WO2014183460A1 - 一种可变压缩比和可变膨胀比装置 - Google Patents

一种可变压缩比和可变膨胀比装置 Download PDF

Info

Publication number
WO2014183460A1
WO2014183460A1 PCT/CN2014/000072 CN2014000072W WO2014183460A1 WO 2014183460 A1 WO2014183460 A1 WO 2014183460A1 CN 2014000072 W CN2014000072 W CN 2014000072W WO 2014183460 A1 WO2014183460 A1 WO 2014183460A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric sleeve
gear
transmission shaft
connecting rod
eccentric
Prior art date
Application number
PCT/CN2014/000072
Other languages
English (en)
French (fr)
Inventor
沈大兹
Original Assignee
Shen Dazi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shen Dazi filed Critical Shen Dazi
Priority to EP14797289.7A priority Critical patent/EP3037645B1/en
Publication of WO2014183460A1 publication Critical patent/WO2014183460A1/zh
Priority to US14/938,836 priority patent/US9726078B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/048Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable crank stroke length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a variable compression ratio and variable expansion ratio device suitable for use in various types of reciprocating piston internal combustion engines, and belongs to the technical field of internal combustion engines. Background technique
  • variable compression ratio and variable expansion ratio internal combustion engines are the most revolutionary and most promising internal combustion engine technologies in the world. They are essential for reducing carbon emissions and reducing the consumption of fuels such as petroleum products and biofuels. The role.
  • An object of the present invention is to overcome the deficiencies of the prior art and to provide a variable compression ratio and variable expansion ratio device which mounts an eccentric sleeve on a crankshaft connecting rod journal and changes the compression ratio by rotating the eccentric sleeve.
  • increase the compression ratio and expansion ratio reduce the exhaust stroke length, increase the in-cylinder EGR rate, reduce the suction stroke length, reduce the pumping loss, and improve the efficiency of the internal combustion engine.
  • reduce the compression ratio of the internal combustion engine increase the charge capacity, and improve the output of the internal combustion engine while preventing the internal combustion engine from knocking.
  • a variable compression ratio and variable expansion ratio device mounted on a crankshaft and a piston connecting rod assembly of an internal combustion engine, the crankshaft including a first main journal and a plurality of main journals and a first connecting rod arranged in sequence a journal and a plurality of connecting rod journals arranged in sequence, wherein the piston connecting rod assembly comprises a connecting rod big head bearing, wherein: the first main shaft neck is provided with a first supporting cylindrical hole, The axis of the first support cylinder hole is at an angle ⁇ 0 with the axis of the crankshaft, and each of the plurality of main journals has a support cylinder hole, and the axis of each support cylinder hole coincides with the axis of the crankshaft , or parallel but not coincident, or a non-zero angle;
  • the device includes:
  • a worm fixedly coupled to the actuator motor and having an axis coincident with an axis of the actuator motor;
  • a worm gear that meshes with the worm
  • a sun gear fixedly coupled to the worm wheel and having an axis coincident with an axis of the worm wheel, the sun gear being rotatably sleeved on the crankshaft;
  • the first transmission shaft is rotatably inserted into the first support cylinder hole, and the front and rear ends thereof respectively extend from the two ends of the first support cylinder hole;
  • a plurality of transmission shafts having the same number as the main journals, respectively rotatably correspondingly penetrating into the support cylinder holes, and front and rear ends respectively extending from opposite ends of each support cylinder hole;
  • a first eccentric sleeve rotatably sleeved between the first connecting rod journal of the crankshaft and the corresponding connecting rod big head bearing, having an inner cylindrical surface and an outer cylindrical surface, the inner cylindrical surface center line and the outer cylinder The surface center lines do not coincide and have an eccentricity e ;
  • each eccentric sleeve having an inner cylindrical surface and an outer portion a cylindrical surface, the inner cylindrical surface center line and the outer cylindrical surface center line do not coincide and have an eccentricity e;
  • a first eccentric sleeve front gear is fixedly mounted on the front end of the first eccentric sleeve, and a pitch circle center of the first eccentric sleeve front gear coincides with a center of the inner cylindrical surface of the first eccentric sleeve;
  • a plurality of eccentric sleeve front gears are respectively fixedly mounted on the front ends of the eccentric sleeves respectively, and the pitch circle center of each eccentric sleeve front gear coincides with the center of the inner cylindrical surface of the corresponding eccentric sleeve;
  • a plurality of eccentric sleeve rear gears are respectively fixedly mounted on the rear ends of the eccentric sleeves respectively, and the pitch circle center of each eccentric sleeve rear gear coincides with the center of the inner cylindrical surface of the corresponding eccentric sleeve;
  • a planetary gear fixedly mounted to the front end of the first transmission shaft and meshed with the sun gear
  • a plurality of transmission shaft front gears are respectively fixedly mounted on the front ends of the respective transmission shafts in a one-to-one correspondence and meshed with the eccentric sleeve rear gears of the adjacent adjacent eccentric sleeves;
  • a plurality of transmission shaft rear gears are fixedly mounted to the rear ends of the respective transmission shafts in a one-to-one correspondence and mesh with the eccentric sleeve front gears of the adjacent adjacent eccentric sleeves.
  • the number of teeth of the sun gear, the number of teeth of the planetary gear, the number of teeth of the rear gear of the first transmission shaft, and the gear ratio I of the first eccentric sleeve front gear are 1: 2, that is,
  • the number of teeth of the sun gear, the number of teeth of the planetary gear, the number of teeth of the rear gear of the first transmission shaft, and the gear ratio I of the first eccentric sleeve front gear are 1 : 1 , that is,
  • ⁇ 4 is the number of teeth of the sun gear
  • ⁇ 31 is the number of teeth of the planetary gear
  • ⁇ 32 is the number of teeth of the rear gear of the first transmission shaft
  • ⁇ 61 is the number of teeth of the first eccentric sleeve front gear.
  • the execution motor is a servo motor with an angle encoder, and the rotation angle of the worm is recognized by an angle encoder of the execution motor.
  • the number of the plurality of connecting rod journals is 0, 1, 2, 3, 4 or 5.
  • the main journal includes a second main journal, a third main journal and a fourth main journal, which are respectively provided with a second supporting cylindrical hole, a third supporting cylindrical hole and a fourth supporting cylindrical hole, the second bearing
  • the axis of the cylindrical hole and the axis of the crankshaft form a non-zero angle ⁇ 2
  • the axis of the third supporting cylindrical hole is at an angle of zero with the axis of the crankshaft
  • the axis of the fourth supporting cylindrical hole is The axis of the crankshaft is at a non-zero angle ⁇ 4
  • the transmission shaft includes a second transmission shaft, a third transmission shaft and a fourth transmission shaft, respectively rotatably penetrating the second support garden
  • the connecting rod journal comprises a second connecting rod journal, a third connecting rod journal and a fourth connecting rod journal
  • the eccentric sleeve includes a second eccentric sleeve, a third eccentric slee
  • variable compression ratio and variable expansion ratio device is applied to an in-line single or multi-cylinder internal combustion engine, a V-type, a W-type, a star-shaped or an opposed-arranged multi-cylinder internal combustion engine.
  • the invention improves the performance index of the internal combustion engine in an all-round manner, in particular, the fuel consumption is significantly reduced.
  • the present invention provides a good combustion environment in an internal combustion engine cylinder under various application conditions, greatly reducing harmful emissions of the internal combustion engine.
  • the internal combustion engine of the present invention is no longer sensitive to what kind of gasoline is burned, can burn a plurality of fuels of different natures, and even burns different properties such as liquefied natural gas, compressed natural gas, alcohol, and the like. Fuel, there is no need to adjust the internal combustion engine.
  • the device of the present invention uses only one driving system, and its driving motion can smoothly pass from the front end of the crankshaft to the eccentric sleeve on the first connecting rod journal through the main shaft of the crankshaft, and is transmitted to the second, third, fourth And even more eccentric sleeves in the cylinder, while at the same time did not adversely affect the strength of the crankshaft. That is, the present invention employs the conventional materials and substantially the same structure employed in the existing internal combustion engine, that is, the change in the compression ratio and the expansion ratio of the internal combustion engine is completed, which means that in all VCR and VER schemes, the present invention provides a A low-cost, simple and reliable technical solution enables the internal combustion engine using the present invention to truly enter commercial production.
  • the invention adopts a worm gear component with large reduction ratio.
  • the torque of the execution motor required for the mechanism transmission is very small, and the power of the execution motor does not exceed 150 W.
  • the power consumption of the motor can be neglected.
  • the drive mechanism performs very quickly, the maximum stroke adjustment period does not exceed 500 milliseconds, and in the usual adjustment, it only takes less than 50 milliseconds, which means that the internal combustion engine can be adjusted in place within 1 ⁇ 3 cycles.
  • the adjustment time can be shortened if necessary; in addition, the adjustment accuracy of the piston phase is very low, and the error does not exceed 0.3° crank angle; when the eccentric sleeve fitted on the connecting rod journal is subjected to the explosion pressure from the cylinder, the reciprocating inertia force And / or crank centrifugal force and other effects, when the eccentric sleeve generates additional clockwise or counterclockwise rotation torque around the connecting rod journal, the additional torque cannot be passed due to the reverse self-locking characteristics of the worm gear Passing the worm gear and the worm to the execution motor ensures reliable operation of the motor. Therefore, the present invention has the advantages of being accurate, fast, reliable, and low in power consumption.
  • Figure 1 shows the stroke change of the internal combustion engine during low load operation.
  • s 4 represents the exhaust stroke
  • TDC1 refers to the top dead center position of the first cylinder piston of the internal combustion engine at the start of suction.
  • TDC2 means that the first cylinder piston of the internal combustion engine is at the top dead center position at the start of expansion.
  • BDC1 means that the first cylinder piston of the internal combustion engine is at the bottom dead center position at the start of compression.
  • BDC2 refers to the bottom dead center position of the first cylinder piston of the internal combustion engine at the beginning of exhaust.
  • A is the direction of rotation of the internal combustion engine crankshaft
  • is the crank angle of rotation, calculated from the first cylinder piston TDC1 of the internal combustion engine
  • is the angle between the worm wheel and the center line of the cylinder.
  • is the first eccentric sleeve around the rotation angle of the first connecting rod journal, ⁇ - ⁇ 0-0.5 ⁇ ,
  • Figure 2 shows the stroke changes during operation of the internal combustion engine under low load conditions.
  • Figure 3 shows the stroke change during operation of the internal combustion engine under load shedding conditions.
  • Figure 4 shows the stroke change during the operation of the internal combustion engine under load rejection.
  • Figure 5a shows the stroke change of the internal combustion engine during low load operation.
  • Figure 5b shows the change in stroke during operation of the internal combustion engine under high load conditions.
  • Figure 6 is a perspective view of the mounting shaft of the first embodiment of the present invention.
  • Figure 7 is an exploded view of Embodiment 1 of the present invention.
  • Figure 8 is a cross-sectional view showing a first embodiment of the present invention.
  • Figure 9 is a side view of Figure 8.
  • Figure 10 is a schematic view of the eccentric sleeve and the eccentric sleeve front and rear gears of the present invention.
  • Figure U is a perspective view of the mounting of the embodiment 2 of the present invention.
  • Figure 12a is a cross-sectional view showing a second embodiment of the present invention.
  • Figure 12b is a side view of Figure 12a.
  • Figure 12c is a cross-sectional view taken along line B-B of Figure 12a.
  • Figure 13a is a cross-sectional view showing a third embodiment of the present invention.
  • Figure 13b is a side view of Figure 13a.
  • Figure 13c is a cross-sectional view taken along line E-E of Figure 13a.
  • Figure 14 is a perspective view showing a fifth embodiment of the present invention.
  • Figure 15a is a cross-sectional view showing a fifth embodiment of the present invention.
  • Figure 15b is a side view of Figure 15a.
  • Figure 16a is a cross-sectional view taken along the line F-F of Figure 15a.
  • Figure 16b is a cross-sectional view taken along line G-G of Figure 15a.
  • Figure 16c is a cross-sectional view taken along line H-H of Figure 15a.
  • first eccentric sleeve 52 second eccentric sleeve, 53 third eccentric sleeve, 54 fourth eccentric sleeve,
  • variable compression ratio and variable expansion ratio device 100 crankshaft, 200 variable compression ratio and variable expansion ratio device,
  • first drive shaft axis 220 second drive shaft axis, 230 third drive shaft axis, 240 fourth drive shaft axis,
  • the present invention provides a variable compression ratio and a variable expansion ratio device for an internal combustion engine.
  • the device can make the internal combustion engine generate a change in the efficiency direction of the internal combustion engine during the intake, compression, expansion and exhaust strokes in a thermal cycle, and at the same time, the internal combustion engine can obtain a higher load at full load or partial load. effectiveness.
  • variable compression ratio and variable expansion ratio device 200 is mounted on a crankshaft 100 of an internal combustion engine and a piston connecting rod assembly 5;
  • the crankshaft 5 includes a front journal, a first main journal, and a plurality of main journals arranged in sequence, a first connecting rod journal 41 and a plurality of connecting rod journals and a rear main journal arranged in sequence;
  • the first main journal is provided with a first supporting cylindrical hole,
  • each of the main spindles has a support cylinder hole, and each support The axis of the cylindrical hole coincides with the axis of the crankshaft, or parallel but not coincident, or forms an angle of non-zero; when the axis of the support cylinder bore is parallel with the axis of the crankshaft and does not coincide, the support cylinder
  • the position of the hole axis can
