater than or equal to An integer of 2. It can be understood that the number of transmission channels included in the transmitter may be greater than or equal to N, and the clipping method, apparatus or system in the embodiment of the present invention is directed to a signal for converting the same signal into a certain correlation. For the transmission channel, if there are another M transmission channels in the transmission channel included in the transmitter for converting another signal into another group of transmission signals having certain correlation, then the method provided in the embodiment of the present invention provides Methods, devices and systems are also suitable.
  • the transmitting signal is a signal output by the transmitting channel to be transmitted by the antenna connected to the transmitter where the transmitting channel is located, and is usually a radio frequency signal.
  • the transmitting signal with a certain correlation may refer to different sub-components of the same signal at the antenna end, and these sub-components carry information carried in the same signal, where "the same signal” refers to a signal carrying the same information. .
  • the N transmission channels for converting the same signal into a certain correlation transmission signal may be used in AAS (Active Antenna System) to convert the same baseband signal into different sub-segments
  • the transmission channel of the quantity may also be a transmission channel for converting the same signal into a main set sub-component and a diversity sub-component in the main diversity transmission technology, or may be a MIMO (multi-input multi-output) transmission technology.
  • the transmit channel can be a generic term for a series of processes through which the signal passes from the input to the transmit or a generic term for the device performing the process.
  • the transmit channel may be a series of processes through which the baseband signal passes from the base station to the antenna.
  • the processing of the baseband signal from the base station to the antenna may include digital beamforming, variable rate, and the like.
  • An embodiment of the present invention provides a clipping method, as shown in FIG. 1, applied to a transmitter, where the transmitter includes N transmitting channels for converting the same signal into different transmitting signals, and the transmitting signal is a transmitting
  • the channel outputs a signal to be transmitted by an antenna connected to the transmitter where the transmitting channel is located.
  • the signal can be a radio frequency signal.
  • N is an integer greater than or equal to 2, and the method may include:
  • the reference transmitting channel is any one of the N transmitting channels for converting the same signal into different transmitting signals in the transmitter, and the canceling noise for clipping the input signal of the reference transmitting channel is referred to as a reference.
  • the cancellation noise is used to reduce the peak-to-average ratio of the input signal.
  • pulse clipping also called Kernel clipping
  • peak clipping also called clipfilter clipping
  • clipping clipping etc.
  • the reference cancellation noise is obtained according to the input signal of the reference transmission channel.
  • the clipping process can be performed according to the prior art. Specifically, the input signal of the reference transmission channel is clipped according to the obtained reference cancellation noise.
  • the reference cancellation noise sharing can be All the transmission channels except the reference transmission channel among the N transmission channels in the transmitter, that is, other transmission channels other than the reference transmission channel among the N transmission channels can also be used to cancel the noise input according to the reference.
  • the signal is clipped.
  • the clipping method provided by the embodiment of the present invention uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and obtains a reference pair according to the input signal of the reference transmission channel. Eliminate noise, and then clip the input signal of the reference cancellation channel to the reference transmit channel and the input signal of each of the N transmit channels except the reference transmit channel, by sharing the reference cancellation noise to N
  • Each transmit channel in the transmit channel except the reference transmit channel saves the clipping resource to the original 1 /N, which avoids the existence of a separate clipping module for each channel when there is a certain correlation between signals between different channels.
  • Another embodiment of the present invention provides a clipping method applied to a transmitter, where the transmitter includes N transmitting channels for converting the same signal into different transmitting signals, and the transmitting signal is a pending output of the transmitting channel.
  • the signal can be a radio frequency signal.
  • an AAS is taken as an example in the embodiment of the present invention.
  • the AAS is an active antenna system, and the coverage can be adjusted by adjusting the beam according to the requirements of the network. Adjust to optimize network performance.
  • the antenna and transceiver are integrated into one device.
  • the antenna elements constituting the antenna are divided into groups, each of which is connected to a transceiver, or each of the antenna elements constituting the antenna is connected to a transceiver.
  • AAS generally requires more transmit channels, and in order to reduce the peak-to-average ratio of the transmitted signal, the signal in the transmit channel must be clipped.
  • Peak superposition noise is a widely used method. The main idea of the peak superposition noise method is to use additive noise to cancel the peak of the transmitted signal.
  • AAS depending on the requirements of the actual application scenario, one or more areas need to be covered, and the baseband signal input to each transmission channel may be one or more.
  • the area to be covered is one.
  • the baseband signal input to each transmitting channel has one.
  • the structure of the AAS can be as shown in Figure 2.
  • the AAS contains four transmitting channels for each of the four transmitting channels. In this case, first input the baseband signal, and then perform data beamforming, variable rate, digital up-conversion, etc.
  • the signals of each of the transmission channels are the first baseband signal and the second baseband signal, and then for each of the four transmission channels, the input first baseband signal and the second baseband signal are separately subjected to data beam assignment.
  • the processed first baseband signal and the processed second baseband signal may be subjected to multi-carrier combining processing;), and independent clipping processing is performed for each channel. Obtain the final signal, and finally use the four channels to finally obtain the signal on the antenna side for air shaping.
  • each transmitting channel transmits the same baseband signal (referring to the baseband signal carrying the same information), and different coverages can be formed after the different transmitting channels perform different digital beamforming on the baseband signal, and finally
  • the antenna side is air-shaped to form a certain beam covering the required area. Since the baseband signals transmitted by each transmitting channel are the same, even if the digital beamforming is adjusted, the transmitted signals between different transmitting channels have a certain correlation, and the resources consumed by the clipping are more, in order to reduce the clipping.
  • one of the N transmit channels of the AAS for converting the same baseband signal into a different transmit signal is selected as the reference transmit channel, only in the reference transmit channel.
  • the transmitted signal is processed to obtain reference cancellation noise, and then the obtained reference cancellation noise is shared into other transmission channels in the N transmission channels, so that this in the AAS is used to convert the same baseband signal into different transmission signals.
  • the N transmit channels can be clipped with the acquired reference cancellation noise.
  • the specific implementation method is shown in FIG. 3, and the method may include: 201. Acquire reference cancellation noise according to an input signal of the reference transmit channel.
  • the reference transmission channel according to the envelope of the input signal of the reference transmission channel and the set threshold, the peak point to be cancelled is selected, and then the reference cancellation noise is generated according to the amplitude and phase information of the peak point.
  • the reference cancellation noise can be further shaped.
  • the reference transmit channel is any one of the N transmit channels for converting the same baseband signal into a transmit signal having a certain correlation, N is an integer greater than or equal to 2, and the transmit signal is a transmit channel output.
  • the signal can be a radio frequency signal.
  • the current clipping method is more than 4 , generally there are pulse clipping (also known as Kernel clipping), peak clipping (also known as clipfilter clipping), clipping clipping, etc., through different clipping methods
  • the reference cancellation noise can be obtained, and the main difference between the various clipping methods is that the method of forming the reference cancellation noise is different.
  • the single-stage Kernel clipping is taken as an example to further describe the acquisition process of the reference cancellation noise. Specifically: In pulse clipping, firstly, according to the clipping threshold of the system configuration, the position of the signal point whose amplitude exceeds the threshold is extracted, then the amplitude and phase of these signal points are calculated, and finally the calculated result is formed. The process finally gets the cancellation noise.
  • the single-stage Kernel clipping forming process may include n Cancellation Pulse Generators (CPG), a CPG allocation module, and a CPG status indication register, and the CPG allocation module is configured to perform CPG allocation.
  • the CPG status indication register is used to indicate the usage status of each of the n CPGs (for example, an n-bit string can be used to represent the usage status of each of the n CPGs, and a CPG can be represented by a "0".
  • the current usage status is idle, and the "1" indicates that the current usage status of a CPG is occupied.
  • the specific process of the molding process may be: determining whether the current signal point is a peak point according to the peak indication, if not the peak point No operation is performed; if the current signal point is the peak point, the CPG allocation module determines whether there is an available CPG according to the usage state of each of the n CPGs indicated in the CPG status indication register, if the CPG status indication register If the mth bit in the middle is "0", it indicates that the current usage state of the mth CPG is idle, indicating that there is an available CPG, and then determining whether the time interval between the peak point and the previous peak point exceeds a preset time threshold.
  • the peak pulse of the current peak point is sent to the first free CPG, and the corresponding position in the CPG status indication register is "1", and the counter corresponding to the CPG is started simultaneously.
  • Count the modulus of the counter is the length of the pre-stored filter. If the length of the filter is Len-filter, then the counter starts counting from 0 to Len-filter-1, and finally the counter output is used as the filter coefficient table address. Then look up the table to get the coefficients needed to generate the cancellation pulse, and finally multiply the calculated result of the cancellation pulse coefficient and the amplitude and phase of the corresponding signal point to obtain the cancellation noise.
  • the input signal of the reference transmit channel can be clipped according to the reference cancellation noise.
  • the input signal of the reference transmission channel is clipped according to the reference cancellation noise.
  • the input signal of the reference transmission channel is clipped according to the reference cancellation noise.
  • one of the embodiments may be described as an example. Specifically, the following steps 202a to 202b may be included.
  • the reference delay is the time required to obtain the reference cancellation noise, and the reference delay can be obtained by logic simulation. Since there is time consumption in the process of obtaining the reference cancellation noise, it is necessary to delay the input signal of the reference transmission channel according to the reference delay obtained by the logic simulation, and obtain the first input signal after the delay.
  • the delay value of the delay of the input signal of the reference transmitting channel may be equal to the value of the reference delay, and the first input signal of the reference transmitting channel is a signal obtained by delaying the input signal of the reference transmitting channel.
  • the first input signal pair reference according to the reference cancellation noise and the reference transmission channel may be referenced.
  • the input signal of the transmitting channel is clipped to obtain the clipped input signal.
  • the signal after the clipping process can be obtained by the following formula:
  • CFR _ out(k) CFR _ in(k -D x )- Noise(k)
  • CFR_outik ⁇ is the signal after clipping
  • A is the sequence number of the time corresponding to a certain sampling point
  • A is the reference
  • the delay value corresponding to the delay value of the delay (because the processing is performed on the digital signal, the delay value can be represented by the number of lag sampling points, and the extension of this embodiment in all embodiments of the present invention
  • the time value is called the delay point corresponding to the delay value.
  • the digital signal is 64313..., and the sampling points correspond to 6, 4, 3, 1, and 3 respectively.
  • the corresponding sampling point has a value of 6.
  • ⁇ _ ⁇ ( ⁇ - ⁇ ) is the reference obtained by delaying the input signal of the reference transmission channel according to the reference delay.
  • the first input signal of the transmit channel, No «) is the reference cancellation noise
  • CFR rest Factor Reduction
  • the input signal of each of the N transmission channels except the reference transmission channel can be clipped according to the obtained reference cancellation noise.
  • the input signal of each of the N transmit channels except the reference transmit channel is clipped according to the reference cancellation noise, and the following steps may be included
  • noise-related parameters such as Minimum Mean Square Error (MMSE), Linear Minimum Mean Square Error (LMMS), and Least Square (LS).
  • MMSE Minimum Mean Square Error
  • LMMS Linear Minimum Mean Square Error
  • LS Least Square
  • RLS Recursive least square
  • LMS Least Mean Square, LMS
  • the noise-related parameters of the first transmission channel other than the reference transmission channel among the N transmission channels can be calculated by the following formula:
  • the transmit may be based on the transmit
  • the noise-related parameters of the channel and the reference cancellation noise acquire the cancellation noise of the transmission channel. For example, need to get Taking the cancellation noise of the first transmission channel can be obtained by the following formula:
  • Noise q (k) Among them, N. « ⁇ ( t) is the cancellation noise of the gth transmit channel, which is the sequence number of the time corresponding to a certain sampling point, and ⁇ is the pth noise-related parameter of the gth transmit channel, which is the reference cancellation noise of the reference transmit channel, For reference, the signal obtained after canceling the noise delay P points is used.
  • different transmit channels need different digital beamforming for input signals, such as baseband signals, that is, baseband signals of different transmit channels need to be multiplied by different carrier (Digital Beam Forming, dBF) digital beam assignment.
  • the shape parameters, as well as the other transmit channels except the reference transmit channel in the N transmit channels, need to obtain reference cancellation noise from the reference transmit channel. Therefore, the delay between different transmit channels is also different, so it is better.
  • the delays of different transmission channels are respectively calculated, wherein the dBF parameter is a parameter required for performing digital beamforming processing according to the antenna tilt angle.
  • the delay between the transmitting channels is relatively easy to obtain because of the strong correlation between different transmitting channels.
  • the delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel can be obtained by many calculation methods, such as correlation method, parabolic interpolation method, polynomial interpolation method, etc. It is a prior art in the art, and details are not described herein.
  • the correlation method can be used to calculate the delay between the first transmit channel and the reference transmit channel in the AAS except for the reference transmit channel.
  • delay indicating the delay corresponding to the delay value of the delay between the gth transmit channel and the reference transmit channel.
  • the number of time points since the reference transmitting channel and the g-th transmitting channel have the same sampling frequency, the delay value of the delay between the g-th transmitting channel and the reference transmitting channel is The number of delay points should be a positive integer, which is the sequence number of the time corresponding to a certain sampling point, and takes a positive integer, which is a cross-correlation function.
  • XCWT ( ) is used to obtain the time between the gth transmitting channel and the reference transmitting channel.
  • the delay time corresponding to the delay value is the correlation value of the time, s ref ⁇ k, which is the input signal of the reference transmitting channel, and is the input signal delay of the gth transmitting channel.
  • A is the number of sampling points required to obtain the correlation value
  • M is the delay point corresponding to the delay value of the delay between the gth transmitting channel and the reference transmitting channel. The maximum value, where M can be obtained based on the number of delay points of the processing that the signal passes through in the transmit channel.
