JP4804280B2 - Mold press molding apparatus and method for manufacturing molded body - Google Patents

Mold press molding apparatus and method for manufacturing molded body Download PDF

Info

Publication number
JP4804280B2
JP4804280B2 JP2006235899A JP2006235899A JP4804280B2 JP 4804280 B2 JP4804280 B2 JP 4804280B2 JP 2006235899 A JP2006235899 A JP 2006235899A JP 2006235899 A JP2006235899 A JP 2006235899A JP 4804280 B2 JP4804280 B2 JP 4804280B2
Authority
JP
Japan
Prior art keywords
mold
molding
heating
molds
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006235899A
Other languages
Japanese (ja)
Other versions
JP2008056532A (en
Inventor
靖弘 米田
慎一郎 原
信司 柳沢
伸司 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006235899A priority Critical patent/JP4804280B2/en
Publication of JP2008056532A publication Critical patent/JP2008056532A/en
Application granted granted Critical
Publication of JP4804280B2 publication Critical patent/JP4804280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、精密加工された成形型によってガラスプリフォームなどの成形素材をプレス成形し、光学素子(例えば、ガラスレンズ)などの成形体を製造することができるモールドプレス成形装置、及び成形体の製造方法に関する。   The present invention relates to a mold press molding apparatus capable of producing a molded body such as an optical element (for example, a glass lens) by press-molding a molding material such as a glass preform with a precision-processed mold, and a molded body It relates to a manufacturing method.

近年、成形面を所定の表面精度に精密加工した成形型内に光学用のガラス素材を収容して、加熱下でプレス成形して成形面を転写することにより、成形後の転写面について研削や研磨などの後加工を必要としない、高精度の光学機能面を有するガラスレンズなどの光学素子を製造する方法が知られている。   In recent years, an optical glass material is accommodated in a mold that has been precisely machined to a predetermined surface accuracy, and the molded surface is ground by pressing it under heat and transferring the molded surface. There is known a method of manufacturing an optical element such as a glass lens having a high-precision optical functional surface that does not require post-processing such as polishing.

例えば、特許文献1には、加熱室、プレス室、冷却室などの処理室が円周方向に並べて配置され、これらの処理室の中を、成形素材を入れた成形型が順次移送されるガラス成形体の製造装置が開示されている。
この製造装置にあっては、各処理室が炉体の中でケースによって取り囲まれて形成されているとともに、中央の回転軸回りに間歇的に回転駆動可能に設けられた回転テーブルに試料台が据え付けられており、この試料台に載置された成形型を、回転テーブルの回転駆動に伴って各処理室を循環させることで、ガラス成形体を連続的に成形することができる。
For example, Patent Document 1 discloses glass in which processing chambers such as a heating chamber, a press chamber, and a cooling chamber are arranged side by side in a circumferential direction, and molding molds containing molding materials are sequentially transferred in these processing chambers. An apparatus for manufacturing a molded body is disclosed.
In this manufacturing apparatus, each processing chamber is formed by being surrounded by a case in the furnace body, and a sample table is provided on a rotary table provided so as to be intermittently rotatable around a central rotary shaft. The glass molded body can be continuously formed by circulating the processing molds placed on the sample stage through the processing chambers as the rotary table is driven to rotate.

特公平7−29779号公報Japanese Patent Publication No. 7-29779

ところで、特許文献1の装置では、各処理室の温度管理を独立に、かつ、精緻に制御することが可能であり、成形型の移送に伴う温度変動が生じないようにすることができ、また、これに加えて、移送時の振動により成形型内での成形素材の位置ずれが生じてしまうと、成形される光学素子が偏肉し、形状不良となるだけでなく、偏肉に起因するプレス荷重印加の不均一によって、光学機能面の面精度が劣化してしまうが、特許文献1の装置によれば、成形型に振動を及ぼすことなく回転テーブルによって成形型をスムーズに移送することができる。
このように、特許文献1の装置は、高精度の光学機能面を有する光学素子を製造する上で、非常に優れた機能を備えている。
By the way, in the apparatus of Patent Document 1, it is possible to control the temperature management of each processing chamber independently and precisely, and it is possible to prevent temperature fluctuations accompanying the transfer of the mold, and In addition to this, if the molding material is displaced in the molding die due to vibration during transfer, the optical element to be molded becomes uneven, resulting in a defective shape as well as due to uneven thickness. Although the surface accuracy of the optical functional surface is deteriorated due to nonuniformity of the press load application, according to the apparatus of Patent Document 1, the mold can be smoothly transferred by the rotary table without causing vibration to the mold. it can.
As described above, the apparatus of Patent Document 1 has a very excellent function in manufacturing an optical element having a high-precision optical function surface.

しかしながら、特許文献1の装置において、複数の成形型を同一の処理室内で同時に処理して、生産性を向上させようとした場合には、それぞれの成形型を載置させる試料台の配列位置や、成形型及び試料台の個体差などに起因して、成形型間に温度差が生じてしまうことがあることが見出された。
特に、複数の成形型を加熱手段からの距離を均等に保った状態で配列しても、その配列の両端に位置する成形型と、その配列の内側に位置する成形型の温度を比較すると、内側に位置する成形型の方が高温になる傾向がある。これは、隣接する成形型や、試料台から受ける熱エネルギー量の相違が一因と考えられる。
However, in the apparatus of Patent Document 1, when an attempt is made to improve the productivity by simultaneously processing a plurality of molds in the same processing chamber, the arrangement position of the sample stage on which each mold is placed, It has been found that temperature differences may occur between the molds due to individual differences between the molds and the sample stage.
In particular, even if a plurality of molds are arranged in a state where the distance from the heating means is kept uniform, when the temperatures of the molds located at both ends of the array and the molds located inside the array are compared, The mold located inside tends to be hotter. This is thought to be due to the difference in the amount of heat energy received from adjacent molds and sample stands.

そして、このような温度差は、従来は問題視されることなく見落とされてきたが、光学素子に要求される精度がますます厳しくなってきているという近年の状況において、成形型間に生じる温度差は、高精度の成形に悪影響を及ぼしてしまうという知見を得るに至った。   Such a temperature difference has been conventionally overlooked without being regarded as a problem, but in the recent situation where the accuracy required for optical elements is becoming increasingly severe, the temperature generated between molds The difference led to the finding that it would adversely affect high precision molding.

すなわち、成形型ごとの成形条件(特に、加熱温度)が異なってしまうと、それぞれの成形型に同じ硝材の成形素材を収容して、同一の光学素子を成形しようとしても、要求される精度が高まるにつれて、一定の品質を備えた光学素子を安定して量産することができなくなってしまう。特に、低分散高屈折率の硝材で光学素子を成形する場合には、プレス温度の許容範囲が極めて狭く、その許容範囲を外れると、カンワレ、クモリ、融着などの不具合が生じて、高精度の成形品を得られなくなってしまう。   That is, if the molding conditions (particularly the heating temperature) for each mold are different, the required accuracy can be obtained even if each molding die contains the same glass material and tries to mold the same optical element. As it increases, it becomes impossible to stably mass-produce optical elements having a certain quality. In particular, when optical elements are molded with low-dispersion and high-refractive-index glass materials, the allowable range of press temperature is extremely narrow. It becomes impossible to obtain the molded product.

このため、高精度の成形を安定に行うためには、成形型間の温度差が生じないようにする対策が必要になってくるが、このような成形型間に生じる温度差を解消させるために、単に、加熱手段の設定温度を調整しても、成形型、及びそれを支持する支持台の配置関係や個数によってバラツキが生じてしまい、温度差を解消するのは非常に困難である。また、加熱手段を成形型や支持台に1対1で対応させて設置すると、装置全体が巨大化するだけでなく、コスト的な不利も増大してしまう。   For this reason, in order to stably perform high-precision molding, it is necessary to take measures to prevent the temperature difference between the molds from occurring, but in order to eliminate such a temperature difference between the molds. In addition, even if the set temperature of the heating means is simply adjusted, variations occur depending on the arrangement relationship and the number of the mold and the support bases that support the mold, and it is very difficult to eliminate the temperature difference. Further, if the heating means is installed in a one-to-one correspondence with the molding die or the support base, not only the entire apparatus is enlarged, but also a cost disadvantage is increased.

デジタルカメラなどの撮像機器や、光ピックアップ装置、携帯端末用小型撮像機器などに用いられる光学素子は、その光学的要求性能が極めて高く、今後、さらなる高性能化が求められてくると思われる。このため、このような光学素子を精密モールドプレスにより高精度に安定して成形するには、成形プロセスの各処理工程における温度管理、特に、複数の成形型を同一の処理室内で同時に処理する際の、成形型の均熱化を精緻に行う必要がある。   Optical elements used in imaging devices such as digital cameras, optical pickup devices, and small-sized imaging devices for portable terminals have extremely high optical performance requirements, and it is expected that further improvements in performance will be required in the future. For this reason, in order to stably mold such an optical element with high precision using a precision mold press, temperature management in each processing step of the molding process, particularly when simultaneously processing a plurality of molding dies in the same processing chamber. Therefore, it is necessary to precisely perform soaking of the mold.

本発明は、上記の事情に鑑みなされたものであり、それぞれに成形素材を収容した複数の成形型を同時に処理して、光学素子をモールド成形するにあたり、各処理工程における成形型の温度を的確に均等化することによって、高精度の光学素子などの成形体を効率良く安定して製造することのできるモールドプレス成形装置、及び光学素子の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and in processing a plurality of molds each containing a molding material simultaneously to mold an optical element, the temperature of the mold in each processing step is accurately determined. It is an object of the present invention to provide a mold press molding apparatus and a method for manufacturing an optical element that can efficiently and stably manufacture a molded body such as a high-precision optical element.

