WO2014181868A1 - Apparatus and method for manufacturing glass compact - Google Patents

Apparatus and method for manufacturing glass compact Download PDF

Info

Publication number
WO2014181868A1
WO2014181868A1 PCT/JP2014/062478 JP2014062478W WO2014181868A1 WO 2014181868 A1 WO2014181868 A1 WO 2014181868A1 JP 2014062478 W JP2014062478 W JP 2014062478W WO 2014181868 A1 WO2014181868 A1 WO 2014181868A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
mold
housing
chamber
shafts
Prior art date
Application number
PCT/JP2014/062478
Other languages
French (fr)
Japanese (ja)
Inventor
尚之 繁野
藤本 忠幸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201480024126.0A priority Critical patent/CN105164067B/en
Publication of WO2014181868A1 publication Critical patent/WO2014181868A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/02Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing in machines with rotary tables
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass molded body manufacturing apparatus and a glass molded body manufacturing method, and in particular, a press mechanism that simultaneously presses a plurality of molding dies containing glass materials in a press chamber formed in a housing.
  • the present invention relates to an apparatus for manufacturing a glass molded body provided with the above and a method for manufacturing a glass molded body using the apparatus.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-56532
  • a plurality of support members on which a mold is placed are heated by a rotary table along a circumference.
  • An apparatus that forms glass by performing heating, pressing, and cooling (including slow cooling) processing in each processing section while sequentially circulating a section, a pressing section, and a slow cooling section is widely used.
  • a plurality of molding dies are placed on each support member, and a plurality of molding dies are pressed at once to achieve production efficiency. Can be improved.
  • a difference occurs in the height of the upper surface of the mold due to a manufacturing error of the support member that supports the mold. Furthermore, a difference occurs in the height of the upper surface of the mold due to dimensional changes due to long-term use. For this reason, when a plurality of press heads are lowered all at once by a small number of actuators, a large pressure is applied to a mold with a high top surface, and a slight pressure is applied to a mold with a low top surface. There was a problem that variations occurred.
  • a compression spring is interposed between the actuator and the press head for pressing the mold in the housing. It is possible. In this way, by pressing the press head via the compression spring, the compression spring absorbs the difference in the height of the mold, so that variations in the press pressure can be reduced.
  • the present invention has been made in view of the above problems, and the object thereof is to provide a plurality of molding dies in a glass molding manufacturing apparatus that presses a plurality of molding dies at once with a smaller number of actuators than the molding dies. It is an object of the present invention to provide a technique capable of producing a glass molded body with uniform molding accuracy with high production efficiency by reducing the variation in applied pressing pressure.
  • the apparatus for producing a glass molded body of the present invention is an apparatus for producing a glass molded body having a press mechanism for simultaneously pressing a plurality of molds containing glass materials in a press chamber formed in a housing.
  • the press mechanism is provided corresponding to a plurality of molds, and is connected to a plurality of press heads for individually pressing the molds and the plurality of press heads, and penetrates the upper wall of the housing in parallel to each other.
  • a plurality of shafts extending to the outside, an actuator provided outside the housing, a moving member disposed outside the housing and pressed and moved toward the mold by the actuator, and disposed outside the housing And an elastic member that is compressible in the moving direction of the moving member, and the moving member is pressed and moved toward the molding die by the actuator via the elastic body.
  • an actuator provided outside the housing
  • a moving member disposed outside the housing and pressed and moved toward the mold by the actuator, and disposed outside the housing
  • an elastic member that is compressible in the moving direction of the moving member, and the moving member is pressed and moved toward the molding die by the actuator via the elastic body.
  • the method for producing a glass molded body of the present invention comprises a step of simultaneously pressing a plurality of molding molds containing glass materials by a press mechanism in a press chamber formed in the casing, A plurality of press heads provided corresponding to a plurality of molding dies, respectively connected to the plurality of press heads for individually pressing the molding dies, and extending to the outside through the upper wall of the housing in parallel to each other Shaft, an actuator provided outside the housing, a moving member disposed outside the housing and pressed and moved toward the mold by the actuator, and a moving member disposed outside the housing.
  • the elastic body is provided outside the housing, a longer elastic body can be used than when the elastic body is provided in the press chamber.
  • a long elastic body By using such a long elastic body, the ratio of the difference in the height of the mold with respect to the length of the elastic body in the contracted state is reduced. Thereby, even if there exists a difference in the height of a shaping
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a vertical sectional view showing the configuration of the mold unit. It is a front view which shows the detailed structure of the press mechanism provided in the press chamber, and shows the state which is performing the press process. It is a side view which shows the detailed structure of the press mechanism provided in the press chamber, and shows the state which is performing the press process. It is a side view which shows the detailed structure of the press mechanism provided in the press chamber, and shows the state which is not performing the press process. It is a horizontal sectional view which shows the structure of the manufacturing apparatus provided with two press chambers. It is a figure which shows arrangement
  • FIG. 1 is a horizontal sectional view showing a configuration of a glass molded body manufacturing apparatus used in the present embodiment
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the glass molded body manufacturing apparatus 1 of the present embodiment includes an apparatus housing 2 formed in a bottomed cylindrical shape, a rotary table 4 provided in the apparatus housing 2, and a rotary table. 4 and an inner casing 6 having an arcuate horizontal cross section provided above 4.
  • the device casing 2, the inner casing 6, and the turntable 4 are arranged concentrically.
  • the device casing 2 has a substantially circular upper lid 2A and a bottom plate 2B attached to the top and bottom, and the inside thereof is in a sealed state.
  • the internal space of the apparatus housing 2 is an inert gas atmosphere.
  • the inert gas nitrogen, argon, or the like is used, and the oxygen concentration is preferably 5 ppm or less. It should be noted that the oxidation of the mold unit 8 and the surface alteration of the glass material can be prevented by making the internal space an inert gas atmosphere in this way.
  • the upper lid 2A is formed with a loading / unloading port (not shown) through which the molding die 52 is supplied into the apparatus and the molding die 52 can be unloaded from the apparatus. 46 is formed.
  • the carry-in / carry-out unit 46 is shown as an example having both the supply unit and the carry-out unit in the present invention. However, the carry-in unit (supply unit) and the carry-out unit (carry-out port) are provided separately. May be.
  • the rotary table 4 is rotated by, for example, a drive mechanism (not shown) such as a motor, and the mold unit 8 arranged on the rotary table 4 is conveyed on the same circle.
  • a number of mold units 8 (eight in the present embodiment) corresponding to the number of processing chambers are arranged at equal intervals.
  • the mold unit 8 includes a mold support base (support member) 12 and a plurality of (four in this embodiment) molding dies 52 placed on the mold support base 12. .
  • the mold unit 8 arranged on the turntable 4 is intermittently transferred to each processing chamber in the inner casing 6 as the turntable 4 rotates.
  • the rotary table 4 conveys the mold unit 8 along the circumference of a predetermined radius by intermittently rotating the drive mechanism by 45 degrees every predetermined time. Further, the rotary table 4 stops for a predetermined stop time set in advance during each rotation operation. The stop time of the rotary table 4 is determined to be longer than the time required for the press process in the press chamber 26 described later.
  • the inner casing 6 is concentrically coaxial with the apparatus housing 2 and extends in an arc shape over an angular range of about 270 degrees in the horizontal direction.
  • the inner casing 6 is located radially outside the inner wall 6A and has an angular range of about 270 degrees in the horizontal direction.
  • An outer wall 6B extending in a circular arc shape, a ceiling 6C that closes between the inner wall 6A and the upper part of the outer wall 6B, and a bottom 6D that closes between the inner wall 6A and the lower part of the outer wall 6B.
  • the inner wall 6A, the outer wall 6B, the ceiling portion 6C, and the bottom portion 6D form a processing space having an arc-shaped horizontal cross section in the inner casing 6.
  • An arc-shaped slit 6E is formed in the bottom 6D of the inner casing 6 along the conveyance path of the mold unit 8.
  • the processing space of the inner casing 6 is divided into six chambers within an angle range of 45 degrees in the rotation direction of the turntable 4. These six chambers are arranged along the conveyance path of the mold unit 8 in the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber. They are arranged in the order of 30.
  • the heating chambers 20 and 22 are processing units for rapidly heating the mold 52 and the glass material 60 of the mold unit 8 charged in the apparatus to a temperature suitable for press molding at a temperature close to normal temperature.
  • the two heating chambers, the first heating chamber 20 and the second heating chamber 22, are provided, and the mold unit 8 is heated in stages, but the number of chambers is set according to the processing time and the target temperature. It may be increased or decreased.
  • the soaking chamber 24 is a processing unit for soaking the mold 52 and the glass material 60 by heating the mold unit 8 to a temperature suitable for press molding at a temperature for a predetermined time.
  • the temperature suitable for press molding varies depending on the glass glass type and the shape and volume of the molded body, but is generally a temperature at which the glass material has a viscosity of 10 6 to 10 9 dPa ⁇ s, and the glass yield point temperature (Ts ) Is preferably in the vicinity.
  • a press mechanism 70 is provided above the press chamber 26, and the press chamber 26 is heated to a predetermined temperature and softened by applying a load to the plurality of molds 52 at once by the press mechanism 70. It is a processing unit that deforms the glass material and transfers the shape of the molding surface of the mold to form a glass molded body. The detailed configuration of the press mechanism 70 will be described later.
  • the slow cooling chambers 28 and 30 are processing units that gradually cool the glass molded body formed in the press chamber 26 at a predetermined cooling rate.
  • two slow cooling chambers, the first slow cooling chamber 28 and the second slow cooling chamber 30, are provided, and the mold unit 8 is gradually cooled, but the number of chambers is increased or decreased as necessary. May be.
  • a shutter (not shown) is provided between the circumferential end of the inner casing 6 and each chamber to partition adjacent processing chambers.
  • Heaters 32, 34, respectively, are provided on both sides of the transport path of the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30, respectively.
  • 36, 38, 40, and 42 are provided.
  • These heaters 32, 34, 36, 38, 40, 42 are respectively a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a press chamber 26, a first annealing chamber 28, and a second annealing chamber.
  • the inside 30 is heated to a predetermined temperature.
  • the press chamber 26 is provided with a reflector 38A along the inner wall 6A and the outer wall 6B.
  • the reflector 38A reflects the heat energy radiated from the heater 38 and prevents the heat from being released to the outside of the heater. Thereby, heat energy can be intensively guided to the mold and the mold can be efficiently heated.
  • the reflector includes a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a first annealing chamber 28, and a second annealing chamber 30 provided with heaters 32, 34, 36, 40, and 42. It is also installed inside.
  • FIG. 3 is a vertical sectional view showing the configuration of the mold unit 8.
  • the mold unit 8 includes a mold support 12 and a plurality of (four in this embodiment) molds 52 placed on the mold support 12.
  • the mold support 12 includes a base portion 12A and a plurality of (four in the present embodiment) columnar support portions 12B provided in a row on the base portion 12A.
  • the mold unit 8 is disposed on the rotary table 4 so that the direction in which the support portions 12B of the mold support 12 are aligned matches the moving direction of the mold unit 8 by the rotary table 4.
  • the molding die 52 has an upper die 54 and a lower die 56 having molding surfaces formed in accordance with the shape of the glass molded body to be manufactured, and a cylinder that regulates the mutual position of the upper die 54 and the lower die 56 in the radial direction. And a mold 58.
  • a release film for preventing fusion with glass is formed on the molding surfaces of the upper mold 54 and the lower mold 56.
  • the glass material 60 is disposed in a state of being sandwiched between the upper mold 54 and the lower mold 56.
  • the shape of the molding surface is transferred to the glass material, and a glass molded body having a desired shape (Optical element) can be press-molded.
  • the press mechanism 70 includes a plurality of press heads 102 provided corresponding to the respective molds 52, a shaft 100 connected to the press head 102 and extending in the vertical direction, and the housing 2.
  • a support mechanism 72 provided above the actuator, an actuator 80 fixed to the upper portion of the support mechanism 72, a moving plate 86 movable in the vertical direction by the actuator 80, and a coil spring provided corresponding to each shaft 100. 106.
  • the support mechanism 72 includes a plurality of legs 74 standing on the upper surface of the upper lid 2 ⁇ / b> A of the housing 2, and a support plate 76 that is held by the plurality of legs 74 at a distance from the upper lid 2 ⁇ / b> A of the housing 2.
  • Two actuators 80 are fixed to the upper part of the support plate 76 of the support mechanism 72.
  • An opening is formed in the support plate 76, and the piston rod 82 of the actuator 80 extends downward through this opening.
  • the plurality of leg portions 74 are provided at positions spaced apart from the centers of the planar positions of the plurality of rods 88 at equal intervals.
  • One actuator 80 is provided on each side of the plurality of molds 52, and each actuator 80 can advance and retract the piston rod 82 in the vertical direction in synchronization.
  • the tip of the piston rod 82 of each actuator 80 is connected to the moving plate 86.
  • the connection positions are aligned in the direction perpendicular to the transport direction, and are positioned at the center of the plurality of shafts 100 in the direction in which the plurality of shafts 100 are aligned.
  • a small actuator needs to be used when the distance between the press heads is about 25 mm or less, such as when many small-diameter lenses are manufactured. .
  • a small actuator often cannot obtain a pressing force necessary for molding a lens.
  • the four press heads 102 are pressed and moved by the two actuators 80, but the number of actuators and the number of press heads are not limited as long as the number of actuators is smaller than the number of press heads.
  • the glass molded body manufacturing apparatus 1 according to the present embodiment has a smaller number of actuators 80 (including a single unit) than the total number of the plurality of press heads 102.
  • the moving plate 86 is movable in the vertical direction while being kept horizontal by the guide mechanism 81.
  • a linear bushing 84 is erected on the upper surface of the moving plate 86.
  • the tip of the piston rod 82 of the actuator 80 passes through the linear bush 84 and is fixed to the lower surface of the moving plate 86 in a state of penetrating the moving plate 86.
  • the piston rod 82 passes through the linear bushing 84, the moving plate 86 and the piston rod 82 of the actuator 80 are maintained in the vertical state.
  • the guide mechanism 81 includes a plurality of rods 88 extending downward from the lower surface of the support plate 76 of the support mechanism 72, and a plurality of linear bushes 92 movable along the plurality of rods 88.
  • the upper ends of the plurality of rods 88 are fixed to the lower surface of the support plate 76 of the support mechanism 72 by the shaft holder 90.
  • the moving plate 86 has openings at four corners, and each of the plurality of rods 88 passes through the opening at each corner of the moving plate 86. That is, the plurality of rods 88 are provided outside the position where the shaft 100 of the moving plate 86 penetrates, and at a position spaced apart from the center of the position where the plurality of shafts 100 penetrate. Further, the piston rods 82 of the two actuators 80 are connected at a position spaced apart from the center of the position through which the plurality of shafts 100 of the moving plate 86 penetrate.
  • the linear bush 92 is fixed to the lower surface of the moving plate 86, and a corresponding rod 88 is inserted through each linear bush 92. Thereby, since the four corners of the moving plate 86 are moved along the rod 88 by the plurality of linear bushes 92, the moving plate 86 can be moved up and down while being kept in a horizontal state.
  • An opening is formed in the upper portion of the press chamber 26 of the housing 2, and the housing lid member 110 is attached to the opening without any gap.
  • a plurality of through holes penetrating in the vertical direction are formed in the housing lid member 110 at positions corresponding to the plurality of shafts 100.
  • a heat ablation member 116 made of a heat-reflective material is attached to the lower surface of the case lid member 110 along the lower surface.
  • an opening is formed in the upper part of the press chamber 26 of the ceiling portion 6C of the inner casing 6, and a casing lid member 119 is attached to this opening.
  • the casing lid member 119 is formed with through holes extending in the vertical direction at positions corresponding to the plurality of shafts 100.
  • Each of the plurality of shafts 100 extends in the vertical direction through the moving plate 86, the casing lid member 110, and the casing lid member 119.
  • Nuts 104 are respectively fixed above the moving plates 86 of the plurality of shafts 100.
  • a locking portion 101 that protrudes toward the outer periphery is formed at a position above the housing lid 110 of the shaft 100.
  • a coil spring 106 is disposed between the locking portion 101 and the moving plate 86.
  • the coil spring 106 is externally mounted on the shaft 100.
  • a coil spring 106 having a desired length can be used.
  • the press heads 102 are respectively provided at the lower ends of the plurality of shafts 100, and these press heads 102 press the molding die 52 as described later.
  • Oil seals 112 are respectively provided in the through holes formed in the casing lid member 110.
  • the oil seal 112 seals the space between the through hole and the shaft 100, and the inside of the housing 2 can be maintained in an inert gas atmosphere.
  • linear bushings 114 are provided in the through holes formed in the case lid member 110, respectively. The shaft 100 is guided toward the mold 52 by the linear bush 114.
  • a method of manufacturing a glass molded body by the glass molded body manufacturing apparatus 1 of the present embodiment will be described.
  • a method of manufacturing a glass molded body will be described by paying attention to one mold unit 8, but in the glass molded body manufacturing apparatus 1 of the present embodiment, depending on the number of processing chambers.
  • a plurality of mold units 8 are arranged on the rotary table 4 in an equiangular range of 45 degrees.
  • the plurality of mold units 8 are continuously transported along the transport path by the rotary table 4, and processes such as heat treatment, press processing, and slow cooling processing are performed in parallel in each processing chamber.
  • the mold unit 8 is lifted by the carry-in / carry-out mechanism, From the outlet, the four molding dies 52 for which the molding process has been completed are simultaneously carried out of the apparatus housing 2. Then, these molds 52 are held by a robot hand (not shown) and removed from the support part 12B of the mold support 12. Thereafter, the molds 52 loaded with the new glass material 60 are placed on the support portions 12B of the mold support base 12, respectively.
  • a preset stop time hereinafter referred to as a tact time
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened.
  • the rotary table 4 rotates 45 degrees counterclockwise in plan view.
  • the mold 52 is conveyed into the first heating chamber 20 while being held by the mold support 12.
  • the support portion 12B of the mold support 12 passes through the slit 6E provided at the bottom of the inner casing 6, so that the support portion 12B and the inner casing 6 do not interfere with each other.
  • a first heating step for heating the mold unit 8 is performed.
  • the inside of the first heating chamber 20 is maintained at a temperature equal to or higher than the glass yield point temperature (Ts) by the heaters 32 provided on both sides of the transport path. Then, the mold unit 8 conveyed to the first heating chamber 20 is heated by the heater 32.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the second heating chamber 22.
  • a second heating step is performed in which the mold 52 of the mold unit 8 is heated to about the glass yield point temperature.
  • the inside of the second heating chamber 22 is maintained at a temperature equal to or higher than the glass yield point temperature by the heater 34. Thereby, it heats until the glass material 60 in the metal mold unit 8 conveyed in the 2nd heating chamber 22 reaches about a glass yield point temperature.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. As a result, the mold unit 8 is transferred into the soaking chamber 24.
  • a soaking step for soaking the molding material 52 and the glass material 60 accommodated therein is performed.
  • the inside of the soaking chamber 24 is maintained at the glass yield point temperature by the heater 36.
  • molding die 52 are soaked at glass yield point temperature.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the press chamber 26.
  • a press step is performed.
  • the glass unit is press-molded by simultaneously pressing the plurality of molds 52 of the mold unit 8 by the press mechanism 70 while heating the mold unit 8 by the heater 38 so as to maintain the glass yield point temperature.
  • the press process for pressing the plurality of molds 52 by the press mechanism 70 will be described in detail.
  • the piston rod 82 of the actuator 80 is in a retracted state.
  • the coil spring 106 has a natural length or a length slightly compressed from the natural length.
  • Each shaft 100 is held in a state where there is a gap between the press head 102 and the molding die 52 by the nut 104 attached to the upper part of the shaft 100 engaging the upper surface of the moving plate 86. .
  • the actuator 80 When the press process is started, the actuator 80 first lowers the piston rod 82 downward. As described above, the moving plate 86 is movable in the vertical direction while being kept horizontal by the guide mechanism 81. For this reason, when the actuator 80 lowers the piston rod 82, the moving plate 86 is moved downward while being kept horizontal.
  • the actuator 80 extends the piston rod 82 downward until the coil spring 106 is contracted to a predetermined length even after the press head 102 contacts the upper surface of the mold 52. As the coil spring 106 contracts in this way, a pressing load is applied to each mold 52. The length of the coil spring 106 in the contracted state is determined so that the restoring force of the coil spring 106 is equal to the press load to be applied to the mold 52.
  • the press load (thrust) is set within a range of 10 to 500 kgf based on the material of the glass material.
  • the coil spring 106 is contracted as described above and held for a predetermined time (for example, several tens of seconds to several minutes). Thereby, a molding surface shape is transcribe
  • the coil spring 106 absorbs the error in the upper surface height, so that all the molds 52 can be pressed.
  • the difference in the length of the coil spring 106 in the contracted state is caused by the error in the upper surface height.
  • a difference also occurs in the press load to the mold 52.
  • the coil spring 106 since the coil spring 106 is provided outside the housing 2, a coil spring having a long overall length can be used as the coil spring 106.
  • a coil spring having a long overall length as the coil spring 106 in this way, the ratio of the difference in height of the mold 52 with respect to the length of the coil spring 106 in the contracted state is reduced. Thereby, the difference of the press load added to each shaping
  • the actuator 80 retracts the piston rod 82.
  • the moving plate 86 rises.
  • the coil spring 106 is again extended to the natural length, and the press load applied to the mold 52 is unloaded.
  • the actuator 80 retracts the piston rod 82 and raises the moving plate 86, the nut 104 attached to the upper part of the shaft 100 comes into contact with the upper surface of the moving plate 86 and raises the shaft 100.
  • the press head 102 and the mold 52 are separated from each other.
  • the press process is completed by the above steps.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is viewed in plan view. Rotate 45 degrees counterclockwise. Thereby, the mold 52 of the mold unit 8 is conveyed into the first slow cooling chamber 28.
  • a first slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 with the heater 40. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the rotary table 4 rotates 45 degrees counterclockwise in plan view. Thereby, the mold 52 of the mold unit 8 is conveyed into the second slow cooling chamber 30.
  • a second slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 by the heater 42. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
  • the quenching section 44 is not provided with a heater and has a temperature similar to that around the apparatus. For this reason, the glass molded body inside the mold unit 8 and the mold 52 is rapidly cooled.
  • the cooling rate at this time is faster than the cooling rate in the slow cooling step, and is preferably set appropriately within a range of, for example, 30 to 300 ° C./min. Moreover, you may spray cooling gas toward the die unit 8 as needed.
  • the rotary table 4 rotates 45 degrees and the mold unit 8 is transferred to the loading / unloading unit 46.
  • the mold unit 8 that accommodates the glass molded body that has undergone the molding process reaches the carry-in / carry-out unit 46, the mold unit 8 is raised by the lifting mechanism, and the mold 52 that has undergone the molding process from the carry-in / carry-out port. are simultaneously carried out of the apparatus housing 2.
  • the molding die 52 carried out to the outside is disassembled, a glass molded body that has been molded is taken out, a new glass material is supplied, and then placed again on the support portion 12B of the mold support base 12. Through the above steps, the glass molded body can be continuously produced by the production apparatus 1.
  • the inventors actually manufacture a glass molded body according to the manufacturing apparatus 1 of the present embodiment, which can reduce the difference in pressing force in the pressing process and can improve the quality of the glass molded body.
  • Examples of the present invention will be described below.
  • a biconvex lens having a diameter of 5 mm was molded.
  • fluorophosphate glass glass transition temperature 384 ° C., yield point 427 ° C.
  • a carbon film is formed on the surface of the glass preform. What was done was used.
  • the inside of the housing 2 of the molding apparatus 1 was preliminarily replaced with a nitrogen atmosphere.
  • the mold 52 an upper mold, a lower mold, and a body mold made of silicon silicon were used, and a carbon-based release film was provided on the molding surface in advance.
  • a mold support base having four support portions erected on a straight line at a regular interval (21 mm pitch) on a disk-shaped base portion, and a molding die in which a glass material is accommodated in each support portion 12B. 52 was mounted.
  • the coil spring 106 of the press mechanism 70 As the coil spring 106 of the press mechanism 70, a coil spring having a free length of 100 mm and a spring constant of about 50 N / mm was used.
  • the actuator 80 that drives the press head 102 up and down two pneumatic cylinders having a maximum thrust of about 250 kgf per unit were used.
  • the mold unit 8 is taken out from the insertion / insertion chamber and inserted into the molding apparatus and placed on the rotary table 4, and the mold unit 8 is moved to the first heating chamber 20 and the second heating chamber while the rotary table 4 is rotated intermittently. 22, soaking chamber 24, press chamber 26, first annealing chamber 28, second annealing chamber 30, and quenching chamber 44 were sequentially transferred to perform press molding.
  • the time (cycle time) from the start of processing in one processing chamber to the start of processing in the next processing chamber is 75 seconds.
  • the mold unit 8 is carried into and out of the molding apparatus 1 every cycle time, and continuously. Molding was performed.
  • the press temperature in the press chamber 26 was about 450 ° C., and the press load was about 80 kgf.
  • the actuator 80 (pneumatic cylinder) was driven to lower the moving plate 86, thereby lowering the four shafts 100 having the press heads 102 on the respective lower end sides.
  • each press head 102 After the pressing surface of each press head 102 abuts the corresponding forming die 52 (upper die), the press head 102 is further lowered until the upper surface of the upper die and the upper surface of the body die are flush with each other, The glass material was press-molded by pressing it with the upper mold and the lower mold. At this time, when the moving plate 86 is pushed by the cylinder, the coil spring 106 locked to the locking portion 101 of the shaft 100 is contracted, and the forming die 52 is pressed via the shaft 100 by the restoring force of the coil spring 106. It was.
  • the mold unit 8 that has finished the pressing step is cooled at a cooling rate of about 70 ° C./min in the first and second annealing chambers 28 and 30 and gradually until the glass molded body is below the glass transition point. Chilled.
  • a cooling gas (N 2 ) was blown onto the mold 52 in the quenching chamber 44 to cool the mold 52 and the glass molded body inside the mold 52, and the temperature was lowered to 200 ° C. or lower.
  • N 2 a cooling gas
  • the non-defective product ratio satisfying the standard was 97.5% in any inspection items such as thickness accuracy, shape accuracy, and eccentricity accuracy. From this, according to the manufacturing apparatus of the glass molded object of this embodiment, since press pressure can be equalized, it has confirmed that a good-quality glass molded object can be manufactured.
  • the coil spring 106 since the coil spring 106 is provided outside the housing 2, a longer one can be used as the coil spring 106 than when the coil spring is provided in the housing. For this reason, by using the long coil spring 106, the ratio of the height difference (variation) of the support portion 12B of the mold support base 12 and the mold 52 to the entire length of the coil spring 106 is reduced. Thereby, even if there exists a difference in the height of the shaping
  • the glass molded body manufacturing apparatus 1 includes the guide mechanism 81 that guides the moving plate 86 in the vertical direction while keeping the moving plate 86 horizontal, the coil spring 106 can be pressed evenly.
  • the linear bushing 114 is provided in the case lid member 110, the shaft 100 can be lowered toward the corresponding mold 52 even when the length of the shaft 100 is long.
  • the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30 are formed in the inner casing 6.
  • the manufacturing apparatus 1 has been described, the present invention can also be applied to a manufacturing apparatus having a plurality of press chambers.
  • FIG. 7 is a horizontal sectional view showing a configuration of a manufacturing apparatus 150 having two press chambers.
  • a heating chamber 120 in the manufacturing apparatus 150 shown in FIG. 10, a heating chamber 120, a first soaking chamber 122, a first press chamber 124, a first annealing chamber 126, and a second soaking chamber are provided in the inner casing 6.
  • a chamber 128, a second press chamber 130, and a second slow cooling chamber 132 are provided.
  • the heating chamber 120, the first soaking chamber 122, the first press chamber 124, the first annealing chamber 126, the second soaking chamber 128, the second pressing chamber 130, and the second annealing chamber 132 are respectively Heaters 134, 136, 138, 140, 142, 144, and 146 are provided.
  • FIG. 8 is a diagram illustrating the arrangement of the support portions in the mold support base 200 provided with eight support portions 202.
  • the support portions 202 are provided in two rows, and four support portions 202 are provided in each row.
  • the extending direction of each row coincides with the conveyance direction of the rotary table 4.
  • P1 ⁇ P2 where P1 is the pitch of the support portions 202 in the transport direction and P2 is the pitch of the support portions 202 in the direction orthogonal to the transport direction. Even if it is arranged at such a narrow pitch, a plurality of molds can be press-molded with a uniform load, so that a high-quality glass molded body can be produced with high production efficiency.
  • the coil spring 106 is used as a member interposed between the moving plate 86 and the shaft 100.
  • the present invention is not limited to this as long as the member has elasticity.
  • the glass molded body manufacturing apparatus shown in FIG. 1 has eight processing chambers, and the manufacturing apparatus shown in FIG. 7 has nine processing chambers.
  • the apparatus can increase or decrease the number of processing chambers as needed. At that time, the rotation angle of the rotary table can be changed as appropriate according to the number of processing chambers.
  • a manufacturing apparatus that performs various processes including a pressing process while conveying the mold unit 8 on which the molding die 52 is placed on each of the plurality of support portions 12B standing on the mold support base 12.
  • the present invention can also be applied to an apparatus that simultaneously presses a plurality of forming dies without using the conveying mold support 12.
  • the forming mold 52 is linearly replaced with a manufacturing apparatus that performs various processes while intermittently rotating the forming mold 52 along the transport path of the circular track by the rotary table 4.
  • the present invention can also be applied to a manufacturing apparatus that transports.
  • FIG. 9 is a vertical cross-sectional view showing a configuration of a modified example of a die support member in which a coil spring is incorporated in a press mechanism.
  • a mold support member 300 according to a modified example includes a plate-like base portion 302, a plurality of cylindrical column portions 304 erected on the base portion 302, a cylindrical shaft portion 306A, and a shaft portion 306A.
  • a support portion 306 having a pedestal portion 306B connected to the coil portion 308, and a coil spring 308 disposed on the outer periphery of the column portion 304.
  • the base portion 302, the column portion 304, and the support portion 306 are made of the same material as that of the mold support base 12 of the above embodiment.
  • the outer diameter of the shaft portion 306A of the support portion 306 is substantially equal to the inner diameter of the column portion 304, whereby the support portion 306 is guided in the vertical direction by the column portion 304.
  • the coil spring 308 has a lower end in contact with the base portion 302 and an upper end in contact with the lower surface of the pedestal portion 306B of the support portion 306. Accordingly, the support portion 306 is supported by the coil spring 308 in a state where the lower surface of the pedestal portion 306B of the support portion 306 is separated from the upper end of the column portion 304.
  • a coil spring 308 having a predetermined spring constant corresponding to the press load of the mold 52 is used.
  • the plurality of press heads 310 are provided corresponding to the molding die 52, and are driven by, for example, one actuator (not shown) and can be advanced and retracted in the vertical direction.
  • the lower surface of the press head 310 comes into contact with the upper surface of the mold 52. Further, when the press head 310 is lowered, the coil spring 308 resists the press load, so that the press load acts on the mold 52.
  • the press head 310 When the press head 310 is further lowered, the lower surface of the pedestal portion 306B comes into contact with the upper end of the column portion 304. In this manner, the lowering of the press head 310 is stopped in a state where the lower surface of the pedestal portion 306B is in contact with the upper end of the column portion 304. In this modification, the press head 310 stops descending when the lower surface of the pedestal portion 306B comes into contact with the upper end of the column portion 304. However, the length of the shaft portion 306A is changed to The lowering of the press head 310 may be stopped when the lower end comes into contact with the base 302. Even when the mold support base 12 having such a configuration is used, the plurality of molds 52 can be pressed with a uniform press load as in the above-described embodiment.
  • the glass molded body manufacturing apparatus 1 includes a glass provided with a press mechanism 70 that simultaneously presses a plurality of molds 52 containing glass materials in a press chamber 26 formed in the housing 2. As shown in FIG.
  • the press mechanism 70 is provided corresponding to a plurality of molds 52, and a plurality of press heads 102 that individually press the molds 52, respectively, A plurality of shafts 100 respectively connected to the plurality of press heads 102 and extending in parallel with each other through the upper wall 2A of the housing 2, actuators 80 provided outside the housing 1, A moving plate 86 disposed outside and pressed and moved toward the mold 52 by the actuator 80, and a coil disposed outside the housing 2 and compressible in the moving direction of the moving plate 86.
  • the moving plate 86 is pressed and moved toward the forming die 52 by the actuator 80 to press the plurality of shafts 100 and the press head 102 toward the forming die 52 via the coil spring 106. Move.
  • the press mechanism 70 simultaneously presses a plurality of molding dies 52 containing glass materials in the press chamber 26 formed in the housing 2. As shown in FIG. 4, the press mechanism 70 is provided corresponding to the plurality of molds 52, and each of the plurality of press heads 102 presses the molds individually, and each of the plurality of press heads 102.
  • a plurality of shafts 100 that are connected to each other and extend to the outside through the upper wall 2A of the housing 2 in parallel with each other, an actuator 80 provided outside the housing 2, and an actuator 80 disposed outside the housing 2
  • a movable plate 86 that is pressed and moved toward the molding die 52 by means of a coil spring 106 that is disposed outside the housing 2 and can be compressed in the moving direction of the movable plate 86.
  • the moving plate 86 is pressed and moved toward the forming die 52 by the actuator 80, thereby pressing the plurality of shafts 100 and the press head 102 toward the forming die 52 via the coil spring 106. Move.