  • the delay between the gth transmitting channel and the reference transmitting channel is ⁇ according to the following formula. :
  • [value, index] max(abs(xcorr q (0 : M - 1))) where max refers to the maximum value and xcwr is the cross-correlation function used to find the gth transmit channel and the reference transmit channel.
  • the delay value corresponding to the delay value corresponds to the correlation value when the delay point is 0 ⁇ M - 1
  • afc is the absolute value function, which is used to determine the delay of the delay between the gth transmit channel and the reference transmit channel.
  • the absolute value of the correlation value when the number of delay points corresponding to the value is 0 ⁇ M - 1.
  • the [] formula can obtain two results according to the right side of the equation.
  • the index of the maximum and maximum values of xcorr q ( ) is obtained, and the value represents the maximum value of the absolute value of the correlation value, that is, the first transmission channel and
  • the delay value corresponding to the delay value of the reference transmission channel is the maximum value of the absolute value of the correlation value of 0 to M - 1, and M is the delay of the delay between the reference transmission channel and the first transmission channel.
  • the maximum value of the delay point corresponding to the value, the index index is the value of "xcwr") when the maximum value is taken, that is, the index index is the delay point corresponding to the delay value of the delay.
  • the delay point corresponding to the delay value of the delay between the gth transmitting channel and the reference transmitting channel is AD a , that is, ⁇ ).
  • the delay of the transmit channel is obtained according to the reference delay and the delay of the transmit channel and the reference transmit channel.
  • the reference transmit is performed for the N transmit channels.
  • Each of the transmission channels outside the channel can acquire the delay of the transmission channel according to the reference delay and the delay of the transmission channel and the reference transmission channel.
  • the delay value corresponding to the delay value of the reference delay is A
  • the corresponding delay point number is ⁇
  • the delay formula corresponding to the delay value of the delay of the gth transmission channel is calculated as:
  • step of obtaining the delay value of the delay of each of the N transmit channels except the reference transmit channel may be step 203c-203d, and steps 203c-203d are Obtaining an optional implementation manner of obtaining a delay value of a delay of each of the N transmit channels except the reference transmit channel may also be replaced by other implementation manners.
  • the acquisition process of the cancellation noise of each of the N transmit channels except the reference transmit channel and the order of the N transmit channels are obtained, that is, the N transmit channels are acquired.
  • Steps 203 a-203b of canceling noise for each of the transmission channels other than the reference transmission channel, and steps 203 c-203d for acquiring delays of each of the N transmission channels except the reference transmission channel are not executed in the order Successive relationship, under normal circumstances, can also be executed at the same time.
  • the following steps 203e-203f acquire steps 203a-203b of the cancellation noise of each of the N transmission channels except the reference transmission channel, and acquire each of the N transmission channels except the reference transmission channel.
  • the steps 203c-203d of the delay are performed after the execution is completed.
  • the time of the transmit channel may be determined according to the time of the transmit channel. Extend the input signal to the transmit channel The line delay results in a first input signal to the transmit channel.
  • the input signal after the clipping of the transmit channel is obtained according to the cancellation noise of the transmit channel and the first input signal.
  • the transmitting channel can be used to clip the input signal of the transmitting channel.
  • the signal after clipping can be obtained by the following formula:
  • A is the sequence number of the time corresponding to a certain sampling point, and takes a positive integer
  • CFR _ OU t q i ⁇ ⁇ ) g the signal after the transmission channel is clipped
  • is the delay of the gth transmission channel
  • ( : ⁇ — ⁇ -! ⁇ is the first input signal of the first transmitting channel obtained by delaying the input signal according to the delay of the gth transmitting channel
  • CFR is the crest factor attenuation.
  • the peak regeneration may be caused when the reference cancellation noise is formed, it is usually possible to use multiple clipping cascades, and the latter clipping is used to output the signals of the previous first clipping.
  • the peak of regeneration or the peak of unprocessed is again subjected to clipping processing according to the above steps 201 - 203.
  • the transmitter includes N transmission channels for converting the same signal into different transmission signals, which may be in the embodiment of the present invention.
  • Clipping processing is performed separately in the X transmitting channels in one of the transmitting channels, wherein X is greater than or equal to 1 and less than or equal to N-1, that is, for each of the X transmitting channels of the N transmitting channels.
  • the cancellation noise of the transmission channel can be obtained according to the input signal of the transmission channel, and then the input signal of the transmission channel is clipped according to the obtained cancellation noise, and the X transmission channels are excluded for the N transmission channels.
  • the remaining transmitting channels can be clipped according to the cancellation noise obtained by any one of the X transmitting channels, and specifically: one of the X transmitting channels can be randomly selected.
  • the channel's cancellation noise is used as a reference to cancel the noise and is shared into the remaining transmit channels so that the remaining transmit channels can clip the noise based on the reference. That is to say, the N transmission channels for converting the same signal into different transmission signals can also be divided into at least two groups, and the cancellation noise of one transmission channel in each group is used as a reference cancellation noise, and is shared with it. Other launch channels of the group in which it is located.
  • the basis of the specific grouping may be based on the correlation between the signals processed by each channel, or may be based on other actual needs.
  • the beam formed by the antenna side is covered to an area, that is, in the embodiment of the present invention, one of the transmission channels may be selected as a reference transmission.
  • one of the transmission channels may be selected as a reference transmission.
  • the reference cancellation noise is obtained, and then the obtained reference cancellation noise is shared into other transmission channels, so that the reference transmission channel and other transmission channels can be clipped according to the reference cancellation noise.
  • the reference transmission channel and other transmission channels can be clipped according to the reference cancellation noise.
  • the number of channels that need to be used as the reference transmission channel may be selected according to the requirement of the number of regions covered by the beam formed by the antenna side in the actual application scenario, for example, when the beam formed on the antenna side covers the two regions, Then, at this time, in all the transmission channels, at least two transmission channels can be selected as the reference transmission channel, because when the number of regions covered by the beam formed on the antenna side is 2, in all the transmission channels, there are two Different baseband signals need to be transmitted through the transmitting channel, for example, in all transmitting channels of the transmitter, wherein the baseband signals of the N1 transmitting channels are the first baseband signals, and the baseband signals of the N2 transmitting channels are the second baseband signals, Then, at this time, it is necessary to select one transmitting channel from the N 1 transmitting channels of the first baseband signal as the first reference transmitting channel, and obtain reference cancellation noise according to the input signal of the first reference transmitting channel, and then Reference cancellation noise is shared among the N 1 transmission channels except the first reference transmission channel
  • the application scenario of the embodiment of the present invention is described by using the AAS as an example.
  • the embodiment of the present invention may also be applied to a scenario where correlation between signals of a transmission channel such as MIMO and transmit diversity is related.
  • the present invention does not limit the application scenario of the solution herein.
  • the clipping method provided by the embodiment of the present invention uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and obtains a reference pair according to the input signal of the reference transmission channel. Eliminate noise, and then clip the input signal of the reference cancellation channel to the reference transmit channel and the input signal of each of the N transmit channels except the reference transmit channel, by sharing the reference cancellation noise to N
  • Each transmit channel in the transmit channel except the reference transmit channel saves the clipping resource to the original 1 /N, which avoids the existence of a separate clipping module for each channel when there is a certain correlation between signals between different channels.
  • FIG. 4 Another embodiment of the present invention provides a clipping device, as shown in FIG. 4, applied to a transmitter, where the transmitter includes N transmitting channels for converting the same signal into different transmitting signals, the transmitting signal A signal output from a transmitting channel to be transmitted by an antenna connected to a transmitter in which the transmitting channel is located.
  • the signal may be a radio frequency signal.
  • the apparatus includes: an acquisition unit 3 1 , a first clipping unit 32 , and a second clipping unit 33 .
  • the obtaining unit 3 1 is configured to obtain reference cancellation noise according to an input signal of the reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2.
  • the first clipping unit 32 is configured to clip the input signal of the reference transmission channel according to the reference cancellation noise acquired by the acquiring unit 3 1 .
  • the first clipping unit 32 may include: a first delay module 321 and a first clipping module 322.
  • the first delay module 321 is configured to delay the input signal of the reference transmit channel according to the reference delay to obtain a first input signal of the reference transmit channel, where the reference delay is to acquire the reference pair The time required to eliminate noise.
  • a first clipping module 322 configured to obtain, according to the reference cancellation noise acquired by the acquiring unit 31 and the first input signal of the reference transmission channel obtained by the first delay module 321 Refer to the input signal after the clipping of the transmit channel.
  • the second clipping unit 33 may include: a first acquiring module 33 1 , a second acquiring module 332 , a second delay module 333 , and a second clipping module 334 .
  • the first obtaining module 33 1 is configured to acquire noise related parameters of each of the one of the transmitting channels except the reference transmitting channel;
  • a second acquiring module 332 configured to: according to the noise-related parameter of each of the one of the two transmit channels that is acquired by the first acquiring module 33 1 except the reference transmit channel, and the acquiring unit 3 1 Obtaining the cancellation noise of the transmitting channel by the obtained reference cancellation noise;
  • the second delay module 333 is configured to delay the input signal of the transmitting channel according to the delay of each of the transmitting channels except the reference transmitting channel to obtain a first input of the transmitting channel.
  • a second clipping module 334 configured to cancel noise and the second delay of each of the plurality of transmission channels except the reference transmission channel according to the second acquisition module 332
  • the first input signal of the transmitting channel obtained by module 333 obtains an input signal after clipping of the transmitting channel.
  • the second clipping unit 33 may further include: a third obtaining module 335 and a fourth acquiring module 336.
  • the third obtaining module 335 is configured to delay, at the second delay module 333, the input signal of the transmitting channel according to a delay of each of the transmitting channels except the reference transmitting channel. Obtaining, before obtaining the first input signal of the transmitting channel, each of the one of the transmitting channels except the reference transmitting channel The delay of the channel and the reference transmit channel.
  • a fourth obtaining module 336 configured to: according to the reference delay and each of the N transmit channels acquired by the third acquiring module 335, except the reference transmit channel, and the reference transmit channel The delay is obtained by the delay of the transmission channel.
  • the third obtaining module 335 and the fourth obtaining module 336 may be an optional implementation structure of the fifth obtaining module 337, and the fifth obtaining module 337 is included in the second clipping unit 33 for obtaining the N
  • the delay of each of the transmission channels except the reference transmission channel is output to the second delay module 333.
  • the method for obtaining the reference cancellation noise may include any one or more of the following combinations: pulse clipping, peak clipping, and clipping clipping.
  • the method for obtaining the noise related parameter may include any one or more of the following combinations: minimum mean square error MMSE, linear minimum mean square error LMMSE, least squares LS, recursive least squares RLS, minimum mean square Error LMS.
  • a method for acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel may include any one or more of the following combinations: correlation method, parabola Interpolation method, polynomial interpolation method.
  • the clipping device uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and obtains a reference pair according to the input signal of the reference transmission channel. Eliminate noise, and then clip the input signal of the reference cancellation channel to the reference transmit channel and the input signal of each of the N transmit channels except the reference transmit channel, by sharing the reference cancellation noise to N
  • Each transmit channel in the transmit channel except the reference transmit channel saves the clipping resource to the original 1 /N, which avoids the existence of a separate clipping module for each channel when there is a certain correlation between signals between different channels.
  • the waste of system resources while also reducing the power consumption of the system, and the most obvious effect in AAS, and greatly improved the performance and competitiveness of AAS.
  • Another embodiment of the present invention provides a clipping device applied to a transmitter, where the transmitter includes N transmitting channels for converting the same signal into different transmitting signals.
  • the transmitting signal is a signal output by the transmitting channel to be transmitted by an antenna connected to the transmitter where the transmitting channel is located.
  • the signal may be a radio frequency signal.
  • the apparatus includes: a processor 41.
  • the processor 41 is configured to obtain reference cancellation noise according to an input signal of the reference transmit channel, where the reference transmit channel is any one of the N transmit channels, and N is an integer greater than or equal to 2; Decoding the input signal of the reference transmit channel with reference to the cancellation noise; and cutting the input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise wave.
  • the processor 41 is configured to perform clipping on the input signal of the reference transmit channel according to the reference cancellation noise, and may further include: the processor 41, configured to: reference the reference according to a reference delay The input signal of the transmitting channel is delayed to obtain a first input signal of the reference transmitting channel, where the reference delay is a time required to acquire the reference cancellation noise; according to the reference cancellation noise and the Referring to the first input signal of the transmit channel, an input signal after clipping of the reference transmit channel is obtained.
  • the processor 41 is configured to perform clipping on an input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise, and may further include: The device 41 is further configured to acquire noise-related parameters of each of the N transmit channels except the reference transmit channel; and according to each of the N transmit channels except the reference transmit channel a noise-related parameter of the channel and the reference cancellation noise to obtain cancellation noise of the transmission channel; input to the transmission channel according to a delay of each of the N transmission channels except the reference transmission channel And delaying the signal to obtain a first input signal of the transmitting channel; obtaining, according to the cancellation noise and the first input signal of each of the N transmitting channels except the reference transmitting channel, the transmitting channel clipping After the input signal.
  • the processor 41 is further configured to obtain a delay of each of the N transmit channels except the reference transmit channel.
  • the processor 41 is further configured to delay the input signal of the transmit channel according to a delay of each of the N transmit channels except the reference transmit channel to obtain a first of the transmit channels Before the input signal, acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel; according to the reference delay and the N transmit channels The delay of each of the transmitting channels outside the reference transmitting channel and the reference transmitting channel acquires a delay of the transmitting channel.