  • the number of the plurality of connecting rod journals is 0, 1, 2, 3, 4 or 5.
  • the device of the invention can be used for single or double cylinder, three cylinder, four cylinder, five cylinder, six cylinder In multi-cylinder internal combustion engines, including in-line single or multi-cylinder internal combustion engines, V-type, W-type, star-shaped or opposed-type multi-cylinder internal combustion engines.
  • the piston connecting rod assembly 5 includes a piston and a connecting rod big hole, and the piston is movably mounted in a cylinder of the internal combustion engine, and a connecting rod large head bearing is installed in the large hole of the connecting rod.
  • the device comprises: an executing motor, a worm, a worm wheel, a sun gear, a first transmission shaft, a plurality of transmission shafts, a first eccentric sleeve, a plurality of eccentric sleeves, a first eccentric sleeve front gear, a plurality of eccentric sleeve front gears, and a plurality of eccentricities
  • the execution motor is a servo motor with an angle encoder.
  • the worm is fixedly coupled to the actuator motor, and an axis of the worm is coincident with an axis of the actuator motor; a rotation angle of the worm is recognized by an angle encoder of the execution motor.
  • the worm wheel meshes with the worm, which adopts a large reduction ratio, such as 50:1, and has a reverse motion transmission self-locking function.
  • the sun gear is fixedly coupled to the worm wheel, and an axis thereof coincides with an axis of the worm wheel, and the sun gear is rotatably sleeved on the crankshaft.
  • the first transmission shaft is rotatably inserted into the first support cylinder hole, and the front and rear ends thereof respectively extend from opposite ends of the first support cylinder hole.
  • the number of the plurality of transmission shafts is the same as that of the main journal, and is respectively rotatably correspondingly inserted into the support cylinder holes one by one, and the front and rear ends respectively protrude from the two support cylinder holes end.
  • the first eccentric sleeve is rotatably sleeved between the first connecting rod journal of the crankshaft and the corresponding connecting rod head bearing, and has an inner cylindrical surface and an outer cylindrical surface, the inner cylindrical surface center line and The centerline of the outer cylindrical surface does not coincide and has an eccentricity of 6.
  • the number of the eccentric sleeves is the same as that of the connecting rod journals, and is rotatably correspondingly disposed between the connecting rod journals and the corresponding connecting rod big head bushes, and each eccentric sleeve has an inner cylinder
  • the surface and the outer cylindrical surface, the inner cylindrical surface center line and the outer cylindrical surface center line do not coincide and have an eccentricity e.
  • the first eccentric sleeve and the plurality of eccentric sleeves may be a combined eccentric sleeve which is bolted between the two semi-circular sleeves; or may be an integral eccentric sleeve.
  • a bearing pad is mounted on the inner cylindrical surface of each eccentric sleeve.
  • the first eccentric sleeve front gear is fixedly mounted on the front end of the first eccentric sleeve, and the pitch circle center of the first eccentric sleeve front gear coincides with the center of the inner cylindrical surface of the first eccentric sleeve.
  • the plurality of eccentric sleeve front gears are respectively fixedly mounted on the front ends of the eccentric sleeves in one-to-one correspondence, and the center circle of each eccentric sleeve front gear coincides with the center of the inner cylindrical surface of the corresponding eccentric sleeve.
  • the plurality of eccentric sleeve rear gears are respectively fixedly mounted to the rear ends of the eccentric sleeves in a one-to-one correspondence, and the center of the pitch circle of each of the eccentric sleeve rear gears coincides with the center of the inner cylindrical surface of the corresponding eccentric sleeve.
  • the planetary gear is fixedly mounted to a front end of the first transmission shaft and meshes with the sun gear.
  • the first transmission shaft rear gear is fixedly mounted to a rear end of the first transmission shaft and meshes with the first eccentric sleeve front gear.
  • the plurality of transmission shaft front gears are fixedly mounted to the front ends of the respective transmission shafts in a one-to-one correspondence and mesh with the eccentric sleeve rear gears of the adjacent adjacent eccentric sleeves.
  • the plurality of transmission shaft rear gears are fixedly mounted to the rear ends of the respective transmission shafts in a one-to-one correspondence and mesh with the eccentric sleeve front gears of the adjacent adjacent eccentric sleeves.
  • the teeth of all gears can be straight, helical or curved (spiral) teeth.
  • the number of teeth of the sun gear, the number of teeth of the planetary gear, the number of teeth of the rear gear of the first transmission shaft, and the gear ratio I of the first eccentric sleeve front gear are 1: 2, that is,
  • the gear ratio I of the gear is 1: 1 , ie,
  • z 4 is the number of teeth of the sun gear
  • z 31 is the number of teeth of the planetary gear
  • 3 ⁇ 4 2 is the number of teeth of the rear gear of the first transmission shaft
  • z 61 is the number of teeth of the first eccentric sleeve front gear.
  • the driving mechanism of the variable compression ratio and the variable expansion ratio device of the present invention sequentially drives the eccentric sleeve on each of the connecting rod journals to rotate by an angle to realize the change of the stroke length of the internal combustion engine, thereby changing the compression ratio of the internal combustion engine and Expansion ratio.
  • the driving mechanism of the invention adopts only one executing motor, one worm, one worm wheel, one sun gear and one planetary gear, that is, only one power source and one driving system, so the structure is simple, the power consumption is small, the cost is low, and the reliability is reliable. Quick advantage.
  • the drive mechanism of the electric motor, the worm wheel, the worm, the sun gear, the planetary gear, etc. can be placed at the front end of the crankshaft of the internal combustion engine, or placed at the rear end of the crankshaft, even in the middle of the crankshaft.
  • the transmission mechanism of the invention is composed of the transmission shafts, the front and rear gears of the transmission shaft, and the eccentric sleeve front and rear gears.
  • the eccentric sleeve front gear of the front end is driven to rotate by the transmission shaft rear gear
  • the eccentric sleeve and the eccentric sleeve of the rear end thereof are The gear is then driven to rotate, and in turn, the drive shaft front gear that meshes with the eccentric sleeve rear gear is rotated, thereby transmitting the motion to each eccentric sleeve step by step through a motion chain.
  • the eccentric sleeve of the present invention is a member that directly changes the stroke length by rotation.
  • the center of the outer cylindrical surface of the eccentric sleeve is surrounded by the eccentricity e as a radius.
  • the center of the inner cylindrical surface of the eccentric sleeve rotates, and the rotation of each eccentric sleeve around the respective connecting rod journal changes the trajectory of the piston of the internal combustion engine, so that the internal combustion engine inhales, compresses, expands and exhausts the stroke in the same thermal cycle. Both have changed.
  • variable compression ratio and variable expansion ratio device is suitable for single-cylinder and multi-cylinder internal combustion engines: it is also applicable to multi-cylinder internal combustion engines of V-type, W-type, star-shaped arrangement and opposite arrangement.
  • the internal combustion engine obtains the position of the angle ⁇ of the worm wheel by judging the position of the angle encoder carried by the motor, and the position determines the initial eccentric angle ⁇ of the eccentric sleeve, which determines the actual compression ratio and the expansion ratio at this time, and the internal combustion engine
  • the ECU (not shown) calculates the target compression ratio of the desired adjustment by comparing the driver's operation intentions, converts the new worm gear target rotation angle, and sends a processing command to the execution motor to make it forward or reverse. .
  • the rotation of the motor drives the worm to rotate, further driving the worm wheel, the sun gear and the complete variable compression ratio and the variable expansion ratio device to complete the adjustment of the rotation angles of all the eccentric sleeves with respect to the respective connecting rod journals, and finally to change the internal combustion engine pressure.
  • the purpose of the ratio and expansion ratio is to change the ratio and expansion ratio.
  • the execution motor drives the worm to rotate the worm wheel and the sun gear meshing therewith around the center of the crankshaft, and drives the first of the planetary gear, the first transmission shaft and the rear end thereof a rear axle of the transmission shaft, and a first eccentric sleeve front gear and a first eccentric sleeve that are sleeved on the first connecting rod journal; in turn, the eccentric sleeve rear gear of the first eccentric sleeve drives the rear transmissions that are sequentially meshed with the first eccentric sleeve
  • the front and rear gears of the shaft and the front and rear gears of the eccentric sleeve rotate, and then the eccentric sleeves of the rear drive are rotated.
  • the rotary motion of the motor is converted into an eccentric sleeve of all the cylinders to rotate in the same direction according to the specified gear ratio.
  • the execution motor does not rotate and the crankshaft rotates
  • the worm, the worm wheel and the sun gear connected to the execution motor do not rotate relative to the cylinder block; and the planetary gear rotates around the sun gear with the rotation of the crankshaft.
  • the first drive shaft, the first drive shaft rear gear, the first eccentric sleeve front gear, and all other drive shafts, the drive shaft front and rear gears, the eccentric sleeve front and rear gears, and the eccentric sleeve are connected to the planetary gears. Both rotate with the rotation of the planetary gears. That is, the rotation of the crankshaft itself will drive the variable compression ratio and the variable expansion ratio device mounted thereon to rotate the remaining members except the worm wheel and the sun gear.
  • Example 1 The present invention will be further described in detail below with reference to the drawings and embodiments, but the scope of the present invention is not limited to the embodiments described below.
  • Example 1
  • variable compression ratio and variable expansion ratio device 200 is illustrated as being mounted on the crankshaft 100 and piston rod assembly 5 of the internal combustion engine.
  • the piston connecting rod assembly 5 is a conventional structure, and includes a piston, a piston pin, a connecting rod cover, a connecting rod body and a connecting rod big hole.
  • the piston is movably mounted in a cylinder of the internal combustion engine, and the connecting rod is large.
  • a large rod bearing bush is installed in the hole.
  • the crankshaft 100 In order to fit the eccentric sleeve on the connecting rod journal, the crankshaft 100 adopts a split structure.
  • the crankshaft 100 includes a front journal 10, a first main journal 11 and a plurality of main journals 11 and a plurality of connecting rod journals and a rear main journal that are sequentially arranged in sequence.
  • the first main journal 11 is provided with a first supporting cylindrical hole, and an axis of the first supporting cylindrical hole is at an angle ⁇ ⁇ 0 with an axis of the crankshaft 100.
  • the plurality of main journals include a second main journal 12, a third main journal 13 and a fourth main journal 14, which are respectively provided with a second supporting cylindrical hole, a third supporting cylindrical hole and a fourth supporting cylindrical hole.
  • the axis of the second supporting cylindrical hole is at a non-zero angle ⁇ 2 with the axis of the crankshaft 100, and the axis of the third supporting cylindrical hole is parallel to the axis of the crankshaft without overlapping, the fourth supporting cylinder
  • the axis of the bore is at a non-zero angle ⁇ 4 with the axis of the crankshaft 100.
  • the number of the plurality of connecting rod journals is three, which includes the second connecting rod journal 42, the third connecting rod journal 43 and the fourth connecting rod journal 44, which means that the embodiment is a four-cylinder internal combustion engine. .
  • the variable compression ratio and variable expansion ratio device 200 includes: an executing motor 1, a worm 2, a worm wheel 3, a sun gear 4, a first transmission shaft 21, a plurality of transmission shafts, a first eccentric sleeve 51, and a plurality of eccentricities.
  • the execution motor 1 is a servo motor with an angle encoder (not shown).
  • the worm 2 is fixedly coupled to the actuator motor 1, and the axis of the worm 2 coincides with the axis of the actuator motor 1; the angle of rotation of the worm 2 is determined by the angle encoder of the actuator motor 1.
  • the worm wheel 3 meshes with the worm 2, which adopts a large reduction ratio of 50:1 and has a reverse motion transmission self-locking function.
  • the sun gear 4 is fixedly coupled to the worm wheel 3, and its axis coincides with the axis of the worm wheel 3, and the sun gear 4 is rotatably sleeved on the front journal 10 of the crankshaft 100.
  • the first transmission shaft 21 is rotatably inserted into the first support cylinder hole, and its front and rear ends respectively extend from opposite ends of the first support cylinder hole.
  • the number of the transmission shafts is the same as that of the main journal, and includes a second transmission shaft 22, a third transmission shaft 23, and a fourth transmission shaft 24, respectively rotatably penetrating the second support cylinder hole And a third support cylinder hole and a fourth support cylinder hole, and the front and rear ends respectively extend from both ends of each support cylinder hole.
  • the first eccentric sleeve 51 is rotatably sleeved between the first connecting rod journal 41 of the crankshaft 100 and the corresponding connecting rod head bearing, and has an inner cylindrical surface and an outer cylindrical surface.
  • the inner cylindrical surface centerline and the outer cylindrical surface centerline do not coincide and have an eccentricity e .
  • the number of the eccentric sleeves is the same as that of the connecting rod journal, and includes a second eccentric sleeve 52, a third eccentric sleeve 53 and a fourth eccentric sleeve 54, respectively rotatably sleeved on the second connecting rod
  • the journal 42, the third connecting rod journal 43 and the fourth connecting rod journal 44 are interposed between the corresponding connecting rod big head bushes; each eccentric sleeve has an inner cylindrical surface and an outer cylindrical surface, the inner cylindrical surface center line and the outer cylindrical surface The surface centerlines do not coincide and have an eccentricity e (see Figure 10).
  • the first eccentric sleeve 51, the second eccentric sleeve 52, the third eccentric sleeve 53 and the fourth eccentric sleeve 54 are integral eccentric sleeves, and the inner cylindrical surface of each eccentric sleeve is mounted with a bearing bush.
  • the first eccentric sleeve front gear 61 is fixedly mounted on the front end of the first eccentric sleeve 51, and the pitch circle center of the first eccentric sleeve front gear 61 coincides with the center of the inner cylindrical surface of the first eccentric sleeve 51.