上記目的を達成するため本発明のモールドプレス成形装置は、成形型内に収容された成形素材を、前記成形型ごと加熱して温度制御しながらプレス成形するモールドプレス成形装置であって、前記成形型は、互いに対向する成形面が形成された一対の上型及び下型と、前記上型及び前記下型の水平方向の相互位置を規制する胴型とを備え、前記成形型に対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室と、前記成形型を同時に複数個ずつ前記各処理室に移送させる移送手段と、前記各処理室のうち少なくとも一つの処理室に設けられ、前記成形素材が収容された状態で当該処理室に同時に移送されてくる複数の前記成形型を同時に加熱する加熱手段と、当該処理室内における前記成形型の配列位置に対応させて、前記加熱手段と前記成形型との間の任意の位置に前記加熱手段とともに当該処理室内に取り付けられて配置され、前記加熱手段から発せられた熱エネルギーが、前記成形型に照射されるのを部分的に遮る遮蔽手段とを備えた構成としてある。 Press-molding apparatus of the present invention for achieving the above object, a molding material contained in the mold, a mold press forming apparatus press-forming with the temperature controlled by heating each of the mold, said mold The mold includes a pair of upper mold and lower mold in which molding surfaces facing each other are formed, and a body mold that regulates the mutual position of the upper mold and the lower mold in the horizontal direction . Provided in at least one of the processing chambers, a plurality of processing chambers for performing each process including heating, pressing, and cooling, a transfer means for transferring a plurality of the molds to the respective processing chambers simultaneously. A heating means for simultaneously heating a plurality of the molds that are simultaneously transferred to the processing chamber in a state in which the molding material is accommodated, and the processing unit corresponding to the arrangement position of the molding molds in the processing chamber. It is attached to the processing chamber together with the heating means at an arbitrary position between the means and the mold, and the heat energy emitted from the heating means is partially irradiated to the mold. And a shielding means for shielding.

このような構成を採用した本発明のモールドプレス成形装置によれば、それぞれの成形型に照射される熱エネルギーを部分的に遮ることにより、加熱手段の出力調整だけでは制御するのが困難な僅かな成形型間の温度差を解消して、同等の温度環境下におかれた複数の成形型により、高精度の成形体を効率良く安定して製造することができる。   According to the mold press molding apparatus of the present invention adopting such a configuration, it is difficult to control only by adjusting the output of the heating means by partially blocking the thermal energy irradiated to each mold. A high-precision molded product can be manufactured efficiently and stably by eliminating a temperature difference between the various molding dies and using a plurality of molding dies placed in an equivalent temperature environment.

また、本発明のモールドプレス成形装置は、前記成形型に対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室と、前記成形型を同時に複数個ずつ前記各処理室に移送させる移送手段とを備えることで、各処理室に、成形型を同時に複数ずつ移送して、一つの処理室内に複数の成形型を配列させて同時に同じ処理を施すことが可能となり、生産効率を向上させることができる。 The mold press molding apparatus of the present invention also includes a plurality of processing chambers for performing each process including heating, pressing, and cooling on the mold, and a plurality of the molds are simultaneously transferred to the processing chambers. by providing a transfer means for, in the processing chamber, and transported by a plurality molds simultaneously, one processing chamber are arranged a plurality of molds it is possible to simultaneously apply the same process, production efficiency Can be improved.

また、本発明のモールドプレス成形装置は、前記遮蔽手段として、絶縁性遮蔽部材を前記加熱手段に近接して取り付けた構成とするか、前記遮蔽手段が、前記加熱手段側に配設される絶縁性遮蔽部材と、前記成形型側に配設される金属製遮蔽部材とを有する構成とすることができる。
このような構成とすれば、加熱手段との絶縁を図りつつ、遮熱効果の程度を調整することができる。すなわち、遮蔽手段は、絶縁性遮蔽部材単独とするのを基本構成とし、絶縁性遮蔽部材だけでは遮熱効果が不足する場合に、絶縁性遮蔽部材に金属遮蔽部材を重ねて遮蔽手段を構成するのが好ましい。
In the mold press molding apparatus of the present invention, as the shielding means, an insulating shielding member is attached close to the heating means, or the shielding means is provided on the heating means side. It can be set as the structure which has a property shielding member and the metal shielding member arrange | positioned at the said shaping | molding die side.
With such a configuration, it is possible to adjust the degree of the heat shielding effect while achieving insulation from the heating means. That is, the shielding means is basically composed of the insulating shielding member alone, and the shielding means is configured by stacking the metal shielding member on the insulating shielding member when the heat shielding effect is insufficient only with the insulating shielding member. Is preferred.

また、本発明のモールドプレス成形装置は、前記加熱手段が、前記加熱手段と平行に3個以上並べて配列された前記成形型を同時に加熱できるように設けられているとともに、前記配列の両端に位置する前記成形型に照射される熱エネルギーよりも、前記配列の内側に位置する前記成形型に照射される熱エネルギーの方が小さくなるように、前記遮蔽手段を設けた構成とすることができる。
このような構成とすれば、相対的に温度が高くなる傾向にある配列の内側に位置する成形型の温度上昇を抑制して、加熱手段と平行に配列された複数の成形型の温度を均等化させることができる。
Further, the mold press molding apparatus of the present invention is provided so that the heating means can simultaneously heat three or more of the molding dies arranged in parallel with the heating means, and is positioned at both ends of the arrangement. The shielding means may be provided so that the thermal energy applied to the molds located inside the array is smaller than the thermal energy applied to the molds.
With such a configuration, the temperature rise of the molds located inside the array whose temperature tends to be relatively high is suppressed, and the temperature of the plurality of molds arranged in parallel with the heating means is equalized. It can be made.

また、本発明の成形体の製造方法は、成形型内に収容された成形素材を、前記成形型ごと加熱して温度制御しながらプレス成形する成形体の製造方法であって、前記成形型は、互いに対向する成形面が形成された一対の上型及び下型と、前記上型及び前記下型の水平方向の相互位置を規制する胴型とを備え、前記成形素材が収容された前記成形型に対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室に、前記成形型を同時に複数個ずつ移送させ、前記各処理室のうち少なくとも一つの処理室に設けられた加熱手段によって、前記成形素材が収容された複数の前記成形型を同時に加熱するとともに、前記加熱手段から発せられた熱エネルギーが、前記成形型に照射されるのを部分的に遮る遮蔽手段を、当該処理室内における前記成形型の配列位置に対応させて、前記加熱手段と前記成形型との間の任意の位置に前記加熱手段とともに当該処理室内に取り付けて配置させることにより、前記成形型の各々の温度が均等化するように温度制御しながら前記成形素材をプレス成形する方法としてある。 A method of manufacturing a molded article of the present invention, the molding material contained in the mold, a process for producing a molded article by press molding with the temperature controlled by heating each of the mold, the mold The molding includes a pair of upper and lower molds on which molding surfaces facing each other are formed, and a barrel mold that regulates the mutual position of the upper mold and the lower mold in the horizontal direction, and the molding material is accommodated therein. Heating provided to at least one processing chamber among the processing chambers by transferring a plurality of the molding dies simultaneously to a plurality of processing chambers for performing respective processes including heating, pressing, and cooling on the mold. Means for simultaneously heating a plurality of the molds containing the molding material, and shielding means for partially blocking the heat energy emitted from the heating means from being applied to the mold. In the processing chamber Corresponding to the arrangement position of the molding die, the temperature of each of the molding dies is equalized by being placed in the processing chamber together with the heating means at an arbitrary position between the heating means and the molding die. This is a method of press-molding the molding material while controlling the temperature so that the temperature is reduced.

このような方法とした本発明の成形体の製造方法によれば、温度が高い成形型については、加熱手段からの熱エネルギーの照射を部分的に遮ることで成形型間の温度差を解消し、成形型の各々の温度が均等化するように温度制御して、複数の成形型に対して同一の温度条件でプレス成形を行うことが可能となる。   According to the method for producing a molded body of the present invention, which has such a method, for a mold having a high temperature, the temperature difference between the molds is eliminated by partially blocking the irradiation of thermal energy from the heating means. It is possible to perform press molding on the plurality of molding dies under the same temperature condition by controlling the temperature so that the temperatures of the molding dies are equalized.

また、本発明の成形体の製造方法は、前記成形型を同時に複数個ずつ移送しながら、前記加熱手段により前記成形型を加熱する加熱処理と、加熱によって軟化した前記成形素材を押圧するプレス処理と、前記成形型を冷却する冷却処理を含む各処理を順次施していく方法とすることができる。
このような方法とすれば、複数の成形型を同一の処理室内で同時に処理して、生産性を向上させつつも、高精度の成形を安定して行うことができる。
The method for producing a molded body of the present invention includes a heat treatment for heating the molding die by the heating means while simultaneously transferring a plurality of the molding dies, and a press treatment for pressing the molding material softened by heating. And a method of sequentially performing each process including a cooling process for cooling the mold.
With such a method, a plurality of molds can be simultaneously processed in the same processing chamber to improve productivity and stably perform high-precision molding.