  • the method for obtaining the reference cancellation noise may include any one or more of the following combinations: pulse clipping, peak clipping, and clipping clipping.
  • the method for obtaining the noise related parameter may include any one or more of the following combinations: minimum mean square error MMSE, linear minimum mean square error LMMSE, least squares LS, recursive least squares RLS, minimum mean square Error LMS.
  • a method for acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel may include any one or more of the following combinations: correlation method, parabola Interpolation method, polynomial interpolation method.
  • the clipping device uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and obtains a reference pair according to the input signal of the reference transmission channel. Eliminate noise, and then clip the input signal of the reference cancellation channel to the reference transmit channel and the input signal of each of the N transmit channels except the reference transmit channel, by sharing the reference cancellation noise to N
  • Each transmit channel in the transmit channel except the reference transmit channel saves the clipping resource to the original 1 /N, which avoids the existence of a separate clipping module for each channel when there is a certain correlation between signals between different channels.
  • the waste of system resources while also reducing the power consumption of the system, and the most obvious effect in AAS, and greatly improved the performance and competitiveness of AAS.
  • FIG. 7 Another embodiment of the present invention provides a clipping device, as shown in FIG. 7, applied to a transmitter, the transmitter including N transmitting channels for converting the same signal into different transmitting signals, the transmitting signal
  • the output of the transmitting channel is the same as the transmitting channel
  • the signal can be a radio frequency signal.
  • the apparatus comprises: at least one processor 51, a memory 52, a communication interface 53 and a bus 54, the at least one processor 51, the memory 52 and the communication interface 53 being connected by a bus 54 and completing communication with each other;
  • the bus 54 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (ESA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • ESA Extended Industry Standard Architecture
  • the bus 54 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the memory 52 is for storing executable program code, the program code including computer operating instructions.
  • the memory 52 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 51 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention. .
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication interface 53 is mainly used to implement communication between devices of the embodiment.
  • the processor 51 is configured to execute an executable program code stored in the memory 52, specifically for performing the following operations:
  • the processor 51 is configured to obtain reference cancellation noise according to an input signal of a reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2; Decoding the input signal of the reference transmit channel with reference to the cancellation noise; and cutting the input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise wave.
  • the processor 51 is configured to perform clipping on the input signal of the reference transmit channel according to the reference cancellation noise, and further includes: the processor 51, configured to: reference the reference according to a reference delay The input signal of the transmitting channel is delayed. a first input signal to the reference transmit channel, wherein the reference delay is a time required to acquire the reference cancellation noise; a first input signal according to the reference cancellation noise and the reference transmit channel Obtaining an input signal after clipping of the reference transmission channel.
  • the processor 51 is configured to perform clipping on an input signal of each of the N transmit channels except the reference transmit channel according to the reference cancellation noise, and may further include: The device 51 is further configured to acquire noise-related parameters of each of the N transmit channels except the reference transmit channel; and according to each of the N transmit channels except the reference transmit channel a noise-related parameter of the channel and the reference cancellation noise to obtain cancellation noise of the transmission channel; input to the transmission channel according to a delay of each of the N transmission channels except the reference transmission channel And delaying the signal to obtain a first input signal of the transmitting channel; obtaining, according to the cancellation noise and the first input signal of each of the N transmitting channels except the reference transmitting channel, the transmitting channel clipping After the input signal.
  • the processor 51 is further configured to obtain a delay of each of the N transmit channels except the reference transmit channel. Specifically, the processor 51 is further configured to delay the input signal of the transmit channel according to a delay of each of the N transmit channels except the reference transmit channel. Obtaining, before the first input signal of the transmitting channel, a delay of each of the N transmitting channels except the reference transmitting channel and the reference transmitting channel; according to the reference delay and the N The delay of each of the transmission channels except the reference transmission channel and the reference transmission channel acquires the delay of the transmission channel.
  • the method for obtaining the reference cancellation noise may include any one or more of the following combinations: pulse clipping, peak clipping, and clipping clipping.
  • the method for obtaining the noise related parameter may include any one or more of the following combinations: minimum mean square error MMSE, linear minimum mean square error LMMSE, least squares LS, recursive least squares RLS, minimum mean square Error LMS.
  • a method for acquiring a delay of each of the N transmit channels except the reference transmit channel and the reference transmit channel may include any one or more of the following combinations: correlation method, parabola Interpolation method, polynomial interpolation method.
  • the clipping device uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and obtains a reference pair according to the input signal of the reference transmission channel. Eliminate noise, and then clip the input signal of the reference cancellation channel to the reference transmit channel and the input signal of each of the N transmit channels except the reference transmit channel, by sharing the reference cancellation noise to N
  • Each transmit channel in the transmit channel except the reference transmit channel saves the clipping resource to the original 1 /N, which avoids the existence of a separate clipping module for each channel when there is a certain correlation between signals between different channels.
  • the waste of system resources while also reducing the power consumption of the system, and the most obvious effect in AAS, and greatly improved the performance and competitiveness of AAS.
  • the AAS includes a transmitter 61
  • the transmitter 61 includes N transmit channels for converting the same signal into different transmit signals
  • the transmit signal is a transmit channel output.
  • the signal can be a radio frequency signal.