  • the plurality of eccentric sleeve front gears include a second eccentric sleeve front gear 63, a third eccentric sleeve front gear 65 and a fourth eccentric sleeve front gear 67, which are respectively fixedly mounted on the second eccentric sleeve 52 and the third eccentric sleeve 53 and the front end of the fourth eccentric sleeve 54, the center of the pitch circle of each eccentric sleeve front gear coincides with the center of the inner cylindrical surface of the corresponding eccentric sleeve.
  • the plurality of eccentric sleeve rear gears include a first eccentric sleeve rear gear 62, a second eccentric sleeve rear gear 64 and a third eccentric sleeve rear gear 66, which are respectively fixedly mounted on the first eccentric sleeve 52 and the second eccentric sleeve 53 and the rear end of the third eccentric sleeve 54, the center of the pitch circle of each of the eccentric sleeve rear gears coincides with the center of the inner cylindrical surface of the corresponding eccentric sleeve.
  • the planetary gear 31 is fixedly mounted to the front end of the first transmission shaft 21 and meshes with the sun gear 4.
  • the first transmission shaft rear gear 32 is fixedly mounted to the rear end of the first transmission shaft 21 and meshes with the first eccentric sleeve front gear 61.
  • the plurality of transmission shaft front gears include a second transmission shaft front gear 33, a third transmission shaft front gear 35, and a fourth transmission shaft front gear 37, which are fixedly mounted to the second transmission shaft 22 and the third transmission shaft, respectively. 23 and the front end of the fourth drive shaft 24, and respectively mesh with the first eccentric sleeve rear gear 62, the second eccentric sleeve rear gear 64, and the third eccentric sleeve rear gear 66 of the front adjacent eccentric sleeve.
  • the plurality of transmission shaft rear gears include a second transmission shaft rear gear 34, a third transmission shaft rear gear 36 and a fourth transmission shaft rear gear 38, which are fixedly mounted to the second transmission shaft 22 and the third transmission shaft, respectively. 23 and the rear end of the fourth transmission shaft 24, and respectively meshed with the second eccentric sleeve front gear 63, the third eccentric sleeve front gear 65 and the fourth eccentric sleeve front gear 67 of the rear adjacent eccentric sleeve.
  • the gear teeth of all gears are straight, helical or curved (spiral) teeth.
  • the sun gear 4 and the planetary gear 31 the first gear 32 and the drive shaft 24 of the first eccentric sleeve a front gear 61, a first eccentric sleeve rear gear 62 and a second transmission shaft front gear 33, a second transmission shaft rear gear 34 and a second eccentric sleeve front gear 63, a second eccentric sleeve rear gear 64 and a third transmission shaft front gear
  • the rotation angle ⁇ of the first eccentric sleeve 51 with respect to the first link journal 41 and the initial eccentric angle ⁇ must be changed (only the state of the first cylinder is described, and other cylinders are similarly treated ).
  • the rotation angle ⁇ of the first eccentric sleeve 51 is defined as a line connecting the center O of the first main journal 11 of the crankshaft and the center O′ of the first link journal 41 and the eccentric direction of the first eccentric sleeve 51 ( FIG. The angle of the middle arrow pointing).
  • crankshaft 100 rotates 360 degrees about the axis 0-0, the first eccentric sleeve 51 is rotated by -180 degrees around the first link axis 0 ⁇ ', wherein the "-" sign indicates The crankshaft 100 rotates in the opposite direction.
  • the initial eccentric angle ⁇ of the first eccentric sleeve 51 is defined as: when the first link journal 41 is in the illustrated position I, the piston reaches the TDC1 point, which indicates that the first cylinder piston is at the beginning of the suction. The top dead center, the eccentric direction of the first eccentric sleeve 51 at this time and the angle between the center 0 of the first main journal 11 and the center 0' of the first connecting rod journal 41.
  • the execution motor 1 is fixed to the cylinder block (not shown) of the internal combustion engine, and the worm 2, the worm wheel 3 and the sun gear 4 connected thereto are both It is fixed relative to the cylinder.
  • the crankshaft 100 rotates around the 0-0 line
  • the planetary gears 31 mounted on the crankshaft 100 revolve around the 0-0 line of the crankshaft. Since the planetary gears 31 and the sun gear 4 mesh with each other, this will cause the planetary gears 31 to revolve around the crankshaft 0-0.
  • first eccentric sleeve 51 While revolving, it also rotates about its own axis 210, which rotates the first eccentric sleeve front gear 61, the first eccentric sleeve 51 and the first eccentric sleeve rear gear 62 about the first link journal axis ⁇ '. Since the first eccentric sleeve 51 is installed between the connecting rod big bearing bush of the piston connecting rod assembly 5 and the first connecting rod journal 41, and An eccentric sleeve 51 has an eccentricity e (see FIG. 10), and the rotation of the eccentricity e about the first link journal 41 directly changes the length of the crank arm, thereby changing the intake, compression, expansion, and Exhaust stroke length. That is, the change in the rotation angle ⁇ of the crankshaft 100 causes the rotation angle ⁇ of the first eccentric sleeve 51 to change, further causing the stroke length to change.
  • the change in the angle ⁇ of the worm wheel 3 changes the initial eccentric angle ⁇ of the first eccentric sleeve 51.
  • the intake, compression, expansion and exhaust stroke lengths of the internal combustion engine are also changed.
  • the change of the rotation angle ⁇ of the crankshaft 100 and the rotation angle ⁇ of the worm wheel 3 causes a change in the rotation angle ⁇ of the first eccentric sleeve 51 and the initial eccentric angle ⁇ 0 , and the close cooperation of ⁇ and ⁇ can make the internal combustion engine work at a low load. In the case of high-load conditions, satisfactory results can be obtained in improving the efficiency of the internal combustion engine.
  • the compression ratio of the first cylinder of the internal combustion engine is the highest at the end of compression, and the expansion ratio is also the highest, as shown in Figure la and Figure lb.
  • the condition is particularly suitable for low-load operation of a four-stroke internal combustion engine in which the internal combustion engine performs in a thermal cycle of 720 degrees of crankshaft rotation, and the four strokes of suction, compression, expansion and exhaust are -
  • EGR creates conditions for reducing pumping losses in the next cycle of inhalation, while increasing the in-cylinder temperature, improving ignition conditions, and improving combustion efficiency.
  • the above changes make the low-load operating conditions of the internal combustion engine much better than the existing low-load operating conditions of the internal combustion engine.
  • the compression ratio of the first cylinder of the internal combustion engine at the end of compression is at a low level, and the expansion ratio is at a high level, see Figure 3a and Figure 3b.
  • This condition is particularly suitable for medium-load operation of a four-stroke internal combustion engine.
  • the internal combustion engine exhibits four cycles of suction, compression, expansion and exhaust in a thermal cycle of 720 degrees of crankshaft rotation:
  • Figure 1, Figure 2, Figure 3 and Figure 4 represent several typical operating conditions.
  • the internal combustion engine is operated according to the MAP table, and each working condition is continuously adjustable.
  • the condition is particularly suitable for low-load operation of a two-stroke internal combustion engine (of course also for a four-stroke internal combustion engine) whose internal combustion engine is in a thermal cycle of 720 degrees of crankshaft rotation, in four strokes of suction, compression, expansion and exhaust.
  • the performance is that the four stroke lengths of the internal combustion engine do not change:
  • This condition is particularly suitable for a two-stroke internal combustion engine (also applicable to four strokes).
  • the high-load operation of the internal combustion engine in which the internal combustion engine is in a thermal cycle of 720 degrees of crankshaft rotation, the four strokes of suction, compression, expansion and exhaustion are such that the four stroke lengths of the internal combustion engine do not change:
  • an internal combustion engine ECU (Engine Control Unit) collects a phase signal of the execution motor 1 obtained from an angle encoder provided by the execution motor 1, since the signal of the encoder is an absolute phase signal, therefore, Execution motor
  • this signal corresponds to the unique corner position at which the motor 1 is executed.
  • the rotation angle ⁇ of the worm wheel 3 with respect to the center line of the cylinder body is obtained, and also when the first cylinder piston of the internal combustion engine reaches the top dead center.
  • the initial eccentric angle ⁇ and the initial eccentric angle ⁇ of each cylinder thereafter.
  • the ECU senses the driver's operation intention and accordingly sets a new internal combustion engine starting eccentric angle target value to derive a new target value ⁇ .
  • the new target value corresponds to the new encoder angle of the execution motor 1, and executes The motor 1 is adjusted accordingly.
  • the new initial eccentric angle 9 1 of the first cylinder of the internal combustion engine has a unique correspondence with the new compression ratio and expansion ratio of the internal combustion engine.
  • the motor 1 In order to bring the first eccentric sleeve 51 to a new initial eccentric angle, the motor 1 is rotated according to a new encoder angle, and the worm 2, the worm wheel 3, the sun gear 4, the planetary gear 31, the first transmission shaft 21, and the first are sequentially driven.
  • the drive shaft rear gear 32, the first eccentric sleeve front gear 61 and the first eccentric sleeve 51 rotate until the first eccentric sleeve 51 rotates to a new initial eccentric angle target value ⁇ , and at the same time, the second eccentric sleeve 52,
  • the third eccentric sleeve 53 and the fourth eccentric sleeve 54 are also synchronized to their respective new target values, and the adjustment of the overall cylinder compression ratio and the expansion ratio is completed.
  • This embodiment is applied to an in-line four-cylinder internal combustion engine.
  • Fig. 11 and Fig. 12 the structure, the principle of the transmission, the function and the function of the embodiment 2 are the same as those of the first embodiment except the following points -
  • This embodiment is applied to an in-line four-cylinder internal combustion engine.
  • the embodiment 3 has the same structure, transmission principle, function and function as the first embodiment except for the following points:
  • the second drive shaft axis 220, the third drive shaft axis 230, and the fourth drive shaft axis 240 coincide with the axis 0-0 of the crankshaft 100.
  • Embodiment 4 is applied to an in-line four-cylinder internal combustion engine.
  • the structure, transmission principle, function and function of Embodiment 4 are basically the same as Embodiment 3, the only difference being that, in the present embodiment, the second transmission shaft axis 220, the third transmission shaft axis 230 and the fourth transmission shaft axis 240 is parallel to the axis 0-0 of the crankshaft 100, but does not coincide.
  • This embodiment is applied to an in-line three-cylinder internal combustion engine.
  • the number of the plurality of link journals is two, and the second drive shaft axis 220 and the third drive shaft axis 230 are aligned with the axis 0 of the crankshaft 100.
  • the structure, the transmission principle, the function and the function of the embodiment 5 are basically the same as those of the first embodiment except that they are all parallel and not coincident.
  • This embodiment is an embodiment of a V-type 6-cylinder internal combustion engine.
  • the structure, transmission principle, function and function of the embodiment 6 are basically the same as those of the embodiment 5 except for the following points:
  • the first link journal 41, the second link journal 42 and the third link journal 43 are each lengthened by a link width in the direction of the axis 0-0 of the crankshaft 100, so as to Two connecting rods are mounted on each connecting rod journal.
  • One link is for the V-shaped left cylinder and the other for the V-shaped right cylinder.
  • the front end or the rear end of the first eccentric sleeve 51, the second eccentric sleeve 52 and the third eccentric sleeve 53 are fixedly connected to another eccentric sleeve, and the eccentric angle of the added eccentric sleeve is the same as the original
  • the eccentric angle of the eccentric sleeve forms an angle in the direction of rotation which is equal to the angle between the two columns of the V6 type internal combustion engine, so that when the left cylinder piston reaches the top dead center, the right cylinder piston is also the same When the top dead center is reached.
  • This embodiment is for a V-type 8-cylinder internal combustion engine.
  • the first link journal 41 and the first eccentric sleeve 51, the second link journal 42 and the second eccentric sleeve 52, the third The link journal 43 and the third eccentric sleeve 53, the fourth link journal 44 and the fourth eccentric sleeve 54 each lengthen a link width along the axis 0-0 of the crankshaft 100 so as to be at each link shaft Install two connecting rods on the neck.
  • the eccentric angle of the increased eccentric sleeve forms an angle with the eccentric angle of the original eccentric sleeve in the direction of rotation, which is between the two columns of the V8 type internal combustion engine. The angles are equal.
  • This embodiment is applied to an in-line two-cylinder internal combustion engine.
  • the third link journal 43 and the fourth link journal 44, and the fourth main journal 14 and the fifth main journal are partially cut off, leaving the first The main journal 11, the second main journal 12 and the third main journal 13, and the first connecting rod journal 41 and the second connecting rod journal 42 form a structure of an in-line two-cylinder internal combustion engine.
  • This embodiment is for a V-type 4-cylinder internal combustion engine.
  • the first link journal 41 and the second link journal 42 are each lengthened by a link width in the direction of the axis 0-0 of the crankshaft 100 so as to be at each link journal
  • Two connecting rods are mounted to form a structure of the V4 cylinder; as in Embodiment 6, the eccentric angle of the added eccentric sleeve forms an angle with the eccentric angle of the original eccentric sleeve in the direction of rotation, and the angle is the same as V4.
  • the angle between the two columns of the internal combustion engine is equal.
  • This embodiment is for a single cylinder internal combustion engine.
  • the second connecting rod journal 42 and the third main journal 13 are further cut off, and only the first main journal 11 and the second main journal 12 are retained, and the first connecting rod journal 41 is formed to form a single cylinder.
  • This embodiment is for a V-type two-cylinder internal combustion engine.
  • the first link journal 41 is lengthened by a length of a link along the axial direction of the crankshaft 100, so that two connecting rods are mounted on the connecting rod journal to form a V2 cylinder structure;
  • the eccentric angle of the increased eccentric sleeve and the eccentric angle of the original eccentric sleeve form an angle in the direction of rotation which is equal to the angle between the two columns of the V2 type internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)

