WO2014129591A1 - Device for manufacturing molded glass body and method for manufacturing molded glass body - Google Patents

Device for manufacturing molded glass body and method for manufacturing molded glass body Download PDF

Info

Publication number
WO2014129591A1
WO2014129591A1 PCT/JP2014/054200 JP2014054200W WO2014129591A1 WO 2014129591 A1 WO2014129591 A1 WO 2014129591A1 JP 2014054200 W JP2014054200 W JP 2014054200W WO 2014129591 A1 WO2014129591 A1 WO 2014129591A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
unit
shielding
temperature
molded body
Prior art date
Application number
PCT/JP2014/054200
Other languages
French (fr)
Japanese (ja)
Inventor
尚之 繁野
藤本 忠幸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201480002727.1A priority Critical patent/CN104718165B/en
Publication of WO2014129591A1 publication Critical patent/WO2014129591A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/02Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing in machines with rotary tables
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/06Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds

Definitions

  • the present invention relates to a glass molded body manufacturing apparatus and a glass molded body manufacturing method, and in particular, glass molding in which a plurality of support members on which a plurality of molds are placed are circulated through each processing chamber.
  • the present invention relates to an apparatus for manufacturing a body and a method for manufacturing a glass molded body using the apparatus.
  • each processing unit a plurality of support members on which a plurality of molds are placed are sequentially circulated through a heating unit, a press unit, and a slow cooling unit provided along the circumference by a rotary table.
  • a heating unit a heating unit
  • a press unit a press unit
  • a slow cooling unit provided along the circumference by a rotary table.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-56532
  • a heating unit is provided with a shielding unit that shields thermal energy from the heating unit, and further, thermal energy irradiated to a plurality of molds on the support member.
  • the shielding means corresponding to the mold that tends to become high temperature increases the shielding effect
  • the shielding means corresponding to the mold that tends to become low temperature Describes reducing the variation in temperature between molds by lowering the shielding effect.
  • the cause of the variation in the temperature between the molds is the variation in the temperature of the mold in each support member due to the arrangement of the heaters and the temperature difference between the adjacent processing chambers (hereinafter referred to as the following).
  • the variation between lines can be suppressed, the variation between units cannot be suppressed. For this reason, there was still a problem that the temperature of the mold varied. If the mold temperature varies in this way, the glass material may not be sufficiently softened during pressing, or foaming may occur from the glass material, causing defective molding.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a glass molded body manufacturing apparatus that performs processing by circulating a plurality of support members on which a plurality of molds are placed through each processing chamber. Is to reduce the temperature variation of the mold, especially the temperature variation between the units.
  • the glass molded body manufacturing apparatus of the present invention sequentially includes a plurality of mold units including a support member, and a plurality of molds that are juxtaposed along the conveyance path of the support member and that contain a glass material therein.
  • a transport mechanism that transports, a heating unit that heat-treats the glass material provided along the transport path, a soaking unit that soaks the glass material, a press unit that presses the glass material to form a molded body,
  • a glass molded body manufacturing apparatus comprising: a plurality of processing units including a slow cooling unit that performs a slow cooling process on the molded body; and a heater provided along a conveyance path of the plurality of processing units.
  • the molded body manufacturing apparatus further includes a plurality of shielding mechanisms that are provided in the heating unit or the soaking unit, and that are movable so that the plurality of molds can be shielded from the heaters, respectively, and a plurality of shielding mechanisms Shield the corresponding mold by And a control unit for controlling ⁇ between each, the, control unit, temperature of each mold of a plurality of mold units so as to be substantially uniform, controlled blocking times of a plurality of shielding mechanisms, respectively.
  • the temperature is substantially uniform means that the maximum temperature difference in the line-to-line variation and the unit-to-unit variation is 10 degrees or less.
  • the method for producing a glass molded body of the present invention sequentially includes a plurality of mold units including a support member and a plurality of molds that are juxtaposed along the conveyance path of the support member and that contain a glass material therein.
  • a transport mechanism for transporting a heating unit that heat-treats the glass material provided along the transport path, a soaking unit that soaks the glass material, and a press unit that presses the glass material to form a molded body
  • a plurality of processing units including a slow cooling unit that performs a slow cooling process on the molded body, a heater provided along a conveyance path of the plurality of processing units, and the heating unit or the soaking unit, and And a plurality of shielding mechanisms movable so that the plurality of molds can be shielded from the heaters, respectively, and a control unit for controlling the shielding time for shielding the corresponding molds by the plurality of shielding mechanisms.
  • the glass molded body is manufactured by the heating step of heating the glass material in the heating unit, the soaking step of soaking the glass material in the soaking unit, and the pressing unit.
  • each mold of the plurality of mold units is provided with a pressing step for pressing the glass material into a molded body and a cooling step for cooling the molded body in the slow cooling section.
  • the shielding times of the plurality of shielding mechanisms are controlled so that the mold temperature is substantially uniform.
  • a shielding mechanism is provided for each of the plurality of molds placed on the support member of the mold unit, and the shielding time by these shielding mechanisms is set for each mold of the plurality of mold units. Since each control is performed, it is possible to reduce the mold temperature variation, in particular, the unit-to-unit variation.
  • a glass molded body manufacturing apparatus that processes a plurality of support members on which a plurality of molds are placed by circulating through each processing chamber, variation in mold temperature between units is reduced. Accordingly, a homogeneous glass molded body can be stably produced.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 6 is a time chart showing the timing of shielding from the heater by each shielding mechanism for the A to D line molds in the first mold unit.
  • 10 is a time chart showing the timing of shielding from heaters by respective shielding mechanisms for A to D line molds in a second mold unit.
  • 6 is a graph showing the temperature history of the tips of the supporting parts of the A to D lines measured by the temperature sensor when the glass forming body is manufactured by driving the manufacturing apparatus in a state where the shielding mechanism is driven.
  • FIG. 6 is a graph showing the temperature history of the tip of the support part of the A to D lines measured by the temperature sensor when the glass forming body is manufactured by driving the manufacturing apparatus with the shielding mechanism stopped. Supporting the A to D lines of the first to eighth mold units measured by the temperature sensor in the soaking chamber when the manufacturing apparatus is driven with the shielding mechanism driven to manufacture the glass molded body. It is a graph which shows the temperature of the front-end
  • FIG. 1 is a horizontal sectional view showing a configuration of a glass molded body manufacturing apparatus used in this embodiment
  • FIG. 2 is a sectional view taken along line AA in FIG. 1
  • FIG. 3 is a sectional view taken along line BB in FIG. It is. As shown in FIG.
  • the glass molded body manufacturing apparatus 1 of the present embodiment includes an apparatus housing 2 formed in a bottomed cylindrical shape, a rotary table 4 provided in the apparatus housing 2, and a rotary table. 4 and an inner casing 6 having an arcuate horizontal cross section provided above 4.
  • the device casing 2, the inner casing 6, and the turntable 4 are arranged concentrically.
  • the device casing 2 has a substantially circular top cover and a bottom plate (not shown) attached to the top and bottom, and the inside is in a sealed state.
  • the internal space of the apparatus housing 2 is an inert gas atmosphere.
  • the inert gas nitrogen, argon, or the like is used, and the oxygen concentration is preferably 5 ppm or less. It should be noted that the oxidation of the mold unit 8 and the surface alteration of the glass material can be prevented by making the internal space an inert gas atmosphere in this way.
  • the upper lid is formed with a loading / unloading port (not shown) through which the mold can be fed into the apparatus and carried out of the apparatus, and a loading / unloading section 46 is formed in the apparatus below.
  • a loading / unloading section 46 is formed in the apparatus below.
  • the carry-in / carry-out unit 46 is shown as an example having both the supply unit and the carry-out unit in the present invention. However, the carry-in unit (supply unit) and the carry-out unit (carry-out port) are provided separately. May be.
  • the turntable 4 includes a turntable 10, a drive shaft (not shown) connected to the center of the turntable 10, and a drive mechanism (not shown) such as a motor that rotates the drive shaft. .
  • a number of mold units 8 (eight in the present embodiment) corresponding to the number of processing chambers are arranged at equal intervals.
  • the mold unit 8 includes a support base (support member) 12 and a plurality of (four in this embodiment) molds 52 placed on the support base 12.
  • the mold unit 8 disposed on the turntable 10 is intermittently transferred to each processing chamber in the inner casing 6 as the turntable 10 rotates.
  • the rotary table 4 conveys the mold unit 8 along the circumference of a predetermined radius by intermittently rotating the drive mechanism by 45 degrees every predetermined time.
  • the path along which the mold unit 8 is transported corresponds to the transport path of the present invention.
  • the rotary table 4 stops for a predetermined stop time set in advance during each rotation operation. The stop time of the rotary table 4 is determined to be longer than the time required for the press process in the press chamber 26 described later.
  • the inner casing 6 is concentrically coaxial with the apparatus housing 2 and has an inner wall 6A extending in an arc shape over an angular range of 270 degrees in the horizontal direction, and is located radially outside the inner wall 6A and is circular over an angular range of 270 degrees in the horizontal direction. It has an outer wall 6B that extends in an arc shape, a ceiling that closes between the inner wall 6A and the upper part of the outer wall 6B, and a bottom that closes between the inner wall 6A and the lower part of the outer wall 6B.
  • the inner wall 6A, the outer wall 6B, the ceiling portion 6C, and the bottom portion 6D form a processing space having an arc-shaped horizontal cross section in the inner casing 6.
  • An arc-shaped slit 6E is formed in the bottom 6D of the inner casing 6 along the conveyance path of the mold unit 8.
  • the processing space of the inner casing 6 is divided into six chambers within an angle range of 45 degrees in the rotation direction of the turntable 4. These six chambers are arranged along the conveyance path of the mold unit 8 in the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber. They are arranged in the order of 30.
  • the first heating chamber 20 and the second heating chamber 22 in the present embodiment correspond to the heating section of the present invention
  • the soaking chamber 24 of the present embodiment corresponds to the soaking section of the present invention
  • the press chamber of the present embodiment. 26 corresponds to the press section of the present invention
  • the first slow cooling chamber 28 and the second slow cooling chamber 30 of the present embodiment correspond to the cooling section of the present invention.
  • the heating unit is a processing unit for rapidly heating the mold 52 and the glass material 60 of the mold unit 8 having a temperature close to normal temperature to a temperature suitable for press molding.
  • the heating unit is provided as the heating unit, and the temperature of the mold unit 8 is raised stepwise, but depending on the processing time and the target temperature The number of rooms may be increased or decreased.
  • the soaking part is a processing part for heating the mold unit 8 at a substantially constant temperature so as to soak the mold 52 and the glass material 60 to a temperature suitable for press molding.
  • the temperature suitable for press molding varies depending on the glass glass type and the shape and volume of the molded body, but is generally a temperature at which the glass material has a viscosity of 10 6 to 10 11 dPa ⁇ s, and the glass yield point temperature [Ts It is preferably in the vicinity.
  • the press unit is a processing unit that applies a load to the mold 52 to deform the glass material that has been heated and softened to a predetermined temperature and transfer the shape of the molding surface of the mold to form a glass molded body. is there. You may provide a press part in multiple places like embodiment shown in FIG. 10 mentioned later.
  • the cooling unit is a processing unit including a slow cooling unit that slowly cools the glass molded body formed in the press unit at a predetermined cooling rate.
  • the two slow cooling chambers of the first slow cooling chamber 28 and the second slow cooling chamber 30 are provided as the cooling unit, and the mold unit 8 is gradually cooled. The number may be increased or decreased.
  • a shutter (not shown) for separating adjacent processing chambers is provided.
  • Heaters 32, 34, respectively, are provided on both sides of the transport path of the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30, respectively.
  • 36, 38, 40, and 42 are provided.
  • These heaters 32, 34, 36, 38, 40, 42 are respectively a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a press chamber 26, a first annealing chamber 28, and a second annealing chamber.
  • the inside 30 is heated to a predetermined temperature.
  • the soaking chamber 24 is provided with a reflector 36A along the inner wall 6A and the outer wall 6B.
  • the reflector 36A reflects the heat energy radiated from the heater 32 and prevents heat from being released to the outside of the heater. Thereby, heat energy can be intensively guided to the mold and the mold can be efficiently heated.
  • the reflector 36A includes a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a press chamber 26, and a first slow cooling chamber 28 in which heaters 32, 34, 36, 38, 40, and 42 are provided.
  • the second slow cooling chamber 30 is installed.
  • each shielding mechanism 62 includes a shielding part 64 having a U-shaped vertical cross-section, a shaft part 66 connected to the upper part of the shielding part 64 and extending in the vertical direction, and a lifting mechanism 68 for moving the shaft part 66 up and down.
  • the shielding part 64 is made of a metal or ceramic having high heat resistance such as a nickel alloy or a tungsten alloy.
  • the same number of shielding mechanisms 62 as the mold units 8 are provided for each mold 52 of the mold unit 8.
  • each shielding mechanism 62 has drive mechanisms, such as a motor and a hydraulic cylinder, and is connected to the control part 70 so that communication is possible.
  • the control unit 70 can control the elevating mechanism 68 to lower and raise the shielding unit 64 at a desired timing.
  • a press mechanism (not shown) is provided on the upper lid above the press chamber 26.
  • the press mechanism is provided with a drive mechanism such as a motor or a hydraulic cylinder provided corresponding to each of the plurality of molds placed on the support base 12, and by driving this drive mechanism, one end of the drive mechanism is provided.
  • the attached press head presses each mold 52 of the mold unit 8 in the press chamber 26 from above, and presses the glass material.
  • a quenching section 44 and a carry-in / carry-out section 46 are formed between the second slow cooling chamber 30 and the first heating chamber 20 in the transport path in the apparatus housing 2.
  • the rapid cooling section 44 is an area for rapidly cooling the mold unit 8, and no heater is disposed around it.
  • the carry-in / carry-out unit 46 exchanges, through the carry-in / carry-out port, a mold containing a glass molded body that has been molded and a mold containing a new glass material that has not been subjected to a molding process. It is an area for.
  • the carry-in / carry-out unit 46 is provided with a carry-in / carry-out mechanism that can move the mold unit 8 up and down.
  • the molding die 52 that has been molded can be taken out and a new molding die 52 can be placed on the support base 12.
  • This carry-in / carry-out mechanism corresponds to the supply mechanism and the carry-out mechanism of the present invention.
  • the mold unit 8 includes a support base 12 and a plurality of (four in this embodiment) forming dies 52 placed on the support base 12.
  • the support base 12 includes a base portion 12A and a plurality of (four in this embodiment) columnar support portions 12B provided upright on the base portion 12A.
  • a temperature sensor 13 capable of detecting the temperature of the tip of each support 12B is embedded in the tip of each support 12B.
  • the temperature sensor 13 is communicably connected to the control unit 70, and the temperature measured by the temperature sensor 13 of each support unit 12 ⁇ / b> B is transmitted to the control unit 70. 2 and 3, when the molding die 52 is placed on the support base 12, the temperature at the tip of each support portion 12B is substantially equal to the temperature at the bottom of the molding die 52, and the temperature sensor The temperature measured by 13 can be regarded as the temperature of the mold 52.
  • Each mold 52 is placed on each support portion 12B of the support base 12.
  • the molding die 52 has an upper die 54 and a lower die 56 having molding surfaces formed in accordance with the shape of the glass molded body to be manufactured, and a cylinder that regulates the mutual position of the upper die 54 and the lower die 56 in the radial direction. And a mold 58.
  • a release film is formed on the molding surfaces of the upper mold 54 and the lower mold 56.
  • the glass material 60 is disposed in a state of being sandwiched between the upper mold 54 and the lower mold 56.
  • the shape of the molding surface is transferred to the glass material, and a glass molded body having a desired shape (Optical element) can be press-molded.
  • the controller 70 drives the manufacturing apparatus 1 by placing the molding die 52 on the support base 12 in a state where the shielding mechanism 62 is stopped in advance. 13, the temperature history at the tip of each support portion 12B of each mold unit 8 measured by 13 is recorded. As will be described later, the controller 70 substantially determines the temperature of each mold of each mold unit 8 based on the recorded temperature history at the tip of each support section 12B of each mold unit 8. The timing at which the elevating mechanism 68 lowers and raises the shielding part 64 is controlled so as to be uniform.
  • a method of manufacturing a glass molded body by the glass molded body manufacturing apparatus 1 of the present embodiment will be described.
  • a method of manufacturing a glass molded body will be described by paying attention to one mold unit 8, but in the glass molded body manufacturing apparatus 1 of the present embodiment, depending on the number of processing chambers.
  • a plurality of mold units 8 are arranged on the turntable 10 of the turntable 4 in an equiangular range of 45 degrees.
  • the plurality of mold units 8 are continuously transported along the transport path by the rotary table 4, and processes such as heat treatment, press processing, and slow cooling processing are performed in parallel in each processing chamber.