  • the AAS further includes a clipping device 62, wherein the clipping device 62 can be considered to be independent of the transmitter 61 or as part of the transmitter 61.
  • the clipping device 62 is configured to obtain reference cancellation noise according to an input signal of the reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2. And clipping an input signal of the reference transmit channel according to the reference cancellation noise; inputting, according to the reference cancellation noise, each of the N transmit channels except the reference transmit channel The signal is clipped.
  • the AAS provided by the embodiment of the present invention uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel. And obtaining the reference cancellation noise according to the input signal of the reference transmission channel, and then cutting the input signal of the reference transmission channel according to the reference cancellation noise and the input signal of each of the N transmission channels except the reference transmission channel. Wave, by sharing the reference cancellation noise to each of the N transmit channels except the reference transmit channel, the clipping resource is saved to the original 1/N, which can avoid a certain correlation between signals between different channels.
  • the waste of system resources caused by the separate setting of a clipping module for each channel also reduces the power consumption of the system, and the effect is most obvious in AAS, and greatly improves the performance and competitiveness of AAS.
  • the transceiver includes a transmitter 71, and the transmitter includes N transmit channels for converting the same signal into different transmit signals, and the transmit signal is The signal output by the transmitting channel to be transmitted by the antenna connected to the transmitter where the transmitting channel is located.
  • the signal may be a radio frequency signal.
  • the transceiver further includes a clipping device 72, wherein the clipping device 72 can be considered to be independent of the transmitter 71 or as part of the transmitter 71.
  • the clipping device 72 is configured to acquire reference cancellation noise according to an input signal of the reference transmission channel, where the reference transmission channel is any one of the N transmission channels, and N is an integer greater than or equal to 2. And clipping an input signal of the reference transmit channel according to the reference cancellation noise; inputting, according to the reference cancellation noise, each of the N transmit channels except the reference transmit channel The signal is clipped.
  • the transceiver provided by the embodiment of the present invention uses N one of the transmission channels for converting the same signal into different transmission signals as a reference transmission channel, and obtains a reference pair according to the input signal of the reference transmission channel. Eliminate noise, and then clip the input signal of the reference cancellation channel to the reference transmit channel and the input signal of each of the N transmit channels except the reference transmit channel, by sharing the reference cancellation noise to N
  • Each transmit channel in the transmit channel except the reference transmit channel saves the clipping resource to 1/N, which avoids the inter-channel communication.
  • the system resources are also saved by separately setting a clipping module for each channel, and the power consumption of the system is also reduced.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

本发明实施例公开了一种削波方法、装置及系统,涉及通信领域,解决了AAS进行削波需要消耗较多的系统资源的问题。具体方案为:根据参考发射通道的输入信号获取参考对消噪声;其中,参考发射通道为N个用于将同一个信号转换为不同发射信号的发射通道中的任意一个;根据参考对消噪声对参考发射通道的输入信号进行削波;根据参考对消噪声对N个发射通道中除参考发射通道外的每个发射通道的输入信号进行削波。本发明用于削波的过程中。

Description

一种削波方法、 装置及系统 技术领域
本发明涉及通信领域, 尤其涉及一种削波方法、 装置及系统。 背景技术
正交频分复用 ( Orthogonal Frequency Division Multiplexing , OFDM ) 技术是多载波传输技术的一种, 并具有 艮多优点, 已成为 第四代移动通信的核心技术。 在 OFDM系统中, OFDM信号在时域 上就是由 N个独立调制的子载波组成的, 由于每个子载波的包络值 统计独立, 并且 OFDM信号的幅度是由 N 个子载波信号叠加得到 的, 因此当子载波的个数很多时, 会产生较大的峰均比, 这样就要 求系统内的非线性器件必须具有很大的动态范围, 而大动态范围的 功放成本很高, 并且峰均比较大, 因此非线性器件引起的非线性失 真的可能性就会变大。 除了 OFDM系统具有高峰均比的特点外, 有 源天线系统 ( Active Antenna System , AAS ) 同样存在峰均比过高 的问题, 因此如何降低信号的峰均比已是本领域研究的重点课题。
釆用削波算法可以有效的降低信号峰均比, 而在众多的削波算 法中, 峰值叠加噪声是一种广为应用的方法。 在 AAS 中为了获得 好的覆盖效果, 一般要求配置比较多的发射通道, 并且也需对信号 进行削波, 而目前 AAS 中的削波模块, 一直都是借用传统的射频 拉远单元 ( Remote Radio Unit , RRU ) 模块, 即每个通道都有自 己 独立的削波模块。
在上述削波的过程中,发明人发现现有技术至少存在如下问题: 由于 AAS 中的通道数较多,若釆用传统的 RRU模块中的削波方案, 即每个通道都有自 己独立的削波模块, 会需要消耗较多的系统资 源, 导致阻碍了 AAS的发展。 发明内容
本发明的实施例提供一种削波方法、 装置及系统, 解决了现有 技术中进行削波需要消耗较多的系统资源的问题。
为达到上述目 的, 本发明的实施例釆用如下技术方案: 本发明的第一方面, 提供一种削波方法, 应用于发射机, 所述 发射机包含用于将同一个信号转换为不同发射信号的 N 个发射通 道, 所述方法包括:
根据参考发射通道的输入信号获取参考对消噪声; 其中, 所述 参考发射通道为所述 N个发射通道中的任意一个, N为大于等于 2 的整数;
根据所述参考对消噪声对所述参考发射通道的输入信号进行削 波;
根据所述参考对消噪声对所述 N个发射通道中除所述参考发射 通道外的每个发射通道的输入信号进行削波。
结合第一方面, 在一种可能的实现方式中,
所述根据所述参考对消噪声对所述参考发射通道的输入信号进 行削波, 包括:
根据参考时延对所述参考发射通道的输入信号进行延时得到所 述参考发射通道的第一输入信号; 其中, 所述参考时延为获取所述 参考对消噪声所需的时间;
根据所述参考对消噪声和所述参考发射通道的第一输入信号, 获得所述参考发射通道削波后的输入信号。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方 式中,
所述根据所述参考对消噪声对所述 N个发射通道中除所述参考 发射通道外的每个发射通道的输入信号进行削波, 包括:
获取所述 N个发射通道中除所述参考发射通道外的每个发射通 道的噪声相关参数;
根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的噪声相关参数和所述参考对消噪声获取该发射通道的对消噪 声;
根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的时延对该发射通道的输入信号进行延时得到该发射通道的第 一输入信号;
根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的对消噪声和第一输入信号, 获得该发射通道削波后的输入信 号。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方 式中,
所述 N个发射通道中除所述参考发射通道外的每个发射通道的 时延通过以下步骤获得:
获取所述 N个发射通道中除所述参考发射通道外的每个发射通 道与所述参考发射通道的时延;
根据所述参考时延和所述 N个发射通道中除所述参考发射通道 外的每个发射通道与所述参考发射通道的时延获取该发射通道的 时延。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述参考对消噪声的方法包括以下任意一种或多种的组 合: 脉冲削波、 峰值削波、 限幅削波。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述噪声相关参数的方法包括以下任意一种或多种的组 合: 最小均方误差 MMSE、 线性最小均方误差 LMMSE、 最小二乘 法 LS、 递归最小二乘法 RLS、 最小均方误差 LMS。
结合第一方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述 N个发射通道中除所述参考发射通道外的每个发射 通道与所述参考发射通道的时延的方法包括以下任意一种或多种 的组合: 相关法、 抛物线插值法、 多项式插值法。
本发明的第二方面, 提供一种削波装置, 应用于发射机, 所述 发射机包含用于将同一个信号转换为不同发射信号的 N 个发射通 道, 所述装置包括:
获取单元, 用于根据参考发射通道的输入信号获取参考对消噪 声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一个, N为大于等于 2的整数;
第一削波单元, 用于根据所述获取单元获取到的所述参考对消 噪声对所述参考发射通道的输入信号进行削波;
第二削波单元, 用于根据所述获取单元获取到的所述参考对消 噪声对所述 N 个发射通道中除所述参考发射通道外的每个发射通 道的输入信号进行削波。
结合第二方面, 在一种可能的实现方式中,
所述第一削波单元, 包括:
第一延时模块, 用于根据参考时延对所述参考发射通道的输入 信号进行延时得到所述参考发射通道的第一输入信号; 其中, 所述 参考时延为获取所述参考对消噪声所需的时间;
第一削波模块, 用于根据所述获取单元获取到的所述参考对消 噪声和所述第一延时模块得到的所述参考发射通道的第一输入信 号, 获得所述参考发射通道削波后的输入信号。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方 式中,
所述第二削波单元, 包括:
第一获取模块, 用于获取所述 N个发射通道中除所述参考发射 通道外的每个发射通道的噪声相关参数;
第二获取模块, 用于根据所述第一获取模块获取到的所述 N个 发射通道中除所述参考发射通道外的每个发射通道的噪声相关参 数和所述获取单元获取到的所述参考对消噪声获取该发射通道的 对消噪声;
第二延时模块, 用于根据所述 N个发射通道中除所述参考发射 通道外的每个发射通道的时延对该发射通道的输入信号进行延时 得到该发射通道的第一输入信号;
第二削波模块, 用于根据所述第二获取模块获取到的所述 N个 发射通道中除所述参考发射通道外的每个发射通道的对消噪声和 所述第二延时模块得到该发射通道的第一输入信号, 获得该发射通 道削波后的输入信号。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方 式中,
所述第二削波单元, 还包括第五获取模块, 用于获得所述 N个 发射通道中除所述参考发射通道外的每个发射通道的时延, 并输出 给所述第二延时模块。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方 式中, 所述第五获取模块包括:
第三获取模块, 用于获取所述 N个发射通道中除所述参考发射 通道外的每个发射通道与所述参考发射通道的时延;
第四获取模块, 用于根据所述参考时延和所述第三获取模块获 取到的所述 N 个发射通道中除所述参考发射通道外的每个发射通 道与所述参考发射通道的时延获取该发射通道的时延。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述参考对消噪声的方法包括以下任意一种或多种的组 合: 脉冲削波、 峰值削波、 限幅削波。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述噪声相关参数的方法包括以下任意一种或多种的组 合: 最小均方误差 MMSE、 线性最小均方误差 LMMSE、 最小二乘 法 LS、 递归最小二乘法 RLS、 最小均方误差 LMS。
结合第二方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述 N个发射通道中除所述参考发射通道外的每个发射 通道与所述参考发射通道的时延的方法包括以下任意一种或多种 的组合: 相关法、 抛物线插值法、 多项式插值法。
本发明的第三方面, 提供一种削波装置, 应用于发射机, 所述 发射机包含用于将同一个信号转换为不同发射信号的 N 个发射通 道, 所述装置包括: 处理器;