Abstract

An apparatus for manufacturing a glass compact in which multiple molding dies are pressed at one time by fewer actuators than there are molding dies, wherein the variation in the pressing pressures applied to the multiple molding dies is reduced. A press mechanism (70) comprises press heads (102), multiple shafts (100), actuators (80) a mobile plate (86), and coil springs (106). The press heads (102) are provided correspondingly with respect to a plurality of molding dies (52). The shafts (100) are respectively connected with the press heads (102), and extend to the outside after passing through an upper wall (2A) of a chassis (2). The actuators (80) are provided outside the chassis (1). The mobile plate (86) is disposed outside the chassis (2), and is pressed and moved toward the molding dies (52) by the actuators (80). The coil springs (106) are disposed outside the chassis (2), and can be compressed in the direction of movement of the mobile plate (86). The mobile plate (86) is pressed and moved toward the molding die (52), thereby pressing and moving the multiple shafts (100) and the press heads (102) via the coil springs (106).

Description

ガラス成形体の製造装置、及び、ガラス成形体の製造方法Glass molded body manufacturing apparatus and glass molded body manufacturing method
 本発明は、ガラス成形体の製造装置、及び、ガラス成形体の製造方法に関し、特に、ガラス材料が収容された複数の成形型を、筐体内に形成されたプレス室内で同時にプレス処理するプレス機構を備えたガラス成形体を製造する装置及びこの装置を用いたガラス成形体の製造方法に関する。 The present invention relates to a glass molded body manufacturing apparatus and a glass molded body manufacturing method, and in particular, a press mechanism that simultaneously presses a plurality of molding dies containing glass materials in a press chamber formed in a housing. The present invention relates to an apparatus for manufacturing a glass molded body provided with the above and a method for manufacturing a glass molded body using the apparatus.
 従来、例えば、特許文献1(特開2008-56532号公報)に記載されているように、成形型が載置された複数の支持部材を、回転テーブルにより円周上に沿って設けられた加熱部、プレス部、及び徐冷部を順次巡回させながら、各処理部において加熱、プレス、冷却(徐冷を含む)の各処理を行うことによってガラスを成形する装置が広く用いられている。このようなガラス成形体の製造装置を用いて小径のレンズを製造する場合には、各支持部材に複数の成形型を載置し、一度に複数の成形型にプレス処理を行うことにより生産効率を向上することができる。 Conventionally, for example, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-56532), a plurality of support members on which a mold is placed are heated by a rotary table along a circumference. 2. Description of the Related Art An apparatus that forms glass by performing heating, pressing, and cooling (including slow cooling) processing in each processing section while sequentially circulating a section, a pressing section, and a slow cooling section is widely used. When manufacturing a small-diameter lens using such a glass molded body manufacturing apparatus, a plurality of molding dies are placed on each support member, and a plurality of molding dies are pressed at once to achieve production efficiency. Can be improved.
 一度に複数の成形型をプレス処理することで生産効率を高めることができるが、限られたスペースで複数の成形型をプレス成形する場合、成形型間のピッチを小さくする必要がある。これに対応する場合、複数の成形型のそれぞれに対してアクチュエータを設置することが考えられるが、このような場合、小型のアクチュエータでは必要なプレス圧を確保することができないおそれがある。このため、複数の成形型を一度にプレス処理するためには、成形型よりも少ない台数のアクチュエータによりプレスヘッドを駆動する必要がある。 It is possible to increase production efficiency by pressing a plurality of molds at a time, but when pressing a plurality of molds in a limited space, it is necessary to reduce the pitch between the molds. In order to cope with this, it is conceivable to install an actuator for each of a plurality of molds. In such a case, there is a possibility that a required press pressure cannot be ensured with a small actuator. For this reason, in order to press a plurality of molds at a time, it is necessary to drive the press head with a smaller number of actuators than the molds.
 また、成形型を支持する支持部材の製造誤差により成形型上面の高さに差が生じる。さらに、長期間の使用による寸法変化によっても、成形型上面の高さに差が生じる。このため、少数のアクチュエータにより複数のプレスヘッドを一斉に下降させると、上面高さが高い金型に大きな圧力が加わり、上面高さが低い金型にはわずかにしか圧力が加わらず、プレス圧にばらつきが生じるという問題があった。 Also, a difference occurs in the height of the upper surface of the mold due to a manufacturing error of the support member that supports the mold. Furthermore, a difference occurs in the height of the upper surface of the mold due to dimensional changes due to long-term use. For this reason, when a plurality of press heads are lowered all at once by a small number of actuators, a large pressure is applied to a mold with a high top surface, and a slight pressure is applied to a mold with a low top surface. There was a problem that variations occurred.
 そこで、例えば、特許文献2(特開平9-239757号公報)の図4に示されているように、筐体内において、アクチュエータと、金型を押圧するプレスヘッドとの間に圧縮バネを介在させることが考えられる。このように、圧縮バネを介してプレスヘッドを押圧することにより、圧縮バネが金型の高さの差を吸収するため、プレス圧のばらつきを減らすことができる。 Therefore, for example, as shown in FIG. 4 of Patent Document 2 (Japanese Patent Laid-Open No. 9-239757), a compression spring is interposed between the actuator and the press head for pressing the mold in the housing. It is possible. In this way, by pressing the press head via the compression spring, the compression spring absorbs the difference in the height of the mold, so that variations in the press pressure can be reduced.
特開2008-56532号公報JP 2008-56532 A 特開平9-239757号公報JP-A-9-239757
 しかしながら、特許文献2の図4に示されているように、この圧縮バネは筐体内に設けられるので、スペースの制限を受けるため高さが短い圧縮バネを用いる必要がある。このような短い圧縮バネを用いてしまうと、全長に対する成形型の高さの差の割合が大きく、依然として各成形型に作用するプレス圧に成形型の上面高さの差の影響が大きく出てしまう。このため、特許文献2に示されているように圧縮バネを介在させたとしても、金型間のプレス圧の差が依然として残存していた。 However, as shown in FIG. 4 of Patent Document 2, since this compression spring is provided in the casing, it is necessary to use a compression spring having a short height in order to be limited in space. If such a short compression spring is used, the ratio of the difference in the height of the mold relative to the total length is large, and the effect of the difference in the height of the upper surface of the mold is still exerted on the press pressure acting on each mold. End up. For this reason, even if a compression spring is interposed as shown in Patent Document 2, the difference in press pressure between the dies still remains.
 本発明は、上記の問題に鑑みなされたものであり、その目的は、複数の成形型を成形型よりも少ない台数のアクチュエータにより一度に押圧するガラス成形体の製造装置において、複数の成形型に加わるプレス圧のばらつきをより小さくして、成形精度が均一なガラス成形体を高い生産効率で製造することができる技術を提供することである。 The present invention has been made in view of the above problems, and the object thereof is to provide a plurality of molding dies in a glass molding manufacturing apparatus that presses a plurality of molding dies at once with a smaller number of actuators than the molding dies. It is an object of the present invention to provide a technique capable of producing a glass molded body with uniform molding accuracy with high production efficiency by reducing the variation in applied pressing pressure.
 本発明のガラス成形体の製造装置は、ガラス材料が収容された複数の成形型を、筐体内に形成されたプレス室内で同時にプレス処理するプレス機構を備えたガラス成形体を製造する装置であって、プレス機構は、複数の成形型に対応して設けられ、成形型をそれぞれ個別にプレスする複数のプレスヘッドと、複数のプレスヘッドにそれぞれ接続され、互いに平行に筐体の上壁を貫通して外部に延びる複数のシャフトと、筐体の外部に設けられたアクチュエータと、筐体の外部に配置され、アクチュエータにより成形型に向けて押圧移動させられる移動部材と、筐体の外部に配置され、移動部材の移動方向に圧縮可能な弾性部材と、を有し、移動部材は、アクチュエータにより成形型に向けて押圧移動させられることにより、弾性体を介して複数のシャフト及びプレスヘッドを成形型に向けて押圧移動させる。 The apparatus for producing a glass molded body of the present invention is an apparatus for producing a glass molded body having a press mechanism for simultaneously pressing a plurality of molds containing glass materials in a press chamber formed in a housing. The press mechanism is provided corresponding to a plurality of molds, and is connected to a plurality of press heads for individually pressing the molds and the plurality of press heads, and penetrates the upper wall of the housing in parallel to each other. A plurality of shafts extending to the outside, an actuator provided outside the housing, a moving member disposed outside the housing and pressed and moved toward the mold by the actuator, and disposed outside the housing And an elastic member that is compressible in the moving direction of the moving member, and the moving member is pressed and moved toward the molding die by the actuator via the elastic body. Toward the number of shafts and the press head mold is pressed and moved.
 また、本発明のガラス成形体の製造方法は、プレス機構により、ガラス材料が収容された複数の成形型を、筐体内に形成されたプレス室内で同時にプレス処理するステップを備え、プレス機構は、複数の成形型に対応して設けられ、成形型をそれぞれ個別にプレスする複数のプレスヘッドと、複数のプレスヘッドにそれぞれ接続され、互いに平行に筐体の上壁を貫通して外部に延びる複数のシャフトと、筐体の外部に設けられたアクチュエータと、筐体の外部に配置され、アクチュエータにより成形型に向けて押圧移動させられる移動部材と、筐体の外部に配置され、移動部材の移動方向に圧縮可能な弾性部材と、を有し、プレスステップにおいて、移動部材が、アクチュエータにより成形型に向けて押圧移動させられることにより、弾性体を介して複数のシャフト及びプレスヘッドを成形型に向けて押圧移動させる。 Further, the method for producing a glass molded body of the present invention comprises a step of simultaneously pressing a plurality of molding molds containing glass materials by a press mechanism in a press chamber formed in the casing, A plurality of press heads provided corresponding to a plurality of molding dies, respectively connected to the plurality of press heads for individually pressing the molding dies, and extending to the outside through the upper wall of the housing in parallel to each other Shaft, an actuator provided outside the housing, a moving member disposed outside the housing and pressed and moved toward the mold by the actuator, and a moving member disposed outside the housing. Elastic member that is compressible in the direction, and in the press step, the moving member is pressed and moved toward the mold by the actuator, Through to press moves towards a plurality of shafts and the press head mold.
 本発明によれば、弾性体が筐体の外部に設けられているため、プレス室内に弾性体を設ける場合よりも長尺な弾性体を用いることができる。このように長尺な弾性体を用いることにより、弾性体の収縮状態における長さに対する成形型の高さの差の割合が小さくなる。これにより、成形型の高さに差があっても、各成形型に加えられるプレス圧のばらつきを小さく抑えることができる。 According to the present invention, since the elastic body is provided outside the housing, a longer elastic body can be used than when the elastic body is provided in the press chamber. By using such a long elastic body, the ratio of the difference in the height of the mold with respect to the length of the elastic body in the contracted state is reduced. Thereby, even if there exists a difference in the height of a shaping | molding die, the dispersion | variation in the press pressure added to each shaping | molding die can be suppressed small.
 本発明によれば、複数の成形型を少数のアクチュエータで一度に押圧するガラス成形体の製造装置において、複数の成形型に加わるプレス圧のばらつきをより小さくすることができる。 According to the present invention, in a glass molded body manufacturing apparatus that presses a plurality of molding dies at once with a small number of actuators, variation in press pressure applied to the plurality of molding dies can be further reduced.
本実施形態で用いられるガラス成形体の製造装置の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the manufacturing apparatus of the glass forming body used by this embodiment. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 金型ユニットの構成を示す鉛直断面図である。It is a vertical sectional view showing the configuration of the mold unit. プレス室に設けられたプレス機構の詳細な構成を示す正面図であり、プレス処理を行っている状態を示す。It is a front view which shows the detailed structure of the press mechanism provided in the press chamber, and shows the state which is performing the press process. プレス室に設けられたプレス機構の詳細な構成を示す側面図であり、プレス処理を行っている状態を示す。It is a side view which shows the detailed structure of the press mechanism provided in the press chamber, and shows the state which is performing the press process. プレス室に設けられたプレス機構の詳細な構成を示す側面図であり、プレス処理を行っていない状態を示す。It is a side view which shows the detailed structure of the press mechanism provided in the press chamber, and shows the state which is not performing the press process. 2つのプレス室を備えた製造装置の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the manufacturing apparatus provided with two press chambers. 8個の支持部を設けた型支持台における支持部の配置を示す図である。It is a figure which shows arrangement | positioning of the support part in the type | mold support stand which provided eight support parts. プレス機構にコイルバネを組み込んだ型支持部材の変形例の構成を示す鉛直断面図である。It is a vertical sectional view showing the composition of the modification of the type support member which incorporated the coil spring in the press mechanism.
 以下、本発明のガラス成形体の製造装置及び製造方法の一実施形態について図面を参照しながら詳細に説明する。なお、各実施形態において、共通の構成及び機能を有する部位については、同じ符号を付して、説明を省略する。
 図1は、本実施形態で用いられるガラス成形体の製造装置の構成を示す水平断面図であり、図2は、図1におけるA-A断面図である。図1に示すように、本実施形態のガラス成形体の製造装置1は、有底円筒状に形成された装置筐体2と、装置筐体2内に設けられた回転テーブル4と、回転テーブル4の上方に設けられた水平断面円弧状の内部ケーシング6と、を有する。これら装置筐体2、内部ケーシング6及び回転テーブル4は同心同軸に配置されている。
Hereinafter, an embodiment of a manufacturing apparatus and a manufacturing method of a glass molded body of the present invention will be described in detail with reference to the drawings. In addition, in each embodiment, about the site | part which has a common structure and function, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 1 is a horizontal sectional view showing a configuration of a glass molded body manufacturing apparatus used in the present embodiment, and FIG. 2 is a sectional view taken along line AA in FIG. As shown in FIG. 1, the glass molded body manufacturing apparatus 1 of the present embodiment includes an apparatus housing 2 formed in a bottomed cylindrical shape, a rotary table 4 provided in the apparatus housing 2, and a rotary table. 4 and an inner casing 6 having an arcuate horizontal cross section provided above 4. The device casing 2, the inner casing 6, and the turntable 4 are arranged concentrically.
 装置筐体2は、上下に略円形の上蓋2A及び底板2Bが取り付けられており、その内部は密閉状態にある。装置筐体2の内部空間は不活性ガス雰囲気とされている。不活性ガスとしては、窒素やアルゴンなどが使用され、酸素濃度が5ppm以下であることが好ましい。なお、このように内部空間を不活性ガス雰囲気とすることで、金型ユニット8の酸化やガラス材料の表面変質を防止できる。 The device casing 2 has a substantially circular upper lid 2A and a bottom plate 2B attached to the top and bottom, and the inside thereof is in a sealed state. The internal space of the apparatus housing 2 is an inert gas atmosphere. As the inert gas, nitrogen, argon, or the like is used, and the oxygen concentration is preferably 5 ppm or less. It should be noted that the oxidation of the mold unit 8 and the surface alteration of the glass material can be prevented by making the internal space an inert gas atmosphere in this way.
 上蓋2Aには、成形型52を装置内に供給するとともに成形型52を装置内から搬出できる搬入・搬出口(図示せず)が形成されていて、その下方の装置内部には搬入・搬出部46が形成されている。なお、本実施形態では、搬入・搬出部46が本発明における供給部と搬出部とを兼ね備えた例を示しているが、搬入部(供給部)と搬出部(搬出口)とを個別に設けてもよい。 The upper lid 2A is formed with a loading / unloading port (not shown) through which the molding die 52 is supplied into the apparatus and the molding die 52 can be unloaded from the apparatus. 46 is formed. In the present embodiment, the carry-in / carry-out unit 46 is shown as an example having both the supply unit and the carry-out unit in the present invention. However, the carry-in unit (supply unit) and the carry-out unit (carry-out port) are provided separately. May be.