  • the mold unit 8 is lifted by the carry-in / carry-out mechanism, From the outlet, the four molding dies 52 that have been processed are simultaneously carried out of the apparatus housing 2. Then, these molds 52 are held by a robot hand (not shown) and removed from the support portion 12B of the support base 12. Thereafter, the molds 52 loaded with the new glass material 60 are placed on the support portion 12B of the support base 12 respectively.
  • a preset stop time hereinafter referred to as a tact time
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened.
  • the rotary table 4 rotates 45 degrees counterclockwise in plan view.
  • the mold 52 is conveyed into the first heating chamber 20 while being held by the support 12.
  • the support portion 12B of the support base 12 passes through the slit 6E provided at the bottom of the inner casing 6, the support portion 12B and the inner casing 6 do not interfere with each other.
  • a first heating step for heating the mold unit 8 is performed.
  • the inside of the first heating chamber 20 is maintained at a temperature equal to or higher than the glass yield point temperature (Ts) by the heaters 32 provided on both sides of the transport path. Then, the mold unit 8 conveyed to the first heating chamber 20 is heated by the heater 32.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the second heating chamber 22.
  • a second heating step is performed in which the mold 52 of the mold unit 8 is heated to about the glass yield point temperature.
  • the inside of the second heating chamber 22 is maintained at a temperature equal to or higher than the glass yield point temperature by the heater 34. Thereby, it heats until the glass material 60 in the metal mold unit 8 conveyed in the 2nd heating chamber 22 reaches about a glass yield point temperature.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. As a result, the mold unit 8 is transferred into the soaking chamber 24.
  • a soaking step for soaking the molding material 52 and the glass material 60 accommodated therein is performed.
  • the inside of the soaking chamber 24 is maintained at the glass yield point temperature by the heater 36.
  • the mold 52 is shielded from the heater 36, and the control unit 70 controls the shielding time of the plurality of shielding mechanisms 62 so that the temperatures of the plurality of molds 52 of each mold unit 8 become substantially uniform.
  • the temperature at the time of unloading from the soaking chamber 24 in the temperature history of the tip of each support portion 12B of each mold unit 8 recorded in the control unit 70 is relative to the optimum temperature in the press process. If it is very high, the shielding time by the shielding mechanism 62 is set to a long time, and if it is slightly higher than the optimum temperature in the press process, the shielding time by the shielding mechanism 62 is set to a short time.
  • the plurality of support portions 12B of the support base 12 in each mold unit 8 are referred to as an A line, a B line, a C line, and a D line, respectively, from the front side to the rear side in the traveling direction of the transport path.
  • the mold unit 8 is referred to as a first mold unit, a second mold unit,... In the order of transport to each processing unit.
  • FIG. 4 is a time chart showing the timing of shielding from the heater 36 by the shielding mechanisms 62 with respect to the A to D line forming dies 52 in the first mold unit.
  • FIG. 5 is a time chart showing the timing of shielding from the heater 36 by the shielding mechanisms 62 with respect to the A to D line forming dies 52 in the second mold unit.
  • the timing at which the mold 52 is shielded from the heater 36 by each of the shielding mechanisms 62 is determined based on the temperature history at the tip of each support portion 12B of each mold unit 8 recorded in the control unit 70.
  • the mold 52 and the support portion 12B positioned at the center in the traveling direction of the transport path are the front side in the traveling direction and Compared with the mold 52 and the support part 12B positioned at the rear end, the heater 36 receives a large amount of radiant heat and also receives the heat of the adjacent mold 52 and the support part 12B, so that the temperature is likely to rise. For this reason, the temperature history recorded in the control unit 70 tends to be higher in the B and C lines than in the A and D lines in common with each mold unit.
  • the press chamber 26 has a higher temperature than the second heating chamber 22. It is kept in. For this reason, the temperature history recorded in the control unit 70 tends to be higher in the A line than in the D line in common with each mold unit.
  • uniform-heating chamber 24 recorded on the control part 70 is also the temperature of the shaping
  • the temperature of the support portion 12B is high, and the temperatures of the D-line mold 52 and the support portion 12B are the lowest.
  • the shielding time of the A to D lines is determined according to the difference between the temperature at the time of carrying out from the soaking chamber 24 in the temperature history of each line and the optimum temperature in the press process.
  • the first mold unit 8 in the B and C lines having the highest temperature, from 5 seconds to 40 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, The mold 52 is shielded by the shielding mechanism 62 for 35 seconds.
  • the mold 52 is shielded by the shielding mechanism 62 from 5 seconds to 20 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, for 15 seconds.
  • the mold 52 is shielded by the shielding mechanism 62 from 5 seconds to 15 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, for 10 seconds. . Thereby, the line-to-line variation of each mold 52 in the mold unit 8 when being conveyed to the press chamber 26 is reduced.
  • the temperature at the time of carrying out from the soaking chamber 24 may vary among the mold units.
  • the temperature at the time of carrying out from the soaking chamber 24 of the B line of the second mold unit is higher than the temperature of the B line of the first mold unit.
  • the shielding time by the shielding mechanism 62 for the B line of the second mold unit is made longer than the shielding time for the B line of the first mold unit. That is, as shown in FIG. 5, in the B line, the mold 52 is moved by the shielding mechanism 62 from 5 seconds to 45 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, for 40 seconds. Shield. Thereby, the unit-to-unit variation of the respective molds 52 in the first and second mold units 8 when being conveyed to the press chamber 26 is reduced.
  • control unit 70 sets an appropriate shielding time by the shielding mechanism 62 for each mold 52 of the first to eighth mold units 8, and based on this, the control unit 70 The timing which raises / lowers the shielding part 64 of the shielding mechanism 62 is controlled. Thereby, each mold 52 is soaked in the soaking chamber 24 at a substantially uniform temperature.
  • the temperature is substantially uniform in this specification means that the maximum temperature difference in the line-to-line variation and the unit-to-unit variation is 10 degrees or less. Even if the line-to-line variation is suppressed to 10 ° C. or less, if the temperature variation between the units exceeds 10 ° C., a difference of 10 to 10 2 dPa ⁇ s is caused in the viscosity of the glass material. When such a viscosity difference occurs, the thickness of the press-molded product may not be uniform, or molding defects such as foaming, cracks, cracks, and transfer defects may occur. According to this embodiment, the maximum temperature difference in the line-to-line variation and the unit-to-unit variation can be suppressed to 10 ° C. or less and to 5 ° C. or less if strictly controlled. Obtainable.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the press chamber 26.
  • a press step is performed.
  • the mold unit 8 of the mold unit 8 is pressed by the press mechanism while the mold unit 8 is heated by the heater 38 so as to keep the glass yield point temperature, and the glass material is press-molded.
  • the press load is preferably set as appropriate within a range of 10 to 1000 kgf / cm 2 .
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is viewed in plan view. Rotate 45 degrees counterclockwise. Thereby, the mold 52 of the mold unit 8 is conveyed into the first slow cooling chamber 28.
  • a first slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 with the heater 40. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
  • the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the rotary table 4 rotates 45 degrees counterclockwise in plan view. Thereby, the mold 52 of the mold unit 8 is conveyed into the second slow cooling chamber 30.
  • a second slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 by the heater 42. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
  • the quenching section 44 is not provided with a heater and has a temperature similar to that around the apparatus. For this reason, the glass molded body inside the mold unit 8 and the molded body 52 is rapidly cooled.
  • the cooling rate at this time is faster than the cooling rate in the slow cooling step, and is preferably set appropriately within a range of, for example, 30 to 300 ° C./min. Moreover, you may spray cooling gas toward the die unit 8 as needed.
  • the rotary table 4 rotates 45 degrees and the mold unit 8 is transferred to the loading / unloading unit 46.
  • the mold unit 8 that accommodates the glass molded body that has undergone the molding process reaches the carry-in / carry-out unit 46, the mold unit 8 is raised by the lifting mechanism, and the mold 52 that has undergone the molding process from the carry-in / carry-out port Are simultaneously carried out of the apparatus housing 2.
  • the shielding mechanism 62 is provided only in the soaking chamber 24.
  • the present invention is not limited to this, and the first heating chamber 20, the second heating chamber 22, the first slow cooling chamber 28, and the second A shielding mechanism 62 may be provided in the slow cooling chamber 30, and the shielding time by the shielding mechanism 62 may be controlled similarly to the soaking chamber 24.
  • the shielding time of the shielding mechanism in each chamber may be set based on the temperature immediately before being taken out from each chamber in the temperature history recorded in the control unit 70.
  • the shielding mechanism 62 may be provided only in the heating unit. Since the heating unit is in the initial stage of heating the mold unit 8, it is possible to equalize the mold unit 8 from the initial stage of heating.
  • the shielding mechanism 62 may be provided in any one heating chamber. However, it may be provided in a plurality of heating chambers.
  • the inventors have confirmed through experiments that according to the manufacturing apparatus of the present invention, it is possible to reduce the line-to-line variation of the mold temperature and the unit-to-unit variation. Hereinafter, this experiment will be described.
  • FIG. 6 shows a supporting portion 12B of A to D lines measured by a temperature sensor when the glass forming body is manufactured by driving the manufacturing apparatus 1 with the shielding mechanism 62 driven (hereinafter referred to as Example 1). It is a graph which shows the temperature history of the front-end
  • FIG. 7 shows A to D lines measured by the temperature sensor when the manufacturing apparatus 1 is driven with the shielding mechanism 62 stopped to manufacture a glass molded body (hereinafter referred to as Comparative Example 1). It is a graph which shows the temperature history of the front-end
  • the temperature at the tip of the support portion 12B of the B and C lines is much higher than that of the A and D lines between the second heating step and the soaking step as described above. It is rising high. Further, the temperature at the tip of the support portion 12B of the A line is higher than that of the D line. The temperature difference between the highest temperature B line and the lowest temperature D line at the start of the soaking step is about 15 degrees. This temperature difference remains almost completely eliminated in the pressing process and the slow cooling process.
  • the temperature of the A to D lines shows substantially the same temperature history even during the period from the second heating step to the soaking step.
  • the temperature difference between the highest temperature B line and the lowest temperature D line at the start of the soaking step is about 5 degrees, which is very small compared to the comparative example. And this temperature difference does not become large in a press process and a slow cooling process.
  • FIG. 8 shows a case where a glass molded body is manufactured by driving the manufacturing apparatus 1 with the shielding mechanism 62 being driven (hereinafter referred to as Example 2), and was measured by a temperature sensor in a soaking chamber. It is a graph which shows the temperature of the front-end
  • FIG. 9 shows a case where a glass molded body is manufactured by driving the manufacturing apparatus 1 with the shielding mechanism 62 stopped (hereinafter referred to as Comparative Example 2), and is measured by a temperature sensor in a soaking chamber.
  • 10 is a graph showing the temperature at the tip of the support portion 12B of the A to D lines of the first to eighth mold units.
  • the numbers 1 to 8 on the horizontal axis in FIGS. 8 and 9 correspond to the first to eighth mold units, respectively.
  • Example 2 the temperature variation between the lines in each mold unit is much smaller than that in Comparative Example 2, and in the first to eighth mold units.
  • the temperature difference between the lines is 5 ° C. or less.
  • uniform-heating chamber is also very small.
  • the shielding mechanism 62 is provided for each of the plurality of molds 52 placed on the support portion 12B of the mold unit 8, and the shielding mechanism 62 is provided by the control unit.
  • the shielding mechanism 62 is provided by the control unit.
  • the mold 52 is placed on the support 12 with the shielding mechanism 62 stopped in advance, and the manufacturing apparatus 1 is driven. At this time, each of the measured mold units 8 is measured. The temperature history at the tip of the support portion 12B is recorded in the control unit 70. And the control part 70 controls the shielding time by the shielding mechanism 62 based on this temperature history. In this way, by controlling the shielding time by the shielding mechanism 62 based on the temperature history in the actually driven state, the temperature variation of each mold 52 can be further reduced.
  • the mold unit 8 is transported along the circular path by the rotary table 4, but the present invention is not limited to this, and the mold unit 8 may be transported by a transport means such as an arm. Further, the conveyance path is not limited to a circle, and may be a straight line.
  • control unit 70 controls the shielding time by the shielding mechanism 62 based on the temperature history at the tip of each support portion 12B of each mold unit 8 measured in advance.
  • the present invention is not limited to this.
  • the shielding time of the shielding mechanism 62 may be controlled in real time based on the temperature of each support portion 12B of each mold unit 8 measured by the temperature sensor 13.
  • the control unit 70 calculates the time to be shielded by the shielding mechanism 62 based on the difference between the temperature measured by the temperature sensor 13 and the reference temperature.
  • the control part 70 shields the shaping
  • the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30 are formed in the inner casing 6.
  • the manufacturing apparatus 1 has been described, the present invention can also be applied to a manufacturing apparatus having a plurality of press chambers.
  • FIG. 10 is a horizontal sectional view showing a configuration of a manufacturing apparatus 101 having two press chambers.
  • a heating chamber 120 a heating chamber 120, a first soaking chamber 122, a first press chamber 124, a first annealing chamber 126, and a second soaking chamber are provided in the inner casing 6.
  • a chamber 128, a second press chamber 130, and a second slow cooling chamber 132 are provided.
  • the heating chamber 120, the first soaking chamber 122, the first press chamber 124, the first annealing chamber 126, the second soaking chamber 128, the second pressing chamber 130, and the second annealing chamber 132 are respectively Heaters 134, 136, 138, 140, 142, 144, and 146 are provided.
  • a shielding mechanism may be provided in each of the first and second soaking chambers 122 and 128 as in the above embodiment.
  • the mold 52 is placed on the support base with the shielding mechanism 62 stopped in advance, and the manufacturing apparatus 101 is driven. At this time, each measured mold unit is measured.
  • the shielding time of the shielding mechanism 62 of each of the soaking chambers 122 and 128 may be set based on the temperature history at the tip of each of the eight support portions 12B. Further, it is possible to set the shielding time of the shielding mechanism 62 of each soaking chamber as follows.
  • the mold 52 is placed on the support base 12 and the manufacturing apparatus 101 is driven.
  • the temperature history at the tip of each support portion 12B is measured. Based on this temperature history, the shielding time of each shielding mechanism 62 of the first soaking chamber 122 is set so that the temperature immediately before being carried out of the first soaking chamber 122 becomes substantially uniform.
  • the shielding mechanism 62 of the second soaking chamber 128 is stopped, and the manufacturing apparatus 101 is driven in a state where the shielding mechanism 62 of the first soaking chamber 122 is activated.
  • the temperature history at the tip of 12B is measured.
  • the shielding mechanism 62 of the first soaking chamber 122 is driven to shield the mold from the heater 136 for the set time.
  • the shielding time of each shielding mechanism 62 of the second soaking chamber 128 is substantially uniform at the temperature immediately before being transported from the second soaking chamber 128.
  • the temperature of the mold 52 carried into the first and second press chambers 124 and 130 is further increased. It can be made uniform.
  • the present invention is not limited to the embodiment described above and can be variously modified without departing from the present invention.
  • the shape of the shielding portion 64 in the present invention may be a U-shaped cross section or a bottomed cylindrical shape in addition to a U-shaped cross section.
  • the glass molded body manufacturing apparatus 1 of the present invention includes a support base 12, a plurality of molds 52 that are juxtaposed along the transport path on the support base 12, and contain a glass material 60 therein,
  • the first and second heating chambers 20 and 22 for heat-treating the glass material provided along the conveyance path the rotary table 4 that sequentially conveys the plurality of mold units 8 including the glass material, Soaking chamber 24, press chamber 26 that presses the glass material accommodated in the mold to form a molded body, and first and second annealing chambers 28 and 30 that slowly cool the molded body.
  • a plurality of processing units, and heaters 32, 34, 36, 38, 40, and 42 provided along the conveyance paths of the plurality of processing units.
  • the glass molded body manufacturing apparatus 1 is further provided in the heating unit (first heating chamber 20, second heating chamber 22) or soaking chamber 24, A plurality of shielding mechanisms 62 that can be moved so that each of the molding dies 52 can be shielded from the heater 32, and a control unit 70 that controls the shielding time for shielding the corresponding molding dies 52 by the plurality of shielding mechanisms 62, respectively.
  • the control unit 70 controls the shielding time of the plurality of shielding mechanisms 62 so that the temperatures of the plurality of molds 52 of each mold unit 8 become substantially uniform.
  • the glass molded body manufacturing method of the present invention is a method using the manufacturing apparatus 1 described above, and includes a heating step of performing a heat treatment on the glass material in the first and second heating chambers 20 and 22, and a leveling process.
  • a heating step of performing a heat treatment on the glass material in the first and second heating chambers 20 and 22, and a leveling process In the heat chamber 24, in the soaking step for soaking the glass material, in the press chamber 26, the press step for pressing the glass material to form a molded body, and in the first and second annealing chambers 28, 30, A cooling step for cooling the molded body, and in the heating step or the soaking step, the shielding time of the plurality of shielding mechanisms 62 so that the temperatures of the plurality of molds of each mold unit 8 become substantially uniform. To control each.