所述处理器, 用于根据参考发射通道的输入信号获取参考对消 噪声;其中,所述参考发射通道为所述 N个发射通道中的任意一个, N为大于等于 2的整数; 根据所述参考对消噪声对所述参考发射通 道的输入信号进行削波; 根据所述参考对消噪声对所述 N个发射通 道中除所述参考发射通道外的每个发射通道的输入信号进行削波。
结合第三方面, 在一种可能的实现方式中, 所述处理器用于根 据所述参考对消噪声对所述参考发射通道的输入信号进行削波进 一步包括:
所述处理器, 还用于根据参考时延对所述参考发射通道的输入 信号进行延时得到所述参考发射通道的第一输入信号; 其中, 所述 参考时延为获取所述参考对消噪声所需的时间; 根据所述参考对消 噪声和所述参考发射通道的第一输入信号, 获得所述参考发射通道 削波后的输入信号。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方 式中, 所述处理器用于根据所述参考对消噪声对所述 N个发射通道 中除所述参考发射通道外的每个发射通道的输入信号进行削波进 一步包括:
所述处理器, 还用于获取所述 N个发射通道中除所述参考发射 通道外的每个发射通道的噪声相关参数; 根据所述 N个发射通道中 除所述参考发射通道外的每个发射通道的噪声相关参数和所述参 考对消噪声获取该发射通道的对消噪声; 根据所述 N个发射通道中 除所述参考发射通道外的每个发射通道的时延对该发射通道的输 入信号进行延时得到该发射通道的第一输入信号; 根据所述 N个发 射通道中除所述参考发射通道外的每个发射通道的对消噪声和第 一输入信号, 获得该发射通道削波后的输入信号。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方 式中, 所述处理器, 还用于获得所述 N个发射通道中除所述参考发 射通道外的每个发射通道的时延, 具体的包括:
所述处理器, 还用于在所述根据所述 N个发射通道中除所述参 考发射通道外的每个发射通道的时延对该发射通道的输入信号进 行延时得到该发射通道的第一输入信号之前, 获取所述 N个发射通 道中除所述参考发射通道外的每个发射通道与所述参考发射通道 的时延; 根据所述参考时延和所述 N个发射通道中除所述参考发射 通道外的每个发射通道与所述参考发射通道的时延获取该发射通 道的时延。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述参考对消噪声的方法包括以下任意一种或多种的组 合: 脉冲削波、 峰值削波、 限幅削波。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述噪声相关参数的方法包括以下任意一种或多种的组 合: 最小均方误差 MMSE、 线性最小均方误差 LMMSE、 最小二乘 法 LS、 递归最小二乘法 RLS、 最小均方误差 LMS。
结合第三方面和上述可能的实现方式, 在另一种可能的实现方 式中, 获取所述 N个发射通道中除所述参考发射通道外的每个发射 通道与所述参考发射通道的时延的方法包括以下任意一种或多种 的组合: 相关法、 抛物线插值法、 多项式插值法。
本发明的第四方面, 提供一种 AAS , 包括发射机, 所述发射机 包含用于将同一个信号转换为不同发射信号的 N个发射通道, 所述 AAS还包括: 削波装置。
所述削波装置, 用于根据参考发射通道的输入信号获取参考对 消噪声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一 个, N为大于等于 2的整数; 根据所述参考对消噪声对所述参考发 射通道的输入信号进行削波; 根据所述参考对消噪声对所述 N个发 射通道中除所述参考发射通道外的每个发射通道的输入信号进行 削波。
本发明的第五方面, 提供一种收发信机, 包括发射机, 所述发 射机包含用于将同一个信号转换为不同发射信号的 N个发射通道, 所述收发信机还包括: 削波装置。
所述削波装置, 用于根据参考发射通道的输入信号获取参考对 消噪声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一 个, N为大于等于 2的整数; 根据所述参考对消噪声对所述参考发 射通道的输入信号进行削波; 根据所述参考对消噪声对所述 N个发 射通道中除所述参考发射通道外的每个发射通道的输入信号进行 削波。
本发明实施例提供的削波方法、 装置及系统, 将 N个用于将同 一个信号转换为不同发射信号的发射通道中的任意一个发射通道 作为参考发射通道, 并根据的参考发射通道的输入信号获取参考对 消噪声, 然后根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道中除参考发射通道外的每个发射通道的输入信号的进 行削波, 通过将参考对消噪声共享到 N个发射通道中除参考发射通 道外的每个发射通道, 将削波资源节省为原来的 1/N , 可以避免不 同通道间信号存在一定相关性时还为每个通道单独设置一个削波 模块所造成的系统资源消耗较大, 同时也降低了系统的功耗, 并且 在 AAS 中效果最为明显, 也很大程度的提升了 AAS的性能和竟争 力。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可 以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的一种削波方法流程图;
图 2为本发明提供的现有技术中在一种应用场景下的 AAS组成 示意图; 图 3为本发明另一实施例提供的一种削波方法流程图; 图 4为本发明另一实施例提供的一种削波装置组成示意图; 图 5为本发明另一实施例提供的另一种削波装置组成示意图 图 6为本发明另一实施例提供的另一种削波装置组成示意图 图 7为本发明另一实施例提供的另一种削波装置组成示意图 图 8为本发明另一实施例提供的一种 AAS组成示意图; 图 9为本发明另一实施例提供的一种收发信机组成示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
本发明所有实施例中提供的削波方法、 装置和系统, 可应用于 发射机, 该发射机包含 N个用于将同一信号转换为具有一定相关性 的发射信号的发射通道, N为大于等于 2的整数。 可以理解的是, 该发射机中包括的发射通道的数目可以大于或等于 N , 本发明实施 例中的削波方法、 装置或系统是针对用于将同一信号转换为具有一 定相关性的发射信号的发射通道的, 若发射机中所包括的发射通道 中还有另外 M 个发射通道用于将另一信号转换为另一组具有一定 相关性的发射信号, 那么本发明实施例中所提供的方法、 装置和系 统也适用。 其中, 发射信号为发射通道输出的待由与发射通道所在 的发射机相连的天线发射出去的信号, 通常情况下, 可以为射频信 号。 其中, 具有一定相关性的发射信号, 可以是指同一信号在天线 端的不同子分量, 这些子分量承载了该同一个信号中所承载的信 息, 其中 "同一信号" 是指承载了相同信息的信号。 其中, 这 N个 用于将同一信号转换为具有一定相关性的发射信号的发射通道可 以是 AAS (有源天线系统) 中用于将同一基带信号转换为不同子分 量的发射通道, 也可以是主分集发射技术中用于将同一信号转换为 主集子分量和分集子分量的发射通道,还可以是 MIMO( multi-input multi-output , 多输入输出 )发射技术中用于将同一信号转换为多路 信号的发射通道。
发射通道可以是信号从输入端到发射端经过的一系列的处理过 程的总称或执行这些处理过程的设备的总称。 例如, 在 AAS 中, 发射通道可以是基带信号从基站到天线所经过的一系列的处理过 程, 基带信号从基站到天线所经过的处理可以包括数字波束赋形、 变速率等。
本发明一实施例提供一种削波方法, 如图 1 所示, 应用于发射 机, 该发射机包含用于将同一个信号转换为不同发射信号的 N个发 射通道, 所述发射信号为发射通道输出的待由与该发射通道所在的 发射机相连的天线发射出去的信号, 通常情况下, 该信号可以为射 频信号。 N为大于等于 2的整数, 该方法可以包括:
101、 根据参考发射通道的输入信号获取参考对消噪声。
其中, 参考发射通道为发射机中的 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个, 用于对参考发射通道的 输入信号进行削波的对消噪声称为参考对消噪声, 所述对消噪声用 于降低输入信号的峰均比。 具体的, 按照现有技术中的获取对消噪 声的方法, 可以通过釆用脉冲削波 (也称为 Kernel 削波)、 峰值削 波 (也称为 clipfilter 削波)、 限幅削波等方法根据参考发射通道的 输入信号获取到参考对消噪声。
102、 根据参考对消噪声对参考发射通道的输入信号进行削波。 其中, 当获取到参考对消噪声之后, 便可以按照现有技术进行 削波处理, 具体的是根据获取到的参考对消噪声对参考发射通道的 输入信号进行削波处理。
103、 根据参考对消噪声对 N 个发射通道中除参考发射通道外 的每个发射通道的输入信号进行削波。
其中, 当获取到参考对消噪声之后, 可以将参考对消噪声共享 到发射机中 N 个发射通道中除参考发射通道外的其他所有的发射 通道, 也就是说, N个发射通道中除参考发射通道外的其他发射通 道也可以根据参考对消噪声对自身的输入信号进行削波处理。
本发明实施例提供的削波方法, 将 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个发射通道作为参考发射 通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后 根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道 中除参考发射通道外的每个发射通道的输入信号的进行削波, 通过 将参考对消噪声共享到 N 个发射通道中除参考发射通道外的每个 发射通道, 将削波资源节省为原来的 1 /N , 可以避免不同通道间信 号存在一定相关性时还为每个通道单独设置一个削波模块所造成 的系统资源的浪费, 同时也降低了系统的功耗, 并且在 AAS 中效 果最为明显, 并很大程度的提升了 AAS的性能和竟争力。 本发明另一实施例提供一种削波方法, 应用于发射机, 该发射 机包含用于将同一个信号转换为不同发射信号的 N个发射通道, 所 述发射信号为发射通道输出的待由与该发射通道所在的发射机相 连的天线发射出去的信号, 通常情况下, 该信号可以为射频信号。 为了方便本领域技术人员的理解, 在本发明实施例中以 AAS 为例 进行介绍。
众所周知, 随着基站的进一步演进, 有源部分向天线侧一步步 接近, 进而就出现了 AAS , 其中, AAS为有源的天线系统, 可以根 据网络的需求通过对波束的调整来实现覆盖范围的调整, 以使得网 络性能达到最优。 在 AAS 中, 天线和收发信机集成在一个设备中。 在 AAS 的某些形态中, 构成天线的天线振子分成若干组, 每一组 天线振子和一个收发信机相连, 或者, 构成天线的每一个天线振子 分别和一个收发信机相连。 为了获得更好的覆盖效果, AAS—般会 要求建立较多的发射通道, 并且为了能够降低发射信号的峰均比, 就必须对发射通道中的信号进行削波处理。 在众多的削波算法中, 峰值叠加噪声是一种广为应用的方法, 峰值叠加噪声方法的主要思 想是釆用加性噪声抵消发射信号的峰值。
在 AAS 中, 根据实际应用场景的需求, 需要覆盖的区域为一个 或多个, 输入每个发射通道的基带信号可以为一个或多个。 以需要 覆盖的区域为一个, 输入每个发射通道的基带信号有一个为例, AAS 的结构可以如图 2 所示, AAS 中包含 4 个发射通道, 针对 4 个发射通道中的每个发射通道来说, 首先输入基带信号, 然后根据 需要对输入的基带信号进行数据波束赋形、 变速率、 数字上变频等 处理 (若输入每个发射通道的基带信号有多个, 例如, 输入 4个发 射通道中的每个发射通道的信号为第一基带信号和第二基带信号, 那么针对 4个发射通道中的每个发射通道, 对输入的第一基带信号 和第二基带信号分别进行数据波束赋形、 变速率、 数字上变频等处 理之后, 还可以将经过处理的第一基带信号和经过处理的第二基带 信号进行多载波合路处理;), 并针对每个通道进行独立的削波处理 得到最终的信号, 最后利用 4个通道最终得到的信号在天线侧进行 空中赋形, 由此,可以看出每个发射通道会发射相同的基带信号(指 承载相同信息的基带信号), 在不同的发射通道对基带信号进行不 同的数字波束赋形之后便可以形成不同的覆盖, 最终在天线侧进行 空中赋形, 形成一定的波束覆盖到需要的区域。 由于每个发射通道 发射的基带信号相同, 即使通过数字波束赋形的调整, 不同发射通 道之间的发射信号也有一定的相关性, 再加上削波消耗的资源比较 多, 为了能够减少削波所消耗的系统资源, 在本发明实施例中, 在 AAS 的用于将同一个基带信号转换为不同发射信号的 N 个发射通 道中任意选取一个发射通道作为参考发射通道, 只在参考发射通道 中对发射信号进行处理得到参考对消噪声, 然后将获得的参考对消 噪声共享到 N个发射通道中的其他发射通道中, 从而使得 AAS 中 的这用于将同一个基带信号转换为不同发射信号的 N 个发射通道 均可以釆用获取到的参考对消噪声进行削波处理。
具体的实施方法如图 3所示, 该方法可以包括: 201、 根据参考发射通道的输入信号获取参考对消噪声。
其中, 在参考发射通道中, 根据参考发射通道的输入信号的包 络和设定的门限, 选择需要对消的峰值点, 然后根据峰值点的幅度 和相位信息生成参考对消噪声。 为了确保参考对消噪声的频谱满足 指标需求, 可以进一步的对参考对消噪声进行成型处理。 其中, 参 考发射通道为 N 个用于将同一个基带信号转换为具有一定相关性 的发射信号的发射通道中的任意一个发射通道, N为大于等于 2的 整数, 所述发射信号为发射通道输出的待由与该发射通道所在的发 射机相连的天线发射出去的信号, 通常情况下, 该信号可以为射频 信号。
目前的削波方法有 4艮多, 一般而言有脉冲削波 (也称为 Kernel 削波)、 峰值削波 (也称为 clipfilter削波)、 限幅削波等, 通过不同 的削波方法均可以获取到参考对消噪声, 而各种削波方法的主要区 别在于在对参考对消噪声进行成型处理时的方法不同。 在本发明实 施例中,以单级 Kernel削波为例简单将参考对消噪声的获取过程作 进一步的说明。 具体的: 在脉冲削波中, 首先根据系统配置的削波 门限提取输入信号中幅度超过门限的信号点的位置, 然后对这些信 号点的幅度和相位进行计算, 最后对计算出的结果进行成型处理最 终得到对消噪声。 其中, 在单级 Kernel削波的成型处理过程中可以 包含 n个对消脉冲产生器 ( Cancellation Pulse Generators , CPG )、 CPG分配模块以及 CPG状态指示寄存器, 该 CPG分配模块用于进 行 CPG的分配, CPG状态指示寄存器用于指示 n个 CPG中每个 CPU 的使用状态(例如, 可以用 n比特的字符串来表示 n个 CPG中每个 CPU的使用状态, 且可以用 " 0" 表示某个 CPG当前的使用状态为 空闲, 用 " 1 " 表示某个 CPG 当前的使用状态为占用 ), 成型处理的 具体的过程可以是, 根据峰值指示判断当前的信号点是否为峰值 点, 若不是峰值点则不作任何操作; 若当前的信号点是峰值点, 则 CPG分配模块根据 CPG状态指示寄存器中指示的 n个 CPG中每个 CPU的使用状态判断是否有可用的 CPG , 若 CPG状态指示寄存器 中的第 m个比特为 " 0" 则表示第 m个 CPG当前的使用状态空闲, 则说明有可用的 CPG , 接下来判断该峰值点与前一峰值点的时间间 隔是否超过预设的时间阈值, 当超过预设的时间阈值时, 便会将当 前峰值点的峰值脉冲送至第一个空闲的 CPG , 并将 CPG 状态指示 寄存器中对应的位置 " 1 " ,同时启动该 CPG对应的计数器开始计数, 计数器的模值为预存的滤波器的长度, 假设滤波器的长度为 Len— filter , 那么计数器从 0开始计数到 Len— filter- 1 , 最终将计数器 输出的作为滤波器系数查表地址, 然后查表得到生成对消脉冲所需 的系数, 最终将对消脉冲系数和对应信号点的幅度和相位进行计算 得出的计算结果相乘后便可以获取到对消噪声。
202、 根据参考对消噪声对参考发射通道的输入信号进行削波。 其中, 当获取到参考对消噪声之后, 便可以根据参考对消噪声 对参考发射通道的输入信号进行削波。
具体的, 根据参考对消噪声对参考发射通道的输入信号进行削 波, 结合现有技术, 可以有多种方式, 在本发明实施例中以其中一 种为例进行描述。 具体可以包含以下步骤 202a-步骤 202b。
202a , 根据参考时延对参考发射通道的输入信号进行延时得到 参考发射通道的第一输入信号。
其中, 参考时延为获取参考对消噪声所需的时间, 且该参考时 延可以通过逻辑仿真获取到。 由于在获取参考对消噪声的过程中会 有时间消耗, 因此需要根据通过逻辑仿真得到参考时延对参考发射 通道的输入信号进行延时, 通过延时后得到第一输入信号。 其中, 对参考发射通道的输入信号进行延时的时延值可以等于参考时延 的值, 参考发射通道的第一输入信号为对参考发射通道的输入信号 进行延时后得到的信号。
202b , 根据参考对消噪声和参考发射通道的第一输入信号, 获 得参考发射通道上的削波后的输入信号。
其中,当根据参考时延对参考发射通道的输入信号进行延时后, 便可以根据参考对消噪声和参考发射通道的第一输入信号对参考 发射通道的输入信号进行削波, 获得削波后的输入信号。 具体的, 在参考发射通道中, 进行削波处理后的信号可以通过下述公式获 付:
