WO2014183616A1 - 宇航服面窗紧固结构及其紧固方法 - Google Patents

宇航服面窗紧固结构及其紧固方法 Download PDF

Info

Publication number
WO2014183616A1
WO2014183616A1 PCT/CN2014/077245 CN2014077245W WO2014183616A1 WO 2014183616 A1 WO2014183616 A1 WO 2014183616A1 CN 2014077245 W CN2014077245 W CN 2014077245W WO 2014183616 A1 WO2014183616 A1 WO 2014183616A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastening
window
pressure
arm
face window
Prior art date
Application number
PCT/CN2014/077245
Other languages
English (en)
French (fr)
Inventor
谢晓斌
李震
谢隽永
Original Assignee
一禾科技发展(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一禾科技发展(上海)有限公司 filed Critical 一禾科技发展(上海)有限公司
Publication of WO2014183616A1 publication Critical patent/WO2014183616A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G6/00Space suits
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/18Face protection devices
    • A42B3/22Visors

Definitions

  • the invention relates to a spacesuit structure in the field of national defense construction and aerospace, in particular to a fastening structure of a spacesuit window and a fastening method thereof.
  • the surface window on the spacesuit helmet is a key part of the spacesuit.
  • the safety performances such as pressure resistance and air tightness mainly depend on the fastening connection between the window and the spacesuit.
  • the spacesuit windows are mostly transparent and have a certain strength of transparent parts such as glass, but they are brittle materials, have low impact strength, low tensile strength, and compression. Low strength, low load bearing strength, poor stress resistance, high expansion coefficient, strong elongation at break, low modulus of elasticity, low flexural strength, and low yield strength.
  • the spacesuit window is generally used in a reserved slot embedded in the spacesuit helmet or a hole in the face window is bolted to the aerospace lunar helmet, which is to place the brittle face window on the rigidity.
  • the edge strength of the brittle material is particularly important according to the shortcomings of the above-mentioned face window, the force principle when the face window is subjected to a uniform load, and the use environment of the spacesuit. If it is not handled well, it is easy to have safety problems such as cracks.
  • the thickness of the joint between the edge of the window and the helmet of the spacesuit needs to be increased accordingly; however, due to the optical requirements and limitations at the same time, the overall thickness of the window must be Consistently, it is impossible to increase the thickness locally due to the large damage stress at the edge of the window. Therefore, the overall thickness of the window must be increased during design, which will undoubtedly affect the optical performance of the window and its internal stress change. It is also more complicated.
  • the connection between the above-mentioned spacesuit window and the helmet has the following defects:
  • the surface of the spacesuit will have more or less defects or residual stresses, including grinding, polishing and annealing, which will cause damage to the internal stress balance of the window itself;
  • the process of warehousing or assembly may cause the defect or stress to gradually enlarge, and there is a greater potential safety hazard in the future.
  • the processing technology of the circular-shaped opposite window is more demanded, and the processing size or curvature of the surface window must have certain errors.
  • the center of the screw hole is not completely aligned with the center of the corresponding hole on the helmet, or the bolt hole opened at the edge of the window has defects such as cracks, gaps, and poor polishing.
  • the above situation will affect the surface window and the helmet of the spacesuit. Coincidence, which leads to difficulty in installing the window, or There is stress concentration after loading, and the interchangeability of the window products is poor.
  • the spacesuit window When the spacesuit window is installed on the spacesuit helmet by inlaying, its structure fails to integrate the spacesuit window with the spacesuit helmet, but when the spacesuit window is deformed due to temperature difference, pressure difference, etc. Between the face window and the helmet, only the adhesion of the resin filling layer is used to resist the tearing force between the face window and the helmet due to the deformation, and the adhesion of the resin filling layer cannot be resisted by the deformation of the window. When the force is torn, the window is easily detached from the spacesuit helmet, causing a serious safety accident.
  • the structure can make the spacesuit window and the spacesuit helmet form one body, but the installation hole on the face window has destroyed the window itself.
  • the air pressure in space is basically zero, and the spacesuit must always maintain about one atmosphere; the space temperature difference of astronauts in space can reach about three hundred degrees, and the spacesuit must be basically maintained. At around 20 °C. Under such pressure difference and temperature difference conditions, any small residual stress or assembly stress near the screw hole can be easily expanded into cracks and even cracks leading to safety accidents such as rupture of the window.
  • the installation structure of the spacesuit window in the world is almost the same, only the material and manufacturing process of the window are improved.
  • the fastening structure of the face window and the spacesuit helmet has not changed fundamentally.
  • the above problems still exist, the space service window
  • the fastening structure has also become a major problem for the relevant technicians.
  • An object of the present invention is to overcome the deficiencies of the prior art and to provide a fastening structure for a space flight window and a fastening method therefor.
  • the present invention discloses a spacesuit window fastening structure, which comprises a spacesuit helmet and a face window mounted on the spacesuit helmet; the periphery of the face window is combined with a frame, and the frame is formed on the frame.
  • the frame In combination with the mounting structure of the spacesuit helmet, the frame includes a pressing assembly and a fastening assembly, and the fastening assembly is pressed by the pressing assembly and the face window to generate a pre-stress to fasten the face window.
  • the fastening assembly comprises two arcuate arms symmetrically clamped to the face window, two bows Forming an enclosure space between the arms, the arcuate arm includes a first force arm and a second force arm connecting the first force arm, and the connection of the first force arm and the second force arm Forming a sliding end, the first force arm forming a pressure receiving end on a side away from the second force arm, the second force arm forming a fastening end on a side away from the first force arm, The compressed end of the first force arm receives compression of the compression assembly and cooperates with the face window to generate prestressing of the first and second force arms.
  • a further improvement of the present invention is that the pressing assembly includes a first pressure bar and a second pressure bar; the first pressure bar is disposed outside the first force arm of the arcuate arm; the arcuate arm of the fastening component The two sliding ends of the arcuate arms abut against the first pressure strip; the two pressure receiving ends of the arcuate arms abut against the second pressure strip, and the two fastening ends of the arcuate arms abut the Both sides of the window;
  • the first pressure bar and the second pressure bar respectively open a plurality of corresponding bolt holes; the first pressure bar and the second pressure bar are fastened by bolts; the second pressure bar presses the The two compression ends of the arcuate arms are displaced toward the first pressure bar, and the two sliding ends of the arcuate arms are displaced from each other, and the two fastening ends of the arcuate arms are restricted by the face window. Thereby driving the first force arm and the second force arm to generate a pre-stress to fasten the face window.