Abstract

A device for manufacturing a molded glass body in which a plurality of support members, on which a plurality of molds are placed, are circulated through processing chambers and processed, wherein variation in mold temperature between the support members is reduced. The device (1) for manufacturing a molded glass body is provided with: a plurality of shielding mechanisms (62) provided to a heating unit (first and second heating chambers (20, 22)) or a soaking chamber (24), the shielding mechanisms (62) being capable of moving so as to shield a plurality of molding dies (52) respectively from a heater (32); and a control unit (70) for controlling each shielding time in which each of the shielding mechanisms (62) shields the corresponding molding die (52). The control unit (70) controls the shielding time for each respective shielding mechanism (62) so that the temperature of the molding dies (52) in each of the mold units (8) is essentially uniform.

Description

ガラス成形体の製造装置、及び、ガラス成形体の製造方法Glass molded body manufacturing apparatus and glass molded body manufacturing method
 本発明は、ガラス成形体の製造装置、及び、ガラス成形体の製造方法に関し、特に、複数の金型が載置された複数の支持部材を、各処理室を巡回させて処理を行うガラス成形体の製造装置、及びこの装置を用いたガラス成形体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a glass molded body manufacturing apparatus and a glass molded body manufacturing method, and in particular, glass molding in which a plurality of support members on which a plurality of molds are placed are circulated through each processing chamber. The present invention relates to an apparatus for manufacturing a body and a method for manufacturing a glass molded body using the apparatus.
 従来より、複数の金型が載置された複数の支持部材を、回転テーブルにより円周上に沿って設けられた加熱部、プレス部、及び徐冷部を順次巡回させながら、各処理部において加熱、プレス、冷却(徐冷を含む)の各処理を行うことによってガラスを成形する装置が広く用いられている。このような装置では、支持部材に載置された複数の金型は、支持部材に配置された位置によって加熱手段から受ける熱量の差異や、隣接する室の温度の差異等に起因して、温度のばらつきが生じてしまう。 Conventionally, in each processing unit, a plurality of support members on which a plurality of molds are placed are sequentially circulated through a heating unit, a press unit, and a slow cooling unit provided along the circumference by a rotary table. 2. Description of the Related Art An apparatus for forming glass by performing each process of heating, pressing, and cooling (including slow cooling) is widely used. In such an apparatus, the plurality of molds placed on the support member have a temperature caused by a difference in the amount of heat received from the heating means depending on a position arranged on the support member, a difference in temperature between adjacent chambers, or the like. Variation will occur.
 そこで、特許文献1(特開2008-56532号公報)には、加熱室に加熱手段からの熱エネルギーを遮蔽する遮蔽手段を設け、さらに、支持部材上の複数の金型に照射される熱エネルギーに応じて遮蔽手段の大きさ、厚さ、材質、固定位置を調整して、高温になりやすい金型に対応する遮蔽手段は遮蔽効果を高くし、低温になりやすい金型に対応する遮蔽手段は遮蔽効果を低くすることにより、金型間の温度のばらつきを低減することが記載されている。 Therefore, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-56532), a heating unit is provided with a shielding unit that shields thermal energy from the heating unit, and further, thermal energy irradiated to a plurality of molds on the support member. Depending on the size, thickness, material, and fixing position of the shielding means, the shielding means corresponding to the mold that tends to become high temperature increases the shielding effect, and the shielding means corresponding to the mold that tends to become low temperature Describes reducing the variation in temperature between molds by lowering the shielding effect.
特開2008-56532号公報JP 2008-56532 A
 ここで、上記のような装置において、金型同士温度のばらつきの要因としては、ヒータの配置や、隣接する処理室間の温度の差に起因する各支持部材における金型の温度のばらつき(以下、「ライン間ばらつき」という)と、金型ユニットを構成する支持部材の形状誤差などに起因する金型ユニットごとの金型の温度のばらつき(以下、「ユニット間ばらつき」という)が挙げられる。しかしながら、特許文献1に記載された装置では、ライン間ばらつきは抑えることができるものの、ユニット間ばらつきを抑えることができない。このため、依然として、金型の温度にばらつきが生じてしまうという問題があった。このように金型温度にばらつきがあると、プレス時に十分にガラス材料が軟化していなかったり、ガラス材料から発泡することがあったりしてしまい、成形不良の原因となる。 Here, in the apparatus as described above, the cause of the variation in the temperature between the molds is the variation in the temperature of the mold in each support member due to the arrangement of the heaters and the temperature difference between the adjacent processing chambers (hereinafter referred to as the following). , “Variation between lines”) and mold temperature variation (hereinafter referred to as “unit variation”) for each mold unit due to a shape error of a support member constituting the mold unit. However, in the apparatus described in Patent Document 1, although the variation between lines can be suppressed, the variation between units cannot be suppressed. For this reason, there was still a problem that the temperature of the mold varied. If the mold temperature varies in this way, the glass material may not be sufficiently softened during pressing, or foaming may occur from the glass material, causing defective molding.
 本発明は、上記の問題に鑑みなされたものであり、その目的は、複数の金型が載置された複数の支持部材を、各処理室を循環させて処理を行うガラス成形体の製造装置において、金型の温度のばらつき、特にユニット間の温度のばらつきを低減することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a glass molded body manufacturing apparatus that performs processing by circulating a plurality of support members on which a plurality of molds are placed through each processing chamber. Is to reduce the temperature variation of the mold, especially the temperature variation between the units.
 本発明のガラス成形体の製造装置は、支持部材と、支持部材に搬送経路に沿って並置され、内部にガラス材料を収容した複数の金型と、を含む複数の金型ユニットを、順次、搬送する搬送機構と、搬送経路に沿って設けられたガラス材料に加熱処理を行う加熱部、ガラス材料を均熱化する均熱部、ガラス材料にプレス処理を行い成形体に成形するプレス部、及び成形体に徐冷処理を行う徐冷部を含む複数の処理部と、複数の処理部の搬送経路に沿って設けられたヒータと、を備えたガラス成形体の製造装置であって、ガラス成形体の製造装置は、さらに、前記加熱部もしくは均熱部に設けられ、かつ、複数の金型をそれぞれヒータから遮蔽することができるように移動可能な複数の遮蔽機構と、複数の遮蔽機構により対応する金型を遮蔽する遮蔽時間をそれぞれ制御する制御部と、を備え、制御部は、複数の金型ユニットの各金型の温度が実質的に均一になるように、複数の遮蔽機構の遮蔽時間をそれぞれ制御する。
 なお、本明細書において「温度が実質的に均一」とは、ライン間ばらつき及びユニット間ばらつきにおける最大温度差が10度以下であることをいう。
The glass molded body manufacturing apparatus of the present invention sequentially includes a plurality of mold units including a support member, and a plurality of molds that are juxtaposed along the conveyance path of the support member and that contain a glass material therein. A transport mechanism that transports, a heating unit that heat-treats the glass material provided along the transport path, a soaking unit that soaks the glass material, a press unit that presses the glass material to form a molded body, And a glass molded body manufacturing apparatus comprising: a plurality of processing units including a slow cooling unit that performs a slow cooling process on the molded body; and a heater provided along a conveyance path of the plurality of processing units. The molded body manufacturing apparatus further includes a plurality of shielding mechanisms that are provided in the heating unit or the soaking unit, and that are movable so that the plurality of molds can be shielded from the heaters, respectively, and a plurality of shielding mechanisms Shield the corresponding mold by And a control unit for controlling 蔽時 between each, the, control unit, temperature of each mold of a plurality of mold units so as to be substantially uniform, controlled blocking times of a plurality of shielding mechanisms, respectively.
In the present specification, “the temperature is substantially uniform” means that the maximum temperature difference in the line-to-line variation and the unit-to-unit variation is 10 degrees or less.
 また、本発明のガラス成形体の製造方法は、支持部材と、支持部材に搬送経路に沿って並置され内部にガラス材料を収容した複数の金型と、を含む複数の金型ユニットを、順次、搬送する搬送機構と、搬送経路に沿って設けられたガラス材料に加熱処理を行う加熱部、ガラス材料を均熱化する均熱部、ガラス材料にプレス処理を行い成形体に成形するプレス部、及び成形体に徐冷処理を行う徐冷部を含む複数の処理部と、複数の処理部の搬送経路に沿って設けられたヒータと、前記加熱部もしくは前記均熱部に設けられ、かつ、複数の金型をそれぞれヒータから遮蔽することができるように移動可能な複数の遮蔽機構と、複数の遮蔽機構により対応する金型を遮蔽する遮蔽時間をそれぞれ制御する制御部と、を備えたガラス成形体の製造装置によりガラス成形体を製造する方法であって、この方法は、加熱部において、ガラス材料に加熱処理を行う加熱ステップと、均熱部において、ガラス材料を均熱化する均熱ステップと、プレス部においてガラス材料にプレス処理を行い成形体に成形するプレスステップと、徐冷部において、成形体を冷却する冷却ステップと、を備え、加熱ステップもしくは均熱ステップにおいて、複数の金型ユニットの各金型の温度が実質的に均一になるように、複数の遮蔽機構の遮蔽時間をそれぞれ制御する。 In addition, the method for producing a glass molded body of the present invention sequentially includes a plurality of mold units including a support member and a plurality of molds that are juxtaposed along the conveyance path of the support member and that contain a glass material therein. , A transport mechanism for transporting, a heating unit that heat-treats the glass material provided along the transport path, a soaking unit that soaks the glass material, and a press unit that presses the glass material to form a molded body And a plurality of processing units including a slow cooling unit that performs a slow cooling process on the molded body, a heater provided along a conveyance path of the plurality of processing units, and the heating unit or the soaking unit, and And a plurality of shielding mechanisms movable so that the plurality of molds can be shielded from the heaters, respectively, and a control unit for controlling the shielding time for shielding the corresponding molds by the plurality of shielding mechanisms. Glass body manufacturing equipment The glass molded body is manufactured by the heating step of heating the glass material in the heating unit, the soaking step of soaking the glass material in the soaking unit, and the pressing unit. In the heating step or soaking step, each mold of the plurality of mold units is provided with a pressing step for pressing the glass material into a molded body and a cooling step for cooling the molded body in the slow cooling section. The shielding times of the plurality of shielding mechanisms are controlled so that the mold temperature is substantially uniform.
 本発明によれば、金型ユニットの支持部材に載置される複数の金型に対して、それぞれ遮蔽機構を設け、これら遮蔽機構による遮蔽時間を複数の金型ユニットの各金型に対してそれぞれ制御するため、金型温度のばらつき、特に、ユニット間ばらつきを低減することができる。 According to the present invention, a shielding mechanism is provided for each of the plurality of molds placed on the support member of the mold unit, and the shielding time by these shielding mechanisms is set for each mold of the plurality of mold units. Since each control is performed, it is possible to reduce the mold temperature variation, in particular, the unit-to-unit variation.
 本発明によれば、複数の金型が載置された複数の支持部材を、各処理室を巡回させて処理を行うガラス成形体の製造装置において、ユニット間の金型の温度のばらつきを低減することができ、これにより均質なガラス成形体を安定的に製造することができる。 According to the present invention, in a glass molded body manufacturing apparatus that processes a plurality of support members on which a plurality of molds are placed by circulating through each processing chamber, variation in mold temperature between units is reduced. Accordingly, a homogeneous glass molded body can be stably produced.
本実施形態で用いられるガラス成形体の製造装置の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the manufacturing apparatus of the glass forming body used by this embodiment. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図1におけるB-B断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 第1金型ユニットにおけるA~Dラインの成形型に対して、各遮蔽機構によりヒータから遮蔽するタイミングを示すタイムチャートである。6 is a time chart showing the timing of shielding from the heater by each shielding mechanism for the A to D line molds in the first mold unit. 第2金型ユニットにおけるA~Dラインの成形型に対して、各遮蔽機構によりヒータから遮蔽するタイミングを示すタイムチャートである。10 is a time chart showing the timing of shielding from heaters by respective shielding mechanisms for A to D line molds in a second mold unit. 遮蔽機構を駆動した状態で製造装置を駆動してガラス成形体を製造した場合における、温度センサーにより測定されたA~Dラインの支持部の先端の温度履歴を示すグラフである。6 is a graph showing the temperature history of the tips of the supporting parts of the A to D lines measured by the temperature sensor when the glass forming body is manufactured by driving the manufacturing apparatus in a state where the shielding mechanism is driven. 遮蔽機構を停止させた状態で製造装置を駆動してガラス成形体を製造した場合における、温度センサーにより測定されたA~Dラインの支持部の先端の温度履歴を示すグラフである。6 is a graph showing the temperature history of the tip of the support part of the A to D lines measured by the temperature sensor when the glass forming body is manufactured by driving the manufacturing apparatus with the shielding mechanism stopped. 遮蔽機構を駆動した状態で製造装置を駆動してガラス成形体を製造した場合であって、均熱室における温度センサーにより測定された第1~第8の金型ユニットのA~Dラインの支持部の先端の温度を示すグラフである。Supporting the A to D lines of the first to eighth mold units measured by the temperature sensor in the soaking chamber when the manufacturing apparatus is driven with the shielding mechanism driven to manufacture the glass molded body. It is a graph which shows the temperature of the front-end | tip of a part. 遮蔽機構を停止させた状態で製造装置を駆動してガラス成形体を製造した場合であって、均熱室における温度センサーにより測定された第1~第8の金型ユニットのA~Dラインの支持部の先端の温度を示すグラフである。When the glass forming body is manufactured by driving the manufacturing apparatus in a state where the shielding mechanism is stopped, the A to D lines of the first to eighth mold units measured by the temperature sensor in the soaking chamber are used. It is a graph which shows the temperature of the front-end | tip of a support part. 本発明の一実施形態であるガラス成形体の製造装置の構成を示す水平断面図である。It is a horizontal sectional view which shows the structure of the manufacturing apparatus of the glass molded object which is one Embodiment of this invention.
 以下、本発明のガラス成形体の製造装置及び製造方法の一実施形態について図面を参照しながら詳細に説明する。なお、各実施形態において、共通の構成及び機能を有する部位については、同じ符号を付して、説明を省略する。
 図1は、本実施形態で用いられるガラス成形体の製造装置の構成を示す水平断面図であり、図2は、図1におけるA-A断面図、図3は図1におけるB-B断面図である。図1に示すように、本実施形態のガラス成形体の製造装置1は、有底円筒状に形成された装置筐体2と、装置筐体2内に設けられた回転テーブル4と、回転テーブル4の上方に設けられた水平断面円弧状の内部ケーシング6と、を有する。これら装置筐体2、内部ケーシング6及び回転テーブル4は同心同軸に配置されている。
Hereinafter, an embodiment of a manufacturing apparatus and a manufacturing method of a glass molded body of the present invention will be described in detail with reference to the drawings. In addition, in each embodiment, about the site | part which has a common structure and function, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 1 is a horizontal sectional view showing a configuration of a glass molded body manufacturing apparatus used in this embodiment, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG. It is. As shown in FIG. 1, the glass molded body manufacturing apparatus 1 of the present embodiment includes an apparatus housing 2 formed in a bottomed cylindrical shape, a rotary table 4 provided in the apparatus housing 2, and a rotary table. 4 and an inner casing 6 having an arcuate horizontal cross section provided above 4. The device casing 2, the inner casing 6, and the turntable 4 are arranged concentrically.
 装置筐体2は、上下に略円形の上蓋および底板(図示省略)が取り付けられており、その内部は密閉状態にある。装置筐体2の内部空間は不活性ガス雰囲気とされている。不活性ガスとしては、窒素やアルゴンなどが使用され、酸素濃度が5ppm以下であることが好ましい。なお、このように内部空間を不活性ガス雰囲気とすることで、金型ユニット8の酸化やガラス材料の表面変質を防止できる。 The device casing 2 has a substantially circular top cover and a bottom plate (not shown) attached to the top and bottom, and the inside is in a sealed state. The internal space of the apparatus housing 2 is an inert gas atmosphere. As the inert gas, nitrogen, argon, or the like is used, and the oxygen concentration is preferably 5 ppm or less. It should be noted that the oxidation of the mold unit 8 and the surface alteration of the glass material can be prevented by making the internal space an inert gas atmosphere in this way.
 上蓋には、成形型を装置内に供給するとともに成形型を装置内から搬出できる搬入・搬出口(図示せず)が形成されていて、その下方の装置内部には搬入・搬出部46が形成されている。なお、本実施形態では、搬入・搬出部46が本発明における供給部と搬出部とを兼ね備えた例を示しているが、搬入部(供給部)と搬出部(搬出口)とを個別に設けてもよい。 The upper lid is formed with a loading / unloading port (not shown) through which the mold can be fed into the apparatus and carried out of the apparatus, and a loading / unloading section 46 is formed in the apparatus below. Has been. In the present embodiment, the carry-in / carry-out unit 46 is shown as an example having both the supply unit and the carry-out unit in the present invention. However, the carry-in unit (supply unit) and the carry-out unit (carry-out port) are provided separately. May be.
 回転テーブル4は、回転盤10と、回転盤10の中心に接続された駆動軸(図示せず)と、駆動軸を回転させる、例えば、モータなどの駆動機構(図示せず)と、を備える。回転盤10上には、処理室の数に応じた数(本実施形態では8個)の金型ユニット8が等間隔に配置されている。金型ユニット8は、後述するように、支持台(支持部材)12と、支持台12に載置された複数の(本実施形態では4つ)の成形型52と、により構成される。 The turntable 4 includes a turntable 10, a drive shaft (not shown) connected to the center of the turntable 10, and a drive mechanism (not shown) such as a motor that rotates the drive shaft. . On the turntable 10, a number of mold units 8 (eight in the present embodiment) corresponding to the number of processing chambers are arranged at equal intervals. As will be described later, the mold unit 8 includes a support base (support member) 12 and a plurality of (four in this embodiment) molds 52 placed on the support base 12.
 回転盤10上に配置された金型ユニット8は、回転盤10が回転することにより、内部ケーシング6内の各処理室を間欠的に移送される。本実施形態では、回転テーブル4は、駆動機構が所定時間おきに、間欠的に45度ずつ回転することにより、所定の半径の円周に沿って金型ユニット8を搬送する。この金型ユニット8の搬送される経路が、本発明の搬送経路に相当する。また、回転テーブル4は、各回転動作の間に、予め設定された所定の停止時間にわたり停止する。なお、この回転テーブル4の停止時間は、後述するプレス室26におけるプレス処理に要する時間よりも長くなるように決定されている。 The mold unit 8 disposed on the turntable 10 is intermittently transferred to each processing chamber in the inner casing 6 as the turntable 10 rotates. In the present embodiment, the rotary table 4 conveys the mold unit 8 along the circumference of a predetermined radius by intermittently rotating the drive mechanism by 45 degrees every predetermined time. The path along which the mold unit 8 is transported corresponds to the transport path of the present invention. Further, the rotary table 4 stops for a predetermined stop time set in advance during each rotation operation. The stop time of the rotary table 4 is determined to be longer than the time required for the press process in the press chamber 26 described later.