CFR _ out(k) = CFR _ in(k -Dx)- Noise(k) 其中, CFR— outik^进行削波处理后的信号, A为某个取样点对 应的时刻的序号, A为参考时延的时延值对应的延时点数 ( 由于是 对数字信号进行的处理, 延时值可以由其滞后的取样点的个数来体 现, 在本发明所有实施例中这种体现方式的延时值称为延时值对应 的延时点数, 比如数字信号为 64313..., 取样点分别对应 6,4,3,1,3, 那么 k=l 时, 对应取样点的值为 6, k=2时, 对应取样点的值为 4, 以此类推, k=5时, 对应取样点的值为 3, D1 为 2时, 表示数字信 号 64313 比延时前的数字信号慢了两个取样点, 对应延时前传输 3 的时刻, 延时后, 传输的为 6), α^_^(Α-Α)为根据参考时延对参考 发射通道的输入信号进行延时后得到的参考发射通道的第一输入 信号, No« )为参考对消噪声, CFR ( Crest Factor Reduction ) 为峰 值因数衰减。
203、 根据参考对消噪声对 N 个发射通道中除参考发射通道外 的每个发射通道的输入信号进行削波。
其中, 当获取到参考对消噪声之后, 便可以根据获得的参考对 消噪声对 N 个发射通道中除参考发射通道外的每个发射通道的输 入信号进行削波。
进一步的, 根据参考对消噪声对 N个发射通道中除参考发射通 道外的每个发射通道的输入信号进行削波, 可以包含以下步骤
203a-步骤 203f。
203a, 获取 N个发射通道中除参考发射通道外的每个发射通道 的噪声相关参数。
其中, 在 N个发射通道中除参考发射通道外的其他发射通道根 据参考发射通道获取到的参考对消噪声进行削波时, 由于不同发射 通道对信号需要乘以不同载波 dBF 参数从而导致不同发射通道间 的信号不同, 因此不同发射通道间的对消噪声也就会存在差异, 但 是由于不同发射通道间的信号有一定的相关性, 因此不同发射通道 间的对消噪声也会存在有一定的相关性, 因此需要根据参考发射通 道的输入信号和 N 个发射通道中除参考发射通道外的每个发射通 道的输入信号, 来获取 N个发射通道中除参考发射通道外的每个发 射通道的噪声相关参数。 噪声相关参数的获取方法有很多种, 例如 可以基于最小均方误差(Minimum Mean Square Error , MMSE)、 线 性最小均方误差 (Linear Minimum Mean Square Error , LMMSE)、 最 小二乘法 (Least Square , LS)、 递归最小二乘法 ( recursive least square , RLS、 最小均方 ( Least Mean Square , LMS ) 等多种准则来 获取噪声相关参数, 这些准则均可以较准确的获得除参考发射通道 外的每个发射通道的输入信号与参考通道的输入信号间的相关值, 获得的相关值即为噪声相关参数, 且都是本领域的现有技术, 在此 可以不予赘述。 例如釆用 LS 获取噪声相关参数, 可以釆用下述公 式计算得到 N个发射通道中除参考发射通道外的第 发射通道的噪 声相关参数:
P-1
J cq p x sref (k - p) = sq (k) 其中, 为某个取样点对应的时刻的序号, ce p为第 g发射通道的 第 p个噪声相关参数, 为参考发射通道的输入信号延时 p个 点后的信号, 为第 g发射通道的输入信号, p为希望获取的噪声 相关参数的个数, 且 5为正整数, 并且噪声相关参数的个数越多, 最终获取到的第 g发射通道的对消噪声的准确性越高。
203b、 根据 N个发射通道中除参考发射通道外的每个发射通道 的噪声相关参数和参考对消噪声获取该发射通道的对消噪声。
其中,针对 N个发射通道中除参考发射通道外的每个发射通道, 当根据参考发射通道的输入信号和该发射通道的输入信号获取到 该发射通道的噪声相关参数之后, 便可以根据该发射通道的噪声相 关参数和参考对消噪声获取该发射通道的对消噪声。 例如, 需要获 取第 发射通道的对消噪声, 可以通过下述计算公式得到:
Noise q (k) =
Figure imgf000019_0001
其中, N。«^ ( t)为第 g发射通道的对消噪声, 为某个取样点对应 的时刻的序号, ρ为第 g发射通道的第 p个噪声相关参数, 为参 考发射通道的参考对消噪声, 为参考对消噪声延时 P个点后 得到的信号。
203 c , 获取 N个发射通道中除参考发射通道外的每个发射通道 与参考发射通道的时延。
其中, 由于在 AAS 中, 不同发射通道需要对所输入的信号, 如 基带信号进行不同的数字波束赋形, 即不同发射通道的基带信号需 要乘以不同载波( Digital Beam Forming , dBF )数字波束赋形参数, 以及 N 个发射通道中除参考发射通道外的其他发射通道均需要从 参考发射通道处获得参考对消噪声, 因此, 不同发射通道间的时延 也是不同的, 因此较优的, 可以对不同发射通道的时延分别进行计 算, 其中, dBF参数为根据天线倾角得到的进行数字波束赋形处理 时需要的参数。 在获取 AAS 中除参考发射通道外的其他发射通道 的时延时, 由于不同发射通道间具有很强的相关性, 因此发射通道 间的时延较容易获得。 具体的, N个发射通道中除参考发射通道外 的每个发射通道与参考发射通道的时延可以通过很多计算方法得 到, 例如相关法、 抛物线插值法、 多项式插值法等等, 这些计算方 法都是本领域的现有技术, 在此可以不予赘述。 例如, 可以釆用相 关法计算 AAS中除参考发射通道外的其他发射通道中的第 发射通 道与参考发射通道之间的时延, 首先根据下述公式计算相关值: xcorrq (n) = ^ sref (k) x ( + ") , η = 0,1,… , Μ _ 1 其中, 《为时延, 表示第 g发射通道与参考发射通道之间的时延 的时延值对应的延时点数, 由于参考发射通道与第 g发射通道的釆样 频率相同,所以第 g发射通道与参考发射通道之间的时延的时延值对 应的延时点数取正整数, 为某个取样点对应的时刻的序号, 且取正 整数, 为互相关函数, XCWT ( )用于求取第 g发射通道与参考发射 通道之间的的时延的时延值对应的延时点数为《时的相关值, sref {k、 为参考发射通道的输入信号, 为第 g发射通道的输入信号延时
«个点后得到的信号的共轭, A为求取相关值所需的取样点的数目 , M 为第 g发射通道与参考发射通道之间的时延的时延值对应的延时 点数的最大值, 其中 M可以根据信号在发射通道中经过的处理过程 的延时点数得到。
然后根据下述公式获取第 g发射通道与参考发射通道之间的时 延为 ΔΖ)。:
[value, index] = max(abs(xcorrq (0 : M - 1))) 其中, max指的是取最大值, xcwr为互相关函数, 用于求取第 g发 射通道与参考发射通道之间的时延的时延值对应的延时点数为 0 ~ M - 1时的相关值, afc为绝对值函数, 用于求取第 g发射通道与参 考发射通道之间的时延的时延值对应的延时点数为 0 ~ M - 1时的相 关值的绝对值。 [ ]公式可以根据等式右边得到两个结果, 具体的是: 求取 xcorrq ( )的最大值及最大值的索引 index , value表示相关值的绝对 值的最大值, 也即第 发射通道与参考发射通道之间的时延的时延 值对应的延时点数为 0 ~ M - 1的相关值的绝对值的最大值, M为参考 发射通道与第 发射通道之间的时延的时延值对应的延时点数的最 大值, 索引 index即为 xcwr ")取最大值时《的取值, 也即索引 index为时 延的时延值对应的延时点数。 最终便可以根据索引 «ifec得到第 g发 射通道与参考发射通道之间的时延的时延值对应的延时点数为 ADa , 即 ΔΖ)。 = index。
203 d、针对 N个发射通道中除参考发射通道外的每个发射通道, 根据参考时延和该发射通道与参考发射通道的时延获取该发射通 道的时延。
其中, 当获取到 N个发射通道中除参考发射通道外的每个发射 通道与参考发射通道的时延之后,对于 N个发射通道中除参考发射 通道外的每个发射通道, 便可以根据参考时延和该发射通道与参考 发射通道的时延获取该发射通道的时延。 例如, 参考时延的时延值 对应的延时点数为 A , N个发射通道中除参考发射通道外的其他发 射通道中的第 g发射通道与参考发射通道之间的时延的时延值对应 的延时点数为 ΔΖ^ ,那么第 g发射通道的时延的时延值对应的延时点 数的计算公式为:
Dq = Dl + ADq 需要说明的是, 获取 N个发射通道中除参考发射通道外的每个 发射通道的时延的时延值的步骤可以为步骤 203c-203d , 步骤 203c-203d为获取获取 N个发射通道中除参考发射通道外的每个发 射通道的时延的时延值的一种可选的实现方式, 也可以由其他实现 方式替代。
需要说明的是, 本发明实施例中对 N个发射通道中除参考发射 通道外的每个发射通道的对消噪声的获取过程和 N 个发射通道中 序的限制, 即获取 N个发射通道中除参考发射通道外的每个发射通 道的对消噪声的步骤 203 a-203b , 与获取 N个发射通道中除参考发 射通道外的每个发射通道的时延的步骤 203 c-203d执行顺序没有先 后关系, 一般情况下还可以同时执行。
以下步骤 203e-步骤 203f在获取 N个发射通道中除参考发射通 道外的每个发射通道的对消噪声的步骤 203a-203b , 以及获取 N个 发射通道中除参考发射通道外的每个发射通道的时延的步骤 203c-203d执行完成后执行。
203 e、针对 N个发射通道中除参考发射通道外的每个发射通道, 根据该发射通道的时延对该发射通道的输入信号进行延时得到该 发射通道的第一输入信号。
其中, 在获取到 N个发射通道中除参考发射通道外的每个发射 通道的时延之后,针对 N个发射通道中除参考发射通道外的每个发 射通道, 便可以根据该发射通道的时延对该发射通道的输入信号进 行延时得到该发射通道的第一输入信号。
203 f、针对 N个发射通道中除参考发射通道外的每个发射通道, 根据该发射通道的对消噪声和第一输入信号获得该发射通道削波 后的输入信号。
其中, 当获取到 N个发射通道中除参考发射通道外的每个发射 通道的对消噪声和每个发射通道的第一输入信号之后,针对 N个发 射通道中除参考发射通道外的每个发射通道, 便可以对该发射通道 的输入信号进行削波处理, 例如, 在第 g发射通道中, 进行削波处 理后的信号可以通过下述公式获得:
CFR _ outq (k) = CFR _ inq (k - Dq ) - Noise q (k)
其中 , A为某个取样点对应的时刻的序号, 且取正整数, CFR _ OUtq i^ ^) g发射通道进行削波处理后的信号, ^为第 g发射通 道的时延, (:^— ^ -!^为根据第 g发射通道的时延对输入信号进行 延时后得到的第 发射通道的第一输入信号, Noise 、为% g发射通道 的对消噪声, CFR为峰值因数衰减。
可选的, 由于在对参考对消噪声进行成型处理时可能会引起峰 值的再生, 通常可以釆用多次削波级联的方式, 后一级削波对前一 级削波输出的信号的再生峰值或者未处理的峰值再次根据上述步 骤 201 -步骤 203进行削波处理。
当然可以理解的是, 在天线侧形成的波束覆盖到一个区域的应 用场景中,发射机包含 N个用于将同一个信号转换为不同发射信号 的发射通道,在本发明实施例中可以在 N个发射通道中的 X个发射 通道中单独进行削波处理, 其中, X大于等于 1 , 且小于等于 N- 1 , 也就是说针对 N个发射通道中的 X个发射通道中的每个发射通道, 可以根据该发射通道的输入信号得到该发射通道的对消噪声, 然后 根据得到的对消噪声对该发射通道的输入信号进行削波处理, 而对 于 N个发射通道中除这 X个发射通道外的其余的发射通道,可以根 据这 X 个发射通道中的任意一个发射通道得到的对消噪声来进行 削波处理, 具体的可以是: 从这 X个发射通道中任意选取一个发射 通道的对消噪声作为参考对消噪声, 并共享到其余的发射通道中, 以便其余的发射通道可以根据该参考对消噪声进行削波。 也就是 说, 用于将同一个信号转换为不同发射信号的 N个发射通道, 也可 以分为至少两组, 在每组中选一个发射通道的对消噪声作为参考对 消噪声, 并共享到其所在的组的其他发射通道。 具体分组的依据可 以根据各通道所处理的信号间的相关性, 也可以依据其他的实际需 求。
需要说明的是, 在本发明实施例是以天线侧形成的波束覆盖到 一个区域为例进行介绍的, 也就是说在本发明实施例中, 可以从所 有发射通道中选取一个发射通道作为参考发射通道, 并根据参考发 射通道的输入信号得到参考对消噪声, 然后将得到的参考对消噪声 共享到其他的发射通道中, 以便参考发射通道和其他的发射通道可 以根据参考对消噪声进行削波, 从而达到减少削波资源的目 的。 而 在实际的应用过程中, 可以根据实际应用场景中天线侧形成的波束 覆盖的区域的数目 的需求, 选择需要作为参考发射通道的通道数 目 , 例如当天线侧形成的波束覆盖到两个区域, 那么此时在所有的 发射通道中, 可以至少选取两个发射通道作为参考发射通道, 这是 因为当天线侧形成的波束覆盖的区域数为 2时, 在所有的发射通道 中, 会有两种不同的基带信号需要通过发射通道进行发射, 例如在 发射机的所有发射通道中, 其中 N 1 个发射通道的基带信号为第一 基带信号, 其中 N2 个发射通道的基带信号为第二基带信号, 那么 此时, 就需要从釆用第一基带信号的 N 1 个发射通道中选取 1 个发 射通道作为第一参考发射通道, 并根据第一参考发射通道的输入信 号得到参考对消噪声, 然后将参考对消噪声共享到这 N 1 个发射通 道中除第一参考发射通道外的其余的发射通道, 并且, 还需要从釆 用第二基带信号的 N2个发射通道中选取 1 个发射通道作为第二参 考发射通道, 并根据第二参考发射通道得到参考对消噪声, 然后将 得到的参考对消噪声共享到这 N2 个发射通道中除第二参考发射通 道外的其余的发射通道。 需要说明的是,本发明实施例中只是以 AAS为例介绍了本发明 实施例的应用场景, 本发明实施例还可以应用在 MIMO、 发分集等 发射通道的信号间具有相关性的场景中, 本发明在此对方案的应用 场景不作限制。
本发明实施例提供的削波方法, 将 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个发射通道作为参考发射 通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后 根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道 中除参考发射通道外的每个发射通道的输入信号的进行削波, 通过 将参考对消噪声共享到 N 个发射通道中除参考发射通道外的每个 发射通道, 将削波资源节省为原来的 1 /N , 可以避免不同通道间信 号存在一定相关性时还为每个通道单独设置一个削波模块所造成 的系统资源的浪费, 同时也降低了系统的功耗, 并且在 AAS 中效 果最为明显, 并很大程度的提升了 AAS的性能和竟争力。 本发明另一实施例提供一种削波装置, 如图 4所示, 应用于发 射机, 所述发射机包含用于将同一个信号转换为不同发射信号的 N 个发射通道, 所述发射信号为发射通道输出的待由与该发射通道所 在的发射机相连的天线发射出去的信号, 通常情况下, 该信号可以 为射频信号。 所述装置包括: 获取单元 3 1、 第一削波单元 32、 第 二削波单元 33。
获取单元 3 1 , 用于根据参考发射通道的输入信号获取参考对消 噪声;其中,所述参考发射通道为所述 N个发射通道中的任意一个, N为大于等于 2的整数。
第一削波单元 32 , 用于根据所述获取单元 3 1 获取到的所述参 考对消噪声对所述参考发射通道的输入信号进行削波。
第二削波单元 33 , 用于根据所述获取单元 3 1 获取到的所述参 考对消噪声对所述 N 个发射通道中除所述参考发射通道外的每个 发射通道的输入信号进行削波。 进一步的, 如图 5所示, 所述第一削波单元 32可以包括: 第一 延时模块 321、 第一削波模块 322。
第一延时模块 321 , 用于根据参考时延对所述参考发射通道的 输入信号进行延时得到所述参考发射通道的第一输入信号; 其中, 所述参考时延为获取所述参考对消噪声所需的时间。
第一削波模块 322 , 用于根据所述获取单元 3 1获取到的所述参 考对消噪声和所述第一延时模块 321得到的所述参考发射通道的第 一输入信号, 获得所述参考发射通道削波后的输入信号。
进一步的,所述第二削波单元 33可以包括: 第一获取模块 33 1、 第二获取模块 332、 第二延时模块 333、 第二削波模块 334。
第一获取模块 33 1 , 用于获取所述 Ν个发射通道中除所述参考 发射通道外的每个发射通道的噪声相关参数;
第二获取模块 332 , 用于根据所述第一获取模块 33 1 获取到的 所述 Ν 个发射通道中除所述参考发射通道外的每个发射通道的噪 声相关参数和所述获取单元 3 1 获取到的所述参考对消噪声获取该 发射通道的对消噪声;
第二延时模块 333 , 用于根据所述 Ν个发射通道中除所述参考 发射通道外的每个发射通道的时延对该发射通道的输入信号进行 延时得到该发射通道的第一输入信号;
第二削波模块 334 , 用于根据所述第二获取模块 332 获取到的 所述 Ν 个发射通道中除所述参考发射通道外的每个发射通道的对 消噪声和所述第二延时模块 333 得到的该发射通道的第一输入信 号, 获得该发射通道削波后的输入信号。
进一步的,该第二削波单元 33还可以包括: 第三获取模块 335、 第四获取模块 336。
第三获取模块 335 , 用于在所述第二延时模块 333 根据所述 Ν 个发射通道中除所述参考发射通道外的每个发射通道的时延对该 发射通道的输入信号进行延时得到该发射通道的第一输入信号之 前, 获取所述 Ν个发射通道中除所述参考发射通道外的每个发射通 道与所述参考发射通道的时延。
第四获取模块 336 , 用于根据所述参考时延和所述第三获取模 块 335获取到的所述 N个发射通道中除所述参考发射通道外的每个 发射通道与所述参考发射通道的时延获取该发射通道的时延。
其中, 第三获取模块 335和第四获取模块 336可以为第五获取 模块 337的一种可选的实现结构, 第五获取模块 337 包含在第二削 波单元 33 中, 用于获得所述 N个发射通道中除所述参考发射通道 外的每个发射通道的时延, 并输出给第二延时模块 333。