  • a further improvement of the present invention is that the first pressure bar comprises a bottom plate, the side of the bottom plate forms a baffle; the baffle and the face window are filled with a resin buffer layer; and the first pressure A mounting structure is formed on the helmet of the spacesuit.
  • a further improvement of the present invention is that the side of the face window is recessed to form a mounting groove, and the middle portion of the second pressure bar forms a ridge; the ridge is embedded in the mounting groove.
  • the first force arm is a short straight arm and the second force arm is an arcuate arm.
  • a pressing plate is coupled to the fastening end, and a connecting area of the pressing plate and the second force arm is recessed inward to form a platen position adjusting area.
  • an adhesive may be applied between the two fastening ends and the face window, and a double-sided tape or a cushion pad may be interposed.
  • the second force arm is spaced apart to form a plurality of overflow grooves; the enclosed space is filled with a sealant.
  • the sliding end of the arcuate arm has a circular arc surface or a sloped surface.
  • a further improvement of the invention is that the thickness of the second force arm forms a thick to thin gradient from the slip end to the fastening end.
  • the compressed end of the arcuate arm of the fastening assembly extends to form a rotational positioning rib, and the second pressure strip is formed with a rotary positioning groove corresponding to the rotational positioning edge of the fastening component.
  • a further improvement of the invention consists in that the pressed ends of the arcuate arms are connected by an arcuate deformation zone.
  • the front window of the present invention generates a rigid frame integrated with itself by a prestressed component, and then is fastened to the spacesuit helmet through the rigid frame, so that the ability of the face window to bear the load is no longer determined.
  • the edge section of the face window of the invention is effectively protected from being in direct contact with the helmet, and when the inner side is subjected to air pressure, the edge failure stress is effectively transmitted to the spacesuit helmet through the rigid frame, so that the entire space suit Helmet
  • the structure is stronger and more stable and has a longer service life.
  • the surface window is fastened by the rigid frame and the spacesuit helmet, and the bolt hole is no longer needed on the surface window, and the internal stress balance of the window itself is not damaged, and the original strength and no stress of the window are maintained.
  • the weak point does not cause assembly difficulties due to machining defects of the bolt holes, etc., and stress concentration during the assembly process; there is no superposition and expansion of the above stresses during use.
  • the face window is fastened in a rigid frame in a positionally adjustable manner to form a separate face window structure unit, and the fastening component in the rigid frame has a certain tolerance for the manufacturing error of the face window. Therefore, the assembly of the face window and the frame is more convenient, the assembly stress is avoided, and the assembly interchangeability of the face window unit product can be greatly improved.
  • the invention occludes the surface of the window through the prestressed structure, and after the fastening component and the face window are fastened, the colloid wrapped between the rubber pad and the stress clamp between the cross section of the face window and the baffle is cured.
  • the window forms a flexible, void-free full contact between the baffle and the fastening assembly, which transmits both the radial load on the face window and the cross-section of the face window.
  • the invention is filled with a curable resin buffer layer (such as epoxy resin filling glue, the following tube is called a resin buffer layer) having a soft first hard effect between the outside of the window window fastening assembly and the baffle, and is not assembled. There is assembly stress, and the lateral load on the window during use can be effectively transmitted to the helmet through the buffer layer, and the whole structure is more reasonable and safe to use.
  • a curable resin buffer layer such as epoxy resin filling glue, the following tube is called a resin buffer layer
  • the fastening component is selected from materials having considerable strength and at the same time having certain elasticity and toughness.
  • the deformation and stress changes of the surface window due to loads such as pressure difference and temperature difference can be tightened.
  • the pre-stress release and re-generation process of the solid component itself is buffered, which not only does not superimpose various complex stresses on each other, but can eliminate or reduce the stress concentration to a certain extent, and maintain the surface window structure.
  • Safety and stability are examples of the mechanical stress concentration of a certain extent.
  • the prestressed fastening process of the present invention is to pre-stress the fastening component by tightening the relevant bolts.
  • the selection of the raw materials of each component and the geometric design are adopted in the design module of the previous stage. After the workers can tighten the relevant bolts in place, the preset tightening force can be obtained without being affected by uncertain factors such as operating strength, which greatly reduces the operating conditions, technical requirements and maintenance strength.
  • FIG. 1 is a schematic view showing the force of a planar window of the prior art
  • FIG. 2 is a schematic view showing the overall structure of a spacesuit of a space suit window fastening structure of the present invention
  • FIG. 3 is a perspective view showing the entire front surface of the front window and the frame connecting structure of the present invention.
  • FIG. 4 is a schematic perspective view of the entire back surface of the front window and the frame connecting structure of the present invention.
  • Figure 5 is an exploded view of Figure 3;
  • Figure 6 is a perspective view showing a part of the connection structure of the window and the frame of the present invention.
  • Figure 7 is an exploded view of Figure 6;
  • Figure 8 is a plan view showing the connection structure of the face window and the frame of the present invention.
  • Figure 9 is a plan view showing the fastening assembly of the present invention.
  • Figure 10 is a schematic view showing the compression deformation of the arc deformation zone of the fastening assembly of the present invention;
  • FIG. 11 is a schematic view showing the principle of the fastening process of the frame and the face window in the fastening structure of the space suit window according to the present invention
  • Figure 12 is a plan view showing the connection structure of the face window and the frame when the second pressure bar of the present invention is a T-shaped member. detailed description
  • a spacesuit window fastening structure of the present invention comprises a spacesuit helmet and a face window 2 mounted on the spacesuit helmet; a periphery of the face window 2 is combined with a frame 3, and the frame 3 is formed with a fit.
  • the mounting structure of the spacesuit helmet 1, the frame 3 includes a pressing assembly 31 and a fastening assembly 32, and the fastening member 32 is pressed by the pressing assembly 31 and the face window 2 to generate a pre-stress to fasten the face window 2.
  • the fastening component 32 includes two arcuate arms 321 symmetrically clamped to the face window 2, and the material thereof should be selected from materials having considerable strength and elasticity and toughness, such as metal, engineering plastics, A polymer material or the like; a pair of arcuate arms 321 are interposed to form a surrounding space 320.
  • the arcuate arm 321 includes a first force arm 3211 and a second force arm 3212 connecting the first force arm 3211, and the first force arm 3211 and the first force arm 3211