 内部ケーシング6は、装置筐体2と同心同軸に水平方向に270度の角度範囲にわたって円弧状に延びる内壁6Aと、内壁6Aの半径方向外側に位置し、水平方向に270度の角度範囲にわたって円弧状に延びる外壁6Bと、内壁6Aと外壁6Bの上部の間を塞ぐ天井部と、内壁6Aと外壁6Bの下部の間を塞ぐ底部とを有する。これら内壁6A、外壁6B、天井部6C、及び底部6Dにより、内部ケーシング6内には水平断面が円弧形状の処理空間が形成されている。内部ケーシング6の底部6Dには、金型ユニット8の搬送経路に沿って、円弧状のスリット6Eが形成されている。 The inner casing 6 is concentrically coaxial with the apparatus housing 2 and has an inner wall 6A extending in an arc shape over an angular range of 270 degrees in the horizontal direction, and is located radially outside the inner wall 6A and is circular over an angular range of 270 degrees in the horizontal direction. It has an outer wall 6B that extends in an arc shape, a ceiling that closes between the inner wall 6A and the upper part of the outer wall 6B, and a bottom that closes between the inner wall 6A and the lower part of the outer wall 6B. The inner wall 6A, the outer wall 6B, the ceiling portion 6C, and the bottom portion 6D form a processing space having an arc-shaped horizontal cross section in the inner casing 6. An arc-shaped slit 6E is formed in the bottom 6D of the inner casing 6 along the conveyance path of the mold unit 8.
 内部ケーシング6の処理空間は、回転テーブル4の回転方向に45度の角度範囲で6つの室に区切られている。これら6つの室は、金型ユニット8の搬送経路に沿って、第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30の順序で並んでいる。本実施形態における第1加熱室20及び第2加熱室22は本発明の加熱部に相当し、本実施形態の均熱室24は本発明の均熱部に相当し、本実施形態のプレス室26は本発明のプレス部に相当し、本実施形態の第1徐冷室28及び第2徐冷室30は本発明の冷却部に相当する。 The processing space of the inner casing 6 is divided into six chambers within an angle range of 45 degrees in the rotation direction of the turntable 4. These six chambers are arranged along the conveyance path of the mold unit 8 in the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber. They are arranged in the order of 30. The first heating chamber 20 and the second heating chamber 22 in the present embodiment correspond to the heating section of the present invention, the soaking chamber 24 of the present embodiment corresponds to the soaking section of the present invention, and the press chamber of the present embodiment. 26 corresponds to the press section of the present invention, and the first slow cooling chamber 28 and the second slow cooling chamber 30 of the present embodiment correspond to the cooling section of the present invention.
 加熱部は、常温に近い温度の金型ユニット8の成形型52とガラス材料60をプレス成形に適した温度まで急速に加熱するための処理部である。本実施形態では、加熱部として、第1加熱室20及び第2加熱室22の2つの加熱室を設け、段階的に金型ユニット8を昇温しているが、処理時間と目的温度に応じて室数を増減してもよい。 The heating unit is a processing unit for rapidly heating the mold 52 and the glass material 60 of the mold unit 8 having a temperature close to normal temperature to a temperature suitable for press molding. In the present embodiment, two heating chambers of the first heating chamber 20 and the second heating chamber 22 are provided as the heating unit, and the temperature of the mold unit 8 is raised stepwise, but depending on the processing time and the target temperature The number of rooms may be increased or decreased.
 均熱部は、金型ユニット8をほぼ一定の温度で加熱することにより、成形型52とガラス材料60を均熱化して、プレス成形に適切な温度にするための処理部である。なお、プレス成形に適切な温度は、ガラス硝種や成形体の形状、体積などによって異なるが、概ねガラス材料が106~1011dPa・sの粘度となる温度であり、ガラス屈伏点温度[Ts]近傍であることが好ましい。 The soaking part is a processing part for heating the mold unit 8 at a substantially constant temperature so as to soak the mold 52 and the glass material 60 to a temperature suitable for press molding. The temperature suitable for press molding varies depending on the glass glass type and the shape and volume of the molded body, but is generally a temperature at which the glass material has a viscosity of 10 6 to 10 11 dPa · s, and the glass yield point temperature [Ts It is preferably in the vicinity.
 プレス部は、成形型52に荷重を印加することにより、所定の温度まで加熱され軟化したガラス材料を変形させるとともに成形型の成形面の形状を転写して、ガラス成形体を形成する処理部である。プレス部は、後述する図10に示した実施形態のように、複数個所設けてもよい。 The press unit is a processing unit that applies a load to the mold 52 to deform the glass material that has been heated and softened to a predetermined temperature and transfer the shape of the molding surface of the mold to form a glass molded body. is there. You may provide a press part in multiple places like embodiment shown in FIG. 10 mentioned later.
 冷却部は、プレス部にて形成されたガラス成形体を所定の冷却速度で徐冷する徐冷部を含む処理部である。本実施形態では、冷却部として第1徐冷室28及び第2徐冷室30の2つの徐冷室を設け、段階的に金型ユニット8を徐冷しているが、必要に応じて室数を増減してもよい。 The cooling unit is a processing unit including a slow cooling unit that slowly cools the glass molded body formed in the press unit at a predetermined cooling rate. In the present embodiment, the two slow cooling chambers of the first slow cooling chamber 28 and the second slow cooling chamber 30 are provided as the cooling unit, and the mold unit 8 is gradually cooled. The number may be increased or decreased.
 内部ケーシング6の周方向端部及び各室の間には、隣接する処理室を区画するためのシャッター(図示せず)が設けられている。 Between the circumferential end of the inner casing 6 and each chamber, a shutter (not shown) for separating adjacent processing chambers is provided.
 第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30の搬送経路の両側部には、それぞれ、ヒータ32、34、36、38、40、42が設けられている。これらヒータ32、34、36、38、40、42は、それぞれ、第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30内を所定の温度になるように加熱している。 Heaters 32, 34, respectively, are provided on both sides of the transport path of the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30, respectively. 36, 38, 40, and 42 are provided. These heaters 32, 34, 36, 38, 40, 42 are respectively a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a press chamber 26, a first annealing chamber 28, and a second annealing chamber. The inside 30 is heated to a predetermined temperature.
 また、図3のみに示すが、均熱室24には、内壁6A及び外壁6Bに沿ってリフレクター36Aが設けられている。リフレクター36Aは、ヒータ32から放射された熱エネルギーを反射するとともに、ヒータ外部へ熱が放出されるのを防ぐ。これにより、熱エネルギーを集中的に成形型に導き、成形型を効率良く加熱することができる。なお、リフレクター36Aは、ヒータ32、34、36、38、40、42が設けられている第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30内に設置される。 Further, as shown only in FIG. 3, the soaking chamber 24 is provided with a reflector 36A along the inner wall 6A and the outer wall 6B. The reflector 36A reflects the heat energy radiated from the heater 32 and prevents heat from being released to the outside of the heater. Thereby, heat energy can be intensively guided to the mold and the mold can be efficiently heated. The reflector 36A includes a first heating chamber 20, a second heating chamber 22, a soaking chamber 24, a press chamber 26, and a first slow cooling chamber 28 in which heaters 32, 34, 36, 38, 40, and 42 are provided. The second slow cooling chamber 30 is installed.
 また、図2及び図3に示すように、均熱室24には、複数の遮蔽機構62が設けられている。各遮蔽機構62は、鉛直断面形状がコの字形の遮蔽部64と、遮蔽部64の上部に接続され、上下方向に延びる軸部66と、軸部66を上下させる昇降機構68とにより構成される。遮蔽部64は、例えばニッケル合金やタングステン合金等の耐熱性の高い金属またはセラミックスにより製作される。遮蔽機構62は、金型ユニット8の成形型52のそれぞれに対して金型ユニット8と同数設けられている。また、各遮蔽機構62の昇降機構68は、モータや油圧シリンダ等の駆動機構を有し、制御部70に通信可能に接続されている。制御部70は、昇降機構68を制御し、所望のタイミングで遮蔽部64を下降及び上昇させることができる。 Further, as shown in FIGS. 2 and 3, the soaking chamber 24 is provided with a plurality of shielding mechanisms 62. Each shielding mechanism 62 includes a shielding part 64 having a U-shaped vertical cross-section, a shaft part 66 connected to the upper part of the shielding part 64 and extending in the vertical direction, and a lifting mechanism 68 for moving the shaft part 66 up and down. The The shielding part 64 is made of a metal or ceramic having high heat resistance such as a nickel alloy or a tungsten alloy. The same number of shielding mechanisms 62 as the mold units 8 are provided for each mold 52 of the mold unit 8. Moreover, the raising / lowering mechanism 68 of each shielding mechanism 62 has drive mechanisms, such as a motor and a hydraulic cylinder, and is connected to the control part 70 so that communication is possible. The control unit 70 can control the elevating mechanism 68 to lower and raise the shielding unit 64 at a desired timing.
 プレス室26の上方の上蓋には、プレス機構(図示せず)が設けられている。プレス機構は、支持台12に載置された複数の成形型それぞれに対応して設けられたモータや油圧シリンダ等の駆動機構を備え、この駆動機構を駆動することにより、駆動機構の一端部に取り付けられたプレスヘッドが、プレス室26内の金型ユニット8の各成形型52を上方から押圧し、ガラス素材に対してプレス処理を行う。なお、回転テーブル4のプレス機構の下方に相当する位置には、プレス機構が成形型を押圧する際に、回転盤10または支持台12を下方から支持する受圧部材を設けておくことが望ましい。 A press mechanism (not shown) is provided on the upper lid above the press chamber 26. The press mechanism is provided with a drive mechanism such as a motor or a hydraulic cylinder provided corresponding to each of the plurality of molds placed on the support base 12, and by driving this drive mechanism, one end of the drive mechanism is provided. The attached press head presses each mold 52 of the mold unit 8 in the press chamber 26 from above, and presses the glass material. In addition, it is desirable to provide a pressure receiving member that supports the turntable 10 or the support base 12 from below when the press mechanism presses the forming die at a position corresponding to the lower side of the press mechanism of the rotary table 4.
 図1に示すように、装置筐体2内の搬送経路の第2徐冷室30と、第1加熱室20との間には、急冷部44及び搬入・搬出部46が形成されている。急冷部44は、金型ユニット8を急速に冷却するための領域であり、周囲にヒータが配置されていない。また、搬入・搬出部46は搬入・搬出口を通じて、成形が完了したガラス成形体が収容された成形型と、成形処理が行われていない新たなガラス材料が収容された成形型とを交換するための領域である。なお、搬入・搬出部46には、金型ユニット8を昇降させることができる搬入・搬出機構が設けられており、搬入・搬出機構により金型ユニット8が持ち上げられることにより、搬入・搬出口から成形が完了した成形型52を取り出し、新たな成形型52を支持台12に載置することができる。この搬入・搬出機構が本発明の供給機構及び搬出機構に相当する。 As shown in FIG. 1, a quenching section 44 and a carry-in / carry-out section 46 are formed between the second slow cooling chamber 30 and the first heating chamber 20 in the transport path in the apparatus housing 2. The rapid cooling section 44 is an area for rapidly cooling the mold unit 8, and no heater is disposed around it. Further, the carry-in / carry-out unit 46 exchanges, through the carry-in / carry-out port, a mold containing a glass molded body that has been molded and a mold containing a new glass material that has not been subjected to a molding process. It is an area for. The carry-in / carry-out unit 46 is provided with a carry-in / carry-out mechanism that can move the mold unit 8 up and down. The molding die 52 that has been molded can be taken out and a new molding die 52 can be placed on the support base 12. This carry-in / carry-out mechanism corresponds to the supply mechanism and the carry-out mechanism of the present invention.
 図2及び図3に示すように、金型ユニット8は、支持台12と、支持台12に載置された複数の(本実施形態では4つ)の成形型52と、により構成される。これら成形型52の材料としては、炭化珪素や超硬合金、窒化珪素等が用いられている。支持台12は、基部12Aと、基部12Aに立設された複数の(本実施形態では4つ)の円柱状の支持部12Bとを備える。各支持部12Bの先端部には、各支持部12Bの先端部の温度を検知可能な温度センサー13が埋設されている。この温度センサー13は制御部70に通信可能に接続されており、各支持部12Bの温度センサー13により測定された温度は、制御部70へと送信される。なお、図2及び図3に示すように、成形型52が支持台12に載置された状態では、各支持部12Bの先端部の温度は成形型52の底部の温度と略等しく、温度センサー13により測定された温度は、成形型52の温度とみなすことができる。 2 and 3, the mold unit 8 includes a support base 12 and a plurality of (four in this embodiment) forming dies 52 placed on the support base 12. As the material of the mold 52, silicon carbide, cemented carbide, silicon nitride, or the like is used. The support base 12 includes a base portion 12A and a plurality of (four in this embodiment) columnar support portions 12B provided upright on the base portion 12A. A temperature sensor 13 capable of detecting the temperature of the tip of each support 12B is embedded in the tip of each support 12B. The temperature sensor 13 is communicably connected to the control unit 70, and the temperature measured by the temperature sensor 13 of each support unit 12 </ b> B is transmitted to the control unit 70. 2 and 3, when the molding die 52 is placed on the support base 12, the temperature at the tip of each support portion 12B is substantially equal to the temperature at the bottom of the molding die 52, and the temperature sensor The temperature measured by 13 can be regarded as the temperature of the mold 52.
 各成形型52は、支持台12のそれぞれの支持部12B上に載置されている。成形型52は、製造すべきガラス成形体の形状に合わせて形成された成形面を有する上型54、下型56と、これら上型54及び下型56の径方向の相互位置を規制する胴型58とを有する。上型54及び下型56の成形面には離型膜が成膜されている。ガラス材料60は、上型54と下型56の間に挟み込まれた状態で配置されている。ガラス材料60をガラス屈伏点温度以上に加熱した状態で、上下型54、56を相対的に近接する方向に加圧することにより、ガラス材料に成形面形状が転写され、所望の形状のガラス成形体(光学素子)にプレス成形することができる。 Each mold 52 is placed on each support portion 12B of the support base 12. The molding die 52 has an upper die 54 and a lower die 56 having molding surfaces formed in accordance with the shape of the glass molded body to be manufactured, and a cylinder that regulates the mutual position of the upper die 54 and the lower die 56 in the radial direction. And a mold 58. A release film is formed on the molding surfaces of the upper mold 54 and the lower mold 56. The glass material 60 is disposed in a state of being sandwiched between the upper mold 54 and the lower mold 56. In a state where the glass material 60 is heated to the glass yield point temperature or higher, by pressing the upper and lower molds 54 and 56 in a relatively close direction, the shape of the molding surface is transferred to the glass material, and a glass molded body having a desired shape (Optical element) can be press-molded.
 制御部70には、レンズの成形を開始する前に、予め、遮蔽機構62を停止させた状態で支持台12に成形型52を載置して製造装置1を駆動し、その際、温度センサー13により測定された各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴が記録されている。後述するように、制御部70は、この記録された各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴に基づき、各金型ユニット8のそれぞれの金型の温度が実質的に均一になるように、昇降機構68が遮蔽部64を下降及び上昇させるタイミングを制御する。 Before starting the molding of the lens, the controller 70 drives the manufacturing apparatus 1 by placing the molding die 52 on the support base 12 in a state where the shielding mechanism 62 is stopped in advance. 13, the temperature history at the tip of each support portion 12B of each mold unit 8 measured by 13 is recorded. As will be described later, the controller 70 substantially determines the temperature of each mold of each mold unit 8 based on the recorded temperature history at the tip of each support section 12B of each mold unit 8. The timing at which the elevating mechanism 68 lowers and raises the shielding part 64 is controlled so as to be uniform.
 以下、本実施形態のガラス成形体の製造装置1により、ガラス成形体を製造する方法を説明する。なお、以下の説明では、一の金型ユニット8に着目して、ガラス成形体を製造する方法を説明するが、本実施形態のガラス成形体の製造装置1では、各処理室の数に応じた複数の金型ユニット8が回転テーブル4の回転盤10上に45度の等角度範囲で配置される。そして、これら複数の金型ユニット8が回転テーブル4により連続して搬送経路に沿って搬送されて、各処理室で加熱処理、プレス処理、徐冷処理等の処理が並行して行われる。 Hereinafter, a method of manufacturing a glass molded body by the glass molded body manufacturing apparatus 1 of the present embodiment will be described. In the following description, a method of manufacturing a glass molded body will be described by paying attention to one mold unit 8, but in the glass molded body manufacturing apparatus 1 of the present embodiment, depending on the number of processing chambers. A plurality of mold units 8 are arranged on the turntable 10 of the turntable 4 in an equiangular range of 45 degrees. The plurality of mold units 8 are continuously transported along the transport path by the rotary table 4, and processes such as heat treatment, press processing, and slow cooling processing are performed in parallel in each processing chamber.
 まず、回転テーブル4が回転し、成形処理が完了したガラス成形体を収容する金型ユニット8が搬入・搬出部46に到達すると、搬入・搬出機構により金型ユニット8が持ち上げられ、搬入・搬出口から、処成形理が完了した4個の成形型52を同時に装置筐体2の外部へ搬出する。そして、これらの成形型52を図示しないロボットハンドで把持して、支持台12の支持部12Bから取り外す。その後、新たなガラス材料60が装填された成形型52を支持台12の支持部12Bにそれぞれ載置する。 First, when the rotary table 4 rotates and the mold unit 8 that accommodates the glass molded body for which the molding process has been completed reaches the carry-in / carry-out unit 46, the mold unit 8 is lifted by the carry-in / carry-out mechanism, From the outlet, the four molding dies 52 that have been processed are simultaneously carried out of the apparatus housing 2. Then, these molds 52 are held by a robot hand (not shown) and removed from the support portion 12B of the support base 12. Thereafter, the molds 52 loaded with the new glass material 60 are placed on the support portion 12B of the support base 12 respectively.
 そして、前回の回転動作の完了から予め設定された回転テーブル4の停止時間(以下、タクトタイムという)が経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、成形型52は支持台12に保持された状態で、第1加熱室20内に搬送される。この際、支持台12の支持部12Bは、内部ケーシング6の底部に設けられたスリット6E内を通るため、支持部12Bと内部ケーシング6とが干渉することはない。 When a preset stop time (hereinafter referred to as a tact time) of the rotary table 4 has elapsed since the completion of the previous rotation operation, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened. Thus, the rotary table 4 rotates 45 degrees counterclockwise in plan view. As a result, the mold 52 is conveyed into the first heating chamber 20 while being held by the support 12. At this time, since the support portion 12B of the support base 12 passes through the slit 6E provided at the bottom of the inner casing 6, the support portion 12B and the inner casing 6 do not interfere with each other.
 第1加熱室20に金型ユニット8が搬送されると、金型ユニット8を加熱する第1の加熱ステップが行われる。第1加熱室20内は、搬送経路の両側に設けられたヒータ32により、ガラス屈伏点温度(Ts)と同等もしくはそれ以上の温度に保たれている。そして、第1加熱室20に搬送された金型ユニット8は、ヒータ32により加熱される。 When the mold unit 8 is conveyed to the first heating chamber 20, a first heating step for heating the mold unit 8 is performed. The inside of the first heating chamber 20 is maintained at a temperature equal to or higher than the glass yield point temperature (Ts) by the heaters 32 provided on both sides of the transport path. Then, the mold unit 8 conveyed to the first heating chamber 20 is heated by the heater 32.
 前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8は、第2加熱室22内に搬送される。 When a preset tact time elapses from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the second heating chamber 22.
 第2加熱室22に金型ユニット8が搬送されると、金型ユニット8の成形型52をガラス屈伏点温度程度まで加熱する第2の加熱ステップが行われる。第2加熱室22内は、ヒータ34によりガラス屈伏点温度と同等もしくはそれ以上の温度に保たれている。これにより、第2加熱室22内に搬送された金型ユニット8内のガラス材料60がガラス屈伏点温度程度に到達するまで加熱される。 When the mold unit 8 is conveyed to the second heating chamber 22, a second heating step is performed in which the mold 52 of the mold unit 8 is heated to about the glass yield point temperature. The inside of the second heating chamber 22 is maintained at a temperature equal to or higher than the glass yield point temperature by the heater 34. Thereby, it heats until the glass material 60 in the metal mold unit 8 conveyed in the 2nd heating chamber 22 reaches about a glass yield point temperature.
 前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8は、均熱室24内に搬送される。 When a preset tact time elapses from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. As a result, the mold unit 8 is transferred into the soaking chamber 24.
 均熱室24に成形型52が搬送されると、成形型52及び内部に収容されたガラス材料60を均熱化する均熱ステップが行われる。均熱室24内は、ヒータ36によりガラス屈伏点温度程度に保たれている。 When the molding die 52 is conveyed to the soaking chamber 24, a soaking step for soaking the molding material 52 and the glass material 60 accommodated therein is performed. The inside of the soaking chamber 24 is maintained at the glass yield point temperature by the heater 36.