进一步的, 获取所述参考对消噪声的方法可以包括以下任意一 种或多种的组合: 脉冲削波、 峰值削波、 限幅削波。
进一步的, 获取所述噪声相关参数的方法可以包括以下任意一 种或多种的组合: 最小均方误差 MMSE、 线性最小均方误差 LMMSE、最小二乘法 LS、递归最小二乘法 RLS、最小均方误差 LMS。
进一步的, 获取所述 N个发射通道中除所述参考发射通道外的 每个发射通道与所述参考发射通道的时延的方法可以包括以下任 意一种或多种的组合: 相关法、 抛物线插值法、 多项式插值法。
本发明实施例提供的削波装置, 将 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个发射通道作为参考发射 通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后 根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道 中除参考发射通道外的每个发射通道的输入信号的进行削波, 通过 将参考对消噪声共享到 N 个发射通道中除参考发射通道外的每个 发射通道, 将削波资源节省为原来的 1 /N , 可以避免不同通道间信 号存在一定相关性时还为每个通道单独设置一个削波模块所造成 的系统资源的浪费, 同时也降低了系统的功耗, 并且在 AAS 中效 果最为明显, 并很大程度的提升了 AAS的性能和竟争力。 本发明另一实施例提供一种削波装置, 应用于发射机, 所述发 射机包含用于将同一个信号转换为不同发射信号的 N个发射通道, 所述发射信号为发射通道输出的待由与该发射通道所在的发射机 相连的天线发射出去的信号,通常情况下, 该信号可以为射频信号。 如图 6所示, 所述装置包括: 处理器 41。
所述处理器 41 , 用于根据参考发射通道的输入信号获取参考对 消噪声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一 个, N为大于等于 2的整数; 根据所述参考对消噪声对所述参考发 射通道的输入信号进行削波; 根据所述参考对消噪声对所述 N个发 射通道中除所述参考发射通道外的每个发射通道的输入信号进行 削波。
进一步的,所述处理器 41用于根据所述参考对消噪声对所述参 考发射通道的输入信号进行削波可以进一步包括: 所述处理器 41 , 还用于根据参考时延对所述参考发射通道的输入信号进行延时得 到所述参考发射通道的第一输入信号, 其中, 所述参考时延为获取 所述参考对消噪声所需的时间; 根据所述参考对消噪声和所述参考 发射通道的第一输入信号, 获得所述参考发射通道削波后的输入信 号。
进一步的,所述处理器 41用于根据所述参考对消噪声对所述 N 个发射通道中除所述参考发射通道外的每个发射通道的输入信号 进行削波可以进一步包括: 所述处理器 41 , 还用于获取所述 N 个 发射通道中除所述参考发射通道外的每个发射通道的噪声相关参 数; 根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的噪声相关参数和所述参考对消噪声获取该发射通道的对消噪 声; 根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的时延对该发射通道的输入信号进行延时得到该发射通道的第 一输入信号; 根据所述 N个发射通道中除所述参考发射通道外的每 个发射通道的对消噪声和第一输入信号, 获得该发射通道削波后的 输入信号。
进一步的, 所述处理器 41 , 还用于获得所述 N个发射通道中除 所述参考发射通道外的每个发射通道的时延。 具体的可以包括: 所 述处理器 41 还用于在所述根据所述 N个发射通道中除所述参考发 射通道外的每个发射通道的时延对该发射通道的输入信号进行延 时得到该发射通道的第一输入信号之前, 获取所述 N个发射通道中 除所述参考发射通道外的每个发射通道与所述参考发射通道的时 延; 根据所述参考时延和所述 N个发射通道中除所述参考发射通道 外的每个发射通道与所述参考发射通道的时延获取该发射通道的 时延。
进一步的, 获取所述参考对消噪声的方法可以包括以下任意一 种或多种的组合: 脉冲削波、 峰值削波、 限幅削波。
进一步的, 获取所述噪声相关参数的方法可以包括以下任意一 种或多种的组合: 最小均方误差 MMSE、 线性最小均方误差 LMMSE、最小二乘法 LS、递归最小二乘法 RLS、最小均方误差 LMS。
进一步的, 获取所述 N个发射通道中除所述参考发射通道外的 每个发射通道与所述参考发射通道的时延的方法可以包括以下任 意一种或多种的组合: 相关法、 抛物线插值法、 多项式插值法。
本发明实施例提供的削波装置, 将 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个发射通道作为参考发射 通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后 根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道 中除参考发射通道外的每个发射通道的输入信号的进行削波, 通过 将参考对消噪声共享到 N 个发射通道中除参考发射通道外的每个 发射通道, 将削波资源节省为原来的 1 /N , 可以避免不同通道间信 号存在一定相关性时还为每个通道单独设置一个削波模块所造成 的系统资源的浪费, 同时也降低了系统的功耗, 并且在 AAS 中效 果最为明显, 并很大程度的提升了 AAS的性能和竟争力。 本发明另一实施例提供一种削波装置, 如图 7所示, 应用于发 射机, 所述发射机包含用于将同一个信号转换为不同发射信号的 N 个发射通道, 所述发射信号为发射通道输出的待由与该发射通道所 在的发射机相连的天线发射出去的信号, 通常情况下, 该信号可以 为射频信号。 所述装置包括: 至少一个处理器 51、 存储器 52、 通 信接口 53 和总线 54, 所述至少一个处理器 51、 存储器 52和通信 接口 53通过总线 54连接并完成相互间的通信; 其中:
所述总线 54 可以是工业标准体系结构 ( Industry Standard Architecture , ISA ) 总线、 夕卜部设备互连 ( Peripheral Component Interconnect, PCI )总线或扩展工业标准体系结构( Extended Industry Standard Architecture , EISA ) 总线等。 该总线 54可以分为地址总 线、 数据总线、 控制总线等。 为便于表示, 图 7 中仅用一条粗线表 示, 但并不表示仅有一根总线或一种类型的总线。
所述存储器 52用于存储可执行程序代码,该程序代码包括计算 机操作指令。 存储器 52可能包含高速 RAM存储器, 也可能还包括 非易失性存储器( non- volatile memory),例如至少一个磁盘存储器。
所述处理器 51 可能是一个中央处理器 ( Central Processing Unit, CPU), 或者是特定集成电路( Application Specific Integrated Circuit, ASIC ), 或者是被配置成实施本发明实施例的一个或多个 集成电路。
所述通信接口 53, 主要用于实现本实施例的设备之间的通信。 所述处理器 51, 用于执行存储在存储器 52 中的可执行程序代 码, 具体的用于执行以下操作:
所述处理器 51, 用于根据参考发射通道的输入信号获取参考对 消噪声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一 个, N为大于等于 2的整数; 根据所述参考对消噪声对所述参考发 射通道的输入信号进行削波; 根据所述参考对消噪声对所述 N个发 射通道中除所述参考发射通道外的每个发射通道的输入信号进行 削波。
进一步的,所述处理器 51用于根据所述参考对消噪声对所述参 考发射通道的输入信号进行削波可以进一步包括: 所述处理器 51, 还用于根据参考时延对所述参考发射通道的输入信号进行延时得 到所述参考发射通道的第一输入信号, 其中, 所述参考时延为获取 所述参考对消噪声所需的时间; 根据所述参考对消噪声和所述参考 发射通道的第一输入信号, 获得所述参考发射通道削波后的输入信 号。
进一步的,所述处理器 51用于根据所述参考对消噪声对所述 N 个发射通道中除所述参考发射通道外的每个发射通道的输入信号 进行削波可以进一步包括: 所述处理器 51 , 还用于获取所述 N 个 发射通道中除所述参考发射通道外的每个发射通道的噪声相关参 数; 根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的噪声相关参数和所述参考对消噪声获取该发射通道的对消噪 声; 根据所述 N个发射通道中除所述参考发射通道外的每个发射通 道的时延对该发射通道的输入信号进行延时得到该发射通道的第 一输入信号; 根据所述 N个发射通道中除所述参考发射通道外的每 个发射通道的对消噪声和第一输入信号, 获得该发射通道削波后的 输入信号。
进一步的, 所述处理器 51 , 还用于获得所述 N个发射通道中除 所述参考发射通道外的每个发射通道的时延。 具体的可以包括: 所 述处理器 51 还用于在所述根据所述 N个发射通道中除所述参考发 射通道外的每个发射通道的时延对该发射通道的输入信号进行延 时得到该发射通道的第一输入信号之前, 获取所述 N个发射通道中 除所述参考发射通道外的每个发射通道与所述参考发射通道的时 延; 根据所述参考时延和所述 N个发射通道中除所述参考发射通道 外的每个发射通道与所述参考发射通道的时延获取该发射通道的 时延。
进一步的, 获取所述参考对消噪声的方法可以包括以下任意一 种或多种的组合: 脉冲削波、 峰值削波、 限幅削波。
进一步的, 获取所述噪声相关参数的方法可以包括以下任意一 种或多种的组合: 最小均方误差 MMSE、 线性最小均方误差 LMMSE、最小二乘法 LS、递归最小二乘法 RLS、最小均方误差 LMS。 进一步的, 获取所述 N个发射通道中除所述参考发射通道外的 每个发射通道与所述参考发射通道的时延的方法可以包括以下任 意一种或多种的组合: 相关法、 抛物线插值法、 多项式插值法。
本发明实施例提供的削波装置, 将 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个发射通道作为参考发射 通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后 根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道 中除参考发射通道外的每个发射通道的输入信号的进行削波, 通过 将参考对消噪声共享到 N 个发射通道中除参考发射通道外的每个 发射通道, 将削波资源节省为原来的 1 /N , 可以避免不同通道间信 号存在一定相关性时还为每个通道单独设置一个削波模块所造成 的系统资源的浪费, 同时也降低了系统的功耗, 并且在 AAS 中效 果最为明显, 并很大程度的提升了 AAS的性能和竟争力。 本发明另一实施例提供一种 AAS , 所述 AAS 包括发射机 61 , 所述发射机 61 包含用于将同一个信号转换为不同发射信号的 N个 发射通道, 所述发射信号为发射通道输出的待由与该发射通道所在 的发射机相连的天线发射出去的信号, 通常情况下, 该信号可以为 射频信号。 如图 8所示, 所述 AAS还包括, 削波装置 62 , 其中削 波装置 62可以视作独立于发射机 61 ,也可以视作发射机 61 中的一 部分。
其中, 所述削波装置 62 , 用于根据参考发射通道的输入信号获 取参考对消噪声; 其中, 所述参考发射通道为所述 N个发射通道中 的任意一个, N为大于等于 2的整数; 根据所述参考对消噪声对所 述参考发射通道的输入信号进行削波; 根据所述参考对消噪声对所 述 N 个发射通道中除所述参考发射通道外的每个发射通道的输入 信号进行削波。
本发明实施例提供的 AAS , 将 N个用于将同一个信号转换为不 同发射信号的发射通道中的任意一个发射通道作为参考发射通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后根据参 考对消噪声对参考发射通道的输入信号以及 N 个发射通道中除参 考发射通道外的每个发射通道的输入信号的进行削波, 通过将参考 对消噪声共享到 N 个发射通道中除参考发射通道外的每个发射通 道, 将削波资源节省为原来的 1/N , 可以避免不同通道间信号存在 一定相关性时还为每个通道单独设置一个削波模块所造成的系统 资源的浪费, 同时也降低了系统的功耗, 并且在 AAS 中效果最为 明显, 并很大程度的提升了 AAS的性能和竟争力。 本发明另一实施例提供一种收发信机, 所述收发信机包括发射 机 71 , 所述发射机包含用于将同一个信号转换为不同发射信号的 N 个发射通道, 所述发射信号为发射通道输出的待由与该发射通道所 在的发射机相连的天线发射出去的信号, 通常情况下, 该信号可以 为射频信号。 如图 9所示, 所述收发信机还包括, 削波装置 72 , 其 中削波装置 72可以视作独立于发射机 71 ,也可以视作发射机 71 中 的一部分。
其中, 所述削波装置 72 , 用于根据参考发射通道的输入信号获 取参考对消噪声; 其中, 所述参考发射通道为所述 N个发射通道中 的任意一个, N为大于等于 2的整数; 根据所述参考对消噪声对所 述参考发射通道的输入信号进行削波; 根据所述参考对消噪声对所 述 N 个发射通道中除所述参考发射通道外的每个发射通道的输入 信号进行削波。
本发明实施例提供的收发信机, 将 N个用于将同一个信号转换 为不同发射信号的发射通道中的任意一个发射通道作为参考发射 通道, 并根据的参考发射通道的输入信号获取参考对消噪声, 然后 根据参考对消噪声对参考发射通道的输入信号以及 N 个发射通道 中除参考发射通道外的每个发射通道的输入信号的进行削波, 通过 将参考对消噪声共享到 N 个发射通道中除参考发射通道外的每个 发射通道, 将削波资源节省为原来的 1 /N , 可以避免不同通道间信 号存在一定相关性时还为每个通道单独设置一个削波模块所造成 的系统资源的浪费, 同时也降低了系统的功耗。
可以理解的是, 本发明实施例各个之间可以相互参考。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地 了解到本发明可借助软件加必需的通用硬件的方式来实现, 当然也 可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的 理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分 可以以软件产品的形式体现出来, 该计算机软件产品存储在可读取 的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设 备等) 执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范 围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为

Claims

权 利 要 求 书
1、 一种削波方法, 其特征在于, 应用于发射机, 所述发射机包 含用于将同一个信号转换为不同发射信号的 N个发射通道, 所述方 法包括:
根据参考发射通道的输入信号获取参考对消噪声; 其中, 所述参 考发射通道为所述 N个发射通道中的任意一个, N为大于等于 2的 整数;
根据所述参考对消噪声对所述参考发射通道的输入信号进行削 波;
根据所述参考对消噪声对所述 N 个发射通道中除所述参考发射 通道外的每个发射通道的输入信号进行削波。
2、 根据权利要求 1 所述的削波方法, 其特征在于, 所述根据所 述参考对消噪声对所述参考发射通道的输入信号进行削波, 包括: 根据参考时延对所述参考发射通道的输入信号进行延时得到所 述参考发射通道的第一输入信号; 其中, 所述参考时延为获取所述 参考对消噪声所需的时间;
根据所述参考对消噪声和所述参考发射通道的第一输入信号,获 得所述参考发射通道削波后的输入信号。
3、 根据权利要求 1或 2所述的削波方法, 其特征在于, 所述根 据所述参考对消噪声对所述 N个发射通道中除所述参考发射通道外 的每个发射通道的输入信号进行削波, 包括:
获取所述 N 个发射通道中除所述参考发射通道外的每个发射通 道的噪声相关参数;
根据所述 N 个发射通道中除所述参考发射通道外的每个发射通 道的噪声相关参数和所述参考对消噪声获取该发射通道的对消噪 声;
根据所述 N 个发射通道中除所述参考发射通道外的每个发射通 道的时延对该发射通道的输入信号进行延时得到该发射通道的第一 输入信号; 根据所述 N 个发射通道中除所述参考发射通道外的每个发射通 道的对消噪声和第一输入信号, 获得该发射通道削波后的输入信号。
4、 根据权利要求 3所述的削波方法, 其特征在于, 所述 N个发 射通道中除所述参考发射通道外的每个发射通道的时延通过以下步 骤获得:
获取所述 N 个发射通道中除所述参考发射通道外的每个发射通 道与所述参考发射通道的时延;
根据所述参考时延和所述 N 个发射通道中除所述参考发射通道 外的每个发射通道与所述参考发射通道的时延获取该发射通道的时 延。
5、 根据权利要求 1 -4 中任一项所述的削波方法, 其特征在于, 获取所述参考对消噪声的方法包括以下任意一种或多种的组合: 脉 冲削波、 峰值削波、 限幅削波。
6、 根据权利要求 1 -5 中任一项所述的削波方法, 其特征在于, 获取所述噪声相关参数的方法包括以下任意一种或多种的组合: 最 小均方误差 MMSE、 线性最小均方误差 LMMSE、 最小二乘法 LS、 递归最小二乘法 RLS、 最小均方误差 LMS。