また、本発明の成形体の製造方法は、成形型の各々の温度が均等化するように温度制御するに際して、前記遮蔽手段の大きさ、厚さ、材質、固定位置の何れか一以上を調整して、前記成形型の各々の温度を均等化することができる。そして、遮蔽手段の配置などを具体的に決定するに際しては、前記加熱手段により加熱される前記成形型の各々の温度差を予め測定しておき、その測定結果に基づいて、相対的に温度が高い成形型に照射される熱エネルギーが低減するように前記遮蔽手段を設けることによって、前記成形型の各々の温度を均等化するようにしてもよい。   In the method for producing a molded body of the present invention, when controlling the temperature so that the temperatures of the molding dies are equalized, any one or more of the size, thickness, material, and fixing position of the shielding means is adjusted. Thus, the temperatures of the molds can be equalized. Then, when determining the arrangement of the shielding means, etc., the temperature difference of each of the molds heated by the heating means is measured in advance, and the temperature is relatively determined based on the measurement result. You may make it equalize the temperature of each said shaping | molding die by providing the said shielding means so that the heat energy irradiated to a high shaping | molding die may be reduced.

以上のように、本発明によれば、加熱手段の出力調整だけでは制御するのが困難な、僅かな成形型間の温度差を解消することができ、同等の温度環境下におかれた複数の成形型により、高精度の成形体を効率良く安定して製造することができる。   As described above, according to the present invention, it is possible to eliminate a slight temperature difference between the molds, which is difficult to control only by adjusting the output of the heating means, and a plurality of parts placed in an equivalent temperature environment. With this molding die, a highly accurate molded product can be produced efficiently and stably.

以下、本発明の好ましい実施形態について、図面を参照して説明する。
なお、図1は、本発明に係るモールドプレス成形装置(以下、単に「成形装置」という)の実施形態を示す概略平面図であり、図2は、図1のA−A断面に相当する装置内部の説明図である。また、図3は、図1のB−B断面に相当する装置内部の説明図であり、図中矢印で成形型Mの移送方向を示している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view showing an embodiment of a mold press molding apparatus (hereinafter simply referred to as “molding apparatus”) according to the present invention, and FIG. 2 is an apparatus corresponding to the AA cross section of FIG. It is explanatory drawing inside. FIG. 3 is an explanatory diagram of the inside of the apparatus corresponding to the BB cross section of FIG. 1, and the transfer direction of the mold M is indicated by an arrow in the drawing.

本実施形態の成形装置は、成形型M内に収容された、ガラスプリフォームなどの成形素材Pを、成形型Mごと加熱して温度制御しながらプレス成形することにより、所望の形状に成形された光学素子などの成形体を得るためのものである。   The molding apparatus of the present embodiment is molded into a desired shape by press-molding a molding material P, such as a glass preform, contained in the molding die M while heating the molding die M and controlling the temperature. For obtaining molded articles such as optical elements.

本実施形態で用いる成形型Mは、成形素材Pを所望の形状にプレス成形できるものであれば、その具体的な構成は特に制限されない。例えば、互いに対向する成形面が形成された一対の上型10及び下型20と、上型10及び下型20の水平方向の相互位置を規制する胴型30とを備え、下型20と、下型20に対して相対的に近接、離間するように胴型30により摺動ガイドされる上型10との間で、成形素材Pをプレス成形するようにしたものを用いることができる。   If the shaping | molding die M used by this embodiment can press-mold the shaping | molding raw material P in a desired shape, the specific structure will not be restrict | limited in particular. For example, it includes a pair of upper mold 10 and lower mold 20 on which molding surfaces facing each other are formed, and a barrel mold 30 that regulates the mutual position of the upper mold 10 and the lower mold 20 in the horizontal direction. A material in which the molding material P is press-molded between the upper die 10 slidably guided by the barrel die 30 so as to be relatively close to and away from the lower die 20 can be used.

また、本実施形態の成形装置は、成形型Mに対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室と、成形型Mを同時に複数個ずつ各処理室に移送させる移送手段とを有するようにして、成形素材Pが収容された成形型Mを移送しながら、順次、加熱処理、プレス処理、冷却処理などの各処理を施すことによって、プレス成形が行われるようにすることができる。   In addition, the molding apparatus according to the present embodiment includes a plurality of processing chambers for performing processing including heating, pressing, and cooling on the mold M, and a transfer for transferring a plurality of molding dies M to the processing chambers simultaneously. The press molding is performed by sequentially performing each process such as a heating process, a pressing process, and a cooling process while transferring the molding die M in which the molding material P is accommodated. be able to.

ここで、図1に示す成形装置は、ステンレス、又はその他の耐熱性を有する金属で主に形成され、例えば、円筒形の上下開口部を密閉した形状とすることにより、内部を非酸化性ガス雰囲気(不活性ガス雰囲気)に保持できる気密構造とされた、チャンバ1を備えている。そして、このチャンバ1内には、周方向に沿ってほぼ等間隔に並べて配置された、取出・挿入室P1と、処理室P2〜P8とが設けられている。   Here, the molding apparatus shown in FIG. 1 is mainly formed of stainless steel or other heat-resistant metal. For example, the cylindrical upper and lower openings are sealed to form a non-oxidizing gas inside. A chamber 1 having an airtight structure that can be maintained in an atmosphere (inert gas atmosphere) is provided. In the chamber 1, there are provided an extraction / insertion chamber P1 and processing chambers P2 to P8 that are arranged at almost equal intervals along the circumferential direction.

図示する例において、P1は取出・挿入室である。この取出・挿入室P1では、処理室P2〜P8の設定環境を損なわないようにして、成形を終えた成形型Mの取り出し作業と、新たに成形に供される成形素材Pを収容した成形型Mの挿入作業とが行われる。   In the illustrated example, P1 is an extraction / insertion chamber. In this take-out / insertion chamber P1, the setting environment of the processing chambers P2 to P8 is not impaired, and the mold M that has been molded is taken out, and the mold that contains the molding material P that is newly used for molding. M is inserted.

また、P2は第一加熱室、P3は第二加熱室、P4は第三加熱室(又は均熱室)である。これらは総称して加熱部ともいい、成形型Mに対して加熱処置が施される。P5はプレス室である。このプレス室P5では、加熱部での加熱処理によってプレス成形に適した温度とされた成形型Mに対し、プレス手段によりプレス荷重を印加するプレス処理が施される。
P6は第一徐冷室、P7は第二徐冷室、P8は急冷室である。これらは総称して冷却部ともいい、プレス荷重が印加された後の成形型Mに対して冷却処理が施されるが、急冷室P8には、冷却ガスによる急冷機構を設けておき、成形素材Pをプレス成形することによって所望の形状とされた成形体が、大気開放に支障のない温度となるまで成形型Mを冷却するようにしておくのが好ましい。
これらの処理室P2〜P8は、それぞれの処理に適した温度にそれぞれ独立に温度制御されるとともに、各処理室内の温度を所定温度に保つために、シャッターS1〜S6によって区画されている。
P2 is a first heating chamber, P3 is a second heating chamber, and P4 is a third heating chamber (or a soaking chamber). These are also collectively referred to as a heating unit, and a heating treatment is performed on the mold M. P5 is a press room. In the press chamber P5, a pressing process is performed in which a pressing load is applied by a pressing means to the mold M that has a temperature suitable for press molding by the heating process in the heating unit.
P6 is a first annealing chamber, P7 is a second annealing chamber, and P8 is a quenching chamber. These are also collectively referred to as a cooling unit, and a cooling process is performed on the mold M after the press load is applied. The quenching chamber P8 is provided with a quenching mechanism using a cooling gas to form a molding material. It is preferable to cool the mold M until the molded body that has been formed into a desired shape by press-molding P reaches a temperature that does not hinder atmospheric release.
These processing chambers P2 to P8 are independently controlled to a temperature suitable for each processing, and are partitioned by shutters S1 to S6 in order to keep the temperature in each processing chamber at a predetermined temperature.

また、図示する例では、成形型Mを支持して移送する支持台3が、図1中矢印方向に回転する回転駆動手段に連結された、回転テーブル2に取り付けられている。回転テーブル2は、チャンバ1の内径より小さい径の円板状とし、その回転中心がチャンバ1の中心と一致するように、チャンバ1に対して回転自在に取り付けられる。   In the illustrated example, a support table 3 that supports and transfers the mold M is attached to a turntable 2 that is connected to a rotation driving means that rotates in the direction of the arrow in FIG. The turntable 2 has a disk shape with a diameter smaller than the inner diameter of the chamber 1 and is rotatably attached to the chamber 1 so that the center of rotation coincides with the center of the chamber 1.

さらに、回転テーブル2は、特に図示しないが、インデックスマシンを備えた制御手段を中央に備えており、回転テーブル2が一定時間ごとに回転と停止を繰り返して、所定の回転角度分だけ間歇的に回転することにより、成形型Mを支持する支持台3が、隣設する処理室間を移動するようになっている。そして、このときの一定時間、すなわち、回転テーブル2の間歇的な回転により、支持台3が移動を開始してから、一旦停止して次の移動が開始されるまでの時間が、成形サイクルタイムとなる。   Further, although not particularly shown, the rotary table 2 includes a control means having an index machine in the center, and the rotary table 2 repeats rotation and stop at regular intervals, and intermittently by a predetermined rotation angle. By rotating, the support base 3 that supports the mold M is moved between adjacent processing chambers. The fixed time at this time, that is, the time from when the support base 3 starts to move due to intermittent rotation of the turntable 2 until the next movement is started is the molding cycle time. It becomes.