 本実施形態では、均熱ステップにおいて、成形型52の温度のライン間ばらつき及びユニット間ばらつきを低減するため、遮蔽機構62の遮蔽部64により均熱室24内に位置する金型ユニット8の各成形型52をヒータ36から遮蔽し、さらに、制御部70により各金型ユニット8の複数の成形型52の温度が実質的に均一になるように、複数の遮蔽機構62の遮蔽時間をそれぞれ制御する。具体的には、制御部70に記録された各金型ユニット8のそれぞれの支持部12Bの先端部の温度履歴における均熱室24から搬出される際の温度が、プレス処理における最適温度に対して非常に高い場合には、遮蔽機構62による遮蔽時間を長時間に設定し、プレス処理における最適温度に対してわずかに高い場合には、遮蔽機構62による遮蔽時間を短時間に設定する。 In the present embodiment, in the soaking step, in order to reduce the line-to-line variation and the unit-to-unit variation in the temperature of the mold 52, each of the mold units 8 positioned in the soaking chamber 24 by the shielding portion 64 of the shielding mechanism 62. The mold 52 is shielded from the heater 36, and the control unit 70 controls the shielding time of the plurality of shielding mechanisms 62 so that the temperatures of the plurality of molds 52 of each mold unit 8 become substantially uniform. To do. Specifically, the temperature at the time of unloading from the soaking chamber 24 in the temperature history of the tip of each support portion 12B of each mold unit 8 recorded in the control unit 70 is relative to the optimum temperature in the press process. If it is very high, the shielding time by the shielding mechanism 62 is set to a long time, and if it is slightly higher than the optimum temperature in the press process, the shielding time by the shielding mechanism 62 is set to a short time.
 以下、一例をあげて、各金型ユニット8の複数の成形型52の温度が実質的に均一になるように遮蔽機構62による遮蔽時間の制御方法を説明する。なお、以下の説明では、各金型ユニット8における支持台12の複数の支持部12Bを、搬送経路の進行方向前側から後側に向かってそれぞれAライン、Bライン、Cライン、Dラインということとする。また、金型ユニット8については、各処理部に搬送される順番に第1金型ユニット、第2金型ユニット、・・・ということとする。 Hereinafter, as an example, a method for controlling the shielding time by the shielding mechanism 62 will be described so that the temperatures of the plurality of molds 52 of each mold unit 8 become substantially uniform. In the following description, the plurality of support portions 12B of the support base 12 in each mold unit 8 are referred to as an A line, a B line, a C line, and a D line, respectively, from the front side to the rear side in the traveling direction of the transport path. And In addition, the mold unit 8 is referred to as a first mold unit, a second mold unit,... In the order of transport to each processing unit.
 図4は、第1金型ユニットにおけるA~Dラインの成形型52に対して、各遮蔽機構62によりヒータ36から遮蔽するタイミングを示すタイムチャートである。また、図5は、第2金型ユニットにおけるA~Dラインの成形型52に対して、各遮蔽機構62によりヒータ36から遮蔽するタイミングを示すタイムチャートである。これら各遮蔽機構62により成形型52をヒータ36から遮蔽するタイミングは、制御部70に記録された各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴に基づき決定されている。 FIG. 4 is a time chart showing the timing of shielding from the heater 36 by the shielding mechanisms 62 with respect to the A to D line forming dies 52 in the first mold unit. FIG. 5 is a time chart showing the timing of shielding from the heater 36 by the shielding mechanisms 62 with respect to the A to D line forming dies 52 in the second mold unit. The timing at which the mold 52 is shielded from the heater 36 by each of the shielding mechanisms 62 is determined based on the temperature history at the tip of each support portion 12B of each mold unit 8 recorded in the control unit 70.
 本実施形態のように、支持台12に4つの成形型52が取り付けられている場合には、搬送経路の進行方向の中央に位置する成形型52及び支持部12Bは、進行方向の前方側及び後方側の端に位置する成形型52及び支持部12Bに比べて、ヒータ36から大量に輻射熱を受けるとともに、隣接する成形型52及び支持部12Bの熱を受けるため、温度が上昇しやすい。このため、制御部70に記録されている温度履歴は、各金型ユニットに共通してA,Dラインに比べて、B、Cラインの方が高温になる傾向にある。 When the four molds 52 are attached to the support base 12 as in the present embodiment, the mold 52 and the support portion 12B positioned at the center in the traveling direction of the transport path are the front side in the traveling direction and Compared with the mold 52 and the support part 12B positioned at the rear end, the heater 36 receives a large amount of radiant heat and also receives the heat of the adjacent mold 52 and the support part 12B, so that the temperature is likely to rise. For this reason, the temperature history recorded in the control unit 70 tends to be higher in the B and C lines than in the A and D lines in common with each mold unit.
 さらに、本実施形態のように、均熱室24が第2加熱室22とプレス室26との間に設けられている場合には、プレス室26の方が第2加熱室22に比べて高温に保たれている。このため、制御部70に記録されている温度履歴は、各金型ユニットに共通してAラインの方がDラインに比べて高温になる傾向にある。 Furthermore, when the soaking chamber 24 is provided between the second heating chamber 22 and the press chamber 26 as in the present embodiment, the press chamber 26 has a higher temperature than the second heating chamber 22. It is kept in. For this reason, the temperature history recorded in the control unit 70 tends to be higher in the A line than in the D line in common with each mold unit.
 したがって、制御部70に記録されている均熱室24から搬出される際の温度も、B、Cラインの成形型52及び支持部12Bの温度が最も高く、次いで、Aラインの成形型52及び支持部12Bの温度が高く、Dラインの成形型52及び支持部12Bの温度が最も低くなる場合が多い。 Therefore, the temperature at the time of carrying out from the soaking | uniform-heating chamber 24 recorded on the control part 70 is also the temperature of the shaping | molding die 52 of the B and C line, and the temperature of the support part 12B highest, and then the molding die 52 of A line In many cases, the temperature of the support portion 12B is high, and the temperatures of the D-line mold 52 and the support portion 12B are the lowest.
 このため、本実施形態では、A~Dラインの遮蔽時間は、各ラインの温度履歴における均熱室24から搬出される際の温度と、プレス処理における最適温度との差に応じて決定する。図4に示すように、第1金型ユニット8において、最も温度が高いB、Cラインでは、均熱室24に金型ユニット8が搬送されてから5秒後から40秒後まで、すなわち、35秒間にわたって遮蔽機構62により成形型52を遮蔽する。また、次いで温度が高いAラインでは、均熱室24に金型ユニット8が搬送されてから、5秒後から20秒後まで、すなわち、15秒間にわたって遮蔽機構62により成形型52を遮蔽する。また、最も温度が低いDラインでは、均熱室24に金型ユニット8が搬送されてから、5秒後から15秒後まで、すなわち、10秒間にわたって、遮蔽機構62により成形型52を遮蔽する。これにより、プレス室26に搬送される際の金型ユニット8における各成形型52のライン間ばらつきは低減されている。 For this reason, in the present embodiment, the shielding time of the A to D lines is determined according to the difference between the temperature at the time of carrying out from the soaking chamber 24 in the temperature history of each line and the optimum temperature in the press process. As shown in FIG. 4, in the first mold unit 8, in the B and C lines having the highest temperature, from 5 seconds to 40 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, The mold 52 is shielded by the shielding mechanism 62 for 35 seconds. Further, in the A line having the next highest temperature, the mold 52 is shielded by the shielding mechanism 62 from 5 seconds to 20 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, for 15 seconds. In the D line having the lowest temperature, the mold 52 is shielded by the shielding mechanism 62 from 5 seconds to 15 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, for 10 seconds. . Thereby, the line-to-line variation of each mold 52 in the mold unit 8 when being conveyed to the press chamber 26 is reduced.
 さらに、支持台の製造誤差により、各金型ユニット間で均熱室24から搬出される際の温度にばらつきが生じることがある。本実施形態では、第2金型ユニットのBラインの均熱室24から搬出される際の温度が、第1金型ユニットのBラインの温度よりも高温になっていたとする。このような場合には、第2金型ユニットのBラインの遮蔽機構62による遮蔽時間を第1金型ユニットのBラインに対する遮蔽時間より長くする。すなわち、図5に示すように、Bラインでは、均熱室24に金型ユニット8が搬送されてから、5秒後から45秒後まで、すなわち、40秒間にわたって遮蔽機構62により成形型52を遮蔽することとする。これにより、プレス室26に搬送される際の第1及び第2金型ユニット8における各成形型52のユニット間ばらつきは低減されている。 Furthermore, due to manufacturing errors of the support base, the temperature at the time of carrying out from the soaking chamber 24 may vary among the mold units. In this embodiment, it is assumed that the temperature at the time of carrying out from the soaking chamber 24 of the B line of the second mold unit is higher than the temperature of the B line of the first mold unit. In such a case, the shielding time by the shielding mechanism 62 for the B line of the second mold unit is made longer than the shielding time for the B line of the first mold unit. That is, as shown in FIG. 5, in the B line, the mold 52 is moved by the shielding mechanism 62 from 5 seconds to 45 seconds after the mold unit 8 is transferred to the soaking chamber 24, that is, for 40 seconds. Shield. Thereby, the unit-to-unit variation of the respective molds 52 in the first and second mold units 8 when being conveyed to the press chamber 26 is reduced.
 このようにして、制御部70が、第1~第8金型ユニット8の各成形型52に対して、それぞれ、適切な遮蔽機構62による遮蔽時間が設定し、これに基づき、制御部70により遮蔽機構62の遮蔽部64を昇降させるタイミングを制御する。これにより、各成形型52は均熱室24において実質的に均一な温度に均熱化される。 In this way, the control unit 70 sets an appropriate shielding time by the shielding mechanism 62 for each mold 52 of the first to eighth mold units 8, and based on this, the control unit 70 The timing which raises / lowers the shielding part 64 of the shielding mechanism 62 is controlled. Thereby, each mold 52 is soaked in the soaking chamber 24 at a substantially uniform temperature.
 なお、上述の通り、本明細書において「温度が実質的に均一」とは、ライン間ばらつき及びユニット間ばらつきにおける最大温度差が10度以下であることをいう。仮に、ライン間ばらつきが10℃以下に抑えられたとしても、ユニット間の温度ばらつきが10℃を超えてしまうと、ガラス素材の粘度で10~102dPa・sの差が生じてしまう。このような粘度差が生じると、プレス成形品の肉厚が均一にならなかったり、発泡やカン・ワレ、転写不良などの成形不良が発生したりしてしまう。本実施形態によれば、ライン間ばらつき及びユニット間ばらつきにおける最大温度差を10度以下、厳密に制御すれば5℃以下に抑制できるので、成形不良を招くことなく肉厚が均一な成形体を得ることができる。 As described above, “the temperature is substantially uniform” in this specification means that the maximum temperature difference in the line-to-line variation and the unit-to-unit variation is 10 degrees or less. Even if the line-to-line variation is suppressed to 10 ° C. or less, if the temperature variation between the units exceeds 10 ° C., a difference of 10 to 10 2 dPa · s is caused in the viscosity of the glass material. When such a viscosity difference occurs, the thickness of the press-molded product may not be uniform, or molding defects such as foaming, cracks, cracks, and transfer defects may occur. According to this embodiment, the maximum temperature difference in the line-to-line variation and the unit-to-unit variation can be suppressed to 10 ° C. or less and to 5 ° C. or less if strictly controlled. Obtainable.
 前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8はプレス室26内に搬送される。 When a preset tact time elapses from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is turned counterclockwise in plan view. Rotate 45 degrees. Thereby, the mold unit 8 is conveyed into the press chamber 26.
 プレス室26に金型ユニット8が搬送されると、プレスステップが行われる。プレスステップでは、ヒータ38により金型ユニット8をガラス屈伏点温度程度に保つように加熱しながら、プレス機構により金型ユニット8の成形型52を押圧し、ガラス材料をプレス成形する。プレス荷重は、10~1000kgf/cm2の範囲内で適宜設定することが好ましい。 When the mold unit 8 is conveyed to the press chamber 26, a press step is performed. In the press step, the mold unit 8 of the mold unit 8 is pressed by the press mechanism while the mold unit 8 is heated by the heater 38 so as to keep the glass yield point temperature, and the glass material is press-molded. The press load is preferably set as appropriate within a range of 10 to 1000 kgf / cm 2 .
 そして、プレスステップが完了し、前回の回転テーブル4の回転からタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8の成形型52は、第1徐冷室28内に搬送される。 When the press step is completed and the tact time has elapsed from the previous rotation of the turntable 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the turntable 4 is viewed in plan view. Rotate 45 degrees counterclockwise. Thereby, the mold 52 of the mold unit 8 is conveyed into the first slow cooling chamber 28.
 第1徐冷室28ではヒータ40により成形型52の温度を調整しながら、ゆっくりと成形型52を冷却する第1の徐冷ステップが行われる。ことのきの冷却速度は、10~100℃/分の範囲内で適宜設定することが好ましい。 In the first slow cooling chamber 28, a first slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 with the heater 40. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
 そして、第1の徐冷ステップが完了し、前回の回転から予め設定されたタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8の成形型52は、第2徐冷室30内に搬送される。 When the first slow cooling step is completed and a preset tact time has elapsed since the previous rotation, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the rotary table 4 rotates 45 degrees counterclockwise in plan view. Thereby, the mold 52 of the mold unit 8 is conveyed into the second slow cooling chamber 30.
 第2徐冷室30ではヒータ42により成形型52の温度を調整しながら、ゆっくりと成形型52を冷却する第2の徐冷ステップが行われる。ことのきの冷却速度は、10~100℃/分の範囲内で適宜設定することが好ましい。 In the second slow cooling chamber 30, a second slow cooling step for slowly cooling the mold 52 is performed while adjusting the temperature of the mold 52 by the heater 42. It is preferable to appropriately set the cooling rate for the time in the range of 10 to 100 ° C./min.
 前回の回転テーブル4の回転からタクトタイムが経過すると、内部ケーシング6の周方向端部及び各室の間に設けられたシャッターが開かれ、回転テーブル4が平面視反時計回りに45度回転する。これにより、金型ユニット8の成形型52は、第2徐冷室30から急冷部44へ搬送される。 When the tact time elapses from the previous rotation of the rotary table 4, the shutter provided between the circumferential end of the inner casing 6 and each chamber is opened, and the rotary table 4 rotates 45 degrees counterclockwise in plan view. . Thereby, the mold 52 of the mold unit 8 is conveyed from the second slow cooling chamber 30 to the rapid cooling unit 44.
 急冷部44に成形型52が搬送されると、急冷ステップが行われる。急冷部44には、ヒータが設置されておらず、装置の周囲と同程度の温度となっている。このため、金型ユニット8及び成形体52の内部のガラス成形体は急速に冷却される。このときの冷却速度は、徐冷ステップでの冷却速度よりも速く、例えば、30~300℃/分の範囲内で適宜設定することが好ましい。また、必要に応じて金型ユニット8に向けて冷却ガスを吹き付けてもよい。 When the mold 52 is conveyed to the rapid cooling section 44, a rapid cooling step is performed. The quenching section 44 is not provided with a heater and has a temperature similar to that around the apparatus. For this reason, the glass molded body inside the mold unit 8 and the molded body 52 is rapidly cooled. The cooling rate at this time is faster than the cooling rate in the slow cooling step, and is preferably set appropriately within a range of, for example, 30 to 300 ° C./min. Moreover, you may spray cooling gas toward the die unit 8 as needed.
 さらに、前回の回転テーブル4の回転から予め設定されたタクトタイムが経過すると、回転テーブル4が45度回転して、金型ユニット8が搬入・搬出部46へ移送される。
 成形処理が完了したガラス成形体を収容する金型ユニット8が搬入・搬出部46に到達すると、昇降機構によって金型ユニット8が上昇し、搬入・搬出口から、成形処理が完了した成形型52を複数個同時に装置筐体2の外部へ搬出する。
 以上の工程により、製造装置1によりガラス成形体を連続的に製造することができる。
Further, when a preset tact time elapses from the previous rotation of the rotary table 4, the rotary table 4 rotates 45 degrees and the mold unit 8 is transferred to the loading / unloading unit 46.
When the mold unit 8 that accommodates the glass molded body that has undergone the molding process reaches the carry-in / carry-out unit 46, the mold unit 8 is raised by the lifting mechanism, and the mold 52 that has undergone the molding process from the carry-in / carry-out port Are simultaneously carried out of the apparatus housing 2.
Through the above steps, the glass molded body can be continuously produced by the production apparatus 1.
 なお、上記の実施形態では、均熱室24のみに遮蔽機構62を設けているが、これに限らず、第1加熱室20、第2加熱室22、第1徐冷室28、及び第2徐冷室30に遮蔽機構62を設け、均熱室24と同様に、遮蔽機構62による遮蔽時間を制御することとしてもよい。この場合には、各室における遮蔽機構の遮蔽時間は、制御部70に記録されている温度履歴における各室から搬出される直前の温度に基づき設定すればよい。 In the above embodiment, the shielding mechanism 62 is provided only in the soaking chamber 24. However, the present invention is not limited to this, and the first heating chamber 20, the second heating chamber 22, the first slow cooling chamber 28, and the second A shielding mechanism 62 may be provided in the slow cooling chamber 30, and the shielding time by the shielding mechanism 62 may be controlled similarly to the soaking chamber 24. In this case, the shielding time of the shielding mechanism in each chamber may be set based on the temperature immediately before being taken out from each chamber in the temperature history recorded in the control unit 70.
 また、遮蔽機構62を加熱部のみに設けてもよい。加熱部は金型ユニット8を加熱する初期段階にあるため、加熱の初期から金型ユニット8の均熱化を図ることができる。なお、本実施形態のように、複数の加熱室(第1加熱室20、第2加熱室22)が設けられている場合には、遮蔽機構62を何れか一つの加熱室に設けてもよいし、複数の加熱室に設けてもよい。 Further, the shielding mechanism 62 may be provided only in the heating unit. Since the heating unit is in the initial stage of heating the mold unit 8, it is possible to equalize the mold unit 8 from the initial stage of heating. When a plurality of heating chambers (first heating chamber 20 and second heating chamber 22) are provided as in the present embodiment, the shielding mechanism 62 may be provided in any one heating chamber. However, it may be provided in a plurality of heating chambers.
 発明者らは、本発明の製造装置によれば、成形型の温度のライン間ばらつき、及びユニット間ばらつきを低減できることを実験により確認した。以下、この実験について説明する。 The inventors have confirmed through experiments that according to the manufacturing apparatus of the present invention, it is possible to reduce the line-to-line variation of the mold temperature and the unit-to-unit variation. Hereinafter, this experiment will be described.
 本実験では、遮蔽機構62を駆動した状態及び遮蔽機構62を停止した状態で、それぞれ製造装置1を駆動してガラス成形体を製造し、各金型ユニット8の各ラインA~Dの温度履歴を測定した。なお、本実験では、均熱室24に加えて、第2加熱室22にも遮蔽機構62を設けている。 In this experiment, with the shielding mechanism 62 driven and the shielding mechanism 62 stopped, the manufacturing apparatus 1 is driven to manufacture a glass molded body, and the temperature history of each line A to D of each mold unit 8 is manufactured. Was measured. In this experiment, a shielding mechanism 62 is provided in the second heating chamber 22 in addition to the soaking chamber 24.
 図6は、遮蔽機構62を駆動した状態で製造装置1を駆動してガラス成形体を製造した場合(以下、実施例1という)における、温度センサーにより測定されたA~Dラインの支持部12Bの先端の温度履歴(成形型の温度履歴に相当する)を示すグラフである。また、図7は、遮蔽機構62を停止させた状態で製造装置1を駆動してガラス成形体を製造した場合(以下、比較例1という)における、温度センサーにより測定されたA~Dラインの支持部12Bの先端の温度履歴を示すグラフである。なお、これら温度履歴は、第1~第8金型ユニットの平均の温度履歴を示している。 FIG. 6 shows a supporting portion 12B of A to D lines measured by a temperature sensor when the glass forming body is manufactured by driving the manufacturing apparatus 1 with the shielding mechanism 62 driven (hereinafter referred to as Example 1). It is a graph which shows the temperature history of the front-end | tip (equivalent to the temperature history of a shaping | molding die). FIG. 7 shows A to D lines measured by the temperature sensor when the manufacturing apparatus 1 is driven with the shielding mechanism 62 stopped to manufacture a glass molded body (hereinafter referred to as Comparative Example 1). It is a graph which shows the temperature history of the front-end | tip of the support part 12B. These temperature histories are average temperature histories of the first to eighth mold units.