  • the joint of the two-force arm 3212 forms a sliding end 3213, and the sliding end 3213 has a circular arc surface or a sloped surface to ensure less resistance during the slipping process; the first force arm 3211 is away from the second force arm.
  • One end of the 3212 forms a pressure receiving end 3214, and the pressure receiving end 3214 extends to form a rotating positioning edge 3217; the second force arm 3212 forms a fastening end 3215 on a side away from the first force arm 3211, and the fastening end 3215 is coupled with
  • the pressure plate 3216, and the connection area of the pressure plate 3216 and the second force arm 3212 are recessed inwardly to form a pressure plate position adjustment area 3218, by which the pressure plate 3216 can be adjusted to achieve its own position adjustment during the fastening process.
  • the pressure receiving end of the first arm 3211 3214 accepts compression assembly 31 and compression window 2 drives the mating surface of the first arm 3211 and second arm 3212 to generate prestress.
  • the first force arm 3211 is a short straight arm
  • the second force arm 3212 is an arcuate arm
  • the thickness of the second force arm 3212 forms a thickness from the sliding end 3213 to the fastening end 3215.
  • the two arcuate arms 321 are connected between the two pressure receiving ends 3214 by providing an arc deformation zone 3219. When the pressure receiving end 3214 of the first force arm 3211 is pressed, the arc deformation zone 3219 is pressed from the arc shape.
  • the drawing process of the curved deformation zone 3219 is shown in FIG.
  • the design of the arc deformation zone 3219 ensures that the fastening component 32 has a certain extension space; the two compression ends 3214 of the fastening component 32 are matched. A plurality of bolt holes are formed. Between the two fastening ends 3215 and the window 2, an adhesive (such as UV glue) or a double-sided glue (such as 3M glue) or a cushion (such as a rubber sheet) may be applied.
  • the second force arm 3212 is spaced apart to form a plurality of overflow grooves.
  • the use of the overflow groove serves to overflow the excess unsolidified sealant when the fastening component 32 is clamped and prevent the expansion or contraction of the sealant during the solidification process.
  • the effect of the pre-stress generated by the solid assembly 32 ensures pre-stressed fastening between the fastening assembly 32 and the face window 2 and at the same time achieves a seal.
  • the pressing assembly 31 includes a first pressure bar 311 and a second pressure bar 312.
  • the surface of the second pressure bar 312 cooperates with the rotating positioning edge 3217 to provide two long rotating positioning grooves 3121.
  • the radius of the positioning groove 3121 is equal to or slightly larger than the radius of the rotating positioning edge 3217, so that when the entire window fastening structure is in the pre-fastening and fastening state, the rotation positioning edge 3217 can be effectively positioned in the rotation positioning groove 3121.
  • the two sliding ends 3213 are displaced only in the direction away from each other in the surface of the first pressure bar 311.
  • the first pressure bar 311 is disposed outside the first force arm 3211 of the arcuate arm 321; the arcuate arm 321 of the fastening component 32
  • the two sliding ends 3213 abut against the first pressure strip 311; the two pressure receiving ends 3214 of the arcuate arms 321 abut against the second pressure strip 312, and the two fastening ends 3215 of the arcuate arms 321 abut against the two of the face window 2 side.
  • the first pressure bar 311 and the second pressure bar 312 are respectively provided with a plurality of corresponding bolt holes.
  • the bolt holes of the first pressure bar 311 are the mounting structure of the frame 3, and the mounting structure can also adopt other connection structures.
  • the first pressure bar 311 and the second pressure bar 312 are fastened by bolts; the second pressure bar 312 presses the two pressure receiving ends 3214 of the arcuate arm 321 to the first pressure bar 311, and the two sliding ends 3213 of the arcuate arm 321 occur.
  • the two fastening ends 3215 of the arcuate arms 321 are constrained by the face window 2, thereby driving the first force arm 3211 and the second force arm 3212 to generate the prestressed fastening face window 2.
  • the first pressure strip 311 includes a bottom plate 3111.
  • the side of the bottom plate 3111 forms a baffle 3112.
  • the baffle 3112 and the face window 2 are filled with a resin buffer layer.
  • the second force arm 3212 of the fastening component 32 is split into a plurality of jaws to better conform to the arc surface of the face window 2, so that The fastening member 32 secures the face window more firmly and stably without damaging the internal stress of the face window 2 itself.
  • a sealant is filled in the gap between the second force arm 3212, the face window 2 and the second pressure bar 312, thereby achieving more stable fastening; since the overflow groove 32121 is opened on the second force arm 3212, The use of the overflow trough 32121 serves to relieve excess unsealed sealant when the fastening assembly 32 is engaged and to prevent pre-stressing of the fastening assembly 32 by expansion or contraction of the sealant during solidification.
  • the second pressure strip 312 is placed in the enclosed space 320 of the fastening assembly 32 and the rotary positioning groove 3121 is engaged with the rotary positioning edge 3217, and then the sealant 320 is filled in the enclosed space 320 and The first force arm 3211 of the fastening component 32 is disposed on the first pressure bar 311.
  • the two fastening ends 3215 of the arcuate arm 321 abut against the two sides of the window 2; the first pressure bar 311 is disposed on the first force.
  • the operation principle of the entire fastening process is further described below with reference to FIG. 11.
  • the two pressure receiving ends 3214 of the bow arms 321 are displaced toward the first pressure bar 311 under the compression of the second pressure bar 312, and the two arch arms 321 are pressed.
  • the distance between the ends 3214 is controllable (unchanged) during the fastening process, while the two sliding ends 3213 are displaced away from each other by the inner side surface of the first pressure strip 311, and the two fastening ends 3215 are along
  • the displacements are close to each other until they abut against the side of the face window 2, so the distance between the pressure plates 3216 of the two fastening ends 3215 is also controllable, and the fastening point on the face window 2 is also controllable; further compression
  • the two pressure receiving ends 3214 are displaced toward the first pressure bar 311, thereby driving the two sliding ends 3213 Continuing away from each other, the two fastening ends 3215 are now abutted against the side surface of the face window 2 and thereby being constrained, and the first force arm 3211 and the second force arm 3212 are deformed thereby and generate a prestress, which is stable thereby.
  • the face window 2 of the prestressed structure and the frame 3 are brought into a fastening state, and the face window 2 is fastened.
  • the prestressing needs to be released, as long as the corresponding bolt is loosened, the deformation of the bow arm 321 will return to the previously unfastened state, and the prestressing force will disappear automatically, and the components of the entire space service window fastening structure are Lossless and reusable, it not only saves costs, but is also very environmentally friendly.
  • the side of the window 2 can also be recessed to form a mounting groove 20
  • the second pressure strip 312 can be used T-shaped, that is, the second pressure strip 312 can form a rib 3122;
  • the rib 3122 is embedded in the mounting groove 20 and joined to the face window 2 by a resin filling layer.
  • the connection area of the second pressure strip 312 and the window 2 is increased, thereby increasing the overall connection between the frame 3 and the window 2.
  • the strength and reliability of the screwing between the strip 311 and the second pressure strip 312 further ensure a stable and firm connection between the frame 3 and the face window 2.