なお、本実施形態では、回転移送式の成形装置の例を図示して説明するが、成形型Mの移送手段は、直線動作を主とする公知の駆動手段に連結して構成することもでき、その具体的な構成は特に限定されない。また、取出・挿入室P1、処理室P2〜P8の配置も図示する例には限定されず、成形型Mの移送手段の構成に応じて種々変更することができる。
さらに、成形素材Pの組成や、得ようとする光学素子などの成形体の形状にあわせて、加熱、プレス、冷却の各処理を最適化するために、例えば、加熱室を四つにしたり、プレス室を二つにしたり、徐冷室を三つにしたりしてもよい。生産効率を向上させるために、同数の加熱室、プレス室、徐冷室を並設し、異なる温度条件、異なる加圧条件を要する複数種類のプレス成形を同時並行的に行うようにすることもできる。
In this embodiment, an example of a rotary transfer type molding apparatus is illustrated and described. However, the transfer means of the mold M can be configured to be connected to a known drive means mainly for linear operation. The specific configuration is not particularly limited. Further, the arrangement of the take-out / insertion chamber P1 and the processing chambers P2 to P8 is not limited to the illustrated example, and can be variously changed according to the configuration of the transfer means of the mold M.
Furthermore, in order to optimize each treatment of heating, pressing, and cooling according to the composition of the molding material P and the shape of the molded body such as the optical element to be obtained, for example, four heating chambers, There may be two press chambers or three slow cooling chambers. In order to improve production efficiency, the same number of heating chambers, press chambers, and slow cooling chambers may be provided side by side, and multiple types of press molding requiring different temperature conditions and different pressurization conditions may be performed simultaneously. it can.

図示する例において、支持台3は、鉛直方向に起立して、上端側が成形型Mを支持する支持部3bとされた、円筒形状の起立部3bを備えている。そして、共通の基台3cに固定された四つの支持台3が、回転テーブル2の外周側に形成された穴2aに基台3cを嵌合させることによって、回転テーブル2に取り付けられている。
このように、複数(図示する例では四つ)の支持台3を共通の基台3cに固定して、加熱処理、プレス処理、冷却処理の各処理が施されるそれぞれの処理室を、ひとまとまりで移動できるようにすることで、各処理室に、成形型Mを同時に複数ずつ移送して、一つの処理室内に複数の成形型Mを配列させて同時に同じ処理を施すことが可能となり、生産効率を向上させることができる。
In the example shown in the drawing, the support base 3 includes a cylindrical upright portion 3b that stands in the vertical direction and whose upper end side is a support portion 3b that supports the mold M. The four support bases 3 fixed to the common base 3 c are attached to the turntable 2 by fitting the base 3 c into the holes 2 a formed on the outer peripheral side of the turntable 2.
As described above, a plurality of (four in the illustrated example) support bases 3 are fixed to a common base 3c, and each processing chamber in which each of the heat treatment, the press treatment, and the cooling treatment is performed is provided. By making it possible to move as a unit, it is possible to transfer a plurality of molding dies M to each processing chamber at the same time, arrange a plurality of molding dies M in one processing chamber, and simultaneously perform the same processing, Production efficiency can be improved.

なお、取出・挿入室P1から装置内に挿入された成形型Mは、回転テーブル2に取り付けられた支持台3に支持され、成形素材(又は成形体)Pを収容した状態で、常時、非酸化性ガス雰囲気下に環境設定された処理室P2〜P8に、順次移送されるが、便宜的に、図示する例において同時に移送される四つの成形型Mにつき、移送方向先頭から順に、M1,M2,M3,M4とする。   The molding die M inserted into the apparatus from the take-out / insertion chamber P1 is supported by the support base 3 attached to the rotary table 2 and is always non-sticky in a state where the molding material (or molded body) P is accommodated. Although sequentially transferred to the processing chambers P2 to P8 that are set in an oxidizing gas atmosphere, for convenience, in the example shown in the drawing, the four molds M that are transferred at the same time, M1, Let M2, M3, and M4.

また、図示する例において、第一加熱室P2、第二加熱室P3、第三加熱室P4、プレス室P5、第一徐冷室P6、及び第二徐冷室P7の各処理室は、ケース7によって周囲が取り囲まれており、このケース7は、図示しない適当な手段によってチャンバ1に固定されている。また、図2に示すように、ケース7の底壁7aには、成形型Mを移送する際の支持台3の移動通路となる周方向に延びるスリット7bが形成されており、このスリット7bを通って、各処理室内に、支持台3が入り込むようになっている。   In the illustrated example, each of the first heating chamber P2, the second heating chamber P3, the third heating chamber P4, the press chamber P5, the first annealing chamber P6, and the second annealing chamber P7 is a case. The case 7 is fixed to the chamber 1 by an appropriate means (not shown). 2, the bottom wall 7a of the case 7 is formed with a slit 7b extending in the circumferential direction that serves as a movement path of the support base 3 when the mold M is transferred. The support table 3 is inserted into each processing chamber.

ここで、図2は、第一加熱室P2の内部を代表して示しているが、第二加熱室P3、第三加熱室P4、第一徐冷室P6、第二徐冷室P7は、設定温度や、後述する遮蔽手段5の配置などが異なるだけで、第一加熱室P2と共通の構造とすることができる。また、プレス室P5も、プレス手段を備えている以外は、他の処理室と共通の構造とすることができる。   Here, FIG. 2 shows the inside of the first heating chamber P2 as a representative, but the second heating chamber P3, the third heating chamber P4, the first annealing chamber P6, and the second annealing chamber P7 are: A structure common to the first heating chamber P2 can be obtained only by changing the set temperature, the arrangement of the shielding means 5 described later, and the like. The press chamber P5 can also have a common structure with other processing chambers except that it includes a pressing means.

図示する例において、処理室P2〜P7の周囲を取り囲むケース7の内側側面には、成形型Mの移送路に面して、互いに対向するように加熱手段8が設置されている。また、ケース7内には、加熱手段8から発せられた熱エネルギーを反射して、その熱エネルギーを効率よく成形型Mに与えることができるように、ケース7の内面を覆うリフレクタ9を配設しておくことができる。   In the example shown in the figure, heating means 8 is installed on the inner side surface of the case 7 surrounding the processing chambers P2 to P7 so as to face the transfer path of the mold M and to face each other. In addition, a reflector 9 that covers the inner surface of the case 7 is disposed in the case 7 so that the heat energy emitted from the heating means 8 is reflected and the heat energy can be efficiently applied to the mold M. Can be kept.

処理室P2〜P7は、加熱手段8の出力を調整することで、各々の設定温度に維持されるが、例えば、支持台3の先端に熱電対を配し、その導線を回転テーブル2の回転軸に導いて、支持台3の先端部、すなわち、成形型Mの底部の温度を測定し、その測定結果に基づいて、各処理室に設置された加熱手段8の出力を制御することができる。   The processing chambers P <b> 2 to P <b> 7 are maintained at their respective set temperatures by adjusting the output of the heating means 8. For example, a thermocouple is arranged at the tip of the support base 3, and the conductive wire is rotated by the turntable 2. The temperature of the tip of the support base 3, that is, the bottom of the mold M, is measured by guiding to the shaft, and the output of the heating means 8 installed in each processing chamber can be controlled based on the measurement result. .

加熱手段8は、処理室内に移送されてきた複数の成形型Mを同時に加熱することができるものであれば、その具体的な構成は特に制限されない。例えば、抵抗加熱によるものなどを任意に用いることができる。抵抗加熱による場合には、図3、及び図4に示すように、帯状の抵抗加熱発熱体81,82を、ケース7の内側側面に沿って上下方向に数回蛇行した状態で、対向する側面に互いにほぼ対称に取り付けるのが好ましい。
なお、図4は、第一加熱室P1の内部を上方からみた概略平面図である。また、図中8aは、抵抗加熱発熱体81,82に電圧を印加する電極である。
The specific configuration of the heating unit 8 is not particularly limited as long as it can simultaneously heat a plurality of molds M transferred into the processing chamber. For example, resistance heating or the like can be arbitrarily used. In the case of resistance heating, as shown in FIG. 3 and FIG. 4, the opposing side surfaces in a state where the strip-like resistance heating heating elements 81 and 82 meander several times in the vertical direction along the inner side surface of the case 7. It is preferable to attach them substantially symmetrically to each other.
FIG. 4 is a schematic plan view of the inside of the first heating chamber P1 as viewed from above. In the figure, 8a is an electrode for applying a voltage to the resistance heating heating elements 81 and 82.

本実施形態の成形装置にあっては、加熱手段8とともに、加熱手段8から発せられた熱エネルギーが、成形型Mに照射されるのを部分的に遮る遮蔽手段5を併せて備えている。このような遮蔽手段5を設ける位置は、プレス処理が施される直前の成形型Mの温度に応じて決定することができ、少なくとも一つの処理室において、加熱手段8と成形型Mとの間の任意の位置に配置することができる。
例えば、図示する例では、進行方向内側に位置する成形型M2,M3への熱エネルギーの照射が部分的に遮られるように、遮蔽手段5としての絶縁性遮蔽板5a、及び金属遮蔽板を配置するとともに、進行方向最後尾に位置する成形型M4への熱エネルギーの照射が部分的に遮られるように、遮蔽手段5としての絶縁性遮蔽板5aを配置している。
このように、本実施形態の成形装置は、処理室内における成形型Mの配列位置に対応させて、加熱手段8と成形型Mとの間の任意の位置に加熱手段8とともに当該処理室内に取り付けられて配置され、加熱手段8から発せられた熱エネルギーが、成形型Mに照射されるのを部分的に遮る遮蔽手段5を備えている。
In the molding apparatus according to the present embodiment, the heating unit 8 and the shielding unit 5 that partially shields the thermal energy emitted from the heating unit 8 from being applied to the molding die M are also provided. The position where such a shielding means 5 is provided can be determined according to the temperature of the molding die M immediately before the pressing process is performed. In at least one processing chamber, the position between the heating means 8 and the molding die M can be determined. Can be arranged at any position.
For example, in the illustrated example, the insulating shielding plate 5a as the shielding means 5 and the metal shielding plate are disposed so that the thermal energy irradiation to the molds M2 and M3 located inside the traveling direction is partially blocked. At the same time, the insulating shielding plate 5a as the shielding means 5 is disposed so that the thermal energy irradiation to the mold M4 located at the end in the traveling direction is partially blocked.
As described above, the molding apparatus according to the present embodiment is attached to the processing chamber together with the heating unit 8 at an arbitrary position between the heating unit 8 and the molding die M in accordance with the arrangement position of the molding die M in the processing chamber. The shielding means 5 is arranged to partially shield the thermal energy emitted from the heating means 8 from being applied to the mold M.