 図7に示すように、比較例1では、第2加熱ステップから均熱ステップの間において、上述の通り、B、Cラインの支持部12Bの先端の温度は、A、Dラインに比べて非常に高く上昇している。また、Aラインの支持部12Bの先端の温度は、Dラインに比べて高くなっている。均熱ステップの開始時における最も温度の高いBラインと、最も温度の低いDラインとの温度差は、約15度となっている。そして、この温度差は、プレス工程、及び徐冷工程においてもほとんど解消されることなく残存している。 As shown in FIG. 7, in Comparative Example 1, the temperature at the tip of the support portion 12B of the B and C lines is much higher than that of the A and D lines between the second heating step and the soaking step as described above. It is rising high. Further, the temperature at the tip of the support portion 12B of the A line is higher than that of the D line. The temperature difference between the highest temperature B line and the lowest temperature D line at the start of the soaking step is about 15 degrees. This temperature difference remains almost completely eliminated in the pressing process and the slow cooling process.
 これに対して、図6に示すように、実施例1では、第2の加熱ステップから均熱ステップの間においても、A~Dラインの温度は実質的に同一な温度履歴を示している。また、均熱ステップの開始時における最も温度の高いBラインと、最も温度の低いDラインとの温度差は約5度と、比較例に比べて非常に小さくなっている。そして、この温度差はプレス工程、及び徐冷工程において、大きくなることはない。 On the other hand, as shown in FIG. 6, in Example 1, the temperature of the A to D lines shows substantially the same temperature history even during the period from the second heating step to the soaking step. In addition, the temperature difference between the highest temperature B line and the lowest temperature D line at the start of the soaking step is about 5 degrees, which is very small compared to the comparative example. And this temperature difference does not become large in a press process and a slow cooling process.
 また、図8は、遮蔽機構62を駆動した状態で製造装置1を駆動してガラス成形体を製造した場合(以下、実施例2という)であって、均熱室における温度センサーにより測定された第1~第8の金型ユニットのA~Dラインの支持部12Bの先端の温度を示すグラフである。また、図9は、遮蔽機構62を停止させた状態で製造装置1を駆動してガラス成形体を製造した場合(以下、比較例2という)であって、均熱室における温度センサーにより測定された第1~第8の金型ユニットのA~Dラインの支持部12Bの先端の温度を示すグラフである。なお、図8及び図9における横軸の数字1から8はそれぞれ、第1~第8金型ユニットに対応している。 FIG. 8 shows a case where a glass molded body is manufactured by driving the manufacturing apparatus 1 with the shielding mechanism 62 being driven (hereinafter referred to as Example 2), and was measured by a temperature sensor in a soaking chamber. It is a graph which shows the temperature of the front-end | tip of the support part 12B of the A-D line of a 1st-8th metal mold unit. FIG. 9 shows a case where a glass molded body is manufactured by driving the manufacturing apparatus 1 with the shielding mechanism 62 stopped (hereinafter referred to as Comparative Example 2), and is measured by a temperature sensor in a soaking chamber. 10 is a graph showing the temperature at the tip of the support portion 12B of the A to D lines of the first to eighth mold units. The numbers 1 to 8 on the horizontal axis in FIGS. 8 and 9 correspond to the first to eighth mold units, respectively.
 図9に示すように、比較例2では、各金型ユニットにおいて、ライン間で大きな温度ばらつきが生じており、第1~第8金型ユニットにおけるライン間の温度差は、ほとんどが10℃を超えている。また、比較例2では、均熱室から搬出された際の各金型ユニットの温度にもばらつきが生じている。最も温度の高い第5の金型ユニットのBラインの温度と、最も温度の低い第3の金型ユニットのDラインの温度の差は、15℃以上となっている。 As shown in FIG. 9, in Comparative Example 2, a large temperature variation occurs between the lines in each mold unit, and the temperature difference between the lines in the first to eighth mold units is almost 10 ° C. Over. Further, in Comparative Example 2, the temperature of each mold unit when being carried out of the soaking chamber also varies. The difference between the temperature of the B line of the fifth mold unit having the highest temperature and the temperature of the D line of the third mold unit having the lowest temperature is 15 ° C. or more.
 これに対して、図8に示すように、実施例2では、各金型ユニットにおけるライン間の温度ばらつきは比較例2に比べて非常に小さくなっており、第1~第8金型ユニットにおけるライン間の温度差はいずれも5℃以下である。また、実施例2では、均熱室から搬出された際の各金型ユニットの温度のばらつきも非常に小さくなっている。
 このように、上記の実験により、本実施形態のガラス成形体の製造装置によれば、各金型ユニットにおけるライン間の温度ばらつきのみならず、金型ユニット間の温度のばらつきをも低減できることが確認された。
On the other hand, as shown in FIG. 8, in Example 2, the temperature variation between the lines in each mold unit is much smaller than that in Comparative Example 2, and in the first to eighth mold units. The temperature difference between the lines is 5 ° C. or less. Moreover, in Example 2, the dispersion | variation in the temperature of each mold unit at the time of carrying out from a soaking | uniform-heating chamber is also very small.
As described above, according to the glass molded body manufacturing apparatus of the present embodiment, not only the temperature variation between lines in each mold unit but also the temperature variation between mold units can be reduced by the above experiment. confirmed.
 以上説明したように、本実施形態によれば、金型ユニット8の支持部12Bに載置される複数の成形型52に対して、それぞれ、遮蔽機構62を設け、制御部によりこれら遮蔽機構62による遮蔽時間を各金型ユニット8のそれぞれの成形型52に対して制御するため、均熱室24から搬出される際の成形型52の温度のばらつき、特に、ユニット間ばらつきを低減することができる。 As described above, according to the present embodiment, the shielding mechanism 62 is provided for each of the plurality of molds 52 placed on the support portion 12B of the mold unit 8, and the shielding mechanism 62 is provided by the control unit. In order to control the shielding time by the respective molds 52 of the respective mold units 8, it is possible to reduce the variation in the temperature of the molds 52, especially the unit-to-unit variation when being carried out of the soaking chamber 24. it can.
 さらに、本実施形態では、予め、遮蔽機構62を停止させた状態で支持台12に成形型52を載置して製造装置1を駆動し、その際、測定された各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴が制御部70に記録されている。そして、制御部70はこの温度履歴に基づき、遮蔽機構62による遮蔽時間を制御する。このように、実際に駆動した状態における温度履歴に基づき、遮蔽機構62による遮蔽時間を制御することにより、各成形型52の温度のばらつきをより低減することができる。 Furthermore, in the present embodiment, the mold 52 is placed on the support 12 with the shielding mechanism 62 stopped in advance, and the manufacturing apparatus 1 is driven. At this time, each of the measured mold units 8 is measured. The temperature history at the tip of the support portion 12B is recorded in the control unit 70. And the control part 70 controls the shielding time by the shielding mechanism 62 based on this temperature history. In this way, by controlling the shielding time by the shielding mechanism 62 based on the temperature history in the actually driven state, the temperature variation of each mold 52 can be further reduced.
 そして、このように各成形型52の温度のばらつきを低減できるため、ガラス成形体の成形精度を向上することができる。 And since the dispersion | variation in the temperature of each shaping | molding die 52 can be reduced in this way, the shaping | molding precision of a glass molded object can be improved.
 なお、本実施形態では、回転テーブル4により円形経路に沿って金型ユニット8を搬送することとしているが、これに限らず、アーム等の搬送手段により金型ユニット8を搬送してもよい。また、搬送経路は円形には限られず、直線状としてもよい。 In the present embodiment, the mold unit 8 is transported along the circular path by the rotary table 4, but the present invention is not limited to this, and the mold unit 8 may be transported by a transport means such as an arm. Further, the conveyance path is not limited to a circle, and may be a straight line.
 また、本実施形態では、予め、測定された各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴に基づき、制御部70は遮蔽機構62による遮蔽時間を制御することとしたが、本発明はこれに限られない。 Further, in the present embodiment, the control unit 70 controls the shielding time by the shielding mechanism 62 based on the temperature history at the tip of each support portion 12B of each mold unit 8 measured in advance. The present invention is not limited to this.
 例えば、温度センサー13により測定された各金型ユニット8の各支持部12Bの温度に基づき、リアルタイムで遮蔽機構62の遮蔽時間を制御してもよい。このような場合は、例えば、制御部70は、温度センサー13により測定された温度と基準となる温度との差に基づき、遮蔽機構62により遮蔽すべき時間を算出する。そして、制御部70は、算出した遮蔽時間にわたって、遮蔽機構62により成形型52を遮蔽する。このような構成によっても、各金型ユニットのそれぞれの成形型52の温度を実質的に均一にすることができる。 For example, the shielding time of the shielding mechanism 62 may be controlled in real time based on the temperature of each support portion 12B of each mold unit 8 measured by the temperature sensor 13. In such a case, for example, the control unit 70 calculates the time to be shielded by the shielding mechanism 62 based on the difference between the temperature measured by the temperature sensor 13 and the reference temperature. And the control part 70 shields the shaping | molding die 52 with the shielding mechanism 62 over the calculated shielding time. Even with such a configuration, the temperatures of the respective molds 52 of the respective mold units can be made substantially uniform.
 また、本実施形態では、第1加熱室20、第2加熱室22、均熱室24、プレス室26、第1徐冷室28、第2徐冷室30が内部ケーシング6内に形成された製造装置1について説明したが、複数のプレス室を備えた製造装置にも本発明を適用することができる。 In the present embodiment, the first heating chamber 20, the second heating chamber 22, the soaking chamber 24, the press chamber 26, the first annealing chamber 28, and the second annealing chamber 30 are formed in the inner casing 6. Although the manufacturing apparatus 1 has been described, the present invention can also be applied to a manufacturing apparatus having a plurality of press chambers.
 図10は、2つのプレス室を備えた製造装置101の構成を示す水平断面図である。同図に示すように、図10に示す製造装置101では、内部ケーシング6内に、加熱室120、第1均熱室122、第1プレス室124、第1徐冷室126、第2均熱室128、第2プレス室130、第2徐冷室132が設けられている。また、加熱室120、第1均熱室122、第1プレス室124、第1徐冷室126、第2均熱室128、第2プレス室130、第2徐冷室132には、それぞれ、ヒータ134、136、138、140、142、144、146が設けられている。 FIG. 10 is a horizontal sectional view showing a configuration of a manufacturing apparatus 101 having two press chambers. As shown in FIG. 10, in the manufacturing apparatus 101 shown in FIG. 10, a heating chamber 120, a first soaking chamber 122, a first press chamber 124, a first annealing chamber 126, and a second soaking chamber are provided in the inner casing 6. A chamber 128, a second press chamber 130, and a second slow cooling chamber 132 are provided. The heating chamber 120, the first soaking chamber 122, the first press chamber 124, the first annealing chamber 126, the second soaking chamber 128, the second pressing chamber 130, and the second annealing chamber 132 are respectively Heaters 134, 136, 138, 140, 142, 144, and 146 are provided.
 このように二つのプレス室を備えた製造装置においても、上記の実施形態と同様に第1及び第2均熱室122、128にそれぞれ遮蔽機構を設けるとよい。 In the manufacturing apparatus including two press chambers as described above, a shielding mechanism may be provided in each of the first and second soaking chambers 122 and 128 as in the above embodiment.
 この場合、上記の実施形態と同様に、予め、遮蔽機構62を停止させた状態で支持台に成形型52を載置して製造装置101を駆動し、その際、測定された各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴に基づき、各均熱室122、128の遮蔽機構62の遮蔽時間を設定してもよい。さらに、以下のようにして各均熱室の遮蔽機構62の遮蔽時間を設定することも可能である。 In this case, similarly to the above-described embodiment, the mold 52 is placed on the support base with the shielding mechanism 62 stopped in advance, and the manufacturing apparatus 101 is driven. At this time, each measured mold unit is measured. The shielding time of the shielding mechanism 62 of each of the soaking chambers 122 and 128 may be set based on the temperature history at the tip of each of the eight support portions 12B. Further, it is possible to set the shielding time of the shielding mechanism 62 of each soaking chamber as follows.
 まず、予め、第1及び第2均熱室122、128の遮蔽機構62を停止させた状態で支持台12に成形型52を載置して製造装置101を駆動し、各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴を測定する。そして、この温度履歴に基づき、第1均熱室122の各遮蔽機構62の遮蔽時間を、第1均熱室122から搬出される直前の温度が実質的に均一になるように設定する。 First, with the shielding mechanism 62 of the first and second soaking chambers 122 and 128 stopped in advance, the mold 52 is placed on the support base 12 and the manufacturing apparatus 101 is driven. The temperature history at the tip of each support portion 12B is measured. Based on this temperature history, the shielding time of each shielding mechanism 62 of the first soaking chamber 122 is set so that the temperature immediately before being carried out of the first soaking chamber 122 becomes substantially uniform.
 次に、第2均熱室128の遮蔽機構62は停止させ、第1均熱室122の遮蔽機構62を起動させた状態で製造装置101を駆動し、各金型ユニット8のそれぞれの支持部12Bの先端部における温度履歴を測定する。なお、この際、第1均熱室122の遮蔽機構62は上記設定した時間だけ、成形型をヒータ136から遮蔽するように駆動させる。 Next, the shielding mechanism 62 of the second soaking chamber 128 is stopped, and the manufacturing apparatus 101 is driven in a state where the shielding mechanism 62 of the first soaking chamber 122 is activated. The temperature history at the tip of 12B is measured. At this time, the shielding mechanism 62 of the first soaking chamber 122 is driven to shield the mold from the heater 136 for the set time.
 そして、このようにして測定された温度履歴に基づき、第2均熱室128の各遮蔽機構62の遮蔽時間を、第2均熱室128から搬出される直前の温度が実質的に均一になるように設定する。 Based on the temperature history thus measured, the shielding time of each shielding mechanism 62 of the second soaking chamber 128 is substantially uniform at the temperature immediately before being transported from the second soaking chamber 128. Set as follows.
 このように、第1及び第2均熱室122、128の遮蔽機構62の遮蔽時間を設定することにより、第1及び第2プレス室124、130に搬入される成形型52の温度をより一層均一にすることができる。 In this way, by setting the shielding time of the shielding mechanism 62 of the first and second soaking chambers 122 and 128, the temperature of the mold 52 carried into the first and second press chambers 124 and 130 is further increased. It can be made uniform.
 本発明は以上説明したような実施形態に限定されることなく本発明を逸脱しない範囲において種々変更可能であることは言うまでもない。たとえば、本発明における遮蔽部64の形状は断面コの字形状の他に断面U字形状や有底円筒状のものであってもよい。 It goes without saying that the present invention is not limited to the embodiment described above and can be variously modified without departing from the present invention. For example, the shape of the shielding portion 64 in the present invention may be a U-shaped cross section or a bottomed cylindrical shape in addition to a U-shaped cross section.
 また、上記実施形態では、4本の支持部12Bを有する支持台12に成形型52を4個載置した例を示したが、支持部12Bおよび当該支持部に載置される成形型52の数は、複数であれば2、3、5~8個のいずれの数量であってもよい。 Moreover, although the example which mounted the four shaping | molding molds 52 on the support stand 12 which has the four support parts 12B was shown in the said embodiment, of the shaping | molding die 52 mounted in the support part 12B and the said support part. As long as the number is plural, any number of 2, 3, 5 to 8 may be used.
 以下、本発明を図面を参照しながら、総括する。
 本発明のガラス成形体の製造装置1は、図1に示すように、支持台12と、支持台12に搬送経路に沿って並置され内部にガラス材料60を収容した複数の成形型52と、を含む複数の金型ユニット8を、順次、搬送する回転テーブル4と、搬送経路に沿って設けられたガラス材料に加熱処理を行う第1及び第2加熱室20、22、ガラス材料を均熱化する均熱室24、金型に収容されたガラス材料にプレス処理を行い成形体に成形するプレス室26、及び成形体に徐冷処理を行う第1及び第2徐冷室28、30を含む複数の処理部と、複数の処理部の搬送経路に沿って設けられたヒータ32、34、36、38、40、42と、を備える。そして、図2及び図3に示すように、ガラス成形体の製造装置1は、さらに、加熱部(第1加熱室20、第2加熱室22)もしくは均熱室24に設けられ、かつ、複数の成形型52をそれぞれヒータ32から遮蔽することができるように移動可能な複数の遮蔽機構62と、複数の遮蔽機構62により対応する成形型52を遮蔽する遮蔽時間をそれぞれ制御する制御部70と、を備え、制御部70は、各金型ユニット8の複数の成形型52の温度が実質的に均一になるように、複数の遮蔽機構62の遮蔽時間をそれぞれ制御する。
The present invention will be summarized below with reference to the drawings.
As shown in FIG. 1, the glass molded body manufacturing apparatus 1 of the present invention includes a support base 12, a plurality of molds 52 that are juxtaposed along the transport path on the support base 12, and contain a glass material 60 therein, The first and second heating chambers 20 and 22 for heat-treating the glass material provided along the conveyance path, the rotary table 4 that sequentially conveys the plurality of mold units 8 including the glass material, Soaking chamber 24, press chamber 26 that presses the glass material accommodated in the mold to form a molded body, and first and second annealing chambers 28 and 30 that slowly cool the molded body. A plurality of processing units, and heaters 32, 34, 36, 38, 40, and 42 provided along the conveyance paths of the plurality of processing units. As shown in FIGS. 2 and 3, the glass molded body manufacturing apparatus 1 is further provided in the heating unit (first heating chamber 20, second heating chamber 22) or soaking chamber 24, A plurality of shielding mechanisms 62 that can be moved so that each of the molding dies 52 can be shielded from the heater 32, and a control unit 70 that controls the shielding time for shielding the corresponding molding dies 52 by the plurality of shielding mechanisms 62, respectively. The control unit 70 controls the shielding time of the plurality of shielding mechanisms 62 so that the temperatures of the plurality of molds 52 of each mold unit 8 become substantially uniform.
 また、本発明のガラス成形体の製造方法は、上記の製造装置1を用いた方法であって、第1及び第2加熱室20、22において、ガラス材料に加熱処理を行う加熱ステップと、均熱室24において、ガラス材料を均熱化する均熱ステップと、プレス室26においてガラス材料にプレス処理を行い成形体に成形するプレスステップと、第1及び第2徐冷室28、30において、成形体を冷却する冷却ステップと、を備え、加熱ステップもしくは均熱ステップにおいて、各金型ユニット8の複数の金型の温度が実質的に均一になるように、複数の遮蔽機構62の遮蔽時間をそれぞれ制御する。 In addition, the glass molded body manufacturing method of the present invention is a method using the manufacturing apparatus 1 described above, and includes a heating step of performing a heat treatment on the glass material in the first and second heating chambers 20 and 22, and a leveling process. In the heat chamber 24, in the soaking step for soaking the glass material, in the press chamber 26, the press step for pressing the glass material to form a molded body, and in the first and second annealing chambers 28, 30, A cooling step for cooling the molded body, and in the heating step or the soaking step, the shielding time of the plurality of shielding mechanisms 62 so that the temperatures of the plurality of molds of each mold unit 8 become substantially uniform. To control each.
1、101 製造装置
2 装置筐体
4 回転テーブル
6 内部ケーシング
8 金型ユニット
10 回転盤
12 支持台
20 第1加熱室
22 第2加熱室
24 均熱部
26 プレス室
28 第1徐冷室
30 第2徐冷室
32、34、36、38、40、42 ヒータ
52 成形型
60 ガラス材料
62 遮蔽機構
64 遮蔽部
66 軸部
68 昇降機構
70 制御部
120 加熱室
122 第1均熱室
124 第1プレス室
126 徐冷室
128 第2均熱室
130 第2プレス室
132 徐冷室
134、136、138、140、142、144、146 ヒータ
DESCRIPTION OF SYMBOLS 1,101 Manufacturing apparatus 2 Apparatus housing 4 Turntable 6 Inner casing 8 Mold unit 10 Turntable 12 Support stand 20 1st heating chamber 22 2nd heating chamber 24 Soaking part 26 Press chamber 28 1st slow cooling chamber 30 1st 2 Slow cooling chambers 32, 34, 36, 38, 40, 42 Heater 52 Mold 60 Glass material 62 Shielding mechanism 64 Shielding portion 66 Shaft portion 68 Lifting mechanism 70 Control portion 120 Heating chamber 122 First soaking chamber 124 First press Chamber 126 Slow cooling chamber 128 Second soaking chamber 130 Second press chamber 132 Slow cooling chamber 134, 136, 138, 140, 142, 144, 146 Heater