Abstract

一种可变压缩比和可变膨胀比装置(200),安装在内燃机的曲轴(100)和活塞连杆总成(5)上,包括有执行电机(1),蜗杆(2),蜗轮(3),中心齿轮(4),第一传动轴(21),若干传动轴(22,23,24),第一偏心套(51),若干偏心套(52,53,54),第一偏心套前齿轮(61),若干偏心套前齿轮(63,65,67),第一偏心套后齿轮(62),若干偏心套后齿轮(64,66),行星齿轮(31),第一传动轴后齿轮(32),若干传动轴前齿轮(33,35,37)和若干传动轴后齿轮(34,36,38),其中,第一主轴颈上开设第一支承圆柱孔,其轴线与曲轴的轴线成一夹角,若干主轴颈上各自开设支承圆柱孔,其轴线与曲轴的轴线重合,或平行而不重合,或成不为零夹角。该可变压缩比和可变膨胀比装置(200)通过偏心套实现了内燃机冲程长度的改变,改变了内燃机的压缩比和膨胀比。

Description

一种可变压缩比和可变膨胀比装置 技术领域
本发明涉及一种适用于各类往复活塞式内燃机的可变压縮比和可变膨胀比装置, 属于内燃机 技术领域。 背景技术
众所周知, 可变压縮比和可变膨胀比内燃机是当今世界上带有革命性的最具有发展潜力的内 燃机技术, 对减少碳排放、 减少石油类产品和生物燃料等燃料的消耗具有至关重要的作用。
虽然在全球己有成千上万项涉及该领域的发明专利, 但至今仍无商品内燃机上市, 其暗含着 攻克可变压縮比和可变膨胀比内燃机技术的难度。
1891年由 Kitson先生在美国专利 460,642中首次提出这种在一个热力循环中通过使安装在连杆轴颈 上的偏心套旋转, 而使其四个冲程长度均发生改变的结构。
1977年由 Clarke先生在美国专利 4,044,629中, 提出了对上述结构的改进, 增加了对偏心套旋转 角度的改变机构, 使内燃机方便地应用于各种不同工况。 这个改进使内燃机效率可以超过米勒循环, 或阿特金森循环的效果。 可惜该专利提出的机构只能在单缸内燃机上进行, 限制了该专利的应用。
1999年由 Gonzalez先生提出的美国专利 5,927,236和很多其它类似专利均能达到 Clarke先生专 利的相同或相似效果, 但均因为使曲轴的强度大大减少, 或者整套驱动机构过于复杂, 难以实现可靠 和低成本化而无法达到实用的程度。
2002年由 De Gooijer先生提出的美国专利 6»349,684, 实现了与 Clarke先生专利中同样的功能, 并且其机构能够在两缸、 四缸和 V型内燃机上使用。 由此产生了著名的 GoEngine, 使内燃机效率得到 大大地提升。 该专利所述的机构相对比较简单, 但该机构行星齿轮安放在曲轴主轴颈中, 为了保证行 星齿轮的运行, 在主轴颈中挖出一个巨大的空间用于安放行星齿轮机构, 这使得曲轴主轴颈强度大大 减小; 同时, 限于结构, 其连杆轴颈直径较小, 行星齿轮直径也小, 难以通过加大尺寸来提高曲轴强 度: 此外, 齿环的直径较大, 也使行星齿轮与齿环的啮合速度很高,且齿环刚性不足, 影响了内燃机的 NVH特性。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种可变压縮比和可变膨胀比装置, 其在曲轴连 杆轴颈上安装偏心套并通过旋转该偏心套来改变压縮比, 在内燃机较小负荷条件下, 增加压縮比、 膨胀比, 同时减小排气冲程长度, 增加缸内 EGR率, 减少吸气冲程长度, 减少泵气损失, 提高内 燃机效率; 而在内燃机较大负荷条件下, 降低内燃机压缩比, 增加充气容量, 提髙内燃机的输出, 同时防止内燃机产生爆震。
本发明是通过如下技术方案实现的:
一种可变压缩比和可变膨胀比装置, 安装在内燃机的曲轴和活塞连杆总成上, 所述的曲轴包括 有第一主轴颈及其之后依次排列的若干主轴颈和第一连杆轴颈及其之后依次排列的若干连杆轴颈, 所 述的活塞连杆总成包括有连杆大头轴瓦, 其特征在于: 所述的第一主轴颈上开设有第一支承园柱孔, 该第一支承园柱孔的轴线与所述曲轴的轴线成一夹角 α≠0, 所述若干主轴颈上各自开设有一支承园 柱孔, 各支承园柱孔的轴线与所述曲轴的轴线重合, 或者平行而不重合, 或者成一不为零的夹角; 所述的装置包括有:
执行电机;
蜗杆, 与所述执行电机固定连接且轴线与该执行电机的轴线重合;
蜗轮, 与所述蜗杆啮合;
中心齿轮, 与所述蜗轮固定连接且其轴线与该蜗轮的轴线重合, 该中心齿轮可旋转地套置在 所述曲轴上;
第一传动轴, 可旋转地穿置于所述第一支承园柱孔中, 并且其前后两端分别伸出该第一支承园 柱孔的两端;
若干传动轴, 数量与所述主轴颈相同, 其分别可旋转地一一对应穿置于所述各支承园柱孔中, 并且其前后两端分别伸出各支承园柱孔的两端;
第一偏心套, 可旋转地套置在所述曲轴的第一连杆轴颈与相应的连杆大头轴瓦之间, 其具有内圆 柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线不重合且具有一偏心距 e;
若干偏心套, 数量与所述连杆轴颈相同, 其可旋转地一一对应套置在所述各连杆轴颈与相应的连 杆大头轴瓦之间, 各偏心套具有内圆柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线 不重合且具有一偏心距 e;
第一偏心套前齿轮, 固定安装于所述第一偏心套的前端, 该第一偏心套前齿轮的节圆圆心与该第 一偏心套的内圆柱表面圆心重合;
若干偏心套前齿轮, 一一对应地分别固定安装于所述各偏心套的前端, 各偏心套前齿轮的节圆圆 心与相应的偏心套的内圆柱表面圆心重合;
若干偏心套后齿轮, 一一对应地分别固定安装于所述各偏心套的后端, 各偏心套后齿轮的节圆圆 心与相应的偏心套的内圆柱表面圆心重合;
行星齿轮, 固定地安装于所述第一传动轴的前端并与所述中心齿轮相啮合;
第一传动轴后齿轮, 固定地安装于所述第一传动轴的后端并与所述第一偏心套前齿轮相啮 合,
若干传动轴前齿轮,一一对应地分别固定安装于所述各传动轴的前端并与前方相邻偏心套的偏 心套后齿轮相啮合;
若干传动轴后齿轮,一一对应地分别固定安装于所述各传动轴的后端并与后方相邻偏心套的偏 心套前齿轮相啮合。
所述的第一支承园柱孔的轴线与所述曲轴的轴线所成夹角 α=0, 并且平行而不重合。
所述的中心齿轮的齿数、 行星齿轮的齿数、 第一传动轴后齿轮的齿数和第一偏心套前齿轮的 齿数比 I为 1 : 2, 即,
1 = (Ζ4/ Ζ31 ) * ( Ζ32/ Ζ61 ) = 0.5,
或者, 所述的中心齿轮的齿数、 行星齿轮的齿数、 第一传动轴后齿轮的齿数和第一偏心套前 齿轮的齿数比 I为 1 : 1 , 即,
1 = (ζ4/ ζ31 ) * (Ζ32/ Ζ61 ) = 1 ,
式中, ζ4为中心齿轮的齿数, ζ31为行星齿轮的齿数, ζ32为第一传动轴后齿轮的齿数, ζ61 为第一偏心套前齿轮的齿数。
所述的执行电机为带有角度编码器的伺服电机, 所述蜗杆的旋转角度由所述执行电机的角度 编码器认定。 所述的若干连杆轴颈的数量为 0、 1、 2、 3、 4或者 5。
所述的主轴颈包括第二主轴颈、 第三主轴颈和第四主轴颈, 其分别开设有第二支承园柱孔、 第三 支承园柱孔和第四支承园柱孔, 该第二支承圆柱孔的轴线与所述曲轴的轴线成一不为零的夹角 β2, 该第三支承圆柱孔的轴线与所述曲轴的轴线成一为零的夹角, 该第四支承圆柱孔的轴线与所述曲 轴的轴线成一不为零的夹角 β4 ; 所述的传动轴包括第二传动轴、 第三传动轴和第四传动轴, 其分 别可旋转地穿置于所述第二支承园柱孔、 第三支承园柱孔和第四支承园柱孔中; 所述的连杆轴颈包 括第二连杆轴颈、 第三连杆轴颈和第四连杆轴颈; 所述的偏心套包括第二偏心套、 第三偏心套和第四 偏心套, 其分别可旋转地套置在所述第二连杆轴颈、 第三连杆轴颈和第四连杆轴颈与相应的连杆大头 轴瓦之间; 所述的偏心套前齿轮包括第二偏心套前齿轮、 第三偏心套前齿轮和第四偏心套前齿轮, 其 分别固定安装于所述第二偏心套、 第三偏心套和第四偏心套的前端; 所述的偏心套后齿轮包括第一偏 心套后齿轮、 第二偏心套后齿轮和第三偏心套后齿轮, 其分别固定安装于所述第一偏心套、 第二偏心 套和第三偏心套的后端; 所述的传动轴前齿轮包括第二传动轴前齿轮、 第三传动轴前齿轮和第四传 动轴前齿轮, 其分别固定安装于所述第二传动轴、第三传动轴和第四传动轴的前端, 并且分别与前 方相邻偏心套的第一偏心套后齿轮、 第二偏心套后齿轮和第三偏心套后齿轮相啮合; 所述的传动轴 后齿轮包括第二传动轴后齿轮、第三传动轴后齿轮和第四传动轴后齿轮, 其分别固定安装于所述第 二传动轴、 第三传动轴和第四传动轴的后端, 并且分别与后方相邻偏心套的第二偏心套前齿轮、第 三偏心套前齿轮和第四偏心套前齿轮相啮合。
所述的可变压缩比和可变膨胀比装置应用于直列式单缸或多缸内燃机、 V型、 W型、 星型或 对置式布置的多缸内燃机。
本发明的有益效果是:
1、 本发明使内燃机的性能指标全面改善, 特别是油耗显著降低。
2、 本发明提供了一个在各种应用工况下内燃机缸内的良好燃烧环境, 极大地降低了内燃机 的有害排放物。
3、 由于可变压縮比, 采用本发明的内燃机对燃烧何种标号的汽油已不再敏感, 可以燃烧多 种不同性质的燃料, 并且即使燃烧液化天然气、 压縮天然气、 酒精等不同性质的燃料, 均无需对 内燃机进行调整。
4、 本发明所述的装置仅采用一个驱动系统, 其驱动运动可顺利地从曲轴前端通过曲轴主轴 颈到达第一连杆轴颈上的偏心套, 并传递到第二、 第三、 第四乃至更多气缸内的偏心套上, 而同 时并没有使曲轴强度受到不良影响。 就是说, 本发明采用了现有内燃机采用的普通材料和大致相 同的结构, 即完成了对内燃机压縮比和膨胀比的改变, 这意味着在所有 VCR和 VER方案中, 本 发明提供了一套低成本、 简单而可靠的技术方案, 使采用本发明的内燃机能够真正进入商品化生 产。
5、 本发明采用了一套大减速比的蜗轮蜗杆部件, 机构传动所需要的执行电机的扭矩非常小, 其执行电机的功率不超过 150W, 针对 100KW的内燃机功率而言, 电机消耗功率可以忽略不计; 该驱动机构的执行动作非常迅速, 最大行程调整周期不超过 500毫秒, 就通常的调整而言, 仅需 不超过 50毫秒时间, 意味着内燃机在运行 1~3个循环内即可调整到位, 必要时, 还可缩短这个 调整时间; 此外, 活塞相位的调整精度很髙, 其误差不超过 0.3°曲轴转角; 当套装在连杆轴颈上 的偏心套受到来自气缸爆发压力、往复惯性力和 /或曲柄离心力等影响, 使该偏心套围绕连杆轴颈 产生附加的顺时针或逆时针旋转扭矩时, 由于蜗轮蜗杆的逆向自锁的特点, 使该附加扭矩无法通 过蜗轮、 蜗杆传递到执行电机, 保证了执行电机的可靠运行。 因而本发明具有准确、 快速、 可靠、 功率消耗小的优点。 附图说明
图 1为内燃机低负荷工况运转时的冲程变化情况。
其中:
I 表示齿数比,
So 表示曲轴未安装 II偏 ο心套时的原始冲程长度, 数值上等于两倍曲柄臂长,
S! 表示吸气冲程,
S2 表示压縮冲程,
S3 表示膨胀冲程, θ
II
s4 表示排气冲程,
e 表示偏心套的偏心距,
TDC1 指内燃机第一气缸活塞处于吸气开始 ιί时的上止点位置,
TDC2 指内燃机第一气缸活塞处于膨胀开始时的 ο上止点位置,
BDC1 指内燃机第一气缸活塞处于压縮开始时的下止点位置,
BDC2 指内燃机第一气缸活塞处于排气开始时的下止点位置,
A 为内燃机曲轴旋转方向,
B 为第一偏心套相对于第一连杆轴颈的旋转方向,
Φ 为曲轴旋转角, 从内燃机第一气缸活塞 TDC1开始计算,
δ 为蜗轮相对于气缸中心线的夹角,
θ0 为第一偏心套的起始偏心角, θο=0.5δ,
Θ 为第一偏心套绕第一连杆轴颈的旋转角, Θ-Θ0-0.5Φ,
I 此位置表示: 1=0.5, Φ=0°或 720°, θ=0°或 -360。,
II 此位置表示: θ0=0°, 1=0.5, Φ=90°, θ=-45°,
III 此位置表示: θ0=0°, 1=0.5,
IV 此位置表示: θ0=0°, 1=0.5, Φ=270。, θ=-135°,