Abstract

一种宇航服面窗紧固结构,包括宇航服头盔(1)和安装于所述宇航服头盔的面窗(2)。面窗(2)周边结合有一边框(3),边框(3)上形成有配合宇航服头盔(1)的安装结构。边框(3)包括压迫组件(31)和紧固组件(32),通过压迫组件(31)和面窗(2)的配合压迫紧固组件(32)生成预应力进而紧固面窗(2)。在宇航服面窗紧固结构中,面窗(2)中无需开设螺栓孔,不会破坏面窗(2)自身的内应力平衡,保持了面窗(2)原有的强度、无应力薄弱点。通过在面窗(2)周边生成一圈预应力边框(3),形成一种面窗(2)与宇航服头盔(1)的整体受力结构,有效地将面窗(2)承受的压力差等载荷通过预应力结构边框(3)传递至宇航服头盔(1),保证了面窗(2)结构的完整性与稳定性。

Description

宇航服面窗紧固结构及其紧固方法 技术领域
本发明涉及国防建设及航空航天领域的宇航服结构,尤指一种宇航服面窗的紧固结构及 其紧固方法。 背景技术
随着航天事业的逐步推进, 宇航员舱外作业将愈加频繁。 而宇航服头盔上的面窗作为宇 航服上的关键部分, 除了须具备良好的光学性能外, 耐压性、 气密性等安全性能主要取决于 面窗与宇航服的紧固连接。
为满足宇航员在舱外作业时对环境观察的要求, 宇航服面窗大多光学性能良好且具备一 定强度的玻璃等透明件, 但其属脆性材质, 有冲击强度低、 拉伸强度低、 压缩强度低、 承载 强度低、 抗应力性能差、 膨胀系数高、 断裂延伸性强、 弹性模量小、 挠曲强度低、 屈服强度 低等缺点。
如图 1所示, 当一平面物件置于刚性边框内, 在平面上施加均布荷载时, 该物件平面会 发生凹陷变形, 其内部会产生对抗性应力, 而且边缘受到刚性制约因素形成应力集中效应, 对抗性应力超过该物件边缘材质的性能极限时, 该物件边缘会损坏。
太空中的气压几乎为零, 而宇航服内为满足航天员的基本生存需要须保持约一个标准大 气压, 宇航服内外存在着较大的压力差。 目前宇航服面窗一般釆用镶嵌至宇航服头盔的预留 槽内或在面窗上开孔通过螺栓固定于宇航月艮头盔上的方式,所述方式都是将脆性的面窗搁置 于刚性边框上, 当面窗一侧受到均匀气压时, 同时根据上述面窗的缺点、 面窗受到均布荷载 时的受力原理以及宇航服的使用环境, 该脆性材料的边缘强度就显得尤为重要, 一旦处理不 好很容易出现裂缝等安全问题。 为应对宇航服在太空中存在的压力差, 保证其结构的强度与 稳定, 面窗边缘与宇航服头盔连接处的厚度需要相应增加; 可是由于同时受到光学要求和限 制, 面窗的整体厚度必须保持一致, 而无法因为面窗边缘的破坏应力较大而局部增加厚度, 因此设计时不得不将面窗的整体厚度加大, 这样无疑会对面窗的光学性能造成一定影响, 同 时其内应力变化也更加复杂。 除此之外上述宇航服面窗与头盔的连接方式还存在以下缺陷:
1、 在生产制造及加工过程中, 宇航服面窗或多或少会存在一定的缺陷或残余应力, 包 括磨削、 抛光和退火等工序都会对面窗自身的内应力平衡造成破坏; 后续在运输、 仓储或装 配的过程都可能导致该缺陷或应力逐渐放大, 日后存在较大的安全隐患。
2、 圆弧形对面窗的加工工艺要求更高, 面窗的加工尺寸或弧度等必然存在一定的误差, 同样宇航服头盔与面窗连接处的接触面存在平整度误差,或在面窗边缘开设螺孔的中心与头 盔上的相应孔的中心没有完全对准, 或者在面窗边缘开设的螺栓孔存在裂紋、 缺口、 抛光不 好等缺陷, 上述情况都会影响面窗与宇航服头盔的贴合度, 从而导致面窗安装困难, 或者安 装后存在应力集中, 且面窗制品的互换性较差。
3、 宇航服面窗通过镶嵌的方式安装至宇航服头盔上时, 其结构未能使宇航服面窗与宇 航服头盔形成一体, 但当宇航服面窗因温差、 压差等原因发生变形时, 面窗与头盔之间仅依 靠树脂填充层的粘合力来对抗面窗因变形而导致与头盔之间的撕扯力, 当树脂填充层的粘合 力无法对抗因面窗变形而带来的撕扯力时, 面窗就很容易从宇航服头盔上脱落, 从而引发严 重的安全事故。
4、 宇航服面窗通过螺栓紧固的方式安装至宇航服头盔上时, 其结构虽能使宇航服面窗 与宇航服头盔形成一体, 但在面窗上开设安装孔就已经破坏面窗自身的内应力平衡, 螺孔附 近成为了强度上的薄弱环节, 再加上可能叠加的加工缺陷与装配应力, 面窗上很容易产生裂 紋, 这将会是很严重的安全隐患。
5、 当宇航员在舱外作业时, 太空中的气压基本为零, 而宇航服内须始终保持约一个大 气压; 太空中宇航员工作环境温差可达三百度左右, 而宇航服内须基本维持在 20°C左右。 宇航服面窗在如此的压差及温差条件下, 上述螺孔附近的任何微小残余应力或装配应力, 都 很容易被扩展为裂紋, 甚至裂缝而导致面窗破裂等安全事故。
6、 因为面窗与头盔的热膨胀系数是不同的, 面窗内各层透明体的热膨胀系数不同、 其 变形程度也各异, 而且随温度变化的规律也存在很大差异, 所以当压差与温差发生变化时, 除了刚性较大的头盔会限制面窗的横向变形, 导致面窗与头盔连接处的侧向应力增大外, 两 者的接触面附近还会出现其他复杂的应力状态,时间长了就容易在螺孔等应力薄弱处产生疲 劳裂紋, 直到面窗破坏导致灾难性的后果。
7、 由于螺栓会传热, 宇航服面窗若长时间暴露于高温下, 温度通过螺栓传到螺栓孔表 面而使孔的有效支承面积变小, 加之宇航服使用过程中面窗上螺栓孔的磨损与变形, 都对整 个结构的强度与稳定非常不利。
目前世界上宇航服面窗的安装结构大致相同, 只是面窗的材质及制造工艺上有所改进, 面窗与宇航服头盔的紧固结构并无根本改变, 上述问题依然存在, 宇航服面窗紧固结构亦成 为困扰相关技术人员的一大难题。
然而随着时代的进步, 载人航天事业的发展越来越被重视, 人们对宇航服的需求也是有 增无减, 可是能够有效提升宇航服面窗安全性与便捷性的核心技术仍未解决。 针对此类问题 目前尚无比较合理的解决方式, 而本发明填补了此领域的空白。 发明内容
本发明的目的在于克服现有技术的缺陷, 而提供一种宇航服面窗的紧固结构及其紧固方 法。
为解决上述技术问题, 本发明公开了一种宇航服面窗紧固结构, 包括宇航服头盔和安装 于所述宇航服头盔的面窗; 所述面窗周边结合有一边框, 所述边框上形成有配合所述宇航服 头盔的安装结构, 所述边框包括压迫组件和紧固组件, 通过所述压迫组件和面窗的配合压迫 所述紧固组件生成预应力进而紧固所述面窗。