 回転テーブル4は、例えば、モータなどの駆動機構(図示せず)によって回転し、回転テーブル4上に配置された金型ユニット8を同一円上に搬送する。回転テーブル4上には、処理室の数に応じた数(本実施形態では8個)の金型ユニット8が等間隔に配置されている。金型ユニット8は、後述するように、型支持台(支持部材)12と、型支持台12に載置された複数の(本実施形態では4つ)の成形型52と、により構成される。 The rotary table 4 is rotated by, for example, a drive mechanism (not shown) such as a motor, and the mold unit 8 arranged on the rotary table 4 is conveyed on the same circle. On the rotary table 4, a number of mold units 8 (eight in the present embodiment) corresponding to the number of processing chambers are arranged at equal intervals. As will be described later, the mold unit 8 includes a mold support base (support member) 12 and a plurality of (four in this embodiment) molding dies 52 placed on the mold support base 12. .
 回転テーブル4上に配置された金型ユニット8は、回転テーブル4が回転することにより、内部ケーシング6内の各処理室を間欠的に移送される。本実施形態では、回転テーブル4は、駆動機構が所定時間おきに、間欠的に45度ずつ回転することにより、所定の半径の円周に沿って金型ユニット8を搬送する。また、回転テーブル4は、各回転動作の間に、予め設定された所定の停止時間にわたり停止する。なお、この回転テーブル4の停止時間は、後述するプレス室26におけるプレス処理に要する時間よりも長くなるように決定されている。 The mold unit 8 arranged on the turntable 4 is intermittently transferred to each processing chamber in the inner casing 6 as the turntable 4 rotates. In the present embodiment, the rotary table 4 conveys the mold unit 8 along the circumference of a predetermined radius by intermittently rotating the drive mechanism by 45 degrees every predetermined time. Further, the rotary table 4 stops for a predetermined stop time set in advance during each rotation operation. The stop time of the rotary table 4 is determined to be longer than the time required for the press process in the press chamber 26 described later.
 内部ケーシング6は、装置筐体2と同心同軸に水平方向に約270度の角度範囲にわたって円弧状に延びる内壁6Aと、内壁6Aの半径方向外側に位置し、水平方向に約270度の角度範囲にわたって円弧状に延びる外壁6Bと、内壁6Aと外壁6Bの上部の間を塞ぐ天井部6Cと、内壁6Aと外壁6Bの下部の間を塞ぐ底部6Dとを有する。これら内壁6A、外壁6B、天井部6C、及び底部6Dにより、内部ケーシング6内には水平断面が円弧形状の処理空間が形成されている。内部ケーシング6の底部6Dには、金型ユニット8の搬送経路に沿って、円弧状のスリット6Eが形成されている。 The inner casing 6 is concentrically coaxial with the apparatus housing 2 and extends in an arc shape over an angular range of about 270 degrees in the horizontal direction. The inner casing 6 is located radially outside the inner wall 6A and has an angular range of about 270 degrees in the horizontal direction. An outer wall 6B extending in a circular arc shape, a ceiling 6C that closes between the inner wall 6A and the upper part of the outer wall 6B, and a bottom 6D that closes between the inner wall 6A and the lower part of the outer wall 6B. The inner wall 6A, the outer wall 6B, the ceiling portion 6C, and the bottom portion 6D form a processing space having an arc-shaped horizontal cross section in the inner casing 6. An arc-shaped slit 6E is formed in the bottom 6D of the inner casing 6 along the conveyance path of the mold unit 8.
 内部ケーシング6の処理空間は、回転テーブル4の回転方向に45度の角度範囲で6つの室に区切られている。これら6つの室は、金型ユニット8の搬送経路に沿って、第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30の順序で並んでいる。 The processing space of the inner casing 6 is divided into six chambers within an angle range of 45 degrees in the rotation direction of the turntable 4. These six chambers are arranged along the conveyance path of the mold unit 8 in the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber. They are arranged in the order of 30.
 加熱室20、22は、常温に近い温度で装置内に投入された金型ユニット8の成形型52とガラス材料60をプレス成形に適した温度まで急速に加熱するための処理部である。本実施形態では、第1加熱室20及び第2加熱室22の2つの加熱室を設け、段階的に金型ユニット8を昇温しているが、処理時間と目的温度に応じて室数を増減してもよい。 The heating chambers 20 and 22 are processing units for rapidly heating the mold 52 and the glass material 60 of the mold unit 8 charged in the apparatus to a temperature suitable for press molding at a temperature close to normal temperature. In this embodiment, the two heating chambers, the first heating chamber 20 and the second heating chamber 22, are provided, and the mold unit 8 is heated in stages, but the number of chambers is set according to the processing time and the target temperature. It may be increased or decreased.
 均熱室24は、金型ユニット8をプレス成形に適切な温度に温度で所定時間加熱することにより、成形型52とガラス材料60を均熱化するための処理部である。なお、プレス成形に適切な温度は、ガラス硝種や成形体の形状、体積などによって異なるが、概ねガラス材料が106~109dPa・sの粘度となる温度であり、ガラス屈伏点温度(Ts)近傍であることが好ましい。 The soaking chamber 24 is a processing unit for soaking the mold 52 and the glass material 60 by heating the mold unit 8 to a temperature suitable for press molding at a temperature for a predetermined time. The temperature suitable for press molding varies depending on the glass glass type and the shape and volume of the molded body, but is generally a temperature at which the glass material has a viscosity of 10 6 to 10 9 dPa · s, and the glass yield point temperature (Ts ) Is preferably in the vicinity.
 プレス室26の上方にはプレス機構70が設けられており、プレス室26は、このプレス機構70により、複数の成形型52に一度に荷重を印加することにより、所定の温度まで加熱され軟化したガラス材料を変形させるとともに成形型の成形面の形状を転写して、ガラス成形体を形成する処理部である。なお、プレス機構70の詳細な構成については後述する。 A press mechanism 70 is provided above the press chamber 26, and the press chamber 26 is heated to a predetermined temperature and softened by applying a load to the plurality of molds 52 at once by the press mechanism 70. It is a processing unit that deforms the glass material and transfers the shape of the molding surface of the mold to form a glass molded body. The detailed configuration of the press mechanism 70 will be described later.
 徐冷室28、30は、プレス室26にて形成されたガラス成形体を所定の冷却速度で徐冷する処理部である。本実施形態では、第1徐冷室28及び第2徐冷室30の2つの徐冷室を設け、段階的に金型ユニット8を徐冷しているが、必要に応じて室数を増減してもよい。
 内部ケーシング6の周方向端部及び各室の間には、隣接する処理室を区画するためのシャッター(図示せず)が設けられている。
The slow cooling chambers 28 and 30 are processing units that gradually cool the glass molded body formed in the press chamber 26 at a predetermined cooling rate. In this embodiment, two slow cooling chambers, the first slow cooling chamber 28 and the second slow cooling chamber 30, are provided, and the mold unit 8 is gradually cooled, but the number of chambers is increased or decreased as necessary. May be.
A shutter (not shown) is provided between the circumferential end of the inner casing 6 and each chamber to partition adjacent processing chambers.
 第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30の搬送経路の両側部には、それぞれ、ヒータ32、34、36、38、40、42が設けられている。これらヒータ32、34、36、38、40、42は、それぞれ、第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30内を所定の温度になるように加熱している。 Heaters 32, 34, respectively, are provided on both sides of the transport path of the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30, respectively. 36, 38, 40, and 42 are provided. These heaters 32, 34, 36, 38, 40, 42 are respectively a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a press chamber 26, a first annealing chamber 28, and a second annealing chamber. The inside 30 is heated to a predetermined temperature.
 また、図2のみに示すが、プレス室26には、内壁6A及び外壁6Bに沿ってリフレクター38Aが設けられている。リフレクター38Aは、ヒータ38から放射された熱エネルギーを反射するとともに、ヒータ外部へ熱が放出されるのを防ぐ。これにより、熱エネルギーを集中的に成形型に導き、成形型を効率良く加熱することができる。なお、リフレクターは、ヒータ32、34、36、40、42が設けられている第1加熱室20、第2加熱室22、均熱室24、第1徐冷室28、第2徐冷室30内にも設置されている。 Further, as shown only in FIG. 2, the press chamber 26 is provided with a reflector 38A along the inner wall 6A and the outer wall 6B. The reflector 38A reflects the heat energy radiated from the heater 38 and prevents the heat from being released to the outside of the heater. Thereby, heat energy can be intensively guided to the mold and the mold can be efficiently heated. The reflector includes a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a first annealing chamber 28, and a second annealing chamber 30 provided with heaters 32, 34, 36, 40, and 42. It is also installed inside.
 図3は、金型ユニット8の構成を示す鉛直断面図である。図3に示すように、金型ユニット8は、型支持台12と、型支持台12に載置された複数の(本実施形態では4つ)の成形型52と、により構成される。これら成形型52の材料としては、炭化珪素や超硬合金、窒化珪素等が用いられている。型支持台12は、基部12Aと、基部12Aに一列に立設された複数の(本実施形態では4つ)の円柱状の支持部12Bとを備える。なお、本実施形態では、型支持台12の支持部12Bが並ぶ方向が回転テーブル4による金型ユニット8の移動方向と一致するように、金型ユニット8は回転テーブル4上に配置される。 FIG. 3 is a vertical sectional view showing the configuration of the mold unit 8. As shown in FIG. 3, the mold unit 8 includes a mold support 12 and a plurality of (four in this embodiment) molds 52 placed on the mold support 12. As the material of the mold 52, silicon carbide, cemented carbide, silicon nitride, or the like is used. The mold support 12 includes a base portion 12A and a plurality of (four in the present embodiment) columnar support portions 12B provided in a row on the base portion 12A. In the present embodiment, the mold unit 8 is disposed on the rotary table 4 so that the direction in which the support portions 12B of the mold support 12 are aligned matches the moving direction of the mold unit 8 by the rotary table 4.
 各成形型52は、型支持台12のそれぞれの支持部12B上に載置されている。成形型52は、製造すべきガラス成形体の形状に合わせて形成された成形面を有する上型54、下型56と、これら上型54及び下型56の径方向の相互位置を規制する胴型58とを有する。上型54及び下型56の成形面にはガラスとの融着を防止するための離型膜が成膜されている。ガラス材料60は、上型54と下型56の間に挟み込まれた状態で配置されている。ガラス材料60をガラス屈伏点温度以上に加熱した状態で、上下型54、56を相対的に近接する方向に加圧することにより、ガラス材料に成形面形状が転写され、所望の形状のガラス成形体(光学素子)にプレス成形することができる。 Each mold 52 is placed on each support portion 12B of the mold support 12. The molding die 52 has an upper die 54 and a lower die 56 having molding surfaces formed in accordance with the shape of the glass molded body to be manufactured, and a cylinder that regulates the mutual position of the upper die 54 and the lower die 56 in the radial direction. And a mold 58. A release film for preventing fusion with glass is formed on the molding surfaces of the upper mold 54 and the lower mold 56. The glass material 60 is disposed in a state of being sandwiched between the upper mold 54 and the lower mold 56. In a state where the glass material 60 is heated to the glass yield point temperature or higher, by pressing the upper and lower molds 54 and 56 in a relatively close direction, the shape of the molding surface is transferred to the glass material, and a glass molded body having a desired shape (Optical element) can be press-molded.
 図4~6は、プレス室及びその上方に設けられたプレス機構の詳細な構成を示し、図4は金型ユニット8の搬送方向に沿って断面視したときの部分断面図であり、図5及び図6は上記搬送方向に直交する向きで断面視したときの部分断面図である。なお、図4及び図5はプレス処理を行っている状態を示し、図6はプレス処理を行っていない状態を示す。
 図4に示すように、プレス機構70は、それぞれの成形型52に対応して設けられた複数のプレスヘッド102と、プレスヘッド102にそれぞれ接続され、上下方向に延びるシャフト100と、筐体2の上方に設けられた支持機構72と、支持機構72の上部に固定されたアクチュエータ80と、アクチュエータ80により上下方向に移動可能な移動プレート86と、それぞれのシャフト100に対応して設けられたコイルバネ106と、を備える。
4 to 6 show a detailed configuration of the press chamber and the press mechanism provided above the press chamber, and FIG. 4 is a partial cross-sectional view when seen in a cross-section along the conveying direction of the mold unit 8. 6 and 6 are partial cross-sectional views when viewed in cross-section in a direction orthogonal to the transport direction. 4 and 5 show a state where the press process is being performed, and FIG. 6 shows a state where the press process is not being performed.
As shown in FIG. 4, the press mechanism 70 includes a plurality of press heads 102 provided corresponding to the respective molds 52, a shaft 100 connected to the press head 102 and extending in the vertical direction, and the housing 2. A support mechanism 72 provided above the actuator, an actuator 80 fixed to the upper portion of the support mechanism 72, a moving plate 86 movable in the vertical direction by the actuator 80, and a coil spring provided corresponding to each shaft 100. 106.
 支持機構72は、筐体2の上蓋2Aの上面に立設された複数の脚部74と、複数の脚部74により筐体2の上蓋2Aに対して間隔を空けて保持された支持板76とを備える。そして、支持機構72の支持板76の上部に2台のアクチュエータ80が固定されている。支持板76には開口が形成されており、この開口を通してアクチュエータ80のピストンロッド82が下方に向かって延びている。なお、複数の脚部74は、複数のロッド88の平面位置の中心から等間隔、離れた位置に設けられている。 The support mechanism 72 includes a plurality of legs 74 standing on the upper surface of the upper lid 2 </ b> A of the housing 2, and a support plate 76 that is held by the plurality of legs 74 at a distance from the upper lid 2 </ b> A of the housing 2. With. Two actuators 80 are fixed to the upper part of the support plate 76 of the support mechanism 72. An opening is formed in the support plate 76, and the piston rod 82 of the actuator 80 extends downward through this opening. The plurality of leg portions 74 are provided at positions spaced apart from the centers of the planar positions of the plurality of rods 88 at equal intervals.
 アクチュエータ80は、複数の成形型52を挟んだ各側にそれぞれ1台ずつ設けられており、各アクチュエータ80は、同期して上下方向にピストンロッド82を進退させることができる。各アクチュエータ80のピストンロッド82の先端は移動プレート86に接続されている。この接続位置は搬送方向に対して垂直方向に並ぶとともに、複数のシャフト100が並ぶ方向にこれら複数のシャフト100の中央に位置している。 One actuator 80 is provided on each side of the plurality of molds 52, and each actuator 80 can advance and retract the piston rod 82 in the vertical direction in synchronization. The tip of the piston rod 82 of each actuator 80 is connected to the moving plate 86. The connection positions are aligned in the direction perpendicular to the transport direction, and are positioned at the center of the plurality of shafts 100 in the direction in which the plurality of shafts 100 are aligned.
 なお、各プレスヘッドに対応して1台ずつプレスヘッドを設けるような構成では、小径のレンズを多数製造する場合など、プレスヘッドの間隔が25mm程度以下になると、小型のアクチュエータを用いる必要がある。しかしながら、このような小型のアクチュエータでは、レンズの成形に必要な押圧力を得ることができないことが多い。このため、本実施形態では、所望の押圧力を得られる体格をもった2台のアクチュエータ80により4つのプレスヘッド102を押圧移動させる構成としている。なお、本実施形態では、2台のアクチュエータ80により4つのプレスヘッド102を押圧移動させるが、アクチュエータの台数がプレスヘッドの数よりも少なければ、アクチュエータの台数及びプレスヘッドの数は問わない。換言すると、本実施形態にかかるガラス成形体の製造装置1は、複数のプレスヘッド102の総数よりも少ない台数のアクチュエータ80(1台の場合も含む)を有する。 In a configuration in which one press head is provided for each press head, a small actuator needs to be used when the distance between the press heads is about 25 mm or less, such as when many small-diameter lenses are manufactured. . However, such a small actuator often cannot obtain a pressing force necessary for molding a lens. For this reason, in this embodiment, it is set as the structure which press-moves the four press heads 102 with the two actuators 80 with the physique which can obtain a desired pressing force. In the present embodiment, the four press heads 102 are pressed and moved by the two actuators 80, but the number of actuators and the number of press heads are not limited as long as the number of actuators is smaller than the number of press heads. In other words, the glass molded body manufacturing apparatus 1 according to the present embodiment has a smaller number of actuators 80 (including a single unit) than the total number of the plurality of press heads 102.
 移動プレート86は、案内機構81により水平に保たれながら、上下方向に移動可能である。移動プレート86の上面には、リニアブッシュ84が立設されている。アクチュエータ80のピストンロッド82の先端はリニアブッシュ84を通り、さらに、移動プレート86を貫通した状態で移動プレート86の下面に固定されている。このように、ピストンロッド82がリニアブッシュ84を挿通しているため、移動プレート86とアクチュエータ80のピストンロッド82とは、垂直状態が保持される。 The moving plate 86 is movable in the vertical direction while being kept horizontal by the guide mechanism 81. A linear bushing 84 is erected on the upper surface of the moving plate 86. The tip of the piston rod 82 of the actuator 80 passes through the linear bush 84 and is fixed to the lower surface of the moving plate 86 in a state of penetrating the moving plate 86. As described above, since the piston rod 82 passes through the linear bushing 84, the moving plate 86 and the piston rod 82 of the actuator 80 are maintained in the vertical state.
 案内機構81は、支持機構72の支持板76の下面から下方に向かって延びる複数のロッド88と、複数のロッド88に沿って移動可能な複数のリニアブッシュ92と、を備える。複数のロッド88は、上端がシャフトホルダ90により支持機構72の支持板76の下面に固定されている。 The guide mechanism 81 includes a plurality of rods 88 extending downward from the lower surface of the support plate 76 of the support mechanism 72, and a plurality of linear bushes 92 movable along the plurality of rods 88. The upper ends of the plurality of rods 88 are fixed to the lower surface of the support plate 76 of the support mechanism 72 by the shaft holder 90.
 移動プレート86は四隅に開口が形成されており、複数のロッド88は、それぞれ移動プレート86の各隅の開口を貫通している。すなわち、複数のロッド88は、移動プレート86のシャフト100が貫通する位置の外側、かつ、複数のシャフト100が貫通する位置の中心から等間隔、離れた位置に設けられている。また、2台のアクチュエータ80のピストンロッド82は、移動プレート86の複数のシャフト100が貫通する位置の中心から等間隔、離れた位置に接続されている。 The moving plate 86 has openings at four corners, and each of the plurality of rods 88 passes through the opening at each corner of the moving plate 86. That is, the plurality of rods 88 are provided outside the position where the shaft 100 of the moving plate 86 penetrates, and at a position spaced apart from the center of the position where the plurality of shafts 100 penetrate. Further, the piston rods 82 of the two actuators 80 are connected at a position spaced apart from the center of the position through which the plurality of shafts 100 of the moving plate 86 penetrate.
 リニアブッシュ92は、移動プレート86の下面に固定されており、各リニアブッシュ92を対応するロッド88が挿通している。これにより、複数のリニアブッシュ92により移動プレート86の四隅がロッド88に沿って移動するため、移動プレート86は水平状態に保たれたまま上下に移動可能となる。 The linear bush 92 is fixed to the lower surface of the moving plate 86, and a corresponding rod 88 is inserted through each linear bush 92. Thereby, since the four corners of the moving plate 86 are moved along the rod 88 by the plurality of linear bushes 92, the moving plate 86 can be moved up and down while being kept in a horizontal state.
 筐体2のプレス室26の上部には開口が形成され、この開口には筐体蓋材110が隙間なく取り付けられている。筐体蓋材110には、複数のシャフト100に対応する位置に上下方向に貫通する複数の貫通孔が形成されている。筐体蓋材110の下面には、この下面に沿うように、熱反射性材料からなる熱除け部材116が取り付けられている。 An opening is formed in the upper portion of the press chamber 26 of the housing 2, and the housing lid member 110 is attached to the opening without any gap. A plurality of through holes penetrating in the vertical direction are formed in the housing lid member 110 at positions corresponding to the plurality of shafts 100. A heat ablation member 116 made of a heat-reflective material is attached to the lower surface of the case lid member 110 along the lower surface.
 また、内部ケーシング6の天井部6Cのプレス室26の上部には、開口が形成されており、この開口には、ケーシング蓋材119が取り付けられている。ケーシング蓋材119には、複数のシャフト100に対応する位置に上下方向に延びる貫通孔が形成されている。 Further, an opening is formed in the upper part of the press chamber 26 of the ceiling portion 6C of the inner casing 6, and a casing lid member 119 is attached to this opening. The casing lid member 119 is formed with through holes extending in the vertical direction at positions corresponding to the plurality of shafts 100.
 複数のシャフト100は、それぞれ、移動プレート86、筐体蓋材110、及びケーシング蓋材119を貫通して上下方向に延びる。複数のシャフト100の移動プレート86の上方には、それぞれナット104が固定されている。 Each of the plurality of shafts 100 extends in the vertical direction through the moving plate 86, the casing lid member 110, and the casing lid member 119. Nuts 104 are respectively fixed above the moving plates 86 of the plurality of shafts 100.
 シャフト100の筐体蓋材110の上方の位置には、外周に向かって突出する係止部101が形成されている。この係止部101と移動プレート86との間にコイルバネ106が配置されている。また、コイルバネ106は、シャフト100に外装されている。このように、コイルバネ106が筐体2の外部に設けられているため、コイルバネ106として所望の長さのものを用いることが可能になる。 A locking portion 101 that protrudes toward the outer periphery is formed at a position above the housing lid 110 of the shaft 100. A coil spring 106 is disposed between the locking portion 101 and the moving plate 86. The coil spring 106 is externally mounted on the shaft 100. Thus, since the coil spring 106 is provided outside the housing 2, a coil spring 106 having a desired length can be used.
 複数のシャフト100の下端には、それぞれプレスヘッド102が設けられていて、これらのプレスヘッド102が、後述のように、成形型52を押圧する。 The press heads 102 are respectively provided at the lower ends of the plurality of shafts 100, and these press heads 102 press the molding die 52 as described later.
 筐体蓋材110に形成された貫通孔内には、それぞれオイルシール112が設けられている。このオイルシール112により、貫通孔とシャフト100との間が密封され、筐体2内を不活性ガス雰囲気に保つことができる。また、筐体蓋材110に形成された貫通孔内には、それぞれリニアブッシュ114が設けられている。シャフト100は、このリニアブッシュ114により、成形型52に向けて案内される。 Oil seals 112 are respectively provided in the through holes formed in the casing lid member 110. The oil seal 112 seals the space between the through hole and the shaft 100, and the inside of the housing 2 can be maintained in an inert gas atmosphere. In addition, linear bushings 114 are provided in the through holes formed in the case lid member 110, respectively. The shaft 100 is guided toward the mold 52 by the linear bush 114.
 以下、本実施形態のガラス成形体の製造装置1により、ガラス成形体を製造する方法を説明する。なお、以下の説明では、一の金型ユニット8に着目して、ガラス成形体を製造する方法を説明するが、本実施形態のガラス成形体の製造装置1では、各処理室の数に応じた複数の金型ユニット8が回転テーブル4上に45度の等角度範囲で配置される。そして、これら複数の金型ユニット8が回転テーブル4により連続して搬送経路に沿って搬送されて、各処理室で加熱処理、プレス処理、徐冷処理等の処理が並行して行われる。 Hereinafter, a method of manufacturing a glass molded body by the glass molded body manufacturing apparatus 1 of the present embodiment will be described. In the following description, a method of manufacturing a glass molded body will be described by paying attention to one mold unit 8, but in the glass molded body manufacturing apparatus 1 of the present embodiment, depending on the number of processing chambers. A plurality of mold units 8 are arranged on the rotary table 4 in an equiangular range of 45 degrees. The plurality of mold units 8 are continuously transported along the transport path by the rotary table 4, and processes such as heat treatment, press processing, and slow cooling processing are performed in parallel in each processing chamber.
 まず、回転テーブル4が回転し、成形処理が完了したガラス成形体を収容する金型ユニット8が搬入・搬出部46に到達すると、搬入・搬出機構により金型ユニット8が持ち上げられ、搬入・搬出口から、成形処理が完了した4個の成形型52を同時に装置筐体2の外部へ搬出する。そして、これらの成形型52を図示しないロボットハンドで把持して、型支持台12の支持部12Bから取り外す。その後、新たなガラス材料60が装填された成形型52を型支持台12の支持部12Bにそれぞれ載置する。 First, when the rotary table 4 rotates and the mold unit 8 that accommodates the glass molded body for which the molding process has been completed reaches the carry-in / carry-out unit 46, the mold unit 8 is lifted by the carry-in / carry-out mechanism, From the outlet, the four molding dies 52 for which the molding process has been completed are simultaneously carried out of the apparatus housing 2. Then, these molds 52 are held by a robot hand (not shown) and removed from the support part 12B of the mold support 12. Thereafter, the molds 52 loaded with the new glass material 60 are placed on the support portions 12B of the mold support base 12, respectively.
 そして、前回の回転動作の完了から予め設定された回転テーブル4の停止時間(以下、タクトタイムという)が経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、成形型52は型支持台12に保持された状態で、第1加熱室20内に搬送される。この際、型支持台12の支持部12Bは、内部ケーシング6の底部に設けられたスリット6E内を通るため、支持部12Bと内部ケーシング6とが干渉することはない。 When a preset stop time (hereinafter referred to as a tact time) of the rotary table 4 has elapsed since the completion of the previous rotation operation, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened. Thus, the rotary table 4 rotates 45 degrees counterclockwise in plan view. As a result, the mold 52 is conveyed into the first heating chamber 20 while being held by the mold support 12. At this time, the support portion 12B of the mold support 12 passes through the slit 6E provided at the bottom of the inner casing 6, so that the support portion 12B and the inner casing 6 do not interfere with each other.
 第1加熱室20に金型ユニット8が搬送されると、金型ユニット8を加熱する第1の加熱ステップが行われる。第1加熱室20内は、搬送経路の両側に設けられたヒータ32により、ガラス屈伏点温度(Ts)と同等もしくはそれ以上の温度に保たれている。そして、第1加熱室20に搬送された金型ユニット8は、ヒータ32により加熱される。 When the mold unit 8 is conveyed to the first heating chamber 20, a first heating step for heating the mold unit 8 is performed. The inside of the first heating chamber 20 is maintained at a temperature equal to or higher than the glass yield point temperature (Ts) by the heaters 32 provided on both sides of the transport path. Then, the mold unit 8 conveyed to the first heating chamber 20 is heated by the heater 32.
 前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8は、第2加熱室22内に搬送される。 When a preset tact time elapses from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the second heating chamber 22.
 第2加熱室22に金型ユニット8が搬送されると、金型ユニット8の成形型52をガラス屈伏点温度程度まで加熱する第2の加熱ステップが行われる。第2加熱室22内は、ヒータ34によりガラス屈伏点温度と同等もしくはそれ以上の温度に保たれている。これにより、第2加熱室22内に搬送された金型ユニット8内のガラス材料60がガラス屈伏点温度程度に到達するまで加熱される。 When the mold unit 8 is conveyed to the second heating chamber 22, a second heating step is performed in which the mold 52 of the mold unit 8 is heated to about the glass yield point temperature. The inside of the second heating chamber 22 is maintained at a temperature equal to or higher than the glass yield point temperature by the heater 34. Thereby, it heats until the glass material 60 in the metal mold unit 8 conveyed in the 2nd heating chamber 22 reaches about a glass yield point temperature.
 前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8は、均熱室24内に搬送される。 When a preset tact time elapses from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. As a result, the mold unit 8 is transferred into the soaking chamber 24.
 均熱室24に成形型52が搬送されると、成形型52及び内部に収容されたガラス材料60を均熱化する均熱ステップが行われる。均熱室24内は、ヒータ36によりガラス屈伏点温度程度に保たれている。これにより、均熱室24に搬送された成形型52及び成形型52内のガラス材料60は、ガラス屈伏点温度で均熱化される。 When the molding die 52 is conveyed to the soaking chamber 24, a soaking step for soaking the molding material 52 and the glass material 60 accommodated therein is performed. The inside of the soaking chamber 24 is maintained at the glass yield point temperature by the heater 36. Thereby, the shaping | molding die 52 conveyed to the soaking | uniform-heating chamber 24 and the glass material 60 in the shaping | molding die 52 are soaked at glass yield point temperature.
 前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8はプレス室26内に搬送される。 When a preset tact time elapses from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the press chamber 26.
 プレス室26に金型ユニット8が搬送されると、プレスステップが行われる。プレスステップでは、ヒータ38により金型ユニット8をガラス屈伏点温度程度に保つように加熱しながら、プレス機構70により金型ユニット8の複数の成形型52を同時に押圧し、ガラス材料をプレス成形する。以下、このプレス機構70により、複数の成形型52をプレスするプレス処理について詳述する。 When the mold unit 8 is conveyed to the press chamber 26, a press step is performed. In the pressing step, the glass unit is press-molded by simultaneously pressing the plurality of molds 52 of the mold unit 8 by the press mechanism 70 while heating the mold unit 8 by the heater 38 so as to maintain the glass yield point temperature. . Hereinafter, the press process for pressing the plurality of molds 52 by the press mechanism 70 will be described in detail.
 図6に示すように、プレス処理の開始時には、アクチュエータ80のピストンロッド82は退行した状態にある。この状態において、コイルバネ106は自然長もしくは自然長より少し圧縮した長さとなっている。また、各シャフト100は、シャフト100の上部に取り付けられたナット104が移動プレート86の上面に係合することにより、プレスヘッド102と成形型52との間に隙間がある状態で保持されている。 As shown in FIG. 6, at the start of the press process, the piston rod 82 of the actuator 80 is in a retracted state. In this state, the coil spring 106 has a natural length or a length slightly compressed from the natural length. Each shaft 100 is held in a state where there is a gap between the press head 102 and the molding die 52 by the nut 104 attached to the upper part of the shaft 100 engaging the upper surface of the moving plate 86. .
 プレス処理を開始すると、まず、アクチュエータ80が、ピストンロッド82を下方に向けて下降させる。上記の通り、移動プレート86は、案内機構81より水平に保されながら上下方向に移動可能である。このため、アクチュエータ80がピストンロッド82を下降させることにより、移動プレート86は水平に保されながら下方に向かって移動される。 When the press process is started, the actuator 80 first lowers the piston rod 82 downward. As described above, the moving plate 86 is movable in the vertical direction while being kept horizontal by the guide mechanism 81. For this reason, when the actuator 80 lowers the piston rod 82, the moving plate 86 is moved downward while being kept horizontal.
 移動プレート86が下方に向かって移動されると、移動プレート86の下面がコイルバネ106の上部に当接もしくはコイルバネ106を圧縮する。また、コイルバネ106の下方はシャフト100の係止部101と当接している。このため、移動プレート86が下降すると、シャフト100がコイルバネ106を介して下方に向けて押圧移動される。これにより、シャフト100の下端に設けられたプレスヘッド102が成形型52の上面に当接する。この際、各シャフト100は、筐体蓋材110に設けられたリニアブッシュ114により、対応する成形型52に向けて確実に案内される。 When the moving plate 86 is moved downward, the lower surface of the moving plate 86 contacts the upper portion of the coil spring 106 or compresses the coil spring 106. Further, the lower portion of the coil spring 106 is in contact with the locking portion 101 of the shaft 100. For this reason, when the moving plate 86 descends, the shaft 100 is pressed and moved downward via the coil spring 106. As a result, the press head 102 provided at the lower end of the shaft 100 contacts the upper surface of the mold 52. At this time, each shaft 100 is reliably guided toward the corresponding mold 52 by the linear bush 114 provided on the housing lid member 110.
 アクチュエータ80は、プレスヘッド102が成形型52の上面に当接した後も、コイルバネ106が所定の長さまで収縮されるまで、ピストンロッド82を下方に向けて伸張させる。このようにコイルバネ106が収縮することにより、各成形型52に押圧荷重が加えられる。なお、コイルバネ106の収縮した状態の長さは、コイルバネ106の復元力が成形型52に対して加えるべきプレス荷重と等しくなるように決定される。なお、このプレス荷重(推力)は、ガラス材料の材質等に基づき10~500kgfの範囲内で設定される。 The actuator 80 extends the piston rod 82 downward until the coil spring 106 is contracted to a predetermined length even after the press head 102 contacts the upper surface of the mold 52. As the coil spring 106 contracts in this way, a pressing load is applied to each mold 52. The length of the coil spring 106 in the contracted state is determined so that the restoring force of the coil spring 106 is equal to the press load to be applied to the mold 52. The press load (thrust) is set within a range of 10 to 500 kgf based on the material of the glass material.
 そして、このようにコイルバネ106を収縮させた状態で、所定の時間(例えば、数十秒~数分間)保持する。これにより、成形型52内に収容されたガラス材料に成形面形状が転写され、所望の形状のガラス成形体(光学素子)にプレス成形することができる。 Then, the coil spring 106 is contracted as described above and held for a predetermined time (for example, several tens of seconds to several minutes). Thereby, a molding surface shape is transcribe | transferred to the glass material accommodated in the shaping | molding die 52, and it can press-mold to the glass molded object (optical element) of a desired shape.
 この際、型支持台12の支持部12Bの高さにばらつきがあり、複数の成形型52の上面の高さに誤差がある場合がある。このように複数の成形型52の上面の高さに誤差があったとしても、コイルバネ106がこの上面高さの誤差を吸収するため、全ての成形型52を押圧することができる。しかしながら、このようにコイルバネ106により成形型52の上面の高さの誤差を吸収できるものの、その上面高さの誤差によりコイルバネ106の収縮した状態の長さに差が生じてしまう。このようにコイルバネ106の収縮状態での長さに差があると、成形型52へのプレス荷重にも差が生じてしまう。 At this time, there is a variation in the height of the support portion 12B of the mold support 12 and there may be an error in the height of the upper surfaces of the plurality of molds 52. Thus, even if there is an error in the height of the upper surfaces of the plurality of molds 52, the coil spring 106 absorbs the error in the upper surface height, so that all the molds 52 can be pressed. However, although the coil spring 106 can absorb the error in the height of the upper surface of the mold 52 as described above, the difference in the length of the coil spring 106 in the contracted state is caused by the error in the upper surface height. Thus, if there is a difference in the length of the coil spring 106 in the contracted state, a difference also occurs in the press load to the mold 52.
 これに対して、本実施形態では、コイルバネ106が筐体2の外部に設けられているため、コイルバネ106として全長が長いコイルバネを用いることができる。このようにコイルバネ106として全長が長いコイルバネを用いることにより、コイルバネ106の収縮状態における長さに対する成形型52の高さの差の割合が小さくなる。これにより、各成形型52に加えられるプレス荷重の差を実質的な影響がない程度に小さく抑えることができる。 In contrast, in the present embodiment, since the coil spring 106 is provided outside the housing 2, a coil spring having a long overall length can be used as the coil spring 106. By using a coil spring having a long overall length as the coil spring 106 in this way, the ratio of the difference in height of the mold 52 with respect to the length of the coil spring 106 in the contracted state is reduced. Thereby, the difference of the press load added to each shaping | molding die 52 can be restrained small to such an extent that there is no substantial influence.
 そして、プレス処理が終了した後、アクチュエータ80がピストンロッド82を退行させる。ピストンロッド82を退行させることにより、移動プレート86が上昇する。これにより、再び、コイルバネ106が自然長まで伸張し、成形型52に加えられていたプレス荷重が除荷される。さらに、アクチュエータ80がピストンロッド82を退行させ、移動プレート86を上昇させることにより、シャフト100の上部に取り付けられたナット104が移動プレート86の上面と当接し、シャフト100を上昇させる。これにより、プレスヘッド102と、成形型52とが離間する。以上の工程により、プレス処理が完了する。 Then, after the press process is finished, the actuator 80 retracts the piston rod 82. By moving the piston rod 82 backward, the moving plate 86 rises. Thereby, the coil spring 106 is again extended to the natural length, and the press load applied to the mold 52 is unloaded. Furthermore, when the actuator 80 retracts the piston rod 82 and raises the moving plate 86, the nut 104 attached to the upper part of the shaft 100 comes into contact with the upper surface of the moving plate 86 and raises the shaft 100. As a result, the press head 102 and the mold 52 are separated from each other. The press process is completed by the above steps.
 そして、プレスステップが完了し、前回の回転テーブル4の回転からタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8の成形型52は、第1徐冷室28内に搬送される。 When the press step is completed and the tact time has elapsed from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is viewed in plan view. Rotate 45 degrees counterclockwise. Thereby, the mold 52 of the mold unit 8 is conveyed into the first slow cooling chamber 28.
 第1徐冷室28ではヒータ40により成形型52の温度を調整しながら、ゆっくりと成形型52を冷却する第1の徐冷ステップが行われる。ことのきの冷却速度は、10~100℃/分の範囲内で適宜設定することが好ましい。 In the first slow cooling chamber 28, a first slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 with the heater 40. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
 そして、第1の徐冷ステップが完了し、前回の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8の成形型52は、第2徐冷室30内に搬送される。 When the first slow cooling step is completed and a preset tact time has elapsed since the previous rotation, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the rotary table 4 rotates 45 degrees counterclockwise in plan view. Thereby, the mold 52 of the mold unit 8 is conveyed into the second slow cooling chamber 30.
 第2徐冷室30ではヒータ42により成形型52の温度を調整しながら、ゆっくりと成形型52を冷却する第2の徐冷ステップが行われる。ことのきの冷却速度は、10~100℃/分の範囲内で適宜設定することが好ましい。 In the second slow cooling chamber 30, a second slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 by the heater 42. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
 前回の回転テーブル4の回転からタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8の成形型52は、第2徐冷室30から急冷部44へ搬送される。 When the tact time elapses from the previous rotation of the rotary table 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the rotary table 4 rotates 45 degrees counterclockwise in plan view. . Thereby, the mold 52 of the mold unit 8 is conveyed from the second slow cooling chamber 30 to the rapid cooling unit 44.
 急冷部44に成形型52が搬送されると、急冷ステップが行われる。急冷部44には、ヒータが設置されておらず、装置の周囲と同程度の温度となっている。このため、金型ユニット8及び成形型52の内部のガラス成形体は急速に冷却される。このときの冷却速度は、徐冷ステップでの冷却速度よりも速く、例えば、30~300℃/分の範囲内で適宜設定することが好ましい。また、必要に応じて金型ユニット8に向けて冷却ガスを吹き付けてもよい。 When the mold 52 is conveyed to the rapid cooling section 44, a rapid cooling step is performed. The quenching section 44 is not provided with a heater and has a temperature similar to that around the apparatus. For this reason, the glass molded body inside the mold unit 8 and the mold 52 is rapidly cooled. The cooling rate at this time is faster than the cooling rate in the slow cooling step, and is preferably set appropriately within a range of, for example, 30 to 300 ° C./min. Moreover, you may spray cooling gas toward the die unit 8 as needed.
 さらに、前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、回転テーブル4が45度回転して、金型ユニット8が搬入・搬出部46へ移送される。成形処理が完了したガラス成形体を収容する金型ユニット8が搬入・搬出部46に到達すると、昇降機構によって金型ユニット8が上昇し、搬入・搬出口から、成形処理が完了した成形型52を複数個同時に装置筐体2の外部へ搬出する。 Further, when a preset tact time elapses from the previous rotation of the rotary table 4, the rotary table 4 rotates 45 degrees and the mold unit 8 is transferred to the loading / unloading unit 46. When the mold unit 8 that accommodates the glass molded body that has undergone the molding process reaches the carry-in / carry-out unit 46, the mold unit 8 is raised by the lifting mechanism, and the mold 52 that has undergone the molding process from the carry-in / carry-out port. Are simultaneously carried out of the apparatus housing 2.
 外部へ搬出された成形型52は分解され、成形が完了したガラス成形体が取り出され、新たなガラス材料が供給された後、再び、型支持台12の支持部12Bにそれぞれ載置される。
 以上の工程により、製造装置1によりガラス成形体を連続的に製造することができる。
The molding die 52 carried out to the outside is disassembled, a glass molded body that has been molded is taken out, a new glass material is supplied, and then placed again on the support portion 12B of the mold support base 12.
Through the above steps, the glass molded body can be continuously produced by the production apparatus 1.
 発明者らは、本実施形態の製造装置1によれば、プレス処理における押圧力の差を減らすことができ、ガラス成形体の品質を向上することができることを、実際にガラス成形体を製造することにより確認した。以下に、本発明の実施例について説明する。 The inventors actually manufacture a glass molded body according to the manufacturing apparatus 1 of the present embodiment, which can reduce the difference in pressing force in the pressing process and can improve the quality of the glass molded body. Was confirmed. Examples of the present invention will be described below.
 本実施例では、直径5mmの両凸レンズを成形した。ガラス材料としては、フツリン酸塩ガラス(ガラス転移温度384℃、屈伏点427℃)を両凸曲面形状に予備成形してガラスプリフォームを成形し、このガラスプリフォームの表面に、炭素膜を形成したものを用いた。成形装置1の筐体2内は、予め、ガス置換を行い、窒素雰囲気とした。また、成形型52としては、窒素珪素からなる上型、下型、胴型を用い、成形面には、予め炭素系の離型膜を設けた。 In this example, a biconvex lens having a diameter of 5 mm was molded. As a glass material, fluorophosphate glass (glass transition temperature 384 ° C., yield point 427 ° C.) is preformed into a biconvex curved shape to form a glass preform, and a carbon film is formed on the surface of the glass preform. What was done was used. The inside of the housing 2 of the molding apparatus 1 was preliminarily replaced with a nitrogen atmosphere. As the mold 52, an upper mold, a lower mold, and a body mold made of silicon silicon were used, and a carbon-based release film was provided on the molding surface in advance.
 型支持台12としては、円盤状の基部に等間隔(21mmピッチ)で直線上に立設した4本の支持部を有する型支持台を用い、各支持部12Bにガラス素材を収容した成形型52を載置した。 As the mold support base 12, a mold support base having four support portions erected on a straight line at a regular interval (21 mm pitch) on a disk-shaped base portion, and a molding die in which a glass material is accommodated in each support portion 12B. 52 was mounted.
 プレス機構70のコイルバネ106としては、自由長が100mmで、バネ定数が約50N/mmのコイルバネを用いた。プレスヘッド102を昇降駆動するアクチュエータ80には、1台あたりの最大推力が約250kgfの空圧シリンダを2台用いた。 As the coil spring 106 of the press mechanism 70, a coil spring having a free length of 100 mm and a spring constant of about 50 N / mm was used. For the actuator 80 that drives the press head 102 up and down, two pneumatic cylinders having a maximum thrust of about 250 kgf per unit were used.
 金型ユニット8を取出・挿入室から成型装置内に挿入して回転テーブル4に配置して、回転テーブル4を間欠回動させながら、金型ユニット8を第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30、急冷室44に順次移送して、プレス成形を行った。1つの処理室における処理開始から次の処理室における処理開始までの時間(サイクルタイム)は75秒とし、このサイクルタイム毎に成形装置1内に金型ユニット8を搬入するとともに搬出して、連続成形を行った。また、プレス室26におけるプレス温度は約450℃、プレス荷重は約80kgfとした。 The mold unit 8 is taken out from the insertion / insertion chamber and inserted into the molding apparatus and placed on the rotary table 4, and the mold unit 8 is moved to the first heating chamber 20 and the second heating chamber while the rotary table 4 is rotated intermittently. 22, soaking chamber 24, press chamber 26, first annealing chamber 28, second annealing chamber 30, and quenching chamber 44 were sequentially transferred to perform press molding. The time (cycle time) from the start of processing in one processing chamber to the start of processing in the next processing chamber is 75 seconds. The mold unit 8 is carried into and out of the molding apparatus 1 every cycle time, and continuously. Molding was performed. The press temperature in the press chamber 26 was about 450 ° C., and the press load was about 80 kgf.
 プレスステップでは、アクチュエータ80(空圧シリンダ)を駆動させて、移動プレート86を下降させることにより、それぞれの下端側にプレスヘッド102を有する4本のシャフト100を下降させた。 In the pressing step, the actuator 80 (pneumatic cylinder) was driven to lower the moving plate 86, thereby lowering the four shafts 100 having the press heads 102 on the respective lower end sides.
 各プレスヘッド102の押圧面が対応する成形型52(上型)に当接した後、さらに、上型の上面と胴型の上面が同一面上になるまでプレスヘッド102を降下させることで、ガラス素材を上型と下型で押圧してプレス成形した。このとき、シリンダにより移動プレート86が押し込まれることで、シャフト100の係止部101に係止されたコイルバネ106が収縮し、このコイルバネ106の復元力によりシャフト100を介して成形型52が押圧された。 After the pressing surface of each press head 102 abuts the corresponding forming die 52 (upper die), the press head 102 is further lowered until the upper surface of the upper die and the upper surface of the body die are flush with each other, The glass material was press-molded by pressing it with the upper mold and the lower mold. At this time, when the moving plate 86 is pushed by the cylinder, the coil spring 106 locked to the locking portion 101 of the shaft 100 is contracted, and the forming die 52 is pressed via the shaft 100 by the restoring force of the coil spring 106. It was.
 プレスステップを終えた金型ユニット8を、第1及び第2の徐冷室28,30にて約70℃/分の冷却速度で冷却して、ガラス成形体がガラス転移点以下になるまで徐冷した。
 次いで、急冷室44で成形型52に冷却ガス(N2)を吹き付けて、成形型52及びその内部のガラス成形体を冷却し、200℃以下になるまで降温させた。
 このような一連の製造プロセスを繰り返し行い、120個のガラス成形体(レンズ)を得た。
The mold unit 8 that has finished the pressing step is cooled at a cooling rate of about 70 ° C./min in the first and second annealing chambers 28 and 30 and gradually until the glass molded body is below the glass transition point. Chilled.
Next, a cooling gas (N 2 ) was blown onto the mold 52 in the quenching chamber 44 to cool the mold 52 and the glass molded body inside the mold 52, and the temperature was lowered to 200 ° C. or lower.
Such a series of manufacturing processes was repeated to obtain 120 glass molded bodies (lenses).
 そして、各ガラス成形体について品質検査を行ったところ、肉厚精度、形状精度、偏心精度などいずれの検査項目においても規格を満たす良品率が97.5%という良好な結果であった。このことから、本実施形態のガラス成形体の製造装置によれば、プレス圧力を均一化することができるため、良質のガラス成形体を製造できることが確認できた。 Then, when a quality inspection was performed on each glass molded body, the non-defective product ratio satisfying the standard was 97.5% in any inspection items such as thickness accuracy, shape accuracy, and eccentricity accuracy. From this, according to the manufacturing apparatus of the glass molded object of this embodiment, since press pressure can be equalized, it has confirmed that a good-quality glass molded object can be manufactured.
 本実施形態によれば、コイルバネ106が筐体2の外部に設けられているため、コイルバネ106として、コイルバネを筐体内に設ける場合よりも長尺なものを使用することができる。このため、長尺なコイルバネ106を使用することにより、コイルバネ106の全長に対する型支持台12の支持部12Bや、成形型52の高さの差(ばらつき)の割合が小さくなる。これにより、成形型52の高さに差があっても、各成形型52に加えられるプレス圧のばらつきを小さく抑えることができる。 According to the present embodiment, since the coil spring 106 is provided outside the housing 2, a longer one can be used as the coil spring 106 than when the coil spring is provided in the housing. For this reason, by using the long coil spring 106, the ratio of the height difference (variation) of the support portion 12B of the mold support base 12 and the mold 52 to the entire length of the coil spring 106 is reduced. Thereby, even if there exists a difference in the height of the shaping | molding die 52, the dispersion | variation in the press pressure applied to each shaping | molding die 52 can be suppressed small.
 また、ガラス成形体の製造装置1は、移動プレート86を水平に保ちながら上下方向に案内する案内機構81を備えているため、コイルバネ106を均等に押圧することができる。 Further, since the glass molded body manufacturing apparatus 1 includes the guide mechanism 81 that guides the moving plate 86 in the vertical direction while keeping the moving plate 86 horizontal, the coil spring 106 can be pressed evenly.