V 此位置表示: θ0=0°, 1=0.5, Φ=360°, θ=-180。,
VI 此位置表示: θ0=0°, 1=0.5 , Φ=450°, θ=-225。,
π 此位置表示: θ0=0。, 1=0.5, Φ=540°, θ=-270°,
環 此位置表示: θ0=0°, 1=0.5, Φ=630°, θ=-3150
图 2为内燃机中低负荷工况运转时的冲程变化情况。
其中-
I 此位置表示: θ0=45°, , 1=0.5, , Φ=0°或 720°, θ=45°或 -315°
II 此位置表示: θ0=45°, , 1=0.5, , Φ=90°, θ=0°,
III 此位置表示: θ0=45°, , 1=0.5; , Φ=180°, θ=-45°,
IV 此位置表示: θ0=45°, , 1=0.5: , Φ=270。, θ=-90°,
V 此位置表示: , 1=0.5 , Φ=360°, θ=-135°,
VI 此位置表示: 60=45° , , 1=0.5 ' Φ=450°, θ=-180°, VD 此位置表示: θ0=45°, 1=0.5, Φ=540°, θ=-225°,
環 此位置表示: θ0=45°, 1=0.5, Φ=630°, θ=-270°。
图 3为内燃机中髙负荷工况运转时的冲程变化情况。
其中:
θ0=90°, 1=0.5, 在 I、 II、 III、 IV、 V、 VI、 W和 VBI所对应的位置, 其第一偏心套旋转角 Θ 按下式计算: Θ=Θ。-0.5Φ。
图 4为内燃机髙负荷工况运转时的冲程变化情况。
其中:
θ0=180°, 1=0.5, 在 I、 II、 III、 IV、 V、 VI、 VII和 VI所对应的位置, 其第一偏心套旋转角 Θ 按下式计算: Θ=Θ()-0.5Φ。
图 5a为内燃机低负荷工况运转时的冲程变化情况。
其中- θο=180°, 1=1 , 在 I、 II、 ΠΙ、 IV、 V、 VI、 W和 所对应的位置, 其第一偏心套旋转角 Θ 按下式计算: Θ=θ()-Φ。
图 5b为内燃机高负荷工况运转时的冲程变化情况。
其中:
θ0=0°, 1=1 , 在 I、 II、 ΠΙ、 IV、 V、 VI、 νπ和 VI所对应的位置, 其第一偏心套旋转角 Θ按 下式计算:
图 6为本发明实施例 1的安装轴测图。
图 7为本发明实施例 1的分解图。
图 8为本发明实施例 1的横剖面图。
图 9为图 8的侧视图。
图 10为本发明的偏心套及偏心套前后齿轮示意图。
图 U为本发明实施例 2的安装轴测图。
图 12a为本发明实施例 2的横剖面图。
图 12b为图 12a的侧视图。
图 12c为图 12a的 B-B剖视图。
图 13a为本发明实施例 3的横剖面图。
图 13b为图 13a的侧视图。
图 13c为图 13a的 E-E剖视图。
图 14为本发明实施例 5的轴测图。
图 15a为本发明实施例 5的横剖面图。
图 15b为图 15a的侧视图。
图 16a为为图 15a的 F-F剖视图。
图 16b为为图 15a的 G-G剖视图。
图 16c为图 15a的 H-H剖视图。
图中,
1执行电机, 2蜗杆, 3蜗轮, 4中心齿轮, 5活塞连杆总成,
10前轴颈, 11第一主轴颈, 12第二主轴颈, 13第三主轴颈, 14第四主轴颈, 21第一传动轴, 22第二传动轴, 23第三传动轴, 24第四传动轴,
31行星齿轮, 32第一传动轴后齿轮,
33第二传动轴前齿轮, 34第二传动轴后齿轮,
35第三传动轴前齿轮, 36第三传动轴后齿轮,
37第四传动轴前齿轮, 38第四传动轴后齿轮,
41第一连杆轴颈, 42第二连杆轴颈, 43第三连杆轴颈, 44第四连杆轴颈,
51第一偏心套, 52第二偏心套, 53第三偏心套, 54第四偏心套,
61第一偏心套前齿轮, 62第一偏心套后齿轮,
63第二偏心套前齿轮, 64第二偏心套后齿轮,
65第三偏心套前齿轮, 66第三偏心套后齿轮,
67第四偏心套前齿轮,
100曲轴, 200可变压縮比和可变膨胀比装置,
210第一传动轴轴线, 220第二传动轴轴线, 230第三传动轴轴线, 240第四传动轴轴线,
0-0曲轴轴线,
0'-0'第一连杆轴颈轴线,
α第一传动轴轴线与曲轴轴线夹角,
β2第二传动轴轴线与曲轴轴线夹角,
β4第四传动轴轴线与曲轴轴线夹角,
δ蜗轮相对于气缸中心线的夹角,
Φ曲轴旋转角,
Θ第一偏心套相对于第一连杆轴颈的旋转角,
θο第一偏心套的起始偏心角。 具体实施方式
本发明提供了一种用于内燃机的可变压縮比 (Variable Compression Ratio ) 和可变膨胀比 (Variable Expansion Ratio)装置。 该装置可使内燃机在吸气、 压縮、 膨胀和排气冲程在一个热力 循环中发生有利于提髙内燃机效率方向的改变, 同时, 无论内燃机处在全负荷还是部分负荷均能 得到较高的效率。
请参阅图 7, 所述可变压縮比和可变膨胀比装置 200安装在内燃机的曲轴 100和活塞连杆总成 5上; 所述的曲轴 5包括有前轴颈、 第一主轴颈及其之后依次排列的若干主轴颈、 第一连杆轴颈 41及 其之后依次排列的若干连杆轴颈和后主轴颈; 所述的第一主轴颈上开设有第一支承园柱孔, 该第一支 承园柱孔的轴线与所述曲轴的轴线成一夹角 α≠0, 也可以是 α=0, 并且平行而不重合; 所述若干主 轴颈上各自开设有一支承园柱孔,各支承园柱孔的轴线与所述曲轴的轴线重合,或者平行而不重合, 或者成一不为零的夹角; 当该支承园柱孔的轴线与所述曲轴的轴线平行而不重合时, 支承圆柱孔 轴线的位置可在主轴颈中心左右两侧任选其一。 所述的若干连杆轴颈的数量为 0、 1、 2、 3、 4或者 5, 换言之, 本发明所述装置能够用于单缸或双缸、 三缸、 四缸、 五缸、 六缸等多缸内燃机中, 包括直 列式单缸或多缸内燃机、 V型、 W型、 星型或对置式布置的多缸内燃机。
所述的活塞连杆总成 5包括有活塞和连杆大头孔, 该活塞可移动地安装于内燃机的气缸之内, 该连杆大头孔内安装有连杆大头轴瓦。 所述的装置包括有: 执行电机、 蜗杆、 蜗轮、 中心齿轮、 第一传动轴、 若干传动轴、 第一偏 心套、 若干偏心套、 第一偏心套前齿轮、 若干偏心套前齿轮、 若干偏心套后齿轮、 行星齿轮、 第一传 动轴后齿轮、 若干传动轴前齿轮和若干传动轴后齿轮。
所述的执行电机为伺服电机, 带有角度编码器。
所述的蜗杆与所述执行电机固定连接, 并且该蜗杆的轴线与该执行电机的轴线重合; 所述蜗 杆的旋转角度由所述执行电机的角度编码器认定。
所述的蜗轮与所述蜗杆啮合, 其采用较大的减速比, 如 50: 1 , 并且具有逆向运动传递自锁 功能。
所述的中心齿轮与所述蜗轮固定连接, 并且其轴线与该蜗轮的轴线重合, 该中心齿轮可旋转 地套置在所述曲轴上。
所述的第一传动轴可旋转地穿置于所述第一支承园柱孔中, 并且其前后两端分别伸出该第一支 承园柱孔的两端。
所述的若干传动轴的数量与所述主轴颈相同,其分别可旋转地一一对应穿置于所述各支承园柱 孔中, 并且其前后两端分别伸出各支承园柱孔的两端。
所述的第一偏心套可旋转地套置在所述曲轴的第一连杆轴颈与相应的连杆大头轴瓦之间, 其具有 内圆柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线不重合且具有一偏心距6。
所述的若干偏心套的数量与所述连杆轴颈相同,其可旋转地一一对应套置在所述各连杆轴颈与相 应的连杆大头轴瓦之间, 各偏心套具有内圆柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面 中心线不重合且具有一偏心距 e。
所述的第一偏心套和若干偏心套可以是由两个半圆套之间用螺栓连接的组合偏心套; 也可以 是整体偏心套。 各偏心套的内圆柱表面安装有轴瓦。
所述的第一偏心套前齿轮固定安装于所述第一偏心套的前端, 该第一偏心套前齿轮的节圆圆心与 该第一偏心套的内圆柱表面圆心重合。
所述的若干偏心套前齿轮一一对应地分别固定安装于所述各偏心套的前端,各偏心套前齿轮的节 圆圆心与相应的偏心套的内圆柱表面圆心重合。
所述的若干偏心套后齿轮一一对应地分别固定安装于所述各偏心套的后端, 各偏心套后齿轮的节 圆圆心与相应的偏心套的内圆柱表面圆心重合。
所述的行星齿轮固定地安装于所述第一传动轴的前端并与所述中心齿轮相啮合。
所述的第一传动轴后齿轮固定地安装于所述第一传动轴的后端并与所述第一偏心套前齿轮 相啮合。
所述的若干传动轴前齿轮一一对应地分别固定安装于所述各传动轴的前端并与前方相邻偏心 套的偏心套后齿轮相啮合。
所述的若干传动轴后齿轮一一对应地分别固定安装于所述各传动轴的后端并与后方相邻偏心 套的偏心套前齿轮相啮合。
所有齿轮的轮齿可以是直齿、 斜齿或曲 (螺旋) 齿。
所述的中心齿轮的齿数、 行星齿轮的齿数、 第一传动轴后齿轮的齿数和第一偏心套前齿轮的 齿数比 I为 1 : 2, 即,
1 = ( Ζ4/ Ζ31 ) * ( Ζ32/ Ζ6' ) = 0.5 ,
或者, 所述的中心齿轮的齿数、 行星齿轮的齿数、 第一传动轴后齿轮的齿数和第一偏心套前 齿轮的齿数比 I为 1 : 1 , 即,
1 = (Z4/ Z31 ) * (Z32/ Z61 ) = 1,
式中, z4为中心齿轮的齿数, z31为行星齿轮的齿数, ¾2为第一传动轴后齿轮的齿数, z61 为第一偏心套前齿轮的齿数。
本发明所述可变压缩比和可变膨胀比装置的驱动机构通过传动机构依次驱动各连杆轴颈上的 偏心套旋转一角度来实现内燃机冲程长度的改变, 从而改变内燃机的压縮比和膨胀比。
本发明的驱动机构只采用了一个执行电机、 一个蜗杆、 一个蜗轮、 一个中心齿轮和一个行星 齿轮, 即只有一个动力源和一套驱动系统, 因此具有结构简单、 功耗小、 低成本、 可靠快速的优 点。 该执行电机、 蜗轮、 蜗杆、 中心齿轮、 行星齿轮等构成的驱动机构可以置放在内燃机曲轴的 前端, 或置放于曲轴的后端, 甚至置于曲轴的中间。
本发明的传动机构由各传动轴、 传动轴前后齿轮、 偏心套前后齿轮构成, 前端的偏心套前齿轮 被与之相啮合的传动轴后齿轮驱动旋转时, 偏心套和其后端的偏心套后齿轮随之被驱动旋转, 并进而 使与该偏心套后齿轮相啮合的后端的传动轴前齿轮旋转, 从而通过一条运动传动链将运动逐级传递到 各偏心套。
本发明的偏心套是通过旋转直接改变冲程长度的构件, 当所述的偏心套绕所述连杆轴颈旋转时, 该偏心套外圆柱表面的圆心以所述的偏心距 e为半径绕所述的偏心套内圆柱表面圆心旋转, 各偏心套 绕其各自连杆轴颈的旋转改变了内燃机活塞的运动轨迹, 使内燃机在同一个热力循环中的吸气、压縮、 膨胀和排气冲程均发生改变。
所述的可变压縮比和可变膨胀比装置适用于直列式内燃机单缸、多缸:也适用于 V型, W型, 星型布置和对置式布置的多缸内燃机。
本发明的工作原理如下:
内燃机通过对执行电机所携带的角度编码器位置的判断, 获得蜗轮的转角 δ的位置, 该位置 决定了偏心套起始偏心角 θο,即决定了此时的实际压縮比和膨胀比值,内燃机 ECU (图中未显示) 再通过对驾驶员操作意图的对比, 计算出所需调整的目标压缩比值, 换算出新的蜗轮目标转角, 并向执行电机发出处理指令, 使其正向或逆向调整。 执行电机的转动带动蜗杆旋转, 进一步带动 蜗轮、 中心齿轮以及整套可变压縮比和可变膨胀比装置来完成全部偏心套相对于各自连杆轴颈的 旋转角度的调整, 最终达到改变内燃机压縮比和膨胀比的目的。
当需要改变内燃机压縮比和膨胀比时, 所述执行电机驱动蜗杆使与之相啮合的蜗轮和中心齿 轮一并绕曲轴中心旋转, 并驱动行星齿轮、 第一传动轴及其后端的第一传动轴后齿轮、 以及套装 在第一连杆轴颈上的第一偏心套前齿轮和第一偏心套旋转; 依次, 第一偏心套的偏心套后齿轮驱动 与之依次啮合的后方的各传动轴前后齿轮、 偏心套前后齿轮旋转, 进而驱动后方的各偏心套旋转, 至此, 执行电机的旋转运动转变为所有气缸中的偏心套按照规定的传动比同步同方向的旋转运 动。