本发明的进一步改进在于, 所述紧固组件包括两个对称夹持于所述面窗的弓形臂, 两弓 形臂之间夹设形成一围合空间, 所述弓形臂包括第一力臂与连接所述第一力臂的第二力臂, 所述第一力臂与所述第二力臂的连接处形成滑移端,所述第一力臂于远离所述第二力臂的一 侧形成受压端, 所述第二力臂于远离所述第一力臂的一侧形成紧固端, 所述第一力臂的受压 端接受所述压迫组件的压迫并配合所述面窗驱使所述第一力臂与第二力臂生成预应力。
本发明的进一步改进在于, 所述压迫组件包括第一压力条和第二压力条; 所述第一压力 条设置于所述弓形臂的第一力臂的外侧;所述紧固组件的弓形臂的两滑移端^ I氏靠于所述第一 压力条; 所述弓形臂的两受压端抵靠于所述第二压力条, 所述弓形臂的两紧固端抵靠于所述 面窗的两侧面;
所述第一压力条和所述第二压力条分别开设有复数个对应的螺栓孔;通过螺栓紧固所述 第一压力条与所述第二压力条;所述第二压力条压迫所述弓形臂的两受压端向所述第一压力 条方向位移, 所述弓形臂的两滑移端发生相互远离的位移, 所述弓形臂的两紧固端受到所述 面窗的限位 , 从而驱使所述第一力臂与所述第二力臂生成预应力紧固所述面窗。
本发明的进一步改进在于, 所述第一压力条包括一底板, 所述底板的侧部形成挡板; 所 述挡板与所述面窗之间填充树脂緩冲层;且所述第一压力上形成有配合所述宇航服头盔的安 装结构。
本发明的进一步改进在于, 所述面窗的侧边凹陷形成安装槽, 所述第二压力条中部形成 凸条; 所述凸条嵌设于所述安装槽内。
本发明的进一步改进在于, 所述第一力臂为一短直臂, 所述第二力臂为一弧形臂。 本发明的进一步改进在于, 所述紧固端上结合有压板, 且所述压板与所述第二力臂的连 接区域向内凹陷形成一压板位置调节区。
本发明的进一步改进在于, 所述两紧固端与所述面窗之间可涂抹粘结胶、 夹设双面胶或 垫设緩冲垫。
本发明的进一步改进在于, 所述第二力臂间隔形成复数个溢流槽; 所述围合空间内填充 有密封胶。
本发明的进一步改进在于, 所述弓形臂的滑移端呈圆弧面或斜面。
本发明的进一步改进在于,所述第二力臂的厚度自所述滑移端至所述紧固端形成一由厚 至薄的渐变。
本发明的进一步改进在于, 所述紧固组件的弓形臂的受压端延伸形成有一旋转定位棱, 所述第二压力条对应所述紧固组件的所述旋转定位棱形成有旋转定位槽。
本发明的进一步改进在于, 所述弓形臂的受压端之间通过一弧形变形区连接。
本发明由于釆用了以上技术方案, 使其具有的有益效果是:
1、 本发明中面窗通过预应力组件于周边生成一圏与自身合为一体的刚性边框, 然后通 过该刚性边框与宇航服头盔实现紧固安装, 因此面窗承受荷载的能力不再取决于面窗自身的 边缘强度, 而是刚性边框的强度, 故整个面窗单元的强度大大提高, 承受荷载的能力也大幅 增力口。
2、 本发明面窗的边缘断面得到了有效的保护而不再与头盔直接接触, 其内侧受到气压 作用时, 边缘的破坏应力将通过此刚性边框有效地传递至宇航服头盔, 这样整个宇航服头盔 结构的整体性更强也更稳定、 使用寿命更长。
3、 本发明中面窗通过刚性边框与宇航服头盔实施紧固, 面窗上不再需要开设螺栓孔, 不会破坏面窗自身的内应力平衡, 保持了面窗原有的强度、 没有应力薄弱点, 不会产生因为 螺栓孔的加工缺陷等而导致的装配困难以及装配过程的应力集中;在使用过程中也不存在上 述应力的叠加与扩大。
4、 在本发明中, 面窗以位置可调的方式紧固于刚性边框内、 形成为一个独立的面窗结 构单元, 且刚性边框内的紧固组件对面窗的生产制造误差有一定的宽容度, 因此使得面窗与 边框的装配更便捷、 避免了装配应力的产生, 同时可大幅提高面窗单元制品的装配互换性。
5、 本发明通过预应力结构咬合面窗平面, 在紧固组件与面窗紧固完成后, 面窗断面与 挡板之间的胶垫以及应力夹之间包裹的胶体均达到固化状态,面窗与挡板和紧固组件之间形 成柔性的、 无空隙的完全接触, 既可传递面窗所受的径向荷载, 又对面窗的断面起到了很好 的保护作用。
6、 本发明在面窗紧固组件外侧与挡板之间填充具有先软后硬效果的可固化树脂緩冲层 (如环氧树脂填充胶, 以下筒称树脂緩冲层) , 组装时不存在装配应力, 使用过程中面窗所 受的侧向荷载, 均可有效地通过该緩冲层传递至头盔, 整个结构受力更合理、 使用更安全。
7、 本发明中紧固组件选用具有相当强度, 同时兼具一定弹性与韧性的材料, 在航天过 程中, 面窗由于受到压差与温差等荷载而产生的变形与应力变化, 均可通过紧固组件自身蕴 藏的预应力的释放与再生成的过程进行緩冲, 不仅不会使各种复杂的应力相互叠加, 相反能 在一定程度起到消除或减小应力集中的作用, 保持面窗结构的安全与稳定。
8、 本发明对面窗与头盔实施紧固的方式, 不再需要考虑面窗的断面与头盔的直接贴合, 因此面窗的选择将不再受紧固安装方式的困扰与限制,在面窗设计时对材质与外形等的选择 将更加自由。
9、 本发明预应力紧固的实施过程是通过拧紧相关螺栓来压迫紧固组件而使其产生预应 力, 在具体操作时, 通过前期的设计模块中对各个组件原材料的选择及几何形状的设计, 后 期工人只需将相关螺栓拧紧到位即可得到预设的紧固力,无须受到操作力度等不确定因素的 影响, 大大降低了操作条件和技术要求与维修保养强度。 附图说明
图 1为现有技术的平面面窗受力示意图;
图 2为本发明宇航服面窗紧固结构的宇航服整体结构示意图;
图 3为本发明面窗与边框连接结构整体正面的立体示意图;
图 4为本发明面窗与边框连接结构整体背面的立体示意图;
图 5为图 3的分解图;
图 6为本发明面窗与边框连接结构局部的立体示意图;
图 7为图 6的分解图;
图 8为本发明的面窗与边框连接结构平面示意图;
图 9为本发明紧固组件平面示意图; 图 10为本发明紧固组件的弧形变形区受压变形示意图;
图 11为本发明宇航服面窗紧固结构中边框与面窗紧固过程原理示意图;
图 12为本发明第二压力条为 T型件时的面窗与边框连接结构平面示意图。 具体实施方式
下面结合具体实施例对本发明作进一步说明。
请参见图 2-5 , 本发明的一种宇航服面窗紧固结构, 包括宇航服头盔和安装于宇航服头 盔的面窗 2; 面窗 2周边结合有一边框 3 , 边框 3上形成有配合宇航服头盔 1的安装结构, 边框 3包括压迫组件 31和紧固组件 32 , 通过压迫组件 31和面窗 2的配合压迫紧固组件 32 生成预应力进而紧固面窗 2。