また、図示する例において、遮蔽手段5は、第一加熱室P2、第二加熱室P3、第三加熱室P4の全てが備えるようにしてもよいが、第一加熱室P2では、通常、成形型Mに対する急熱処理が行われ、このような加熱初期の段階では、成形型Mや、支持台3、さらには処理室内の温度が安定しておらず、また、支持台3から成形型Mへの輻射伝熱の影響も無視できないため、遮蔽手段5を備えることによる効果が大きい傾向にある。一方、加熱処理が進んだ第三加熱室(均熱室)P4では、成形型Mとともに支持台3もほぼプレス温度付近の温度となっており、処理室内の温度も安定してきているため、遮蔽手段5を備えることによる効果が小さい傾向にある。
したがって、遮蔽手段5は、加熱初期の段階にある処理室が備えるほど、その効果が大きくなり、図示する例では、少なくとも第一加熱室P2に備えるようにするのが好ましい。
In the illustrated example, the shielding means 5 may be provided in all of the first heating chamber P2, the second heating chamber P3, and the third heating chamber P4. A rapid heat treatment is performed on the mold M, and in such an initial stage of heating, the temperature of the mold M, the support table 3 and the processing chamber is not stable, and the support table 3 moves to the mold M. Since the influence of radiant heat transfer cannot be ignored, the effect of providing the shielding means 5 tends to be large. On the other hand, in the third heating chamber (soaking chamber) P4 in which the heat treatment has progressed, the support table 3 as well as the mold M is at a temperature near the press temperature, and the temperature in the processing chamber is also stabilized, so that the shielding is performed. The effect of providing the means 5 tends to be small.
Therefore, the shielding means 5 becomes more effective as the processing chamber in the initial stage of heating is provided, and in the illustrated example, it is preferable to provide at least the first heating chamber P2.

ここで、抵抗加熱発熱体81,82には高電圧が印加されているため、仮に、導電性の部材を抵抗加熱発熱体81,82に近接して取り付けると、抵抗加熱発熱体81,82と接触してしまったような場合に、当該部材自体が発熱して遮熱効果が得られなくなったり、隣接する抵抗加熱発熱体81,82どうしが短絡して加熱手段8を損傷したりするというような不具合が考えられる。
一方、金属材は、絶縁性の部材に比べて遮熱効果を高めることができ、特に、銀色系の金属材は、発熱体からの輻射熱を反射する熱反射性に優れており、板厚を薄くしても充分な遮熱効果を得ることができる。
Here, since a high voltage is applied to the resistance heating heating elements 81 and 82, if a conductive member is attached in the vicinity of the resistance heating heating elements 81 and 82, the resistance heating heating elements 81 and 82 and In such a case, the member itself generates heat and the heat shielding effect cannot be obtained, or the adjacent resistance heating heating elements 81 and 82 are short-circuited to damage the heating means 8. Possible malfunction.
On the other hand, the metal material can enhance the heat shielding effect as compared with the insulating member. In particular, the silver-based metal material is excellent in heat reflectivity for reflecting the radiant heat from the heating element, and the plate thickness is reduced. Even if it is made thin, a sufficient heat shielding effect can be obtained.

したがって、本実施形態にあっては、加熱手段8との絶縁を図るために、絶縁性遮蔽板5aを加熱手段8に近接して取り付け、その外側に遮熱効果の高い金属遮蔽板5bを取り付けるようにするのが好ましい。
すなわち、絶縁性遮蔽板5aや、金属遮蔽板5bは、加熱手段8との接触などによる不具合が生じない限り、単独で遮蔽手段5を構成するようにしてもよいが、上記した理由から、絶縁性遮蔽板5a単独とするのを基本構成とし、絶縁性遮蔽板5aだけでは遮熱効果が不足する場合に、絶縁性遮蔽板5aからはみ出さない程度の大きさとされた金属遮蔽板5bを、絶縁性遮蔽板5aに重ねて遮蔽手段5を構成するのが好ましい。
Therefore, in this embodiment, in order to insulate from the heating means 8, the insulating shielding plate 5a is attached close to the heating means 8, and the metal shielding plate 5b having a high heat shielding effect is attached to the outside thereof. It is preferable to do so.
That is, the insulating shielding plate 5a and the metal shielding plate 5b may constitute the shielding means 5 alone as long as there is no problem due to contact with the heating means 8 or the like. The metal shielding plate 5b having a size that does not protrude from the insulating shielding plate 5a when the insulating shielding plate 5a alone is a basic configuration and the heat shielding effect is insufficient only by the insulating shielding plate 5a. It is preferable that the shielding means 5 is configured to overlap the insulating shielding plate 5a.

本実施形態において、絶縁性遮蔽板5aとしては、絶縁性、及び耐熱性を有するアルミナ製遮蔽板などのセラミック材を用いることができ、その板厚は、0.5〜2.0mm程度とすることができる。また、金属遮蔽体5bとしては、耐熱性を有するステンレス材やアルミ材などの銀色系の金属材を用いることができ、その板厚は、0.5〜2.0mm程度とすることができる。
なお、遮蔽手段5を構成するこれらの部材5a,5bは、例えば、加熱手段8をケース7の内側側面に設置するに際して、加熱手段8を支持する碍子を固定しているねじなどの固定具を共通に利用して取り付けることができる。
In this embodiment, as the insulating shielding plate 5a, a ceramic material such as an insulating shielding plate having heat resistance can be used, and the thickness thereof is about 0.5 to 2.0 mm. be able to. Further, as the metal shield 5b, a silver metal material such as a heat-resistant stainless steel material or aluminum material can be used, and the thickness thereof can be about 0.5 to 2.0 mm.
The members 5a and 5b constituting the shielding means 5 are, for example, a fixing tool such as a screw for fixing an insulator for supporting the heating means 8 when the heating means 8 is installed on the inner side surface of the case 7. It can be installed by using in common.

図示する成形装置は、以上のような構成を備え、処理室P2〜P7の温度は、加熱手段8の出力を調整することで、各々について設定された温度に維持されるが、生産効率を向上させるために、各処理室に、成形型Mを同時に複数ずつ移送し、一つの処理室内に複数の成形型Mを配列させて同時に同じ処理を施すようにした場合には、処理室内における成形型Mの配列位置などによって、成形型間の温度差が生じることがある。   The illustrated molding apparatus has the above-described configuration, and the temperature of the processing chambers P2 to P7 is maintained at the temperature set for each by adjusting the output of the heating means 8, but the production efficiency is improved. Therefore, when a plurality of molding dies M are simultaneously transferred to each processing chamber and a plurality of molding dies M are arranged in one processing chamber to simultaneously perform the same processing, the molding dies in the processing chambers Depending on the arrangement position of M, a temperature difference between the molds may occur.

具体的には、複数の成形型Mを加熱手段8からの距離を均等に保った状態で配列しても、隣接する成形型Mや、支持台3から受ける熱エネルギー量の相違などにより、その配列の両端に位置する成形型よりも内側に位置する成形型の方が高温になる傾向がある。
さらに、個々の処理室内の温度は、隣接する処理室の設定温度にも影響を受け、隣接する処理室が相対的に高い温度に設定されていれば、その処理室に近い部分では温度が高くなる傾向にある。逆に、隣接する処理室の温度が相対的に低く設定されていれば、その処理室に近い部分では温度が低くなる傾向にある。そして、このような処理室内の温度勾配は、各処理室間を同時に移送される複数の成形型Mの温度差に反映される。
Specifically, even if a plurality of molding dies M are arranged in a state where the distance from the heating means 8 is kept uniform, due to the difference in the amount of heat energy received from the adjacent molding dies M or the support 3, etc. There is a tendency that the molds located on the inner side are hotter than the molds located at both ends of the array.
Furthermore, the temperature in each processing chamber is also affected by the set temperature of the adjacent processing chamber, and if the adjacent processing chamber is set to a relatively high temperature, the temperature is high in the portion close to that processing chamber. Tend to be. On the contrary, if the temperature of the adjacent processing chamber is set to be relatively low, the temperature tends to be low in a portion near the processing chamber. Such a temperature gradient in the processing chamber is reflected in a temperature difference between the plurality of molds M that are simultaneously transferred between the processing chambers.

本実施形態によれば、加熱手段8からの熱エネルギーを部分的に遮る遮蔽手段5を介在させ、この遮蔽手段5の大きさ、厚さ、材質、固定位置のいずれか一つ以上を調整することにより、温度が高い成形型Mについては、加熱手段8からの熱エネルギーの照射を部分的に遮ることで成形型間の温度差を解消し、成形型Mの各々の温度が均等化するように温度制御して、複数の成形型Mに収容された成形素材に対して同一の温度条件でプレス成形を行うことが可能となる。   According to this embodiment, the shielding means 5 that partially shields the heat energy from the heating means 8 is interposed, and any one or more of the size, thickness, material, and fixed position of the shielding means 5 is adjusted. Thus, for the mold M having a high temperature, the temperature difference between the molds is eliminated by partially blocking the irradiation of the heat energy from the heating means 8 so that the temperatures of the molds M are equalized. Thus, press molding can be performed on the molding material accommodated in the plurality of molding dies M under the same temperature condition.