7、 根据权利要求 1 -6 中任一项所述的削波方法, 其特征在于, 获取所述 N个发射通道中除所述参考发射通道外的每个发射通道与 所述参考发射通道的时延的方法包括以下任意一种或多种的组合: 相关法、 抛物线插值法、 多项式插值法。
8、 一种削波装置, 其特征在于, 应用于发射机, 所述发射机包 含用于将同一个信号转换为不同发射信号的 N个发射通道, 所述装 置包括:
获取单元, 用于根据参考发射通道的输入信号获取参考对消噪 声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一个, N 为大于等于 2的整数;
第一削波单元,用于根据所述获取单元获取到的所述参考对消噪 声对所述参考发射通道的输入信号进行削波; 第二削波单元,用于根据所述获取单元获取到的所述参考对消噪 声对所述 N个发射通道中除所述参考发射通道外的每个发射通道的 输入信号进行削波。
9、 根据权利要求 8所述的削波装置, 其特征在于, 所述第一削 波单元, 包括:
第一延时模块,用于根据参考时延对所述参考发射通道的输入信 号进行延时得到所述参考发射通道的第一输入信号; 其中, 所述参 考时延为获取所述参考对消噪声所需的时间;
第一削波模块,用于根据所述获取单元获取到的所述参考对消噪 声和所述第一延时模块得到的所述参考发射通道的第一输入信号, 获得所述参考发射通道削波后的输入信号。
10、 根据权利要求 8或 9所述的削波装置, 其特征在于, 所述第 二削波单元, 包括:
第一获取模块, 用于获取所述 N 个发射通道中除所述参考发射 通道外的每个发射通道的噪声相关参数;
第二获取模块, 用于根据所述第一获取模块获取到的所述 N 个 发射通道中除所述参考发射通道外的每个发射通道的噪声相关参数 和所述获取单元获取到的所述参考对消噪声获取该发射通道的对消 噪声;
第二延时模块, 用于根据所述 N 个发射通道中除所述参考发射 通道外的每个发射通道的时延对该发射通道的输入信号进行延时得 到该发射通道的第一输入信号;
第二削波模块, 用于根据所述第二获取模块获取到的所述 N 个 发射通道中除所述参考发射通道外的每个发射通道的对消噪声和所 述第二延时模块得到该发射通道的第一输入信号, 获得该发射通道 削波后的输入信号。
1 1、 根据权利要求 10所述的削波装置, 其特征在于, 所述第二 削波单元, 还包括第五获取模块, 用于获得所述 N个发射通道中除 所述参考发射通道外的每个发射通道的时延, 并输出给所述第二延 时模块。
12、 根据权利要求 1 1 所述的削波装置, 其特征在于, 所述第五 获取模块包括:
第三获取模块, 用于获取所述 N 个发射通道中除所述参考发射 通道外的每个发射通道与所述参考发射通道的时延;
第四获取模块,用于根据所述参考时延和所述第三获取模块获取 到的所述 N个发射通道中除所述参考发射通道外的每个发射通道与 所述参考发射通道的时延获取该发射通道的时延。
13、 根据权利要求 8- 12中任一项所述的削波装置, 其特征在于, 获取所述参考对消噪声的方法包括以下任意一种或多种的组合: 脉 冲削波、 峰值削波、 限幅削波。
14、 根据权利要求 8- 13 中任一项所述的削波装置, 其特征在于, 获取所述噪声相关参数的方法包括以下任意一种或多种的组合: 最 小均方误差 MMSE、 线性最小均方误差 LMMSE、 最小二乘法 LS、 递归最小二乘法 RLS、 最小均方误差 LMS。
15、 根据权利要求 8- 14中任一项所述的削波装置, 其特征在于, 获取所述 N个发射通道中除所述参考发射通道外的每个发射通道与 所述参考发射通道的时延的方法包括以下任意一种或多种的组合: 相关法、 抛物线插值法、 多项式插值法。
16、 一种削波装置, 其特征在于, 应用于发射机, 所述发射机包 含用于将同一个信号转换为不同发射信号的 N个发射通道, 所述装 置包括: 处理器;
所述处理器,用于根据参考发射通道的输入信号获取参考对消噪 声; 其中, 所述参考发射通道为所述 N个发射通道中的任意一个, N 为大于等于 2 的整数; 根据所述参考对消噪声对所述参考发射通道 的输入信号进行削波; 根据所述参考对消噪声对所述 N个发射通道 中除所述参考发射通道外的每个发射通道的输入信号进行削波。
17、 根据权利要求 16所述的削波装置, 其特征在于, 所述处理 器用于根据所述参考对消噪声对所述参考发射通道的输入信号进行 削波进一步包括:
所述处理器,还用于根据参考时延对所述参考发射通道的输入信 号进行延时得到所述参考发射通道的第一输入信号, 其中, 所述参 考时延为获取所述参考对消噪声所需的时间; 根据所述参考对消噪 声和所述参考发射通道的第一输入信号, 获得所述参考发射通道削 波后的输入信号。
18、 根据权利要求 16或 17所述的削波装置, 其特征在于, 所述 处理器用于根据所述参考对消噪声对所述 N个发射通道中除所述参 考发射通道外的每个发射通道的输入信号进行削波进一步包括:
所述处理器, 还用于获取所述 N 个发射通道中除所述参考发射 通道外的每个发射通道的噪声相关参数; 根据所述 N个发射通道中 除所述参考发射通道外的每个发射通道的噪声相关参数和所述参考 对消噪声获取该发射通道的对消噪声; 根据所述 N个发射通道中除 所述参考发射通道外的每个发射通道的时延对该发射通道的输入信 号进行延时得到该发射通道的第一输入信号; 根据所述 N个发射通 道中除所述参考发射通道外的每个发射通道的对消噪声和第一输入 信号, 获得该发射通道削波后的输入信号。
19、根据权利要求 16- 18 中任一项所述的削波装置,其特征在于, 所述处理器, 还用于获得所述 N个发射通道中除所述参考发射通道 外的每个发射通道的时延, 具体的包括:
所述处理器, 还用于在所述根据所述 N 个发射通道中除所述参 考发射通道外的每个发射通道的时延对该发射通道的输入信号进行 延时得到该发射通道的第一输入信号之前, 获取所述 N个发射通道 中除所述参考发射通道外的每个发射通道与所述参考发射通道的时 延; 根据所述参考时延和所述 N个发射通道中除所述参考发射通道 外的每个发射通道与所述参考发射通道的时延获取该发射通道的时 延。
20、根据权利要求 16- 19中任一项所述的削波装置,其特征在于, 获取所述参考对消噪声的方法包括以下任意一种或多种的组合: 脉 冲削波、 峰值削波、 限幅削波。
21、根据权利要求 16-20中任一项所述的削波装置,其特征在于, 获取所述噪声相关参数的方法包括以下任意一种或多种的组合: 最 小均方误差 MMSE、 线性最小均方误差 LMMSE、 最小二乘法 LS、 递归最小二乘法 RLS、 最小均方误差 LMS。
22、根据权利要求 16-21 中任一项所述的削波装置,其特征在于, 获取所述 N个发射通道中除所述参考发射通道外的每个发射通道与 所述参考发射通道的时延的方法包括以下任意一种或多种的组合: 相关法、 抛物线插值法、 多项式插值法。
23、 一种 AAS , 其特征在于, 包括发射机, 所述发射机包含用 于将同一个信号转换为不同发射信号的 N个发射通道, 所述 AAS还 包括:
如权利要求 8-22中任一项所述的削波装置。
24、 一种收发信机, 其特征在于, 包括发射机, 所述发射机包含 用于将同一个信号转换为不同发射信号的 N个发射通道, 所述收发 信机还包括:
如权利要求 8-22中任一项所述的削波装置。
PCT/CN2013/079306 2013-07-12 2013-07-12 一种削波方法、装置及系统 WO2015003388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/079306 WO2015003388A1 (zh) 2013-07-12 2013-07-12 一种削波方法、装置及系统
CN201380001844.1A CN103718525B (zh) 2013-07-12 2013-07-12 一种削波方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079306 WO2015003388A1 (zh) 2013-07-12 2013-07-12 一种削波方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015003388A1 true WO2015003388A1 (zh) 2015-01-15

Family

ID=50409499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079306 WO2015003388A1 (zh) 2013-07-12 2013-07-12 一种削波方法、装置及系统

Country Status (2)

Country Link
CN (1) CN103718525B (zh)
WO (1) WO2015003388A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379784A4 (en) * 2015-12-17 2018-11-14 Huawei Technologies Co., Ltd. Clipping method and apparatus
CN107222226B (zh) * 2016-03-21 2019-08-27 华为技术有限公司 消除谐波干扰的方法和装置
WO2018058410A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 削波方法及装置
CN112822138B (zh) * 2020-12-31 2023-07-21 联想未来通信科技(重庆)有限公司 一种cpg资源的调度方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538650A (zh) * 2003-04-16 2004-10-20 华为技术有限公司 一种多载波信号削波装置及方法
CN1702964A (zh) * 2005-07-07 2005-11-30 中兴通讯股份有限公司 一种采用预处理技术的多载波信号削峰装置及方法
KR20070029307A (ko) * 2005-09-09 2007-03-14 엘지노텔 주식회사 다중 fa를 사용하는 통신시스템의 적응형 cfr
US20070140376A1 (en) * 2005-12-21 2007-06-21 Lg-Nortel Co., Ltd. Apparatus and method for crest factor reduction in a communication system
CN101257481A (zh) * 2008-04-22 2008-09-03 中兴通讯股份有限公司 一种预处理不连续配置多载波的削峰系统和方法
CN102387109A (zh) * 2010-09-06 2012-03-21 电信科学技术研究院 一种削除信号峰值功率的方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1834462B1 (en) * 2005-01-07 2013-04-24 Nokia Siemens Networks Oy Clipping of transmission signal
FI20065649A0 (fi) * 2006-10-12 2006-10-12 Nokia Corp Menetelmä, laikkainmoduuli ja lähetin
CN101076008B (zh) * 2007-07-17 2010-06-09 华为技术有限公司 信号的削波处理方法和设备
CN101321147B (zh) * 2007-12-28 2012-06-06 华为技术有限公司 多载波正交频分复用系统中峰均比抑制的方法和装置
CN101222468B (zh) * 2007-12-28 2010-08-04 华为技术有限公司 多载波正交频分复用系统中峰均比抑制的方法和装置
CN101335966B (zh) * 2008-06-30 2012-10-03 华为技术有限公司 多天线校正方法、多天线收发装置及基站系统
CN101316251A (zh) * 2008-07-17 2008-12-03 京信通信系统(中国)有限公司 对宽带信号进行削峰的方法及系统
CN101997588B (zh) * 2009-08-21 2013-10-09 华为技术有限公司 一种多天线系统中信号发送的方法及装置
CN101951241B (zh) * 2010-09-15 2014-04-09 中兴通讯股份有限公司 实现射频泄漏对消的装置及方法和射频识别阅读器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1538650A (zh) * 2003-04-16 2004-10-20 华为技术有限公司 一种多载波信号削波装置及方法
CN1702964A (zh) * 2005-07-07 2005-11-30 中兴通讯股份有限公司 一种采用预处理技术的多载波信号削峰装置及方法
KR20070029307A (ko) * 2005-09-09 2007-03-14 엘지노텔 주식회사 다중 fa를 사용하는 통신시스템의 적응형 cfr
US20070140376A1 (en) * 2005-12-21 2007-06-21 Lg-Nortel Co., Ltd. Apparatus and method for crest factor reduction in a communication system
CN101257481A (zh) * 2008-04-22 2008-09-03 中兴通讯股份有限公司 一种预处理不连续配置多载波的削峰系统和方法
CN102387109A (zh) * 2010-09-06 2012-03-21 电信科学技术研究院 一种削除信号峰值功率的方法及装置

Also Published As

Publication number Publication date
CN103718525A (zh) 2014-04-09
CN103718525B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN105450559B (zh) 一种自干扰信道估计方法和设备
JP5513523B2 (ja) 遅延スプレッド補償のための方法及び装置
JP6395640B2 (ja) シングルキャリア信号における狭帯域干渉をキャンセルするための方法および装置ならびにコンピュータプログラム
US11121899B2 (en) Signal quality control method for basestations having multiple antennas
US10348530B1 (en) Combined minimization of intersymbol interference (ISI) and adjacent channel interference (ACI)
WO2015003388A1 (zh) 一种削波方法、装置及系统
JP6112257B2 (ja) ユーザ固有の参照信号送信方法および装置
WO2020211578A1 (zh) 参考信号发送方法和装置
JP2007006219A (ja) アダプティブアンテナ装置
GB2472102A (en) Receiver for Single Carrier Frequency Division Multiple Access (SC-FDMA) wireless transmission
JP6507260B2 (ja) チャネル推定方法及び装置、記憶媒体
CN110519190B (zh) 一种控制无线直放站进行工作的方法及无线直放站
JP6752743B2 (ja) 無線通信システム、通信方法および基地局
CN105245480B (zh) 数字信号处理方法及装置
US20150036650A1 (en) Channel estimation method for overcoming channel discontinuity between subbands of an orthogonal frequency division multiplexing (ofdm) system
WO2018049674A1 (zh) 信号处理方法和信号处理装置
CN104253773B (zh) 信道均衡方法和装置
EP2139184B1 (en) Peak suppressing apparatus, peak suppressing method, and wireless communication device
CN114285704B (zh) 上行信道估计方法、芯片、系统及存储介质
CN108667758B (zh) 一种削峰方法及装置
JP2008028729A (ja) 無線受信装置および方法
JP6226119B2 (ja) 干渉信号低減機能制御装置、干渉信号低減機能制御装置の制御方法、及び受信装置
US20030231699A1 (en) Single beamforming structure for multiple modulation schemes
EP2757732B1 (en) Channel estimation method for overcoming channel discontinuity between sub-bands of an orthogonal frequency division multiplexing (ofdm) system
KR20230085788A (ko) 수신 장치 및 이의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889137

Country of ref document: EP

Kind code of ref document: A1