请参阅图 8-9 , 紧固组件 32包括两个对称夹持于面窗 2的弓形臂 321 , 其材料应选用具 有相当强度, 同时兼具一定弹性与韧性的材料, 如金属、 工程塑料、 高分子材料等; 两弓形 臂 321之间夹设形成一围合空间 320, 弓形臂 321包括第一力臂 3211与连接第一力臂 3211 的第二力臂 3212, 第一力臂 3211与第二力臂 3212的连接处形成一滑移端 3213 , 该滑移端 3213呈圆弧面或斜面可以在保证在滑移过程中产生的阻力更小; 第一力臂 3211于远离第二 力臂 3212的一侧形成受压端 3214,受压端 3214延伸形成有旋转定位棱 3217;第二力臂 3212 于远离第一力臂 3211的一侧形成紧固端 3215 ,紧固端 3215上结合有压板 3216,且压板 3216 与第二力臂 3212的连接区域向内凹陷形成一压板位置调节区 3218 , 通过该压板位置调节区 3218可在紧固过程中实现压板 3216 4敫小的自身位置调节, 以使其更平整地贴附面窗 2, 第 一力臂 3211的受压端 3214接受压迫组件 31的压迫并配合面窗 2驱使第一力臂 3211与第二 力臂 3212生成预应力。 在本实施例中第一力臂 3211为一短直臂, 第二力臂 3212为一弧形 臂, 且第二力臂 3212的厚度自滑移端 3213至紧固端 3215形成一由厚至薄的渐变, 该种结 构可以保证整个弧形臂充分和均匀形变, 不易折断。 两弓形臂 321在两受压端 3214之间通 过设置一弧形变形区 3219进行连接, 当第一力臂 3211的受压端 3214受压时, 弧形变形区 3219自弧形被压迫可拉伸延展, 弧形变形区 3219的受压变形过程请参阅图 10; 弧形变形区 3219的设计保证了紧固组件 32具有一定的延展空间; 紧固组件 32的两受压端 3214之间配 合形成有复数个螺栓孔。 两紧固端 3215与面窗 2之间可涂抹粘结胶(如 UV胶)或夹设双 面胶(如 3M胶)或塾设緩冲垫(如橡胶片) 。 第二力臂 3212间隔形成复数个溢流槽, 溢 流槽的釆用起到了紧固组件 32夹合时多余未凝固密封胶溢出作用和防止了密封胶在凝固过 程中的膨胀或收缩对紧固组件 32产生的预应力的影响,确保紧固组件 32与面窗 2之间的预 应力紧固和同时实现密封。
请参阅图 6-8 , 压迫组件 31包括第一压力条 311和第二压力条 312; 第二压力条 312的 表面中部配合旋转定位棱 3217设置了两条通长的旋转定位槽 3121 , 该旋转定位槽 3121的 半径等于或略大于旋转定位棱 3217的半径, 这样当整个面窗紧固结构分别处于预紧固与紧 固状态时, 旋转定位棱 3217 可以有效地在旋转定位槽 3121 内定位与进行转动, 两滑移端 3213才会在第一压力条 311表面仅沿相互远离的方向位移。
第一压力条 311设置于弓形臂 321的第一力臂 3211的外侧; 紧固组件 32的弓形臂 321 的两滑移端 3213抵靠于第一压力条 311;弓形臂 321的两受压端 3214抵靠于第二压力条 312, 弓形臂 321的两紧固端 3215抵靠于面窗 2的两侧面。
第一压力条 311和第二压力条 312分别开设有复数个对应的螺栓孔;本实施例中第一压 力条 311的螺栓孔为边框 3的安装结构, 安装结构也可釆用其他连接结构。 通过螺栓紧固第 一压力条 311与第二压力条 312; 第二压力条 312压迫弓形臂 321的两受压端 3214向第一 压力条 311方向位移, 弓形臂 321的两滑移端 3213发生相互远离的位移, 弓形臂 321的两 紧固端 3215受到面窗 2的限位, 从而驱使第一力臂 3211与第二力臂 3212生成预应力紧固 面窗 2。
其中第一压力条 311包括一底板 3111 , 底板 3111的侧部形成挡板 3112; 挡板 3112与 面窗 2之间填充树脂緩冲层。 当宇航服进入太空后, 面窗 2由于内部气压而产生的作用力由 原面窗 2边缘承载变为大部分通过树脂緩冲层传递至挡板 3112, 再由挡板 3112传递给宇航 服头盔 1共同承担, 如此便大大减小了面窗 2边缘所受的外力负荷, 同时也减小了紧固组件 32所受到的来自面窗 2的作用力, 从而防止了面窗 2边缘的开裂, 延长了面窗 2的使用寿 命;同时,防止以及紧固组件 32的两紧固端 3215由于面窗 2的作用力而被相互拉开的问题, 确实保证了紧固组件 32与面窗 2之间有效的紧固连接, 保证了宇航服内部工作人员的生命 安全。
进一步参阅图 7所示, 为应对面窗 2呈圆弧面的边缘, 紧固组件 32的第二力臂 3212分 裂为多个夹爪, 以更贴合于面窗 2的圆弧面, 使紧固组件 32在不破坏面窗 2 自身内应力的 前提下, 更牢固与稳定地紧固面窗。
另外, 在第二力臂 3212、 面窗 2以及第二压力条 312之间的空隙内填充密封胶, 从而 实现更为稳定的紧固; 由于在第二力臂 3212上开设溢流槽 32121 , 溢流槽 32121的釆用起 到了紧固组件 32夹合时多余未凝固密封胶溢出作用和防止了密封胶在凝固过程中的膨胀或 收缩对紧固组件 32产生的预应力的影响。
当装配面窗 2时, 将第二压力条 312置于紧固组件 32的围合空间 320内并将旋转定位 槽 3121与旋转定位棱 3217配合, 然后在围合空间 320内填充密封胶并将紧固组件 32的第 一力臂 3211设置于第一压力条 311上,弓形臂 321的两紧固端 3215抵靠于面窗 2的两侧面; 再将第一压力条 311设置于第一力臂 3211的外侧; 弓形臂 321的两滑移端 3213抵靠于第一 压力条 311 , 弓形臂 321的两受压端 3214抵靠于第二压力条 312的外侧表面, 通过依次贯 穿于第一压力条 311、 紧固组件 32和第二压力条 312的螺栓孔的螺栓进行预紧, 待面窗 2 的位置调整到位后, 通过该螺栓紧固第一压力条 311和第二压力条 312至完成紧固, 然后在 第一压力条 311的两挡板 3112与面窗 2之间填充树脂緩冲层。