Claims (8)

  1.  支持部材と、前記支持部材に搬送経路に沿って並置され、内部にガラス材料を収容した複数の金型と、を含む複数の金型ユニットを、順次、搬送する搬送機構と、
     前記搬送経路に沿って設けられた前記ガラス材料に加熱処理を行う加熱部、前記ガラス材料を均熱化する均熱部、前記ガラス材料にプレス処理を行い成形体に成形するプレス部、及び前記成形体に徐冷処理を行う徐冷部を含む複数の処理部と、
     前記複数の処理部の前記搬送経路に沿って設けられたヒータと、を備えたガラス成形体の製造装置であって、
     前記ガラス成形体の製造装置は、さらに、前記加熱部又は前記均熱部に設けられ、かつ、前記複数の金型をそれぞれヒータから遮蔽することができるように移動可能な複数の遮蔽機構と、
     前記複数の遮蔽機構により対応する金型を遮蔽する遮蔽時間をそれぞれ制御する制御部と、を備え、
     前記制御部は、前記複数の金型ユニットの各金型の温度が実質的に均一になるように、前記複数の遮蔽機構の前記遮蔽時間をそれぞれ制御する、ガラス成形体の製造装置。
    A transport mechanism that sequentially transports a plurality of mold units including a support member and a plurality of molds juxtaposed along the transport path to the support member and containing a glass material therein;
    A heating unit that heat-treats the glass material provided along the transport path, a heat-uniforming unit that soaks the glass material, a press unit that presses the glass material to form a molded body, and the A plurality of processing parts including a slow cooling part for performing a slow cooling process on the molded body;
    A heater provided along the transport path of the plurality of processing units, and a glass molded body manufacturing apparatus comprising:
    The glass molded body manufacturing apparatus further includes a plurality of shielding mechanisms provided in the heating unit or the soaking unit, and movable so as to shield the plurality of molds from the heaters, respectively.
    A control unit for controlling a shielding time for shielding the corresponding mold by the plurality of shielding mechanisms,
    The said control part is a manufacturing apparatus of the glass molded object which respectively controls the said shielding time of these shielding mechanisms so that the temperature of each metal mold | die of these mold units may become substantially uniform.
  2.  前記制御部には、前記ガラス成形体の製造装置によりガラス成形体を製造した際に測定された、各金型ユニットのそれぞれの金型の温度履歴が記録されており、
     前記制御部は、前記記録された各金型ユニットのそれぞれの金型の温度履歴に応じて、前記複数の遮蔽機構の前記遮蔽時間をそれぞれ制御する、請求項1に記載されたガラス成形体の製造装置。
    In the control unit, the temperature history of each mold of each mold unit measured when the glass molded body is manufactured by the glass molded body manufacturing apparatus is recorded,
    2. The glass molded body according to claim 1, wherein the control unit controls the shielding time of the plurality of shielding mechanisms according to a temperature history of each die of the recorded die units. Manufacturing equipment.
  3.  さらに、各金型ユニットのそれぞれの金型の温度を測定する温度測定部を有し、
     前記制御部は、前記温度測定部により測定された各金型ユニットのそれぞれの金型の温度に応じて、それぞれの金型の温度が実質的に均一になるように前記複数の遮蔽機構の前記遮蔽時間をそれぞれ制御する、請求項1に記載されたガラス成形体の製造装置。
    Furthermore, it has a temperature measuring unit for measuring the temperature of each mold of each mold unit,
    The control unit is configured to control the plurality of shielding mechanisms so that the temperatures of the molds are substantially uniform according to the temperature of the molds of the mold units measured by the temperature measurement unit. The manufacturing apparatus of the glass molded object of Claim 1 which controls each shielding time.
  4.  前記支持部材には、前記搬送経路に沿って3つ以上の金型が並置されている、請求項1から3の何れか1項に記載のガラス成形体の製造装置。 The apparatus for producing a glass molded body according to any one of claims 1 to 3, wherein three or more molds are juxtaposed along the transport path on the support member.
  5.  前記プレス部は、第1のプレス部及び第2のプレス部を含み、
     前記均熱部は、第1の均熱部及び第2の均熱部を含み、
     前記第1の均熱部は、前記第1のプレス部の前記搬送経路の上流側に設けられ、
     前記第2の均熱部は、前記第2のプレス部の前記搬送経路の上流側に設けられ、
     前記遮蔽機構は、前記第1の均熱部及び第2の均熱部のそれぞれに設けられている、請求項1から4の何れか1項に記載されたガラス成形体の製造装置。
    The press part includes a first press part and a second press part,
    The soaking part includes a first soaking part and a second soaking part,
    The first soaking part is provided on the upstream side of the transport path of the first press part,
    The second soaking part is provided on the upstream side of the transport path of the second press part,
    The said shielding mechanism is a manufacturing apparatus of the glass molded object as described in any one of Claim 1 to 4 provided in each of said 1st soaking part and 2nd soaking part.
  6.  支持部材と、前記支持部材に搬送経路に沿って並置され内部にガラス材料を収容した複数の金型と、を含む複数の金型ユニットを、順次、搬送する搬送機構と、
     前記搬送経路に沿って設けられた前記ガラス材料に加熱処理を行う加熱部、前記ガラス材料を均熱化する均熱部、前記ガラス材料にプレス処理を行い成形体に成形するプレス部、及び前記成形体に徐冷処理を行う徐冷部を含む複数の処理部と、
     前記複数の処理部の前記搬送経路に沿って設けられたヒータと、
     前記加熱部又は前記均熱部に設けられ、かつ、前記複数の金型をそれぞれヒータから遮蔽することができるように移動可能な複数の遮蔽機構と、
     前記複数の遮蔽機構により対応する金型を遮蔽する遮蔽時間をそれぞれ制御する制御部と、を備えたガラス成形体の製造装置によりガラス成形体を製造する方法であって、
     前記方法は、
     前記加熱部において、前記ガラス材料に加熱処理を行う加熱ステップと、
     前記均熱部において、前記ガラス材料を均熱化する均熱ステップと、
     前記プレス部において前記ガラス材料にプレス処理を行い成形体に成形するプレスステップと、
     前記徐冷部において、成形体を冷却する冷却ステップと、を備え、
     前記加熱ステップ又は前記均熱ステップにおいて、前記複数の金型ユニットの各金型の温度が実質的に均一になるように、前記複数の遮蔽機構の前記遮蔽時間をそれぞれ制御する、ガラス成形体の製造方法。
    A transport mechanism that sequentially transports a plurality of mold units including a support member and a plurality of molds juxtaposed along the transport path to the support member and containing a glass material therein;
    A heating unit that heat-treats the glass material provided along the transport path, a heat-uniforming unit that soaks the glass material, a press unit that presses the glass material to form a molded body, and the A plurality of processing parts including a slow cooling part for performing a slow cooling process on the molded body;
    A heater provided along the transport path of the plurality of processing units;
    A plurality of shielding mechanisms provided in the heating unit or the soaking unit, and movable so as to shield the plurality of molds from the heaters;
    A method of manufacturing a glass molded body with a glass molded body manufacturing apparatus comprising: a control unit that controls a shielding time for shielding a corresponding mold by the plurality of shielding mechanisms;
    The method
    In the heating unit, a heating step of performing a heat treatment on the glass material;
    In the soaking part, soaking step for soaking the glass material,
    A press step of pressing the glass material in the press section to form a molded body;
    A cooling step for cooling the molded body in the slow cooling section,
    In the heating step or the soaking step, the shielding time of the plurality of shielding mechanisms is respectively controlled so that the temperatures of the molds of the plurality of mold units become substantially uniform. Production method.
  7.  前記制御部には、前記ガラス成形体の製造装置によりガラス成形体を製造した際に測定された、金型ユニットごとの、それぞれの金型の温度履歴が記録されており、
     前記加熱ステップ又は前記均熱ステップにおいて、前記制御部により、前記記録された金型ユニットごとのそれぞれの金型の温度履歴に応じて、前記複数の遮蔽機構の前記遮蔽時間をそれぞれ制御する、請求項6に記載されたガラス成形体の製造方法。
    In the control unit, the temperature history of each mold is recorded for each mold unit, which is measured when the glass molded body is manufactured by the glass molded body manufacturing apparatus,
    In the heating step or the soaking step, the control unit controls the shielding time of the plurality of shielding mechanisms according to the temperature history of each die recorded for each die unit. Item 7. A method for producing a glass molded article according to Item 6.
  8.  前記ガラス成形体の製造装置は、さらに、金型ユニットごとのそれぞれの金型の温度を測定する温度測定部を有し、
     前記加熱ステップ又は前記均熱ステップにおいて、
     前記温度測定部により各金型ユニットにそれぞれの金型の温度を測定し、
     前記制御部により、前記温度測定部により測定された各金型ユニットのそれぞれの金型の温度に応じて、前記複数の金型ユニットのそれぞれの金型の温度が実質的に均一になるように前記複数の遮蔽機構の前記遮蔽時間をそれぞれ制御する、請求項6に記載されたガラス成形体の製造方法。
    The glass molded body manufacturing apparatus further includes a temperature measuring unit that measures the temperature of each mold for each mold unit,
    In the heating step or the soaking step,
    Measure the temperature of each mold on each mold unit by the temperature measuring unit,
    According to the temperature of each mold of each mold unit measured by the temperature measurement unit, the temperature of each mold of the plurality of mold units is substantially uniform by the control unit. The method for producing a glass molded body according to claim 6, wherein the shielding times of the plurality of shielding mechanisms are respectively controlled.
PCT/JP2014/054200 2013-02-21 2014-02-21 Device for manufacturing molded glass body and method for manufacturing molded glass body WO2014129591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480002727.1A CN104718165B (en) 2013-02-21 2014-02-21 The manufacture device of glass forming body and the manufacture method of glass forming body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013031849A JP5994676B2 (en) 2013-02-21 2013-02-21 Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP2013-031849 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129591A1 true WO2014129591A1 (en) 2014-08-28