当所述执行电机不旋转而所述曲轴旋转时, 与执行电机相连接的蜗杆、 蜗轮和中心齿轮均相 对气缸体不旋转; 而行星齿轮则在随曲轴的旋转而绕中心齿轮旋转的同时, 也绕自身的中心旋转, 而 与行星齿轮相连接的第一传动轴、第一传动轴后齿轮、第一偏心套前齿轮以及所有其它传动轴、传动 轴前后齿轮、 偏心套前后齿轮以及偏心套均同时随行星齿轮的旋转而旋转。 即: 曲轴自身的旋转将驱 动安装在其上的可变压縮比和可变膨胀比装置中除蜗轮和中心齿轮外的其余构件旋转。
下面结合附图和实施例对本发明作进一步详细说明, 但本发明的保护范围不限于下述的实施例。 实施例 1
本实施例用于直列四缸内燃机。 请参阅图 6、 图 7和图 8 , 图示可变压縮比和可变膨胀比装置 200安装在内燃机的曲轴 100和活塞连杆总成 5上。
所述的活塞连杆总成 5为传统结构, 包括有活塞、 活塞销、 连杆盖、 连杆体和连杆大头孔, 该 活塞可移动地安装于内燃机的气缸之内, 该连杆大头孔内安装有连杆大头轴瓦。
为了将偏心套套装在连杆轴颈上, 所述的曲轴 100采用分体式结构。 该曲轴 100包括有前轴 颈 10、 第一主轴颈 11及其之后依次排列的若千主轴颈、 第一连杆轴颈 41及其之后依次排列的若干连 杆轴颈和后主轴颈。 所述的第一主轴颈 11 上开设有第一支承园柱孔, 该第一支承园柱孔的轴线与所 述曲轴 100的轴线成一夹角 α≠0。所述的若干主轴颈包括第二主轴颈 12、第三主轴颈 13和第四主轴 颈 14, 其分别开设有第二支承园柱孔、 第三支承园柱孔和第四支承园柱孔, 该第二支承圆柱孔的轴 线与所述曲轴 100的轴线成一不为零的夹角 β2, 该第三支承圆柱孔的轴线与所述曲轴的轴线相互 平行而不重合, 该第四支承圆柱孔的轴线与所述曲轴 100的轴线成一不为零的夹角 β4。 所述的若 干连杆轴颈的数量为 3, 其包括第二连杆轴颈 42、 第三连杆轴颈 43和第四连杆轴颈 44, 这意味着本 实施例为一四缸内燃机。
所述的可变压縮比和可变膨胀比装置 200包括有: 执行电机 1、蜗杆 2、蜗轮 3、 中心齿轮 4、 第一传动轴 21、 若干传动轴、 第一偏心套 51、 若干偏心套、 第一偏心套前齿轮 61、 若干偏心套前齿 轮、 若干偏心套后齿轮、 行星齿轮 31、 第一传动轴后齿轮 32、 若干传动轴前齿轮和若干传动轴后 齿轮。
所述的执行电机 1为伺服电机, 带有角度编码器 (图中未显示)。
所述的蜗杆 2与所述执行电机 1固定连接,并且该蜗杆 2的轴线与该执行电机 1的轴线重合; 所述蜗杆 2的旋转角度由所述执行电机 1的角度编码器认定。
所述的蜗轮 3与所述蜗杆 2啮合, 其采用较大的减速比 50: 1, 并且具有逆向运动传递自锁 功能。
所述的中心齿轮 4与所述蜗轮 3固定连接, 并且其轴线与该蜗轮 3的轴线重合, 该中心齿轮 4可旋转地套置在所述曲轴 100的前轴颈 10上。
所述的第一传动轴 21 可旋转地穿置于所述第一支承园柱孔中, 并且其前后两端分别伸出该第 一支承园柱孔的两端。
所述的若干传动轴的数量与所述主轴颈相同, 包括第二传动轴 22、 第三传动轴 23和第四传动 轴 24, 其分别可旋转地穿置于所述第二支承园柱孔、 第三支承园柱孔和第四支承园柱孔中, 并且前 后两端分别伸出各支承园柱孔的两端。
参见图 10, 所述的第一偏心套 51可旋转地套置在所述曲轴 100的第一连杆轴颈 41与相应的连 杆大头轴瓦之间, 其具有内圆柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线不重合 且具有一偏心距 e
所述的若干偏心套的数量与所述连杆轴颈相同, 包括第二偏心套 52、 第三偏心套 53和第四偏心 套 54, 其分别可旋转地套置在所述第二连杆轴颈 42、第三连杆轴颈 43和第四连杆轴颈 44与相应的连 杆大头轴瓦之间; 各偏心套具有内圆柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线 不重合且具有一偏心距 e (参见图 10)。
所述的第一偏心套 51、 第二偏心套 52、 第三偏心套 53和第四偏心套 54是整体偏心套, 各偏心 套的内圆柱表面安装有轴瓦。 所述的第一偏心套前齿轮 61固定安装于所述第一偏心套 51的前端, 该第一偏心套前齿轮 61的 节圆圆心与该第一偏心套 51的内圆柱表面圆心重合。
所述的若干偏心套前齿轮包括第二偏心套前齿轮 63、 第三偏心套前齿轮 65和第四偏心套前齿轮 67, 其分别固定安装于所述第二偏心套 52、 第三偏心套 53和第四偏心套 54的前端, 各偏心套前齿轮 的节圆圆心与相应的偏心套的内圆柱表面圆心重合。
所述的若干偏心套后齿轮包括第一偏心套后齿轮 62、 第二偏心套后齿轮 64和第三偏心套后齿轮 66, 其分别固定安装于所述第一偏心套 52、 第二偏心套 53和第三偏心套 54的后端, 各偏心套后齿轮 的节圆圆心与相应的偏心套的内圆柱表面圆心重合。
所述的行星齿轮 31固定地安装于所述第一传动轴 21的前端并与所述中心齿轮 4相啮合。 所述的第一传动轴后齿轮 32固定地安装于所述第一传动轴 21的后端并与所述第一偏心套前 齿轮 61相啮合。
所述的若干传动轴前齿轮包括第二传动轴前齿轮 33、 第三传动轴前齿轮 35和第四传动轴前 齿轮 37, 其分别固定安装于所述第二传动轴 22、 第三传动轴 23和第四传动轴 24的前端, 并且分 别与前方相邻偏心套的第一偏心套后齿轮 62、第二偏心套后齿轮 64和第三偏心套后齿轮 66相啮合。
所述的若干传动轴后齿轮包括第二传动轴后齿轮 34、 第三传动轴后齿轮 36和第四传动轴后 齿轮 38, 其分别固定安装于所述第二传动轴 22、 第三传动轴 23和第四传动轴 24的后端, 并且分 别与后方相邻偏心套的第二偏心套前齿轮 63、第三偏心套前齿轮 65和第四偏心套前齿轮 67相啮合。
所有齿轮的轮齿为直齿、 斜齿或曲 (螺旋) 齿。
所述的中心齿轮 4的齿数 Z4、 行星齿轮 31的齿数 Z31、 第一传动轴后齿轮 32的齿数 Z32和 第一偏心套前齿轮 61的齿数 Z61的齿数比 I为 1 : 2 , 即, 1 = ( Z4/ Z31 ) * ( Z32/ Z61 ) = 0.5。
下面说明实施例 1改变压縮比和改变膨胀比的运动传递过程:
参见图 8, 当执行电机 1旋转时, 套装在曲轴 100的前轴颈 10上的蜗杆 2、 蜗轮 3和中心齿轮 4 被执行电机 1驱动, 并围绕曲轴 100的轴线 0-0旋转, 此时蜗轮 2相对于气缸中心线的夹角 δ (见图 9) 发生改变; 进一步, 依次将旋转运动传递到行星齿轮 31、 第一传动轴 21、 第一传动轴后齿轮 32、 第一偏心套前齿轮 61、第一偏心套 51、第一偏心套后齿轮 62、第二传动轴前齿轮 33、第二传动轴 22、 第二传动轴后齿轮 34、 第二偏心套前齿轮 63、 第二偏心套 52、 第二偏心套后齿轮 64、 第三传动轴前 齿轮 35、 第三传动轴 23、 第三传动轴后齿轮 36、 第三偏心套前齿轮 65、 第三偏心套 53、 第三偏心套 后齿轮 66、 第四传动轴前齿轮 37、 第四传动轴 24、 第四传动轴后齿轮 38、 第四偏心套前齿轮 67和第 四偏心套 54; 从而, 第一偏心套 51围绕第一连杆轴颈 41、第二偏心套 52围绕第二连杆轴颈 42、第三 偏心套 53围绕第三连杆轴颈 43和第四偏心套 54围绕第四连杆轴颈 44同时同步旋转。
当执行电机 1不旋转时, 所述蜗杆 2、蜗轮 3和中心齿轮 4也不旋转, 但当曲轴 100旋转时, 安装 在曲轴 100上的行星齿轮 31也随曲轴 100—起绕其轴线 0-0旋转, 由于中心齿轮 4与行星齿轮 31相 互啮合 (此时中心齿轮 4固定不动), 因此将导致行星齿轮 31在绕中心齿轮 4进行公转的同时, 也绕 其自身的轴线 210自转, 该自转进一步将旋转运动同时同步传递到每一个偏心套。
安装在第一主轴颈 11内的第一传动轴 21的轴线 210与曲轴 100的轴线 0-0的夹角 α,安装在第二 主轴颈 12内的第二传动轴 22的轴线 220与曲轴 100的轴线 0-0的夹角 |32, 安装在第三主轴颈 13内的 第三传动轴 23的轴线 230与曲轴 100的轴线 0-0的夹角, 以及安装在第四主轴颈 14内的第四传动轴 24的轴线 240与曲轴 100的轴线 0-0的夹角 β4,当上述参数选择正确时,中心齿轮 4与行星齿轮 31, 第一传动轴后齿轮 32与第一偏心套前齿轮 61, 第一偏心套后齿轮 62与第二传动轴前齿轮 33 , 第二传动轴后齿轮 34与第二偏心套前齿轮 63, 第二偏心套后齿轮 64与第三传动轴前齿轮 35, 第三传动轴后齿轮 36与第三偏心套前齿轮 65 , 第三偏心套后齿轮 66与第四传动轴前齿轮 37, 第四传动轴后齿轮 38与第四偏心套前齿轮 67, 均能保持精准的齿轮啮合关系。
下面结合附图说明改变压縮比和膨胀比原理:
为了改变压縮比和膨胀比, 必须改变第一偏心套 51相对于第一连杆轴颈 41的旋转角 Θ和起 始偏心角 θο (仅对第一气缸的状态进行描述, 其它气缸同理)。
关于第一偏心套 51的旋转角 Θ:
参见图 la, 第一偏心套 51的旋转角 Θ定义为:曲轴第一主轴颈 11的中心 O和第一连杆轴颈 41 的中心 O'之连线与第一偏心套 51 偏心方向 (图中箭头的指向) 的夹角。 当第一连杆轴颈 41 处于曲轴转角 90度的位置 II时, 第一偏心套 51的旋转角 θ=-45°。
第一偏心套 51的旋转角 Θ是曲轴 100转角 Φ的函数, 即: 0=f ( Φ) , 参见图 8 , 当中心齿轮 4的齿数 Z4、 行星齿轮 31的齿数 Z31、 第一传动轴后齿轮 32的齿数 Z32和第一偏心套齿轮 61的 齿数 Z61, 上述四个齿轮的齿数比 I为 1 : 2, 即: (Z4/ Z31 ) * ( Z32/ Z61 ) =0.5, 第一偏心套 51 的旋转角 Θ与曲轴 100转角 Φ的关系式为: Θ=Θ。-0.5Φ, 就是说, 当 θο=0, 曲轴 100绕轴线 0-0 旋转 360度时, 第一偏心套 51 围绕第一连杆轴线 0 Ο'旋转 -180度, 其中" -"号表示与曲轴 100 旋转方向相反。
参见图 5, 当上述四个齿轮的齿数比: 1= ( Ζ4/ Ζ31 ) * ( Ζ32/ Ζ61 ) =1时, 第一偏心套 51的旋 转角 Θ与曲轴 100转角 Φ的关系式为: θ=θο-Φ。 当 θο=0, 曲轴 100绕轴线 0-0旋转 360度时, 第 一偏心套 51围绕第一连杆轴线 σ· 0'旋转 -360度。
关于第一偏心套 51的起始偏心角 θο:
参见图 2a,第一偏心套 51的起始偏心角 θο定义为:当第一连杆轴颈 41处于图示的位置 I时, 活塞达到 TDC1 点, 该点表示第一气缸活塞处于吸气开始的上止点, 此时的第一偏心套 51 的偏 心方向和第一主轴颈 11的中心 0与第一连杆轴颈 41中心 0'两点连线之夹角。 图 2a所示, 第一 偏心套 51的起始偏心角 θ。=45°。
第一偏心套 5】 的起始偏心角 θο为蜗轮 3和中心齿轮 4的转角 δ的函数, 即: eD=f (S), 参 见图 9, 角度 δ为蜗轮 3以及中心齿轮 4相对于气缸中心线的夹角。 当中心齿轮 4的齿数 Ζ4、 行 星齿轮 31的齿数 Ζ31、第一传动轴后齿轮 32的齿数 Ζ32和第一偏心套前齿轮 61的齿数 Ζ61, 上述 四个齿轮的齿数比 I为 1 : 2, 即: (Ζ4/ Ζ31 ) * ( Ζ32/ Ζ61 ) =0.5时, 第一偏心套 51的起始偏心角 θ0与蜗轮 3转角 δ的关系式为: θο=0.5δ, 就是说, 当蜗轮 3和中心齿轮 4绕曲轴 100轴线 0-0旋 转 360度时,第一偏心套 51绕第一连杆轴线 σ Ο'旋转 180度;当上述四个齿轮的齿数比: Ι= ( Ζ4/ Ζ31 ) * ( Ζ32/ Ζ61 ) =1时, 第一偏心套 51的起始偏心角 θο与蜗轮 3转角 δ的关系式为: θο=δ。 就 是说,当蜗轮 3和中心齿轮 4绕曲轴 100轴线 0-0旋转 360度时,第一偏心套 51绕第一连杆轴线 σ也旋转 360度。 图 5a所示, 第一偏心套 51的起始偏心角 θο=180°。