 また、筐体蓋材110にリニアブッシュ114が設けられているため、シャフト100の長さが長い場合であっても、シャフト100を対応する成形型52に向けて下降させることができる。 Moreover, since the linear bushing 114 is provided in the case lid member 110, the shaft 100 can be lowered toward the corresponding mold 52 even when the length of the shaft 100 is long.
 なお、本実施形態では、第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30が内部ケーシング6内に形成された製造装置1について説明したが、複数のプレス室を備えた製造装置にも本発明を適用することができる。 In the present embodiment, the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30 are formed in the inner casing 6. Although the manufacturing apparatus 1 has been described, the present invention can also be applied to a manufacturing apparatus having a plurality of press chambers.
 図7は、2つのプレス室を備えた製造装置150の構成を示す水平断面図である。同図に示すように、図10に示す製造装置150では、内部ケーシング6内に、加熱室120、第1均熱室122、第1プレス室124、第1徐冷室126、第2均熱室128、第2プレス室130、第2徐冷室132が設けられている。また、加熱室120、第1均熱室122、第1プレス室124、第1徐冷室126、第2均熱室128、第2プレス室130、第2徐冷室132には、それぞれ、ヒータ134、136、138、140、142、144、146が設けられている。 FIG. 7 is a horizontal sectional view showing a configuration of a manufacturing apparatus 150 having two press chambers. As shown in FIG. 10, in the manufacturing apparatus 150 shown in FIG. 10, a heating chamber 120, a first soaking chamber 122, a first press chamber 124, a first annealing chamber 126, and a second soaking chamber are provided in the inner casing 6. A chamber 128, a second press chamber 130, and a second slow cooling chamber 132 are provided. The heating chamber 120, the first soaking chamber 122, the first press chamber 124, the first annealing chamber 126, the second soaking chamber 128, the second pressing chamber 130, and the second annealing chamber 132 are respectively Heaters 134, 136, 138, 140, 142, 144, and 146 are provided.
 このように2つのプレス室を備えた製造装置においても、第1プレス室124及び第2プレス室130に設けられるプレス機構として、図4及び図5を参照して説明したプレス機構70を用いればよい。 In the manufacturing apparatus having two press chambers as described above, if the press mechanism 70 described with reference to FIGS. 4 and 5 is used as the press mechanism provided in the first press chamber 124 and the second press chamber 130. Good.
 また、本実施形態では、1列に4つの支持部を有する型支持台を用い、4つの成形型52を一度にプレス処理する場合について説明したが、本発明はこれに限られない。例えば、図8は、8個の支持部202を設けた型支持台200における支持部の配置を示す図である。図8に示す実施形態では、支持部202は2列に分けて設けられ、各列に4個ずつの支持部202が設けられている。本実施形態では、各列の延びる方向が回転テーブル4の搬送方向に一致している。 Further, in the present embodiment, a case has been described in which a mold support base having four support portions in one row is used, and four molding dies 52 are pressed at a time, but the present invention is not limited to this. For example, FIG. 8 is a diagram illustrating the arrangement of the support portions in the mold support base 200 provided with eight support portions 202. In the embodiment shown in FIG. 8, the support portions 202 are provided in two rows, and four support portions 202 are provided in each row. In the present embodiment, the extending direction of each row coincides with the conveyance direction of the rotary table 4.
 このような実施形態では、搬送方向の支持部202のピッチをP1、搬送方向と直交する方向の支持部202のピッチをP2としたとき、P1≦P2とすることが好ましい。このような狭いピッチで配置されていても、複数の成形型を均一な荷重でプレス成形できるので、高品質のガラス成形体を高い生産効率で製造することができる。 In such an embodiment, it is preferable that P1 ≦ P2 where P1 is the pitch of the support portions 202 in the transport direction and P2 is the pitch of the support portions 202 in the direction orthogonal to the transport direction. Even if it is arranged at such a narrow pitch, a plurality of molds can be press-molded with a uniform load, so that a high-quality glass molded body can be produced with high production efficiency.
 なお、本発明では、移動プレート86とシャフト100との間に介装される部材としてコイルバネ106を用いていたが、弾性を有する部材であれば、これに限られない。 In the present invention, the coil spring 106 is used as a member interposed between the moving plate 86 and the shaft 100. However, the present invention is not limited to this as long as the member has elasticity.
 また、本実施形態において、図1に示したガラス成形体の製造装置は8個の処理室を有し、図7に示した製造装置は9個の処理室を有するが、本発明にかかる製造装置は、処理室の数を必要に応じて増減できる。その際、回転テーブルの回動角度も処理室の数に応じて適宜変更可能である。 In the present embodiment, the glass molded body manufacturing apparatus shown in FIG. 1 has eight processing chambers, and the manufacturing apparatus shown in FIG. 7 has nine processing chambers. The apparatus can increase or decrease the number of processing chambers as needed. At that time, the rotation angle of the rotary table can be changed as appropriate according to the number of processing chambers.
 また、上述の本実施形態において、型支持台12に立設した複数の支持部12Bのそれぞれに成形型52を載置した金型ユニット8を搬送しながらプレス処理を含む各種処理を行う製造装置について説明したが、搬送用の型支持台12を用いずに、複数の成形型を同時にプレス処理する装置にも本発明を適用できる。さらにまた、上述の本実施形態のように、成形型52を回転テーブル4によって円軌道の搬送経路に沿って間欠的に回転させながら各種処理を行う製造装置に替えて、直線的に成形型52を搬送する製造装置にも適用できる。 Further, in the above-described embodiment, a manufacturing apparatus that performs various processes including a pressing process while conveying the mold unit 8 on which the molding die 52 is placed on each of the plurality of support portions 12B standing on the mold support base 12. However, the present invention can also be applied to an apparatus that simultaneously presses a plurality of forming dies without using the conveying mold support 12. Furthermore, as in the above-described embodiment, the forming mold 52 is linearly replaced with a manufacturing apparatus that performs various processes while intermittently rotating the forming mold 52 along the transport path of the circular track by the rotary table 4. The present invention can also be applied to a manufacturing apparatus that transports.
 ここで、以下、本発明に関連する変形例を説明する。
 本発明では、プレス機構に弾性部材を組み込んでいるが、型支持部材に弾性部材を組み込むことも考えられる。図9は、プレス機構にコイルバネを組み込んだ型支持部材の変形例の構成を示す鉛直断面図である。同図に示すように、変形例の型支持部材300は、板状の基部302と、基部302に立設された複数の円筒状の柱部304と、円筒状の軸部306A及び軸部306Aに接続された台座部306Bとを有する支持部306と、柱部304の外周に配置されたコイルバネ308とを備える。基部302、柱部304、及び支持部306は、上記の実施形態の型支持台12と同様の材料からなる。
Here, modified examples related to the present invention will be described below.
In the present invention, the elastic member is incorporated into the press mechanism, but it is also conceivable to incorporate the elastic member into the mold support member. FIG. 9 is a vertical cross-sectional view showing a configuration of a modified example of a die support member in which a coil spring is incorporated in a press mechanism. As shown in the figure, a mold support member 300 according to a modified example includes a plate-like base portion 302, a plurality of cylindrical column portions 304 erected on the base portion 302, a cylindrical shaft portion 306A, and a shaft portion 306A. A support portion 306 having a pedestal portion 306B connected to the coil portion 308, and a coil spring 308 disposed on the outer periphery of the column portion 304. The base portion 302, the column portion 304, and the support portion 306 are made of the same material as that of the mold support base 12 of the above embodiment.
 支持部306の軸部306Aの外径は、柱部304の内径と略等しく、これにより、支持部306は柱部304により上下方向に案内される。 The outer diameter of the shaft portion 306A of the support portion 306 is substantially equal to the inner diameter of the column portion 304, whereby the support portion 306 is guided in the vertical direction by the column portion 304.
 コイルバネ308は、下端が基部302と当接し、上端が支持部306の台座部306Bの下面に当接している。これにより、支持部306は、支持部306の台座部306Bの下面が柱部304の上端から離間した状態で、コイルバネ308により支持されている。なお、コイルバネ308には、成形型52のプレス荷重に応じた所定のバネ定数を有するものが用いられている。 The coil spring 308 has a lower end in contact with the base portion 302 and an upper end in contact with the lower surface of the pedestal portion 306B of the support portion 306. Accordingly, the support portion 306 is supported by the coil spring 308 in a state where the lower surface of the pedestal portion 306B of the support portion 306 is separated from the upper end of the column portion 304. A coil spring 308 having a predetermined spring constant corresponding to the press load of the mold 52 is used.
 複数のプレスヘッド310は、成形型52に対応して設けられ、例えば、1台のアクチュエータ(不図示)により駆動され、上下方向に進退可能である。 The plurality of press heads 310 are provided corresponding to the molding die 52, and are driven by, for example, one actuator (not shown) and can be advanced and retracted in the vertical direction.
 アクチュエータにより複数のプレスヘッド310を下降させると、プレスヘッド310の下面が成形型52の上面に当接する。さらに、プレスヘッド310を下降させると、コイルバネ308がプレス荷重に抗するため、成形型52にプレス荷重が作用する。 When the plurality of press heads 310 are lowered by the actuator, the lower surface of the press head 310 comes into contact with the upper surface of the mold 52. Further, when the press head 310 is lowered, the coil spring 308 resists the press load, so that the press load acts on the mold 52.
 さらに、プレスヘッド310を下降させると、台座部306Bの下面が柱部304の上端に当接する。このように台座部306Bの下面が柱部304の上端に当接した状態でプレスヘッド310の下降を停止する。なお、本変形例では、台座部306Bの下面が柱部304の上端に当接した時点でプレスヘッド310の下降を停止しているが、軸部306Aの長さを変更し、軸部306Aの下端が基部302に当接した時点でプレスヘッド310の下降を停止してもよい。
 かかる構成の型支持台12を用いた場合であっても、上記実施形態と同様に、複数の成形型52を均一なプレス荷重で押圧することができる。
When the press head 310 is further lowered, the lower surface of the pedestal portion 306B comes into contact with the upper end of the column portion 304. In this manner, the lowering of the press head 310 is stopped in a state where the lower surface of the pedestal portion 306B is in contact with the upper end of the column portion 304. In this modification, the press head 310 stops descending when the lower surface of the pedestal portion 306B comes into contact with the upper end of the column portion 304. However, the length of the shaft portion 306A is changed to The lowering of the press head 310 may be stopped when the lower end comes into contact with the base 302.
Even when the mold support base 12 having such a configuration is used, the plurality of molds 52 can be pressed with a uniform press load as in the above-described embodiment.
 以下、本発明を図面を参照しながら、総括する。
 本実施形態のガラス成形体の製造装置1は、ガラス材料が収容された複数の成形型52を、筐体2内に形成されたプレス室26内で同時にプレス処理するプレス機構70を備えたガラス成形体を製造する装置であって、図4に示すように、プレス機構70は、複数の成形型52に対応して設けられ、成形型52をそれぞれ個別にプレスする複数のプレスヘッド102と、複数のプレスヘッド102にそれぞれ接続され、互いに平行に筐体2の上壁2Aを貫通して外部に延びる複数のシャフト100と、筐体1の外部に設けられたアクチュエータ80と、筐体2の外部に配置され、アクチュエータ80により成形型52に向けて押圧移動させられる移動プレート86と、筐体2の外部に配置され、移動プレート86の移動方向に圧縮可能なコイルバネ106と、を有し、移動プレート86は、アクチュエータ80により成形型52に向けて押圧移動させられることにより、コイルバネ106を介して複数のシャフト100及びプレスヘッド102を成形型52に向けて押圧移動させる。
The present invention will be summarized below with reference to the drawings.
The glass molded body manufacturing apparatus 1 according to the present embodiment includes a glass provided with a press mechanism 70 that simultaneously presses a plurality of molds 52 containing glass materials in a press chamber 26 formed in the housing 2. As shown in FIG. 4, the press mechanism 70 is provided corresponding to a plurality of molds 52, and a plurality of press heads 102 that individually press the molds 52, respectively, A plurality of shafts 100 respectively connected to the plurality of press heads 102 and extending in parallel with each other through the upper wall 2A of the housing 2, actuators 80 provided outside the housing 1, A moving plate 86 disposed outside and pressed and moved toward the mold 52 by the actuator 80, and a coil disposed outside the housing 2 and compressible in the moving direction of the moving plate 86. The moving plate 86 is pressed and moved toward the forming die 52 by the actuator 80 to press the plurality of shafts 100 and the press head 102 toward the forming die 52 via the coil spring 106. Move.
 また、本実施形態のガラス成形体を製造する方法は、プレス機構70により、ガラス材料が収容された複数の成形型52を、筐体2内に形成されたプレス室26内で同時にプレス処理するステップを備え、図4に示すように、プレス機構70は、複数の成形型52に対応して設けられ、成形型をそれぞれ個別にプレスする複数のプレスヘッド102と、複数のプレスヘッド102にそれぞれ接続され、互いに平行に筐体2の上壁2Aを貫通して外部に延びる複数のシャフト100と、筐体2の外部に設けられたアクチュエータ80と、筐体2の外部に配置され、アクチュエータ80により成形型52に向けて押圧移動させられる移動プレート86と、筐体2の外部に配置され、移動プレート86の移動方向に圧縮可能なコイルバネ106と、を有し、プレスステップにおいて、移動プレート86が、アクチュエータ80により成形型52に向けて押圧移動させられることにより、コイルバネ106を介して複数のシャフト100及びプレスヘッド102を成形型52に向けて押圧移動させる。 In the method for manufacturing the glass molded body of the present embodiment, the press mechanism 70 simultaneously presses a plurality of molding dies 52 containing glass materials in the press chamber 26 formed in the housing 2. As shown in FIG. 4, the press mechanism 70 is provided corresponding to the plurality of molds 52, and each of the plurality of press heads 102 presses the molds individually, and each of the plurality of press heads 102. A plurality of shafts 100 that are connected to each other and extend to the outside through the upper wall 2A of the housing 2 in parallel with each other, an actuator 80 provided outside the housing 2, and an actuator 80 disposed outside the housing 2 A movable plate 86 that is pressed and moved toward the molding die 52 by means of a coil spring 106 that is disposed outside the housing 2 and can be compressed in the moving direction of the movable plate 86. In the pressing step, the moving plate 86 is pressed and moved toward the forming die 52 by the actuator 80, thereby pressing the plurality of shafts 100 and the press head 102 toward the forming die 52 via the coil spring 106. Move.
1,150 ガラス成形体の製造装置
2 筐体
4 回転テーブル
6 内部ケーシング
8 金型ユニット
12 型支持台
12B 支持部
20 第1加熱室
22 第2加熱室
24 均熱室
26 プレス室
28 第1徐冷室
30 第2徐冷室
32、34、36、38、40、42 ヒータ
44 急冷部
46 搬入・搬出部
52 成形型
60 ガラス材料
70 プレス機構
72 支持機構
80 アクチュエータ
81 案内機構
82 ピストンロッド
84 リニアブッシュ
86 移動プレート
88 ロッド
90 シャフトホルダ
92 リニアブッシュ
100 シャフト
101 係止部
102 プレスヘッド
104 ナット
106 コイルバネ
110 筐体蓋材
112 オイルシール
114 リニアブッシュ
116 熱除け部材
119 ケーシング蓋材
120 加熱室
122 第1均熱室
124 第1プレス室
126 第1徐冷室
128 第2均熱室
130 第2プレス室
132 第2徐冷室
200 型支持台
202 支持部
DESCRIPTION OF SYMBOLS 1,150 Glass forming body manufacturing apparatus 2 Case 4 Turntable 6 Inner casing 8 Mold unit 12 Mold support 12B Support part 20 First heating chamber 22 Second heating chamber 24 Soaking chamber 26 Press chamber 28 First gradual Cold chamber 30 Second annealing chamber 32, 34, 36, 38, 40, 42 Heater 44 Rapid cooling section 46 Loading / unloading section 52 Mold 60 Glass material 70 Press mechanism 72 Support mechanism 80 Actuator 81 Guide mechanism 82 Piston rod 84 Linear Bush 86 Moving plate 88 Rod 90 Shaft holder 92 Linear bush 100 Shaft 101 Locking portion 102 Press head 104 Nut 106 Coil spring 110 Housing cover material 112 Oil seal 114 Linear bush 116 Heat shield member 119 Casing cover material 120 Heating chamber 122 First Soaking chamber 124 First press chamber 12 The first slow cooling chamber 128 second Hitoshinetsushitsu 130 second press chamber 132 second slow cooling chamber 200 type support table 202 supporting unit

Claims (8)

  1.  ガラス材料が収容された複数の成形型を、筐体内に形成されたプレス室内で同時にプレス処理するプレス機構を備えたガラス成形体を製造する装置であって、
     前記プレス機構は、
     前記複数の成形型に対応して設けられ、前記成形型をそれぞれ個別にプレスする複数のプレスヘッドと、
     前記複数のプレスヘッドにそれぞれ接続され、互いに平行に前記筐体の上壁を貫通して外部に延びる複数のシャフトと、
     前記筐体の外部に設けられたアクチュエータと、
     前記筐体の外部に配置され、前記アクチュエータにより前記成形型に向けて押圧移動させられる移動部材と、
     前記筐体の外部に配置され、前記移動部材の移動方向に圧縮可能な弾性部材と、
    を有し、
     前記移動部材は、前記アクチュエータにより前記成形型に向けて押圧移動させられることにより、前記弾性体を介して前記複数のシャフト及びプレスヘッドを前記成形型に向けて押圧移動させる、ガラス成形体の製造装置。
    An apparatus for producing a glass molded body having a press mechanism for simultaneously pressing a plurality of molds containing glass materials in a press chamber formed in a housing,
    The press mechanism is
    A plurality of press heads provided corresponding to the plurality of molds and individually pressing the molds;
    A plurality of shafts respectively connected to the plurality of press heads and extending in parallel to each other through the upper wall of the housing;
    An actuator provided outside the housing;
    A moving member that is disposed outside the casing and is pressed and moved toward the mold by the actuator;
    An elastic member disposed outside the housing and compressible in the moving direction of the moving member;
    Have
    The movable member is pressed and moved toward the mold by the actuator, whereby the plurality of shafts and the press head are pressed and moved toward the mold via the elastic body. apparatus.
  2.  さらに、前記筐体の上壁の前記シャフトが貫通する部分に設けられ、前記複数のシャフトが軸方向に移動するように案内する第1の案内部材を備える、請求項1に記載のガラス成形体の製造装置。 2. The glass molded body according to claim 1, further comprising a first guide member that is provided in a portion of the upper wall of the housing through which the shaft passes and guides the plurality of shafts to move in the axial direction. Manufacturing equipment.
  3.  さらに、前記筐体の外部に設けられ、前記移動部材が前記複数のシャフトの軸方向に移動するように案内する第2の案内部材を備える、請求項1又は2に記載のガラス成形体の製造装置。 The glass molded body according to claim 1, further comprising a second guide member that is provided outside the housing and guides the moving member so as to move in an axial direction of the plurality of shafts. apparatus.
  4.  さらに、前記筐体の前記シャフトが貫通する部分に設けられ、前記複数のシャフトと前記筐体との間を密封するシール部材を備える、請求項1から3のいずれか1項に記載のガラス成形体の製造装置。 Furthermore, the glass molding of any one of Claim 1 to 3 provided with the sealing member which is provided in the part through which the said shaft of the said housing penetrates, and seals between these shafts and the said housing | casing. Body manufacturing equipment.
  5.  前記弾性体は、コイルバネであり、
     前記シャフトは、前記筐体の外部に設けられた係止部を備え、
     前記コイルバネは、前記係止部と前記移動部材との間に介装されている、
     請求項1から4のいずれか1項に記載のガラス成形体の製造装置。
    The elastic body is a coil spring;
    The shaft includes a locking portion provided outside the housing,
    The coil spring is interposed between the locking portion and the moving member,
    The manufacturing apparatus of the glass molded object of any one of Claim 1 to 4.
  6.  前記コイルバネは、前記シャフトに外装されている、
     請求項5に記載のガラス成形体の製造装置。
    The coil spring is sheathed on the shaft,
    The manufacturing apparatus of the glass molded object of Claim 5.
  7.  前記筐体内に設けられたヒータケースを備え、
     前記プレス室は、前記ヒータケース内に設けられ、
     前記複数のシャフトは、前記ヒータケースの上壁を貫通している、
     請求項1から6のいずれか1項に記載のガラス成形体の製造装置。
    A heater case provided in the housing;
    The press chamber is provided in the heater case,
    The plurality of shafts penetrates the upper wall of the heater case,
    The manufacturing apparatus of the glass molded object of any one of Claim 1 to 6.
  8.  ガラス成形体を製造する方法であって、
     プレス機構により、ガラス材料が収容された複数の成形型を、筐体内に形成されたプレス室内で同時にプレス処理するステップを備え、
     前記プレス機構は、
     前記複数の成形型に対応して設けられ、前記成形型をそれぞれ個別にプレスする複数のプレスヘッドと、
     前記複数のプレスヘッドにそれぞれ接続され、互いに平行に前記筐体の上壁を貫通して外部に延びる複数のシャフトと、
     前記筐体の外部に設けられたアクチュエータと、
     前記筐体の外部に配置され、前記アクチュエータにより前記成形型に向けて押圧移動させられる移動部材と、
     前記筐体の外部に配置され、前記移動部材の移動方向に圧縮可能な弾性部材と、
    を有し、
     前記プレスステップにおいて、前記移動部材が、前記アクチュエータにより前記成形型に向けて押圧移動させられることにより、前記弾性体を介して前記複数のシャフト及びプレスヘッドを前記成形型に向けて押圧移動させる、ガラス成形体の製造方法。
    A method for producing a glass molded body,
    The press mechanism includes a step of simultaneously pressing a plurality of molds containing glass materials in a press chamber formed in the housing,
    The press mechanism is
    A plurality of press heads provided corresponding to the plurality of molds and individually pressing the molds;
    A plurality of shafts respectively connected to the plurality of press heads and extending in parallel to each other through the upper wall of the housing;
    An actuator provided outside the housing;
    A moving member that is disposed outside the casing and is pressed and moved toward the mold by the actuator;
    An elastic member disposed outside the housing and compressible in the moving direction of the moving member;
    Have
    In the pressing step, the moving member is pressed and moved toward the mold by the actuator, whereby the plurality of shafts and the press head are pressed and moved toward the mold through the elastic body. A method for producing a glass molded body.
PCT/JP2014/062478 2013-05-10 2014-05-09 Apparatus and method for manufacturing glass compact WO2014181868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480024126.0A CN105164067B (en) 2013-05-10 2014-05-09 The manufacturing device of glass forming body and the manufacturing method of glass forming body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-100096 2013-05-10
JP2013100096A JP6047802B2 (en) 2013-05-10 2013-05-10 Glass molded body manufacturing apparatus and glass molded body manufacturing method

Publications (1)

Publication Number Publication Date
WO2014181868A1 true WO2014181868A1 (en) 2014-11-13

Family

ID=51867340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062478 WO2014181868A1 (en) 2013-05-10 2014-05-09 Apparatus and method for manufacturing glass compact

Country Status (3)

Country Link
JP (1) JP6047802B2 (en)
CN (1) CN105164067B (en)
WO (1) WO2014181868A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105314824A (en) * 2015-12-07 2016-02-10 南通威明精工机械有限公司 Miniature numerical control glass press
CN105330130A (en) * 2015-12-07 2016-02-17 南通威明精工机械有限公司 Novel glass pressing forming machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109264976A (en) * 2018-10-25 2019-01-25 东旭科技集团有限公司 Control method and device for forming area of hot bending equipment
JP7103977B2 (en) * 2019-03-04 2022-07-20 Hoya株式会社 Press molding equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345626A (en) * 1992-06-12 1993-12-27 Sumitomo Heavy Ind Ltd Mechanism for clamping mold in press forming machine for glass lens
JPH092825A (en) * 1995-04-20 1997-01-07 Canon Inc Forming of optical element and its device
WO2007004475A1 (en) * 2005-06-30 2007-01-11 Asahi Glass Company, Limited Molding device for optical element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239757A (en) * 1996-03-13 1997-09-16 Matsushita Electric Ind Co Ltd Apparatus and method for molding optical element
JP4804280B2 (en) * 2006-08-31 2011-11-02 Hoya株式会社 Mold press molding apparatus and method for manufacturing molded body
JPWO2008050846A1 (en) * 2006-10-25 2010-02-25 旭硝子株式会社 Optical element press molding equipment
KR101314440B1 (en) * 2006-10-31 2013-10-07 호야 가부시키가이샤 Mold press forming die and molded article manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345626A (en) * 1992-06-12 1993-12-27 Sumitomo Heavy Ind Ltd Mechanism for clamping mold in press forming machine for glass lens
JPH092825A (en) * 1995-04-20 1997-01-07 Canon Inc Forming of optical element and its device
WO2007004475A1 (en) * 2005-06-30 2007-01-11 Asahi Glass Company, Limited Molding device for optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105314824A (en) * 2015-12-07 2016-02-10 南通威明精工机械有限公司 Miniature numerical control glass press
CN105330130A (en) * 2015-12-07 2016-02-17 南通威明精工机械有限公司 Novel glass pressing forming machine

Also Published As

Publication number Publication date
CN105164067B (en) 2018-06-12
JP2014218409A (en) 2014-11-20
CN105164067A (en) 2015-12-16
JP6047802B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2014181868A1 (en) Apparatus and method for manufacturing glass compact
WO2014051014A1 (en) Molding device and molding method
TWI603924B (en) The manufacturing apparatus of a glass molded object, and the manufacturing method of a glass molded object
JP6196799B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP2007055824A (en) Mold press forming apparatus, and method for manufacturing molding
JP4667931B2 (en) Mold press apparatus and mold press molded product manufacturing method
WO2014129591A1 (en) Device for manufacturing molded glass body and method for manufacturing molded glass body
TWI630179B (en) Method for producing glass molded body and device for manufacturing
JP2008056532A (en) Mold press forming apparatus and method for producing formed body
JP6035569B2 (en) Manufacturing method and manufacturing system of glass molded body
KR101810753B1 (en) Molded glass body manufacturing method, and molded glass body manufacturing device
JP6081225B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP4939677B2 (en) Optical element manufacturing method and mold press molding apparatus
WO2015146399A1 (en) Device for producing glass moulded bodies, and method for producing glass moulded bodies
JP4695404B2 (en) Mold assembly apparatus and optical element manufacturing method
JP6726464B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP6147571B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP2020158828A (en) Method and apparatus for producing sintered product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024126.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795412

Country of ref document: EP

Kind code of ref document: A1