例えば、加熱手段8と平行に3個以上並べて配列された成形型Mを同時に加熱する場合には、この配列の内側に位置する成形型Mの温度が相対的に高くなる傾向にあり、この場合には、配列の両端に位置する成形型Mに照射される熱エネルギーよりも、配列の内側に位置する成形型Mに照射される熱エネルギーの方が小さくなるように遮蔽手段5を設ければよい。また、遮蔽手段5の具体的な配置は、遮蔽手段5を設けない状態で成形型Mの温度のばらつき(温度差)を予め測定しておき、その測定結果に基づいて、相対的に温度が高い成形型Mに照射される熱エネルギーを低減させ、成形型Mの各々の温度が均等化するような配置とすることができる。   For example, when three or more molding dies M arranged in parallel with the heating means 8 are heated at the same time, the temperature of the molding dies M located inside the arrangement tends to be relatively high. If the shielding means 5 is provided so that the thermal energy irradiated to the mold M located inside the array is smaller than the thermal energy irradiated to the mold M positioned at both ends of the array. Good. The specific arrangement of the shielding means 5 is such that the temperature variation (temperature difference) of the mold M is measured in advance without the shielding means 5 being provided, and the temperature is relatively determined based on the measurement result. The heat energy irradiated to the high mold M can be reduced so that the temperatures of the molds M are equalized.

また、本実施形態にあっては、加熱手段8として、図5、及び図6に示すように、成形型Mの移送方向に沿って複数(図示する例では二対)の抵抗加熱発熱体81a,81b,82a,82bを設けることもできる。このようにすれば、遮蔽手段5と組み合わせつつ、抵抗加熱発熱体81a,81b,82a,82bの出力を独自に制御することで、成形型間の温度差をより確実に解消し、成形型Mの各々の温度をよりいっそう均等化させることができる。
なお、図5、及び図6は、加熱手段8の他の例を示す説明図であり、それぞれ前述した加熱手段の例を示す図3、及び図4に対応する。
In the present embodiment, as the heating means 8, a plurality of (two pairs in the illustrated example) resistance heating heating elements 81a along the transfer direction of the mold M as shown in FIGS. , 81b, 82a, 82b can be provided. In this way, the temperature difference between the molds can be more reliably eliminated by uniquely controlling the outputs of the resistance heating elements 81a, 81b, 82a, 82b in combination with the shielding means 5, and the mold M It is possible to further equalize the temperature of each.
5 and 6 are explanatory views showing other examples of the heating means 8, and correspond to FIGS. 3 and 4 showing examples of the heating means described above, respectively.

以上のように、本実施形態の成形装置は、複数の成形型Mを同時に加熱する加熱手段8と、成形型Mへの熱エネルギーの照射を部分的に遮る遮蔽手段5とを一体的に固定して設けてあるため、成形型Mを移送する移送式の成形装置であっても、順次移送されてくる複数の成形型Mに対して一定の加熱処理を施すことができる。さらに、移送されてくる成形型Mや、これを支持する支持台3と、遮蔽手段5とは、所定の距離が保たれているので、両者が干渉し合うといったトラブルを未然に防止できる。
さらに、本実施形態の成形装置によれば、複数の成形型Mに対して同一の温度条件でプレス成形を行うことができるため、それぞれの成形型Mについて、同じ硝種による光学素子の多数個取りの生産が可能となり、また、同じ硝種であれば形状の異なる光学素子を多数同時に生産することも可能となる。
As described above, the molding apparatus according to the present embodiment integrally fixes the heating unit 8 that simultaneously heats the plurality of molding dies M and the shielding unit 5 that partially blocks the irradiation of the thermal energy to the molding dies M. Therefore, even if it is a transfer-type molding apparatus that transfers the mold M, a constant heat treatment can be performed on the plurality of molds M that are sequentially transferred. Furthermore, since the mold M transferred, the support table 3 that supports the mold M, and the shielding means 5 are maintained at a predetermined distance, it is possible to prevent a trouble such that they interfere with each other.
Furthermore, according to the molding apparatus of the present embodiment, a plurality of molding dies M can be press-molded under the same temperature condition, so that a large number of optical elements of the same glass type can be obtained for each of the molding dies M. It is also possible to produce a large number of optical elements having different shapes at the same time if the same glass type is used.

次に、具体的な実施例を挙げて、本発明をより詳細に説明する。   Next, the present invention will be described in more detail with reference to specific examples.

[実施例1]
まず、遮蔽手段5が配置されていない以外は、処理室P2〜P5の内部構造が、図3、及び図4に示す例と同様とされた既存の成形装置において、共通の基台3cに固定された四つの支持台3のそれぞれに、成形素材Pを収容した成形型M1〜M4を支持させて、同時に、第一加熱室P2、第二加熱室P3、均熱室P4、プレス室P5へ順次移送しながらプレス成形を行った。
なお、成形素材Pとして、両凸曲面形状に予備成形した光学ガラス(転移温度:500℃)を使用した。
[Example 1]
First, except that the shielding means 5 is not arranged, the internal structure of the processing chambers P2 to P5 is fixed to a common base 3c in an existing molding apparatus that is the same as the example shown in FIGS. Each of the four support bases 3 is made to support the molding dies M1 to M4 containing the molding material P, and simultaneously to the first heating chamber P2, the second heating chamber P3, the soaking chamber P4, and the press chamber P5. Press molding was performed while sequentially transferring.
As the molding material P, optical glass (transition temperature: 500 ° C.) preformed into a biconvex curved surface shape was used.

このとき、プレス室P5におけるプレス直前の各成形型M1〜M4の温度を測定したところ、図7に示す結果となった。この結果から、成形型M1〜M4の最大温度差は9℃もあり、成形型M1を基準にするとM2,M3,M4の温度が相対的に高いことが判った。
また、さらに製造プロセスを続け、プレス処理、冷却処理を行い、各成形型M1〜M4からプレス成形品を取り出してこれらを観察したところ、その肉厚に大きなバラツキが見られた。
At this time, when the temperature of each mold M1 to M4 immediately before pressing in the press chamber P5 was measured, the result shown in FIG. 7 was obtained. From this result, it was found that the maximum temperature difference between the molds M1 to M4 is 9 ° C., and the temperatures of M2, M3, and M4 are relatively high when the mold M1 is used as a reference.
Furthermore, when the manufacturing process was continued, press treatment and cooling treatment were performed, and press molded products were taken out from the respective molds M1 to M4 and observed. As a result, a large variation in the thickness was observed.

ついで、上記の測定結果に基づいて、図3、及び図4に示す例のように、遮蔽手段5を第一加熱室P2に固定配置した。
すなわち、成形型M2,M3に対しては、アルミナ製の絶縁性遮蔽板5aと、ステンレス製の金属遮蔽板5bを1枚ずつ内側と外側にそれぞれ装着した。このとき、絶縁性遮蔽板5aと金属遮蔽板5bとの間隔は0.1mmとした。また、成形型M4の温度が成形型M2,M3より低いことから、成形型M4に対する遮蔽効果が相対的に低減するように、成型型M4に対しては、アルミナ製の絶縁性遮蔽板5aを単独で配置した。
Next, based on the above measurement results, the shielding means 5 was fixedly arranged in the first heating chamber P2 as in the example shown in FIGS.
That is, for the molds M2 and M3, an insulating insulating plate 5a made of alumina and a metal shielding plate 5b made of stainless steel were mounted on the inside and the outside, respectively. At this time, the distance between the insulating shielding plate 5a and the metal shielding plate 5b was set to 0.1 mm. Further, since the temperature of the mold M4 is lower than that of the molds M2 and M3, an insulating insulating plate 5a made of alumina is used for the mold M4 so that the shielding effect on the mold M4 is relatively reduced. Arranged alone.

このような構成とし、上記と同様にプレス成形を行ったところ、プレス直前の成形型M1〜M4の温度は、第8図に示すようになり、その最大温度差は1.4℃で、各成形型の温度差が均等化された。
また、さらに製造プロセスを続けて、プレス処理、冷却処理を行い、各成形型M1〜M4からプレス成形品を取り出してこれらを観察したところ、光学素子の肉厚は何れも許容範囲内であった。
With such a configuration, when press molding was performed in the same manner as described above, the temperatures of the molding dies M1 to M4 immediately before pressing were as shown in FIG. 8, and the maximum temperature difference was 1.4 ° C. The temperature difference of the mold was equalized.
Further, the manufacturing process was continued, press treatment and cooling treatment were performed, and press molded products were taken out from the respective molds M1 to M4 and observed. As a result, the thickness of the optical element was within an allowable range. .

[実施例2]
遮蔽手段5が配置されていない以外は、処理室P2〜P5の内部構造が、図5、及び図6に示す例と同様とされた既存の成形装置において、実施例1と同様にしてプレス成形を行った。プレス直前の各成形型M1〜M4の温度を図9に示す。この結果から、成形型M1〜M4の最大温度差は9℃もあり、その配列の内側に位置する成形型M2,M3の温度が相対的に高いことが判った。
また、さらに製造プロセスを続けて、プレス処理、冷却処理を行い、各成形型からプレス成形品を取り出してこれらを観察したところ、光学素子の肉厚に大きなバラツキが見られた。
[Example 2]
In the existing molding apparatus in which the internal structure of the processing chambers P2 to P5 is the same as the example shown in FIGS. 5 and 6 except that the shielding means 5 is not disposed, press molding is performed in the same manner as in the first embodiment. Went. FIG. 9 shows the temperatures of the molds M1 to M4 immediately before pressing. From this result, it was found that the maximum temperature difference between the molds M1 to M4 is 9 ° C., and the temperatures of the molds M2 and M3 located inside the array are relatively high.
Further, when the manufacturing process was continued, press treatment and cooling treatment were performed, and press molded products were taken out from the respective molds and observed. As a result, a large variation in the thickness of the optical element was observed.