Family

ID=51391371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054200 WO2014129591A1 (en) 2013-02-21 2014-02-21 Device for manufacturing molded glass body and method for manufacturing molded glass body

Country Status (3)

Country Link
JP (1) JP5994676B2 (en)
CN (1) CN104718165B (en)
WO (1) WO2014129591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640399B (en) * 2014-09-26 2018-11-11 日商日本電氣硝子股份有限公司 End processing device for glass plate and end processing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036175A (en) * 2015-08-10 2017-02-16 Hoya株式会社 Molding equipment of optical element, and molding method for optical element
CN107739145B (en) * 2017-10-13 2023-07-04 成都光明光电股份有限公司 Glass profiling device and glass profiling method
CN113683292A (en) * 2021-08-25 2021-11-23 成都光明光电股份有限公司 Method for manufacturing sample for testing refractive index of optical glass in front of furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279228A (en) * 1990-03-28 1991-12-10 Hoya Corp Device of producing molded article of glass
JP2006282421A (en) * 2005-03-31 2006-10-19 Hoya Corp Mold press forming apparatus and method for manufacturing formed body
JP2008056532A (en) * 2006-08-31 2008-03-13 Hoya Corp Mold press forming apparatus and method for producing formed body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495842B2 (en) * 2000-09-01 2010-07-07 Hoya株式会社 Manufacturing method and manufacturing apparatus for glass molded product, and manufacturing method for glass product
JP2008001568A (en) * 2006-06-23 2008-01-10 Fujinon Corp Glass molding apparatus and glass molding method
CN101177334B (en) * 2006-11-06 2011-05-04 亚洲光学股份有限公司 Glass moulded forming equipment
JP2009221077A (en) * 2008-03-18 2009-10-01 Olympus Corp Device and method for manufacturing optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279228A (en) * 1990-03-28 1991-12-10 Hoya Corp Device of producing molded article of glass
JP2006282421A (en) * 2005-03-31 2006-10-19 Hoya Corp Mold press forming apparatus and method for manufacturing formed body
JP2008056532A (en) * 2006-08-31 2008-03-13 Hoya Corp Mold press forming apparatus and method for producing formed body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640399B (en) * 2014-09-26 2018-11-11 日商日本電氣硝子股份有限公司 End processing device for glass plate and end processing method

Also Published As

Publication number Publication date
JP2014162650A (en) 2014-09-08
CN104718165B (en) 2016-12-14
CN104718165A (en) 2015-06-17
JP5994676B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5934801B2 (en) Molding equipment
JP5994676B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
WO2011043490A1 (en) Vacuum heating/cooling device
EP1995766A2 (en) Controlled annealing method
KR101725699B1 (en) Molded glass body manufacturing method, and molded glass body manufacturing device
KR20150055601A (en) Manufacturing device for molded glass body and manufacturing method for molded glass body
JP6047802B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP4804280B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP6035569B2 (en) Manufacturing method and manufacturing system of glass molded body
JP5690475B2 (en) Molding apparatus and method for manufacturing molded product
KR101810753B1 (en) Molded glass body manufacturing method, and molded glass body manufacturing device
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
WO2015146399A1 (en) Device for producing glass moulded bodies, and method for producing glass moulded bodies
JP4455963B2 (en) Molded body manufacturing apparatus and manufacturing method
JP6147571B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JP6403959B2 (en) Carburizing and quenching equipment
JP2005277242A (en) Method for determining output at heating of substrate
JP2012074540A (en) Heat treatment apparatus
JP6726464B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
KR101070464B1 (en) Rapid Thermal Apparatus And Rapid Thermal Method
JP4549798B2 (en) Mold press molding apparatus and optical element manufacturing method
JP2003146674A (en) Press molding apparatus and method for manufacturing glass optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754968

Country of ref document: EP

Kind code of ref document: A1