当第一偏心套 51的起始偏心角 θο不改变时, 执行电机 1固定在内燃机缸体 (图中未显示) 上不动, 与之连接在一起的蜗杆 2、 蜗轮 3和中心齿轮 4均相对于缸体固定不动。 当曲轴 100绕 0-0线旋转时, 安装在曲轴 100上的行星齿轮 31绕曲轴 0-0线公转, 由于行星齿轮 31与中心齿 轮 4相互啮合, 这将促使行星齿轮 31绕曲轴 0-0公转的同时, 也绕其自身的轴线 210自转, 该自 转带动第一偏心套前齿轮 61、 第一偏心套 51和第一偏心套后齿轮 62绕第一连杆轴颈轴线 Ο' 旋转。 由于第一偏心套 51安装在活塞连杆总成 5的连杆大头轴瓦和第一连杆轴颈 41之间, 且第 一偏心套 51存在偏心距 e (参见图 10), 该偏心距 e绕第一连杆轴颈 41的旋转, 将直接改变了 曲柄臂的长度, 从而改变了内燃机吸气、 压縮、 膨胀和排气冲程长度。 即: 曲轴 100旋转角 Φ的 改变导致第一偏心套 51的旋转角 Θ改变, 进一步导致冲程长度改变。
而蜗轮 3的转角 δ的改变则改变了第一偏心套 51 的起始偏心角 θ。, 从而也改变了内燃机吸 气、 压缩、 膨胀和排气冲程长度。
曲轴 100旋转角 Φ和蜗轮 3转角 δ的改变, 导致第一偏心套 51的旋转角 Θ和起始偏心角 θ0 的改变, Φ和 δ二者密切配合, 则可使得内燃机无论处于低负荷工况还是高负荷工况, 均可得到 满意的提高内燃机效率的结果。
下面分别说明几种典型的内燃机工况:
Α ) 齿数比 1=0.5, 起始偏心角 θο=0°, 此时, 内燃机第一气缸在压縮末了时的压缩比达到最 高, 膨胀比也达到最髙, 见图 la和图 lb, 这种状况特别适合于四冲程内燃机的低负荷运转, 其 内燃机在曲轴旋转 720度的一个热力循环中, 吸气、 压縮、 膨胀和排气四个冲程中的表现为-
<
Figure imgf000014_0001
见上表, 在吸气冲程中, 由于吸气减少, 极大地减少了泵 1气损失; 在压缩冲程中, 由于压縮 比增大, 极大地改善了内燃机的着火条件、 燃烧效率和排放水平; 在膨胀冲程中, 由于膨胀比增 大, 产生更多的功率和扭矩输出同时, 降低油耗; 在排气冲程中, 由于排气减少, 增大了缸内的
EGR, 为下一个循环的吸气中减少泵气损失创造了条件, 同时提高缸内温度, 改善着火条件, 提 高燃烧效率。 总之, 上述的改变使内燃机低负荷工况大大优于现存的内燃机低负荷工况。
B ) 齿数比 1=0.5 , 起始偏心角 θο=45°, 此时, 内燃机第一气缸在压縮末了时的压缩比达到正 常水平, 但膨胀比很高, 见图 2a和图 2b, 这种状况特别适合于四冲程内燃机的中低负荷运转, 其内燃机在曲轴旋转 720度的一个热力循环中, 吸气、 压缩、 膨胀和排气四个冲程中的表现为:
Figure imgf000014_0002
C) 齿数比 1=0.5, 起始偏心角 Θ( 90°, 此时, 内燃机第一气缸在压缩末了时的压縮比处于较 低水平, 膨胀比处于较高水平, 见图 3a和图 3b, 这种状况特别适合于四冲程内燃机的中髙负荷 运转, 其内燃机在曲轴旋转 720度的一个热力循环中, 吸气、 压缩、 膨胀和排气四个冲程中的表 现为:
曲轴转角 冲程名称 冲程长度 路径 结果
0°~180° 吸气冲程 Si S0-e I— II— ΠΙ 吸气减少
180°~360° 压縮冲程 s2 S0-e ΠΙ— IV— V 压缩比减少
360°~540° 膨胀冲程 s3 S0+e 膨胀比增大
540°〜720° 排气冲程 s4 S0+e 一 VBI一 I 排气增大 D) 齿数比 1=0.5, 起始偏心角 θ<)=180°, 此时, 内燃机第一气缸在压縮末了时的压縮比处于 最低水平, 膨胀比也处于最低水平, 见图 4a和图 4b, 这种状况特别适合于四冲程内燃机的全负 荷运转, 其内燃机在曲轴旋转 720度的一个热力循环中, 吸气、 压縮、 膨胀和排气四个冲程中的 表现为:
Figure imgf000015_0001
在内燃机处于中高负荷或全负荷工况运行时, 突出的矛盾是防止内燃机爆震的发生。 同时, 在此工况, 特别希望内燃机输出大功率和大扭矩, 由于压縮比降低, 使内燃机采用大的增压比成 为可能, 因此, 在图 3和图 4中, 压缩比的减少是提髙内燃机输出功率和扭矩的关键。
以上图 1、 图 2、 图 3和图 4分别代表了几个典型工况, 实际上, 内燃机是根据 MAP表运行 的, 各个工况是连续可调的。
E) 齿数比 1=1, 起始偏心角 Θ( 180°, 此时, 内燃机第一气缸在压縮末了时的压縮比处于最 髙水平, 膨胀比也处于最高水平, 见图 5a, 这种状况特别适合于两冲程内燃机 (当然也可用于四 冲程内燃机) 的低负荷运转, 其内燃机在曲轴旋转 720度的一个热力循环中, 吸气、 压縮、 膨胀 和排气四个冲程中的表现为, 内燃机的四个冲程长度均不发生变化:
Figure imgf000015_0002
F) 齿数比 1=1 , 起始偏心角 θ。=0°, 此时, 内燃机第一气缸在压縮末了时的压縮比处于最低 水平, 膨胀比也处于最低水平, 见图 5b, 这种状况特别适合于两冲程内燃机(也可用于四冲程内 燃机) 的高负荷运转, 其内燃机在曲轴旋转 720度的一个热力循环中, 吸气、 压縮、 膨胀和排气 四个冲程中的表现为, 内燃机的四个冲程长度均不发生变化:
Figure imgf000015_0003
通过上述 A)、 B)、 :)、 D)、 E)和 F) 的几个工况分析, 在内燃机齿数比 I决定之后, 改变起 始偏心角 eQ就可得到需要的内燃机工况。
那么, 如何改变第一偏心套 51相对于第一连杆轴颈 41的旋转起始偏心角 θο?
参见图 8和图 9, 首先, 内燃机 ECU (Engine Control Unit) 收集从执行电机 1 自带的角度编码 器处获得的执行电机 1的相位信号, 由于该编码器的信号为绝对相位信号, 因此, 在该执行电机
1 的全部调整范围内, 该信号对应于执行电机 1的唯一转角位置。 通过蜗杆 2、 蜗轮 3的传动比 的计算, 得到蜗轮 3相对于缸体中心线的转角 δ, 也得到此时内燃机第一气缸活塞达到上止点时 的起始偏心角 θο以及其后各气缸的起始偏心角 θο。 进一步, ECU通过感知驾驶员的操作意图, 并 据此设置一个新的内燃机起始偏心角目标值 以此推算出新的目标值 δρ 新的目标值 对应于 执行电机 1新的编码器角度, 执行电机 1据此进行调整。 该内燃机第一气缸新的起始偏心角 91与 内燃机新的压縮比和膨胀比具有唯一对应关系。
为了使第一偏心套 51达到新的起始偏心角 执行电机 1根据新的编码器角度旋转, 并依 次驱动蜗杆 2、 蜗轮 3、 中心齿轮 4、 行星齿轮 31、 第一传动轴 21、 第一传动轴后齿轮 32、 第一 偏心套前齿轮 61以及第一偏心套 51旋转, 直到第一偏心套 51旋转到新的起始偏心角目标值 θ, , 与此同时, 第二偏心套 52、 第三偏心套 53和第四偏心套 54也同步达到各自新的目标值, 完成全 部气缸压縮比和膨胀比的调整。
实施例 2
本实施例用于直列四缸内燃机。 参见图 11和图 12, 实施例 2除下列几点外, 其结构、 传动原 理、 功能与作用均与实施例 1相同-
Α ) 第一传动轴轴线 210、 第二传动轴轴线 220、 第三传动轴轴线 230 以及第四传动轴轴线 240与曲轴 100的轴线 0-0全部平行但不重合, 即 α=β4= β2= 0。
Β ) 齿数比 I为 1 : 1, 即, 1 = ( Ζ4/ Ζ3, ) * ( Z32/ Z61 ) = l。
此外, 为了方便各传动轴穿过各主轴颈, 使其从各主轴颈的前端达到后端, 各主轴颈的直径 相应增大。
实施例 3
本实施例用于直列四缸内燃机。 参见图 13, 实施例 3 除下列一点外, 其结构、 传动原理、 功 能与作用均与实施例 1相同:
Α) 第二传动轴轴线 220、 第三传动轴轴线 230以及第四传动轴轴线 240与曲轴 100的轴线 0-0重合。
实施例 4
本实施例用于直列四缸内燃机。 实施例 4的结构、 传动原理、 功能与作用均与实施例 3基本相 同, 唯一的不同是, 在本实施例中, 第二传动轴轴线 220、 第三传动轴轴线 230以及第四传动轴 轴线 240与曲轴 100的轴线 0-0平行, 但均不重合。
实施例 5
本实施例用于直列 3缸内燃机。参见图 14、 图 15和图 16, 在实施例 5中, 所述的若干连杆轴颈 的数量为 2,并且第二传动轴轴线 220以及第三传动轴轴线 230与曲轴 100的轴线 0-0均平行而不 重合, 除此之外该实施例 5的结构、 传动原理、 功能与作用均与实施例 1基本相同。
实施例 6
本实施例是 V型 6缸内燃机的实施例, 除下列几点外, 该实施例 6的结构、 传动原理、 功能 与作用均与实施例 5基本相同:
Α) 见图 15, 将第一连杆轴颈 41、 第二连杆轴颈 42和第三连杆轴颈 43沿曲轴 100的轴线 0-0方向各加长一个连杆宽度的长度, 以便在每一个连杆轴颈上安装两根连杆。 一根连杆用于 V 型左侧气缸, 另一根用于 V型右侧气缸。
Β ) 见图 15, 将第一偏心套 51、 第二偏心套 52和第三偏心套 53的前端或后端各固定连接另一个 偏心套, 所述的增加的偏心套的偏心角与原来的偏心套的偏心角在旋转方向上形成一个角度, 该角度 的大小与 V6型内燃机的两列之间的夹角相等, 以便当左侧气缸活塞达到上止点时,右侧气缸活塞也同 时达到上止点。
实施例 7
本实施例用于 V型 8缸内燃机。 在实施例 1、 2、 3、 和 4的基础上, 见图 8, 将第一连杆轴颈 41和第一偏心套 51、 第二连杆轴颈 42和第二偏心套 52、 第三连杆轴颈 43和第三偏心套 53、 第 四连杆轴颈 44和第四偏心套 54沿曲轴 100的轴线 0-0方向各加长一个连杆宽度的长度, 以便在 每一个连杆轴颈上安装两根连杆。 形成 V8缸的结构, 与实施例 6相同, 增加的偏心套的偏心角 与原来的偏心套的偏心角在旋转方向上形成一个夹角, 该夹角的大小与 V8型内燃机的两列之间的 夹角相等。
实施例 8
本实施例用于直列两缸内燃机。 在实施例 1、 2、 3、 和 4的基础上, 将第三连杆轴颈 43和第 四连杆轴颈 44, 以及第四主轴颈 14和第五主轴颈以后部分切除, 保留第一主轴颈 11、 第二主轴 颈 12和第三主轴颈 13, 以及第一连杆轴颈 41和第二连杆轴颈 42, 形成直列两缸内燃机的结构。
实施例 9
本实施例用于 V型 4缸内燃机。在实施例 8的基础上, 将第一连杆轴颈 41和第二连杆轴颈 42 沿曲轴 100的轴线 0-0方向各加长一个连杆宽度的长度,以便在每一个连杆轴颈上安装两根连杆, 形成 V4缸的结构; 与实施例 6相同, 增加的偏心套的偏心角与原来的偏心套的偏心角在旋转方 向上形成一个夹角, 该夹角的大小与 V4型内燃机的两列之间的夹角相等。
实施例 10
本实施例用于单缸内燃机。 在实施例 8的基础上, 进一步切除第二连杆轴颈 42以及第三主轴 颈 13, 仅保留第一主轴颈 11和第二主轴颈 12, 以及第一连杆轴颈 41 , 形成单缸内燃机的结构。
实施例 11
本实施例用于 V型两缸内燃机。 在实施例 10的基础上, 将第一连杆轴颈 41沿曲轴 100的轴 线方向加长一个连杆宽度的长度, 以便在连杆轴颈上安装两根连杆, 形成 V2缸的结构; 与实施 例 6相同, 增加的偏心套的偏心角与原来的偏心套的偏心角在旋转方向上形成一个夹角, 该夹角 的大小与 V2型内燃机的两列之间的夹角相等。
还有更多实施例, 如 W型、 行星内燃机机构等, 不再一一举例, 借助现有技术和本发明说明书, 本领域的技术人员完全能够实现本发明在各类直列式、 V型、 W型、星型布置和对置式布置的单缸、 多缸内燃机上的应用。

Claims

权 利 要 求
1、一种可变压縮比和可变膨胀比装置, 安装在内燃机的曲轴和活塞连杆总成上, 所述的曲轴包 括有第一主轴颈及其之后依次排列的若干主轴颈和第一连杆轴颈及其之后依次排列的若干连杆轴颈, 所述的活塞连杆总成包括有连杆大头轴瓦,其特征在于:所述的第一主轴颈上开设有第一支承园柱孔, 该第一支承园柱孔的轴线与所述曲轴的轴线成一夹角 α≠0, 所述若干主轴颈上各自开设有一支承园 柱孔, 各支承园柱孔的轴线与所述曲轴的轴线重合, 或者平行而不重合, 或者成一不为零的夹角; 所述的装置包括有:
执行电机;
蜗杆, 与所述执行电机固定连接且轴线与该执行电机的轴线重合;
蜗轮, 与所述蜗杆啮合;
中心齿轮, 与所述蜗轮固定连接且其轴线与该蜗轮的轴线重合, 该中心齿轮可旋转地套置在 所述曲轴上;
第一传动轴, 可旋转地穿置于所述第一支承园柱孔中, 并且其前后两端分别伸出该第一支承园 柱孔的两端;
若干传动轴, 数量与所述主轴颈相同, 其分别可旋转地一一对应穿置于所述各支承园柱孔中, 并且其前后两端分别伸出各支承园柱孔的两端;
第一偏心套, 可旋转地套置在所述曲轴的第一连杆轴颈与相应的连杆大头轴瓦之间, 其具有内圆 柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线不重合且具有一偏心距 e;
若干偏心套, 数量与所述连杆轴颈相同, 其可旋转地一一对应套置在所述各连杆轴颈与相应的连 杆大头轴瓦之间, 各偏心套具有内圆柱表面和外圆柱表面, 该内圆柱表面中心线和外圆柱表面中心线 不重合且具有一偏心距 e;
第一偏心套前齿轮, 固定安装于所述第一偏心套的前端, 该第一偏心套前齿轮的节圆圆心与该第 一偏心套的内圆柱表面圆心重合;
若干偏心套前齿轮,一一对应地分别固定安装于所述各偏心套的前端, 各偏心套前齿轮的节圆圆 心与相应的偏心套的内圆柱表面圆心重合;
若干偏心套后齿轮,一一对应地分别固定安装于所述各偏心套的后端, 各偏心套后齿轮的节圆圆 心与相应的偏心套的内圆柱表面圆心重合;
行星齿轮, 固定地安装于所述第一传动轴的前端并与所述中心齿轮相啮合;
第一传动轴后齿轮, 固定地安装于所述第一传动轴的后端并与所述第一偏心套前齿轮相啮 合;
若干传动轴前齿轮,一一对应地分别固定安装于所述各传动轴的前端并与前方相邻偏心套的偏 心套后齿轮相啮合;
若干传动轴后齿轮,一一对应地分别固定安装于所述各传动轴的后端并与后方相邻偏心套的偏 心套前齿轮相啮合。
2、 根据权利要求 1所述的可变压縮比和可变膨胀比装置, 其特征在于: 所述的第一支承园柱 孔的轴线与所述曲轴的轴线所成夹角 α=0, 并且平行而不重合。
3、 根据权利要求 1 所述的可变压縮比和可变膨胀比装置, 其特征在于: 所述的中心齿轮的 齿数、 行星齿轮的齿数、 第一传动轴后齿轮的齿数和第一偏心套前齿轮的齿数比 I为 1 : 2, 即, 1 = ( Z4/ Z31) * ( Z32/ Z61 ) = 0.5,
式中, z4为中心齿轮的齿数, z31为行星齿轮的齿数, z32为第一传动轴后齿轮的齿数, z61 为第一偏心套前齿轮的齿数。
4、 根据权利要求 1 所述的可变压縮比和可变膨胀比装置, 其特征在于: 所述的中心齿轮的 齿数、 行星齿轮的齿数、 第一传动轴后齿轮的齿数和第一偏心套前齿轮的齿数比 I为 1 : 1, 即,
1 = ( Z4/ Z3】) * ( Z32/ Z61 ) = 1 ,
式中, z4为中心齿轮的齿数, z31为行星齿轮的齿数, ¾2为第一传动轴后齿轮的齿数, z61 为第一偏心套前齿轮的齿数。
5、 根据权利要求 1 所述的可变压縮比和可变膨胀比装置, 其特征在于: 所述的执行电机为 带有角度编码器的伺服电机, 所述蜗杆的旋转角度由所述执行电机的角度编码器认定。
6、 根据权利要求 1所述的可变压縮比和可变膨胀比装置, 其特征在于: 所述的若干连杆轴颈 的数量为 0、 1、 2、 3、 4或者 5 。
7、 根据权利要求 1所述的可变压缩比和可变膨胀比装置, 其特征在于: 所述的主轴颈包括第 二主轴颈、 第三主轴颈和第四主轴颈, 其分别开设有第二支承园柱孔、 第三支承园柱孔和第四支承园 柱孔, 该第二支承圆柱孔的轴线与所述曲轴的轴线成一不为零的夹角 β2, 该第三支承圆柱孔的轴 线与所述曲轴的轴线成一为零的夹角, 该第四支承圆柱孔的轴线与所述曲轴的轴线成一不为零的 夹角 β4; 所述的传动轴包括第二传动轴、 第三传动轴和第四传动轴, 其分别可旋转地穿置于所述 第二支承园柱孔、 第三支承园柱孔和第四支承园柱孔中; 所述的连杆轴颈包括第二连杆轴颈、 第三连 杆轴颈和第四连杆轴颈; 所述的偏心套包括第二偏心套、 第三偏心套和第四偏心套, 其分别可旋转地 套置在所述第二连杆轴颈、 第三连杆轴颈和第四连杆轴颈与相应的连杆大头轴瓦之间; 所述的偏心套 前齿轮包括第二偏心套前齿轮、 第三偏心套前齿轮和第四偏心套前齿轮, 其分别固定安装于所述第二 偏心套、 第三偏心套和第四偏心套的前端; 所述的偏心套后齿轮包括第一偏心套后齿轮、 第二偏心套 后齿轮和第三偏心套后齿轮, 其分别固定安装于所述第一偏心套、 第二偏心套和第三偏心套的后端; 所述的传动轴前齿轮包括第二传动轴前齿轮、 第三传动轴前齿轮和第四传动轴前齿轮, 其分别固 定安装于所述第二传动轴、第三传动轴和第四传动轴的前端, 并且分别与前方相邻偏心套的第一偏 心套后齿轮、 第二偏心套后齿轮和第三偏心套后齿轮相啮合; 所述的传动轴后齿轮包括第二传动轴 后齿轮、 第三传动轴后齿轮和第四传动轴后齿轮, 其分别固定安装于所述第二传动轴、 第三传动轴 和第四传动轴的后端, 并且分别与后方相邻偏心套的第二偏心套前齿轮、 第三偏心套前齿轮和第四 偏心套前齿轮相啮合。
8、 根据权利要求 1 所述的可变压縮比和可变膨胀比装置, 其特征在于. · 所述的可变压縮比 和可变膨胀比装置应用于直列式单缸或多缸内燃机、 V型、 W型、 星型或对置式布置的多缸内燃 机。
PCT/CN2014/000072 2013-05-16 2014-01-20 一种可变压缩比和可变膨胀比装置 WO2014183460A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14797289.7A EP3037645B1 (en) 2013-05-16 2014-01-20 Compression ratio variable and expansion ratio variable apparatus
US14/938,836 US9726078B2 (en) 2013-05-16 2015-11-11 Apparatus with variable compression ratio and variable expansion ratio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310182783.5 2013-05-16
CN201310182783.5A CN103244260B (zh) 2013-05-16 2013-05-16 一种可变压缩比和可变膨胀比装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/938,836 Continuation US9726078B2 (en) 2013-05-16 2015-11-11 Apparatus with variable compression ratio and variable expansion ratio

Publications (1)

Publication Number Publication Date
WO2014183460A1 true WO2014183460A1 (zh) 2014-11-20

Family

ID=48924075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000072 WO2014183460A1 (zh) 2013-05-16 2014-01-20 一种可变压缩比和可变膨胀比装置

Country Status (4)

Country Link
US (1) US9726078B2 (zh)
EP (1) EP3037645B1 (zh)
CN (1) CN103244260B (zh)
WO (1) WO2014183460A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2607436C1 (ru) * 2015-11-03 2017-01-10 Александр Алексеевич Семенов Двигатель внутреннего сгорания с изменяемой степенью сжатия эксцентриковым механизмом
US20220136431A1 (en) * 2019-07-28 2022-05-05 Almir Gonçalves Pereira Variable compression ratio device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244260B (zh) * 2013-05-16 2015-09-23 沈大兹 一种可变压缩比和可变膨胀比装置
DE102013216181A1 (de) * 2013-08-14 2015-02-19 Schaeffler Technologies Gmbh & Co. Kg Verstelleinrichtung zur Veränderung des Verdichtungsverhältnisses in einem Verbrennungsmotor
CN103470382B (zh) * 2013-08-28 2016-03-02 长城汽车股份有限公司 一种发动机压缩比调节机构
EP2930329B1 (en) * 2014-04-08 2016-12-28 Gomecsys B.V. An internal combustion engine including variable compression ratio
EP3103986B1 (en) * 2015-06-08 2018-01-31 Gomecsys B.V. A four-stroke internal combustion engine including variable compression ratio and a vehicle
CN107035549B (zh) * 2015-07-29 2019-11-26 上海汽车集团股份有限公司 发动机、发动机可变压缩比机构及其控制方法
FR3052495B1 (fr) * 2016-06-09 2020-01-10 Peugeot Citroen Automobiles Sa Moteur thermique muni d'un systeme de variation du taux de compression ameliore
US10119463B2 (en) * 2016-12-09 2018-11-06 Mark Albert Sokalski Infinitely variable compression ratio and single stroke length mechanism or dual stroke length mechanism of reciprocating 2-cycle or 4-cycle internal combustion engine
DE102017207464A1 (de) * 2017-05-04 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Kurbeltrieb für eine Hubkolbenmaschine, sowie Hubkolbenmaschine mit einem solchen Kurbeltrieb
US10385771B2 (en) * 2017-08-28 2019-08-20 Southwest Research Institute Crank pin offset in dedicated exhaust gas engines
EP3486453B1 (en) * 2017-11-21 2020-08-05 Mark Albert Sokalski Internal combustion engine with infinitely variable compression ratio mechanism
CN108590849B (zh) * 2018-01-09 2023-07-14 西华大学 一种可实现米勒循环的曲柄连杆机构及控制方法
DE102018215490B4 (de) 2018-09-12 2020-06-18 Ford Global Technologies, Llc Kurbeltriebvorrichtung für eine Verbrennungskraftmaschine, Antriebsstrang und Fahrzeug
DE102018128524B4 (de) 2018-11-14 2022-09-22 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Verändern eines Kompressionsverhältnisses, Hubkolbenbrennkraftmaschine und Arbeitsvorrichtung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460642A (en) 1891-10-06 Variable crank-motion
US4044629A (en) 1975-12-29 1977-08-30 John Michael Clarke Reciprocating piston machine
US5927236A (en) 1997-10-28 1999-07-27 Gonzalez; Luis Marino Variable stroke mechanism for internal combustion engine
US6349684B1 (en) 1998-05-19 2002-02-26 Gomecsys B.V. Crank-connecting rod mechanism
US6371062B1 (en) * 2000-10-18 2002-04-16 Ford Global Technologies, Inc. Variable compression ratio connecting rods
US20080022977A1 (en) * 2003-12-23 2008-01-31 Michel Alain Leon Marchisseau Device for Varying a Compression Ratio of an Internal Combustion Engine and Method for Using Said Device
CN101333964A (zh) * 2008-08-06 2008-12-31 燕山大学 可变压缩比往复活塞式发动机
CN102465771A (zh) * 2010-11-18 2012-05-23 现代自动车株式会社 可变压缩比的装置
CN102889142A (zh) * 2012-10-08 2013-01-23 沈大兹 一种带自锁结构的可变压缩比装置
CN103244260A (zh) * 2013-05-16 2013-08-14 沈大兹 一种可变压缩比和可变膨胀比装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1959112A1 (en) * 2007-02-16 2008-08-20 Gomecsys B.V. A reciprocating piston mechanism, a method of assembling this, and an internal combustion engine
KR100969376B1 (ko) * 2008-03-31 2010-07-09 현대자동차주식회사 가변 압축비 장치
US8714119B2 (en) * 2008-06-05 2014-05-06 Stuart B. Pett, Jr. Parallel cycle internal combustion engine with double headed, double sided piston arrangement
CN102264588A (zh) * 2009-03-10 2011-11-30 丰田自动车株式会社 发动机控制装置
DE102011018166A1 (de) * 2011-04-19 2012-10-25 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Verändern eines Kompressionsverhältnisses einer Hubkolben-Brennkraftmaschine
CN103047002B (zh) * 2012-12-17 2015-01-28 沈大兹 一种连杆轴颈偏心套可变压缩比装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460642A (en) 1891-10-06 Variable crank-motion
US4044629A (en) 1975-12-29 1977-08-30 John Michael Clarke Reciprocating piston machine
US5927236A (en) 1997-10-28 1999-07-27 Gonzalez; Luis Marino Variable stroke mechanism for internal combustion engine
US6349684B1 (en) 1998-05-19 2002-02-26 Gomecsys B.V. Crank-connecting rod mechanism
US6371062B1 (en) * 2000-10-18 2002-04-16 Ford Global Technologies, Inc. Variable compression ratio connecting rods
US20080022977A1 (en) * 2003-12-23 2008-01-31 Michel Alain Leon Marchisseau Device for Varying a Compression Ratio of an Internal Combustion Engine and Method for Using Said Device
CN101333964A (zh) * 2008-08-06 2008-12-31 燕山大学 可变压缩比往复活塞式发动机
CN102465771A (zh) * 2010-11-18 2012-05-23 现代自动车株式会社 可变压缩比的装置
CN102889142A (zh) * 2012-10-08 2013-01-23 沈大兹 一种带自锁结构的可变压缩比装置
CN103244260A (zh) * 2013-05-16 2013-08-14 沈大兹 一种可变压缩比和可变膨胀比装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2607436C1 (ru) * 2015-11-03 2017-01-10 Александр Алексеевич Семенов Двигатель внутреннего сгорания с изменяемой степенью сжатия эксцентриковым механизмом
US20220136431A1 (en) * 2019-07-28 2022-05-05 Almir Gonçalves Pereira Variable compression ratio device
US11879400B2 (en) * 2019-07-28 2024-01-23 Almir Gonçalves Pereira Variable compression ratio device

Also Published As

Publication number Publication date
EP3037645A4 (en) 2017-01-25
US9726078B2 (en) 2017-08-08
EP3037645B1 (en) 2020-08-05
CN103244260A (zh) 2013-08-14
EP3037645A1 (en) 2016-06-29
CN103244260B (zh) 2015-09-23
US20160061105A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
WO2014183460A1 (zh) 一种可变压缩比和可变膨胀比装置
JP5266228B2 (ja) 改良された対向ピストン燃焼エンジン
PT2171211E (pt) Motores de combustão interna
GB2431695A (en) Internal combustion five-stroke engine with opposed pistons and eccentric gearing
EP0434697A1 (en) Crankshaft phasing mechanism
KR20090027603A (ko) 풀링 로드 엔진
CN104791096A (zh) 二缸合一水平对置双曲轴发动机
CN109184904B (zh) 一种四冲程四缸对置单向旋转发动机及其控制方法
WO2016110072A1 (zh) 内燃机
US9441538B2 (en) Engine usable as a power source or pump
US20090217901A1 (en) Driving Mechanism of a Crankless Engine
US20120055451A1 (en) Inwardly Opposed Pistons, Fixed Position Common Cylinder Engine with External Induction
CN107304710A (zh) 往复活塞式转子发动机
US20180216520A1 (en) An internal combustion engine
GB2564409A (en) Radial piston machine
RU2742155C1 (ru) Двигатель внутреннего сгорания с изменяемой степенью сжатия
CN209228457U (zh) 一种四冲程四缸对置单向旋转发动机
WO2016110073A1 (zh) 内燃机
CN102787911A (zh) 叠柱形转子发动机
CN203067089U (zh) 双力发动机
US8381699B2 (en) Engine crankshaft and method of use
WO2020029822A1 (zh) 内燃机
CN1172083C (zh) 无曲轴活塞式发动机
CN1228539C (zh) 四冲程多缸多作用发动机
JP2024061550A (ja) 回転位相変更可能なパイプシャッターバルブを持つ可変圧縮長4ストロークレシプロエンジン。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014797289

Country of ref document: EP