ついで、上記の測定結果に基づいて、図5、及び図6に示す例のように、遮蔽手段5を第一加熱室P2に固定配置した。
すなわち、成形型M2,M3に対して、アルミナ製の絶縁性遮蔽板5aと、ステンレス製の金属遮蔽板5bを1枚ずつ内側と外側にそれぞれ装着した。このとき、絶縁性遮蔽板5aと金属遮蔽板5bとの間隔は0.1mmとした。これとともに、加熱手段8の抵抗加熱発熱体81a,81b,82a,82bの出力を制御して、成形型M1と成形型M4が同じ温度となるようにした。
Next, based on the above measurement results, the shielding means 5 was fixedly arranged in the first heating chamber P2 as in the examples shown in FIGS.
That is, an insulating insulating plate 5a made of alumina and a metal shielding plate 5b made of stainless steel were mounted on the inside and outside of the molds M2 and M3, respectively. At this time, the distance between the insulating shielding plate 5a and the metal shielding plate 5b was set to 0.1 mm. At the same time, the outputs of the resistance heating heating elements 81a, 81b, 82a and 82b of the heating means 8 are controlled so that the mold M1 and the mold M4 have the same temperature.

このような構成とし、上記と同様にプレス成形を行ったところ、プレス直前の成形型M1〜M4の温度は、第10図に示すようになり、その最大温度差は0.3℃で、各成形型の温度差が均等化された。
また、さらに製造プロセスを続けて、プレス処理、冷却処理を行い、各成形型M1〜M4からプレス成形品を取り出してこれらを観察したところ、光学素子の肉厚は何れも許容範囲内であった。
When the press molding was performed in the same manner as described above, the temperatures of the molding dies M1 to M4 immediately before pressing were as shown in FIG. 10, and the maximum temperature difference was 0.3 ° C. The temperature difference of the mold was equalized.
Further, the manufacturing process was continued, press treatment and cooling treatment were performed, and press molded products were taken out from the respective molds M1 to M4 and observed. As a result, the thickness of the optical element was within an allowable range. .

[実施例3]
処理室P2〜P5の内部構造が、第1実施例と同様の構成の別の製造装置において、実施例1と同様にしてプレス成形を行った。プレス直前の各成形型M1〜M4の温度を図11に示す。このように、成形型M1,M2,M4は、第1実施例とほぼ同様であったが、成形型M3だけは少し温度が低かった。
そこで、成形型M3に対する遮蔽手段5としての金属遮蔽板5bを省略し、アルミナ製の絶縁性遮蔽板5aのみとした以外は、遮蔽手段5の配置を実施例1と同様とした。
[Example 3]
In another manufacturing apparatus in which the internal structure of the processing chambers P2 to P5 has the same configuration as that of the first embodiment, press molding was performed in the same manner as in the first embodiment. FIG. 11 shows the temperatures of the molds M1 to M4 immediately before pressing. As described above, the molds M1, M2, and M4 were almost the same as those in the first example, but only the mold M3 was slightly lower in temperature.
Therefore, the arrangement of the shielding means 5 is the same as in Example 1 except that the metal shielding plate 5b as the shielding means 5 for the mold M3 is omitted and only the insulating shielding plate 5a made of alumina is used.

このような構成とし、実施例1と同様にプレス成形を行ったところ、プレス直前の成形型M1〜M4の温度は、図12に示すようになり、その最大温度差は0.9℃で、各成形型の温度差が均等化された。   With such a configuration, when press molding was performed in the same manner as in Example 1, the temperatures of the molding dies M1 to M4 immediately before pressing were as shown in FIG. 12, and the maximum temperature difference was 0.9 ° C. The temperature difference of each mold was equalized.

以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。   Although the present invention has been described with reference to the preferred embodiment, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. .

例えば、前述した実施形態では、四本の支持台3のそれぞれに成形型Mを載置して、これらを同時に加熱する例を示したが、支持台3は四本に限らない。 For example, in the above-described embodiment, the example in which the molding die M is mounted on each of the four support bases 3 and these are simultaneously heated has been described, but the support base 3 is not limited to four.

支持台3を二本,三本、又は五本以上とし、これらの支持台3に支持された成形型Mを同時に加熱する場合にも、本発明は適用可能である。 The present invention can also be applied to the case where the number of support bases 3 is two, three, or five or more, and the mold M supported by these support bases 3 is heated simultaneously.

また、前述した実施形態では、矩形形状の絶縁性遮蔽板5aと金属遮蔽板5bとを重ね合わせて遮蔽手段5を構成した例を示したが、その形状は楕円形、円形、穴あき形状など任意に設定できる。   Further, in the above-described embodiment, the example in which the shielding means 5 is configured by superimposing the rectangular insulating shielding plate 5a and the metal shielding plate 5b has been shown. However, the shape is elliptical, circular, perforated, or the like. Can be set arbitrarily.

本発明は、光学素子(例えば、ガラスレンズ)などの成形体をプレス成形するためのモールドプレス成形装置や、成形体の製造方法に適用される。特に、成形素材が収容された成形型を、加熱、プレス、冷却などの処理が行われる各処理室に順次移送してプレス成形を連続的に行うにあたり、成形型の温度が均等となるように調整して高精度の成形体を安定に製造するのに好適である。   The present invention is applied to a mold press molding apparatus for press molding a molded body such as an optical element (for example, a glass lens) and a method for manufacturing the molded body. In particular, when the mold containing the molding material is sequentially transferred to each processing chamber where processing such as heating, pressing, and cooling is performed and press molding is continuously performed, the temperature of the molding mold is made uniform. It is suitable for adjusting and manufacturing a highly accurate molded object stably.

本発明に係るモールドプレス成形装置の実施形態を示す概略平面図である。It is a schematic plan view which shows embodiment of the mold press molding apparatus which concerns on this invention. 図1のA−A断面に相当する装置内部の説明図である。It is explanatory drawing inside the apparatus equivalent to the AA cross section of FIG. 図1のB−B断面に相当する装置内部の説明図である。It is explanatory drawing inside the apparatus equivalent to the BB cross section of FIG. 処理室の内部を上方からみた概略平面図である。It is the schematic plan view which looked at the inside of a processing chamber from the upper part. 加熱手段、及び遮蔽手段の他の例を示す説明図である。It is explanatory drawing which shows the other example of a heating means and a shielding means. 加熱手段、及び遮蔽手段の他の例を示す説明図である。It is explanatory drawing which shows the other example of a heating means and a shielding means. 実施例1において遮蔽手段を設けない場合の成形型間の温度差を示すグラフである。It is a graph which shows the temperature difference between the shaping | molding dies when not providing the shielding means in Example 1. 実施例1において遮蔽手段を設けた場合の成形型間の温度差を示すグラフである。It is a graph which shows the temperature difference between the shaping | molding dies at the time of providing the shielding means in Example 1. 実施例2において遮蔽手段を設けない場合の成形型間の温度差を示すグラフである。It is a graph which shows the temperature difference between the shaping | molding dies when not providing the shielding means in Example 2. 実施例2において遮蔽手段を設けた場合の成形型間の温度差を示すグラフである。It is a graph which shows the temperature difference between the shaping | molding dies at the time of providing the shielding means in Example 2. 実施例3において遮蔽手段を設けない場合の成形型間の温度差を示すグラフである。It is a graph which shows the temperature difference between shaping | molding dies when not providing the shielding means in Example 3. 実施例3において遮蔽手段を設けた場合の成形型間の温度差を示すグラフである。It is a graph which shows the temperature difference between the shaping | molding dies at the time of providing the shielding means in Example 3.