下面配合图 11来进一步说明整个紧固过程的工作原理, 弓形臂 321的两受压端 3214在 第二压力条 312的压迫作用下向第一压力条 311方向位移, 两个弓形臂 321受压端 3214之 间的距离在紧固过程中是可控(不变) 的, 同时两滑移端 3213抵靠于第一压力条 311的内 侧表面发生相互远离的位移, 而两紧固端 3215沿发生相互靠近的位移直至抵靠于面窗 2的 侧面, 因此两紧固端 3215的压板 3216间的距离也是可控的, 其在面窗 2上的紧固位置点也 是可控的; 进一步压迫两受压端 3214向第一压力条 311方向位移, 进而驱使两滑移端 3213 继续相互远离, 而两紧固端 3215此时抵靠于面窗 2的侧面并由此受到限位, 第一力臂 3211 及第二力臂 3212由此发生形变并生成预应力, 至此具有稳定预应力结构的面窗 2与边框 3 达到紧固状态, 面窗 2获得紧固。 同样的, 当预应力需要解除时, 只要将相应螺栓松开, 弓 形臂 321的形变会恢复到之前未紧固状态, 此时预应力自动消失, 整个宇航服面窗紧固结构 的部件都是无损耗的和可重复使用的, 不仅节约了成本, 同时也非常环保。
另外, 请参阅图 12, 本实施例中面窗 2的侧边也可凹陷形成安装槽 20, 第二压力条 312 可釆用 T型件, 即第二压力条 312中部可形成凸条 3122; 凸条 3122嵌设于安装槽 20内并 通过树脂填充层结合于面窗 2。
由于第二压力条 312的凸条 3122通过树脂填充层结合于安装槽 20内增大了第二压力条 312与面窗 2的连接面积, 从而加大了框体 3与面窗 2的整体连接强度, 同时凸条 3122为 穿设于第一压力条 311、 紧固组件 32和第二压力条 312之间的螺栓增加了螺孔长度, 使得 该螺栓拥有更长的螺距,增强了第一压力条 311与第二压力条 312之间螺接的强度及可靠性, 进一步保证了框体 3与面窗 2的稳定牢固连接。
以上结合附图实施例对本发明进行了详细说明,本领域普通技术人员可根据上述说明对 本发明做出种种变化例。 因而, 实施例中的某些细节不应构成对本发明的限定, 本发明将以 所附权利要求书界定的范围作为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种宇航服面窗紧固结构, 包括宇航服头盔和安装于所述宇航服头盔的面窗; 其特 征在于, 所述面窗周边结合有一边框, 所述边框上形成有配合所述宇航服头盔的安装结构, 所述边框包括压迫组件和紧固组件,通过所述压迫组件和面窗的配合压迫所述紧固组件生成 预应力进而紧固所述面窗。
2. 如权利要求 1 所述的宇航服面窗紧固结构, 其特征在于, 所述紧固组件包括两个对 称夹持于所述面窗的弓形臂, 两弓形臂之间夹设形成一围合空间, 所述弓形臂包括第一力臂 与连接所述第一力臂的第二力臂, 所述第一力臂与所述第二力臂的连接处形成滑移端, 所述 第一力臂于远离所述第二力臂的一侧形成受压端,所述第二力臂于远离所述第一力臂的一侧 形成紧固端,所述第一力臂的受压端接受所述压迫组件的压迫并配合所述面窗驱使所述第一 力臂与第二力臂生成预应力。
3. 如权利要求 2 所述的宇航服面窗紧固结构, 其特征在于, 所述压迫组件包括第一压 力条和第二压力条; 所述第一压力条设置于所述弓形臂的第一力臂的外侧; 所述紧固组件的 弓形臂的两滑移端抵靠于所述第一压力条; 所述弓形臂的两受压端抵靠于所述第二压力条, 所述弓形臂的两紧固端抵靠于所述面窗的两侧面;
所述第一压力条和所述第二压力条分别开设有复数个对应的螺栓孔;通过螺栓紧固所述 第一压力条与所述第二压力条;所述第二压力条压迫所述弓形臂的两受压端向所述第一压力 条方向位移, 所述弓形臂的两滑移端发生相互远离的位移, 所述弓形臂的两紧固端受到所述 面窗的限位 , 从而驱使所述第一力臂与所述第二力臂生成预应力紧固所述面窗。
4. 如权利要求 3 中所述的宇航服面窗紧固结构, 其特征在于, 所述第一压力条包括一 底板, 所述底板的侧部形成挡板; 所述挡板与所述面窗之间填充树脂填充层。
5. 如权利要求 3或 4所述的宇航服面窗紧固结构, 其特征在于, 所述面窗的侧边凹陷 形成安装槽, 所述第二压力条中部形成凸条; 所述凸条嵌设于所述安装槽内。
6. 如权利要求 2-4中任一项所述的宇航服面窗紧固结构, 其特征在于, 所述第一力臂为 一短直臂, 所述第二力臂为一弧形臂。
7. 如权利要求 2~4 中任一项所述的宇航服面窗紧固结构, 其特征在于, 所述紧固端上 结合有压板, 且所述压板与所述第二力臂的连接区域向内凹陷形成一压板位置调节区。
8. 如权利要求 2~4 中任一项所述的宇航服面窗紧固结构, 其特征在于, 所述两紧固端 与所述面窗之间可涂抹粘结胶、 夹设双面胶或塾设緩冲垫。
9. 如权利要求 2~4 中任一项所述的宇航服面窗紧固结构, 其特征在于, 所述第二力臂 间隔形成复数个溢流槽; 所述围合空间内填充有密封胶。
10. 如权利要求 2~4中任一项所述的宇航服面窗紧固结构, 其特征在于: 所述弓形臂的 滑移端呈圆弧面或斜面。
11 如权利要求 2~4中任一项所述的宇航服面窗紧固结构, 其特征在于, 所述第二力臂 的厚度自所述滑移端至所述紧固端形成一由厚至薄的渐变。
12. 如权利要求 2~4中任一项所述的宇航服面窗紧固结构, 其特征在于: 所述紧固组件 的弓形臂的受压端延伸形成有一旋转定位棱,所述第二压力条对应所述紧固组件的所述旋转 定位棱形成有旋转定位槽。
13. 如权利要求 2~4中任一项所述的宇航服面窗紧固结构, 其特征在于: 所述弓形臂的 受压端之间通过一弧形变形区连接。
14. 一种应用权利要求 1~4中任一项的紧固结构对宇航服面窗进行紧固的方法。
PCT/CN2014/077245 2013-05-16 2014-05-12 宇航服面窗紧固结构及其紧固方法 WO2014183616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310207119.1A CN104161329B (zh) 2013-05-16 2013-05-16 宇航服面窗紧固结构及其紧固方法
CN201310207119.1 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014183616A1 true WO2014183616A1 (zh) 2014-11-20

Family

ID=51897711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077245 WO2014183616A1 (zh) 2013-05-16 2014-05-12 宇航服面窗紧固结构及其紧固方法

Country Status (2)

Country Link
CN (1) CN104161329B (zh)
WO (1) WO2014183616A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE714846A (zh) * 1968-05-08 1968-09-30
FR2651744A1 (fr) * 1989-09-12 1991-03-15 Intertechnique Sa Equipement individuel de protection utilisable dans un vehicule spatial.
US20060123718A1 (en) * 2004-10-15 2006-06-15 Airbus Deutschland Gmbh Window element for insertion in a window aperture in an outer skin of a transport
JP2013060136A (ja) * 2011-09-14 2013-04-04 Mitsubishi Aircraft Corp 航空機の窓、開口部の閉塞体、ガスケットシール
CN103243813A (zh) * 2012-08-28 2013-08-14 一禾科技发展(上海)有限公司 紧固系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067425A (en) * 1959-11-09 1962-12-11 Goodrich Co B F Flying suit helmet with penetrable sealing closure structure
GB1158495A (en) * 1966-03-03 1969-07-16 Ml Aviation Co Ltd Airmen's Helmets
US3751727A (en) * 1968-08-05 1973-08-14 Nasa Space suit
US5245993A (en) * 1991-10-31 1993-09-21 The Boeing Company Pilot's ensemble with integrated threat protection
CN101812953B (zh) * 2009-02-20 2012-12-05 稳多企业股份有限公司 玻璃门夹固轨道
JP2010229606A (ja) * 2009-03-28 2010-10-14 Nippon Sensuiki Co Ltd 宇宙服のヘルメットおよびヘルメット着脱機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE714846A (zh) * 1968-05-08 1968-09-30
FR2651744A1 (fr) * 1989-09-12 1991-03-15 Intertechnique Sa Equipement individuel de protection utilisable dans un vehicule spatial.
US20060123718A1 (en) * 2004-10-15 2006-06-15 Airbus Deutschland Gmbh Window element for insertion in a window aperture in an outer skin of a transport
JP2013060136A (ja) * 2011-09-14 2013-04-04 Mitsubishi Aircraft Corp 航空機の窓、開口部の閉塞体、ガスケットシール
CN103243813A (zh) * 2012-08-28 2013-08-14 一禾科技发展(上海)有限公司 紧固系统

Also Published As

Publication number Publication date
CN104161329B (zh) 2016-02-03
CN104161329A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2014183611A1 (zh) 民航飞机窗体透明件紧固结构及其紧固方法
US8297555B2 (en) Systems and methods for reducing noise in aircraft fuselages and other structures
US8978729B2 (en) Composite ply stabilizing system
WO2014183615A1 (zh) 载人潜水器观察窗透明件紧固结构及其紧固方法
JP2007502233A (ja) 複合封止装置および窓組立体
JP2009204159A (ja) 部品締結構造
CN110626011A (zh) 一种热防护板
US8875931B2 (en) Composite sandwich shell edge joint
US3885072A (en) Attachment of rigid members to frangible window panels
EP2660155B1 (en) Apparatus and method for mounting heat pipes to panels
AU2014201363B2 (en) Composite hat stiffener
WO2016132425A1 (ja) 複合材料構造体
WO2014183616A1 (zh) 宇航服面窗紧固结构及其紧固方法
WO2014183612A1 (zh) 战斗机座舱透明件紧固结构及其紧固方法
WO2014183607A1 (zh) 防暴透明隔断安装结构及其安装方法
EP3471949B1 (en) Method and apparatus for making a shear web
JP5015599B2 (ja) 荷重担持積層体
US20220388258A1 (en) Apparatus, system, and method for repairing composite sandwich panels
CN104165018A (zh) 载人航天器观察窗透明件紧固结构及其紧固方法
US20220388259A1 (en) Apparatus, system, and method for reinforcing composite structure
JP3386340B2 (ja) 高速車両のピラー取付構造
CN117283907A (zh) 一种飞机座舱盖破孔损伤快速密封修理装置及使用方法
JP4452812B2 (ja) Cfrp表面板を使用した軽金属ハニカムパネル製造方法とその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798323

Country of ref document: EP

Kind code of ref document: A1