符号の説明Explanation of symbols

3 支持台
5 遮蔽手段
5a 絶縁性遮蔽板
5b 金属遮蔽板
8 加熱手段
M 成形型
P 成形素材
P1 取出・挿入室
P2 第一加熱室
P3 第二加熱室
P4 第三加熱室
P5 プレス室
P6 第一徐冷室
P7 第二徐冷室
P8 急冷室
3 Supporting base 5 Shielding means 5a Insulating shielding plate 5b Metal shielding plate 8 Heating means M Mold P Molding material P1 Extraction / insertion chamber P2 First heating chamber P3 Second heating chamber P4 Third heating chamber P5 Press chamber P6 First Slow cooling room P7 Second slow cooling room P8 Rapid cooling room

Claims (8)

成形型内に収容された成形素材を、前記成形型ごと加熱して温度制御しながらプレス成形するモールドプレス成形装置であって、
前記成形型は、互いに対向する成形面が形成された一対の上型及び下型と、前記上型及び前記下型の水平方向の相互位置を規制する胴型とを備え、
前記成形型に対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室と、
前記成形型を同時に複数個ずつ前記各処理室に移送させる移送手段と、
前記各処理室のうち少なくとも一つの処理室に設けられ、前記成形素材が収容された状態で当該処理室に同時に移送されてくる複数の前記成形型を同時に加熱する加熱手段と、
当該処理室内における前記成形型の配列位置に対応させて、前記加熱手段と前記成形型との間の任意の位置に前記加熱手段とともに当該処理室内に取り付けられて配置され、前記加熱手段から発せられた熱エネルギーが、前記成形型に照射されるのを部分的に遮る遮蔽手段とを備えたことを特徴とするモールドプレス成形装置。
A mold press molding apparatus that press-molds a molding material accommodated in a molding die while heating the molding die together with temperature control,
The mold includes a pair of upper mold and lower mold on which molding surfaces facing each other are formed, and a body mold for regulating the mutual position of the upper mold and the lower mold in the horizontal direction,
A plurality of processing chambers for performing each processing including heating, pressing, and cooling on the mold, and
Transfer means for transferring a plurality of the molds simultaneously to the processing chambers;
A heating means that is provided in at least one of the processing chambers and simultaneously heats the plurality of molding dies simultaneously transferred to the processing chamber in a state in which the molding material is accommodated;
Corresponding to the arrangement position of the molds in the processing chamber, the heating unit and the heating mold are attached to the arbitrary positions between the heating unit and the molding die and are disposed in the processing chamber, and are emitted from the heating unit. A mold press molding apparatus, comprising: shielding means for partially blocking the thermal energy irradiated to the mold.
前記遮蔽手段として、絶縁性遮蔽部材を前記加熱手段に近接して取り付けたことを特徴とする請求項1に記載のモールドプレス成形装置。The mold press molding apparatus according to claim 1, wherein an insulating shielding member is attached as the shielding means in the vicinity of the heating means. 前記遮蔽手段が、前記加熱手段側に配設される絶縁性遮蔽部材と、前記成形型側に配設される金属製遮蔽部材とを有することを特徴とする請求項1に記載のモールドプレス成形装置。   The mold press molding according to claim 1, wherein the shielding means includes an insulating shielding member disposed on the heating means side and a metal shielding member disposed on the mold side. apparatus. 前記加熱手段が、前記加熱手段と平行に3個以上並べて配列された前記成形型を同時に加熱できるように設けられているとともに、
前記配列の両端に位置する前記成形型に照射される熱エネルギーよりも、前記配列の内側に位置する前記成形型に照射される熱エネルギーの方が小さくなるように、前記遮蔽手段を設けたことを特徴とする請求項1〜のいずれか1項に記載のモールドプレス成形装置。
The heating means is provided so as to simultaneously heat the molds arranged in parallel with three or more parallel to the heating means,
The shielding means is provided so that the thermal energy applied to the molds located inside the array is smaller than the thermal energy applied to the molds located at both ends of the array. The mold press molding apparatus according to any one of claims 1 to 3 .
成形型内に収容された成形素材を、前記成形型ごと加熱して温度制御しながらプレス成形する成形体の製造方法であって、
前記成形型は、互いに対向する成形面が形成された一対の上型及び下型と、前記上型及び前記下型の水平方向の相互位置を規制する胴型とを備え、
前記成形素材が収容された前記成形型に対して、加熱、プレス、冷却を含む各処理をそれぞれ行う複数の処理室に、前記成形型を同時に複数個ずつ移送させ、
前記各処理室のうち少なくとも一つの処理室に設けられた加熱手段によって、前記成形素材が収容された複数の前記成形型を同時に加熱するとともに、
前記加熱手段から発せられた熱エネルギーが、前記成形型に照射されるのを部分的に遮る遮蔽手段を、当該処理室内における前記成形型の配列位置に対応させて、前記加熱手段と前記成形型との間の任意の位置に前記加熱手段とともに当該処理室内に取り付けて配置させることにより、
前記成形型の各々の温度が均等化するように温度制御しながら前記成形素材をプレス成形することを特徴とする成形体の製造方法。
A method for producing a molded body, in which a molding material housed in a molding die is press-molded while being heated and temperature controlled together with the molding die,
The mold includes a pair of upper mold and lower mold on which molding surfaces facing each other are formed, and a body mold for regulating the mutual position of the upper mold and the lower mold in the horizontal direction,
A plurality of the molds are simultaneously transferred to a plurality of processing chambers for performing each process including heating, pressing, and cooling on the mold containing the molding material,
While simultaneously heating the plurality of molds containing the molding material by a heating means provided in at least one of the process chambers,
Corresponding to the arrangement position of the molding die in the processing chamber, the heating unit and the molding die are arranged so that shielding means for partially blocking the heat energy emitted from the heating means from being irradiated on the molding die. By attaching and arranging in the processing chamber together with the heating means at any position between
A method for producing a molded body, wherein the molding material is press-molded while controlling the temperature so that the temperatures of the molding dies are equalized.
前記成形型を同時に複数個ずつ移送しながら、前記加熱手段により前記成形型を加熱する加熱処理と、加熱によって軟化した前記成形素材を押圧するプレス処理と、前記成形型を冷却する冷却処理を含む各処理を順次施していくことを特徴とする請求項に記載の成形体の製造方法。 A heating process for heating the molding mold by the heating means, a pressing process for pressing the molding material softened by heating, and a cooling process for cooling the molding mold. 6. The method for producing a molded body according to claim 5 , wherein each treatment is sequentially performed. 前記遮蔽手段の大きさ、厚さ、材質、固定位置の何れか一以上を調整して、前記成形型の各々の温度を均等化することを特徴とする請求項のいずれか1項に記載の成形体の製造方法。 The size of the shielding means, the thickness, material, and adjust any one or more fixed positions, any one of claims 5-6, characterized in that to equalize the temperature of each of said mold The manufacturing method of the molded object of description. 前記加熱手段により加熱される前記成形型の各々の温度差を予め測定しておき、その測定結果に基づいて、相対的に温度が高い成形型に照射される熱エネルギーが低減するように前記遮蔽手段を設けることによって、前記成形型の各々の温度を均等化することを特徴とする請求項のいずれか1項に記載の成形体の製造方法。 The temperature difference of each of the molds heated by the heating means is measured in advance, and based on the measurement result, the shielding is performed so that the heat energy irradiated to the mold having a relatively high temperature is reduced. The method for producing a molded body according to any one of claims 5 to 7 , wherein the temperature of each of the molding dies is equalized by providing means.
JP2006235899A 2006-08-31 2006-08-31 Mold press molding apparatus and method for manufacturing molded body Expired - Fee Related JP4804280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235899A JP4804280B2 (en) 2006-08-31 2006-08-31 Mold press molding apparatus and method for manufacturing molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235899A JP4804280B2 (en) 2006-08-31 2006-08-31 Mold press molding apparatus and method for manufacturing molded body

Publications (2)

Publication Number Publication Date
JP2008056532A JP2008056532A (en) 2008-03-13
JP4804280B2 true JP4804280B2 (en) 2011-11-02

Family

ID=39239717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235899A Expired - Fee Related JP4804280B2 (en) 2006-08-31 2006-08-31 Mold press molding apparatus and method for manufacturing molded body

Country Status (1)

Country Link
JP (1) JP4804280B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430291B2 (en) * 2009-08-24 2014-02-26 オリンパス株式会社 Optical element molding apparatus and optical element molding method
WO2013105452A1 (en) 2012-01-10 2013-07-18 Hoya株式会社 Method of manufacturing glass formed member, and glass formed member manufacturing apparatus
JP6035569B2 (en) * 2013-01-22 2016-11-30 Hoya株式会社 Manufacturing method and manufacturing system of glass molded body
JP5994676B2 (en) * 2013-02-21 2016-09-21 Hoya株式会社 Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP6047802B2 (en) * 2013-05-10 2016-12-21 Hoya株式会社 Glass molded body manufacturing apparatus and glass molded body manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729779B2 (en) * 1987-09-30 1995-04-05 ホーヤ株式会社 Glass molding manufacturing equipment
JP3135098B2 (en) * 1993-06-21 2001-02-13 キヤノン株式会社 Optical element molding equipment
JP2005145778A (en) * 2003-11-18 2005-06-09 Nippon Pillar Packing Co Ltd Method and apparatus for manufacturing glass molded lens
JP4455963B2 (en) * 2004-09-15 2010-04-21 Hoya株式会社 Molded body manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JP2008056532A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4804280B2 (en) Mold press molding apparatus and method for manufacturing molded body
KR20150055601A (en) Manufacturing device for molded glass body and manufacturing method for molded glass body
JP5994676B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP5883317B2 (en) Mold press molding apparatus and optical element manufacturing method
WO2014129592A1 (en) Molded glass body manufacturing method, and molded glass body manufacturing device
JP2012116705A (en) Molding apparatus and molding method for optical device
JP4538099B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP6081630B2 (en) Mold press molding apparatus and optical element manufacturing method
JP5784151B2 (en) Manufacturing method of glass molded body and manufacturing apparatus of glass molded body
JP6114057B2 (en) Manufacturing method of glass molded body and manufacturing apparatus of glass molded body
JP5953906B2 (en) Optical element molding apparatus and molding method
JP6147571B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP4455963B2 (en) Molded body manufacturing apparatus and manufacturing method
JP2012012235A (en) Apparatus and method for molding optical element
WO2015146399A1 (en) Device for producing glass moulded bodies, and method for producing glass moulded bodies
JP6726464B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP4549798B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2000239028A (en) Apparatus for forming optical element and forming method
JP2003146674A (en) Press molding apparatus and method for manufacturing glass optical element
JP2004345943A (en) Mold press molding device and method for producing optical element
JP2010269988A (en) Forming apparatus and mold
JP2009249210A (en) Heating unit for molding and molding apparatus for optical element
JP2004269339A (en) Mold press molding apparatus and method for manufacturing optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20110714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees