WO2014180564A1 - Procédé et dispositif de mesure du débit d'un gaz dans une canalisation au moyen d'un compteur de gaz à roue de turbine - Google Patents

Procédé et dispositif de mesure du débit d'un gaz dans une canalisation au moyen d'un compteur de gaz à roue de turbine Download PDF

Info

Publication number
WO2014180564A1
WO2014180564A1 PCT/EP2014/001218 EP2014001218W WO2014180564A1 WO 2014180564 A1 WO2014180564 A1 WO 2014180564A1 EP 2014001218 W EP2014001218 W EP 2014001218W WO 2014180564 A1 WO2014180564 A1 WO 2014180564A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
gas
turbine wheel
sensor device
pipeline
Prior art date
Application number
PCT/EP2014/001218
Other languages
German (de)
English (en)
Inventor
Günther WAIBEL
Thomas Plocher
Andreas TRUTTENBACH
Original Assignee
Rma Mess- Und Regeltechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rma Mess- Und Regeltechnik Gmbh & Co. Kg filed Critical Rma Mess- Und Regeltechnik Gmbh & Co. Kg
Publication of WO2014180564A1 publication Critical patent/WO2014180564A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/06Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with tangential admission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/13Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using a reference counter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Definitions

  • the invention relates to a method for flow measurement of a gas in a pipeline by means of a Turbinenrad- gas meter, wherein at least one operating parameter of a turbine wheel detected by means of a first sensor device and at least one turbine wheel condition signal is given to an evaluation device in which from the Turbinenrad- state signal 1.
  • Flow value is calculated, wherein a flow state of the gas in the pipeline independent of the turbine wheel by means of a second sensor device he summarizes ⁇ and at least one flow state signal is given to an evaluation in which from the flow state signal, a second flow value is calculated, wherein that the 1st flow value and the 2nd flow value are compared with each other.
  • the invention relates to a measuring device for flow measurement of a gas in a pipeline by means of a turbine wheel gas meter, with a in the pipeline
  • a turbine gas meter is an accurate meter for measuring the flow of gases in a pipeline.
  • the measuring principle consists essentially in the fact that the kinetic energy of the gas flowing in the pipeline is used to set the turbine pipe arranged in the gas pipe in rotation, wherein in the theoretical ideal case, the rotational speed of the turbine wheel is proportional to the flow velocity of the gas and thus also proporti onal to be measured gas flow or volume.
  • the se theoretical proportionality is not given in practice, since significant disturbing influences act.
  • a known problem with a turbine gas meter is the relatively large measurement inaccuracy with rapidly changing gas flow velocities, since the turbine wheel can only lag behind due to mass inertial effects of the gas flow, ie, as the flow rate of the gas decreases, it does not decrease at the same time also the rotational speed of the turbine wheel, but the turbine wheel reduces its rotational speed with delay, so that for a short period of time a too large gas flow is assumed and calculated. This deviation occurs all the more, depending more often and the faster the flow velocity of the gas changes. For a pulsating gas flow, the measurement deviations are for this reason partly considerable and the turbine wheel gas meter measures compared to the real flow or volume flow to much larger volume flow of the gas.
  • Turbinenrad- gas meter Another problem with a known Turbinenrad- gas meter are the so-called backflows there, which can occur in a gas network partially. In a return flow, the gas flows in the opposite direction for a certain period of time, which can not be detected by a conventional turbine wheel gas meter.
  • the invention has for its object to provide a method and a Messvörraum for flow measurement of a gas in a pipeline by means of a turbine gas meter, with which deviations from a normal operating state can be reliably determined in a simple manner.
  • the above-mentioned object is achieved by a method having the features of claim 1.
  • a flow state of the gas in the pipeline is detected independently of the turbine wheel by means of a second sensor device and at least one flow state signal is sent to an evaluation device in which a further second flow value is calculated from the flow state signal. and that the first flow value and the second flow value are compared with each other.
  • the volume flow or mass flow of the gas is detected in the pipeline.
  • a flow sensor can be used, which is arranged downstream of the turbine wheel. In this way, there is no influence on the gas flow upstream of the turbine wheel, whereby the measurement accuracy of the turbine wheel could be adversely affected.
  • the flow direction of the gas is detected by means of the second sensor device, so that unwanted reverse flows can be detected.
  • the invention is based on the idea of simultaneously measuring the gas flow or the gas volume in two completely different ways and comparing the resulting measured values with respect to the gas flow or the gas volume with one another.
  • evaluations of the redundantly acquired data make statements about their plausibility. For example, pulsating flow states, return flows or an inhibited or blocked turbine wheel can be detected.
  • an operating state of the turbine wheel and in particular its rotational speed is detected in a conventional manner, and at least one turbine wheel state signal is sent to an evaluation device in which the first flow value is calculated. If a constant laminar gas flow in the pipeline prevails at approximately constant speed and the turbine wheel can rotate in the desired manner, the gas flow in the pipeline can be determined with high accuracy in this way.
  • the second sensor device measures the gas flow according to another measuring principle and completely independent of the turbine wheel, so that deviations occur between the measurement results, if problems in the storage of the turbine wheel falsify the measurement by means of the first sensor device. Furthermore, the direction of flow of the gas can be detected by means of the second sensor device. This makes it possible to reliably detect the said return flows, so that the measurement results are significantly improved.
  • a difference value between the first flow value, which is determined on the basis of the measurement with the first sensor device, and the second flow value, which results from the measurement with the second sensor device is determined.
  • the difference value is outside the predetermined difference range, ie if the two sensor devices differ greatly deliver results, this indicates that there are measurement errors or disturbances in the data acquisition. This is preferably communicated to the user by an optical and / or acoustic signal. If the difference value is particularly large, it may alternatively or additionally be provided that the gas flow in the pipeline is interrupted in order to end the grossly erroneous flow measurement.
  • the above-mentioned object is achieved by a second sensor device by means of which a flow state of the gas in the pipeline can be detected independently of the turbine wheel and of which at least one flow state signal can be given to an evaluation device. It is provided that the second sensor device has at least one flow sensor, by means of which the mass or volume flow of the gas and / or the flow direction of the gas can be detected, and that the second
  • Sensor device is arranged downstream of the turbine wheel.
  • the rotational speed of the turbine wheel is preferably detected, for which, for example, a plurality of independently operating sensors can be provided, each detecting the Drehgeschwin ⁇ speed of the turbine wheel and each emit a corresponding signal to the evaluation device, preferably from the average rotational speed the theoretical gas flow or the theoretical gas quantity is calculated.
  • the second sensor device preferably comprises a plurality of the mass flow or volume flow of the gas and in particular the flow velocity of the gas in the pipeline independently.
  • pendent flow sensors which can operate, for example, according to the thermal principle.
  • the flow sensor is heated to a temperature above the gas temperature.
  • the gas flowing along the flow sensor cools it, so that electrical energy is necessary to maintain the elevated temperature of the flow sensor.
  • the required power is a measure of the flow velocity of the gas, from which the gas flow can be calculated.
  • the advantage of this measuring principle is, in particular, that the measurement responds very quickly to changes in the gas flow and that, in addition, the possibility of a bidirectional flow measurement is given, ie the flow sensor recognizes from which side it is flown, so that the flow direction of the gas can be detected.
  • the second sensor device has at least one flow sensor arranged downstream of the turbine wheel. In this way it is ensured that the flow sensor does not affect the quality of the gas flow upstream of the turbine wheel and thus the measurement accuracy of the turbine wheel.
  • the second sensor device having a plurality of arranged in different cross-sectional areas of the pipe Strömungssen ⁇ sensors.
  • a flow sensor in the middle of the pipeline and at least one further flow sensor in the region of the pipe wall may be positioned in order to obtain information about the gas flow in different cross-sectional areas.
  • the flow sensors are inserted from the outside of the pipe through the wall into the gas flow, so that they can be easily replaced in the event of a defect without having to interrupt the gas flow and the flow measurement.
  • the figure shows a schematic representation of a turbine wheel gas meter 10, with which a gas flow (arrows G) can be measured in a pipeline 12.
  • a turbine wheel 11 is rotatably mounted about a longitudinal axis L of the pipe 12, as indicated by the arrow D. Due to the gas flow G, the turbine wheel 11 is rotated.
  • a first measuring device 13 comprises a first rotary sensor 14, which is arranged on the upstream side of the turbine wheel and is connected via a line 23 to an electronic evaluation device 20.
  • the first rotation sensor 14 detects the rotational speed of the turbine wheel 11 and outputs a corresponding signal via the line 23 to a first evaluation unit 21 of the evaluation device 20.
  • a second rotation sensor 15 which is arranged radially to the turbine wheel 11 and with which also the rotational speed of the turbine wheel 11 can be detected.
  • the 2nd rotation sensor 15 is over a Line 24 is connected to the first evaluation unit 21 of the evaluation device 20 and outputs a corresponding signal with respect to the rotational speed of the turbine wheel to the first evaluation unit.
  • a second sensor device 16 which, in the illustrated embodiment, comprises three flow sensors, namely a first flow sensor 17, a second flow sensor 18 and a third flow sensor.
  • the first flow sensor 17 extends radially inward from the wall of the pipeline 12, so that its measuring range lies in the region of the longitudinal axis L of the pipeline 12.
  • the first flow sensor 17 is connected via a line 25 to a second evaluation unit 22 of the evaluation device 20.
  • the first flow sensor 17 is arranged downstream of the turbine wheel 11 at an axial distance from it in the pipeline 12.
  • Flow sensor 18 is arranged, which extends through the wall of the pipe 12 radially inwardly, but is arranged with its measuring range in the edge region of the cross section of the pipe 12.
  • the second flow sensor 18 is connected via a line 26 to the second evaluation unit 22 of the evaluation device 20.
  • the third flow sensor 19 is arranged upstream of the turbine wheel 11 and extends through the wall of the pipe line 12 radially inwardly, its measuring range is also located in the edge region of the cross section of the pipe 12.
  • the third flow sensor 19 is connected via a line 27 to the second evaluation unit 22 of the evaluation device 20.
  • the three flow sensors 17, 18 and 19 preferably operate on the thermal principle (see above) and deliver signals corresponding to their measured data to the second evaluation unit 22, in which a second flow value from the measured data of the three flow sensors 17, 18 and 19 for the gas flow or the gas quantity, ie the mass or volume flow of the gas is calculated. Further, the flow direction of the gas is detected with the flow sensors to detect unwanted backward movements.
  • the two evaluation units 21 and 22 are followed by a common third evaluation unit 28, which represents a comparison unit.
  • the third evaluation unit 28 receives from the first evaluation unit 21 a signal S1, which corresponds to the determined by means of the first sensor device 13 gas flow.
  • the third evaluation unit 28 of the second evaluation unit 22 contains a signal S2 which corresponds to the second gas flow rate calculated by means of the second sensor device 16.
  • these two flow values are compared and it is checked whether the difference between these two flow values is within a predetermined tolerance or difference range.
  • the third evaluation unit outputs a corresponding evaluation signal S3, which can be further processed.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un procédé et un dispositif de mesure du débit d'un gaz dans une canalisation au moyen d'un compteur de gaz à roue de turbine. Pour mesurer le débit d'un fluide dans une canalisation au moyen d'un compteur de gaz à roue de turbine, au moins un premier paramètre d'une roue de turbine est détecté au moyen d'un premier dispositif de détection, et au moins un signal d'état de la roue de turbine est adressé à un dispositif d'évaluation, dans lequel une première valeur de débit est calculée à partir du signal d'état de la roue de turbine. Un état de l'écoulement du gaz dans la canalisation est détecté indépendamment de la roue de turbine au moyen d'un deuxième dispositif de détection, et au moins un signal d'état de l'écoulement est adressé à un dispositif d'évaluation, dans lequel une deuxième valeur de débit est calculée à partir du signal d'état de l'écoulement. La première valeur de débit et la deuxième valeur de débit sont ensuite comparées l'une à l'autre. Selon l'invention, le deuxième dispositif de détection détecte l'écoulement massique ou volumique du gaz et/ou le sens d'écoulement du gaz, et le deuxième dispositif de détection est agencé en aval de la roue de turbine.
PCT/EP2014/001218 2013-05-08 2014-05-07 Procédé et dispositif de mesure du débit d'un gaz dans une canalisation au moyen d'un compteur de gaz à roue de turbine WO2014180564A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013007871.7A DE102013007871A1 (de) 2013-05-08 2013-05-08 Verfahren und Messvorrichtung zur Durchflussmessung eines Gases in einer Rohrleitung mittels eines Turbinenrad-Gaszählers
DE102013007871.7 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014180564A1 true WO2014180564A1 (fr) 2014-11-13

Family

ID=50884853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/001218 WO2014180564A1 (fr) 2013-05-08 2014-05-07 Procédé et dispositif de mesure du débit d'un gaz dans une canalisation au moyen d'un compteur de gaz à roue de turbine

Country Status (2)

Country Link
DE (1) DE102013007871A1 (fr)
WO (1) WO2014180564A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147027A (zh) * 2023-11-01 2023-12-01 哈尔滨工业大学 呼吸机微涡轮外接传感器的效率测量方法及测量系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141341A (zh) * 2019-12-31 2020-05-12 华东理工大学 涡轮流量计的补偿方法及其系统、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1944219A1 (de) * 1969-03-05 1970-09-10 S O G R E A H Soc Grenobloise Verfahren und Anordnung zur UEberwachung eines Durchflussmessers
DE1648124B1 (de) * 1967-01-05 1972-03-09 Schlumberger Instrumentation Durchflussmengenmesser mit selbstkontrolle
US4566307A (en) * 1982-09-30 1986-01-28 Electronic Flo-Meters, Inc. Pipeline flow measurement proving system
US5473932A (en) * 1991-11-07 1995-12-12 M & Fc Holding Company, Inc. Tandem rotor turbine meter and field calibration module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166422A (en) * 1980-05-27 1981-12-21 Toshiba Corp Fluid measuring apparatus
US4827430A (en) * 1987-05-11 1989-05-02 Baxter International Inc. Flow measurement system
FR2721999B1 (fr) * 1994-06-30 1996-08-09 Contruction De Moteurs D Aviat Debimetre massique redondant
JP5096915B2 (ja) * 2004-03-25 2012-12-12 ローズマウント インコーポレイテッド 簡略化された流体物性測定法
EP2327922A1 (fr) * 2009-11-27 2011-06-01 Blueco S.r.l. Unité de mesure, en particulier pour conduits hydrauliques
WO2013070064A1 (fr) * 2011-10-25 2013-05-16 Flow Meter Group B.V. Compteur à gaz à double turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1648124B1 (de) * 1967-01-05 1972-03-09 Schlumberger Instrumentation Durchflussmengenmesser mit selbstkontrolle
DE1944219A1 (de) * 1969-03-05 1970-09-10 S O G R E A H Soc Grenobloise Verfahren und Anordnung zur UEberwachung eines Durchflussmessers
US4566307A (en) * 1982-09-30 1986-01-28 Electronic Flo-Meters, Inc. Pipeline flow measurement proving system
US5473932A (en) * 1991-11-07 1995-12-12 M & Fc Holding Company, Inc. Tandem rotor turbine meter and field calibration module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147027A (zh) * 2023-11-01 2023-12-01 哈尔滨工业大学 呼吸机微涡轮外接传感器的效率测量方法及测量系统
CN117147027B (zh) * 2023-11-01 2024-03-19 哈尔滨工业大学 呼吸机微涡轮外接传感器的效率测量方法及测量系统

Also Published As

Publication number Publication date
DE102013007871A1 (de) 2014-11-13

Similar Documents

Publication Publication Date Title
EP2932205B1 (fr) Débitmetre thermique et procede de determination et/ou de surveillance d'un débit d'un fluide
WO2011061005A1 (fr) Agencement de débitmètre à auto-surveillance et procédé de fonctionnement associé
EP3222980B1 (fr) Appareil de mesure de débit avec détection d'erreur
WO2018050803A1 (fr) Compteur de fluide
EP3234512B1 (fr) Débitmètre à pression différentielle
EP3569989B1 (fr) Compteur de fluide
EP3056875B1 (fr) Debitmètre
EP2786107A2 (fr) Procédé de calorimétrie au moyen d'un débitmètre à ultrasons
CH648931A5 (de) Turbinendurchflussmesser mit einem messrotor.
DE2715964C2 (fr)
EP3762686A1 (fr) Débitmètre de fluide
EP2041523B1 (fr) Dispositif de mesure servant à la mesure du débit dans un canal
DE2821711C2 (fr)
DE102007053105B4 (de) Verfahren und Vorrichtung zur Volumenstrommessung von Fluiden in Rohrleitungen
WO2014180564A1 (fr) Procédé et dispositif de mesure du débit d'un gaz dans une canalisation au moyen d'un compteur de gaz à roue de turbine
EP1926973B1 (fr) Procede pour surveiller un systeme et/ou un processus d'un debitmetre a ultrasons
DE102010030952B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder einer Durchflussgeschwindigkeit
WO2010083812A1 (fr) Procédé pour mesurer un flux, unité intégrée et dispositif de mesure
DE102014110556B3 (de) Vorrichtung zur Durchflussmessung
AT393031B (de) Waermemengenmesser
EP3732388A1 (fr) Tuyau pour un transducteur, transducteur comprenant un tuyau de ce type et système de mesure ainsi formé
DE102007019601B3 (de) Verfahren zum Kalibrieren eines Fluid-Durchflussmesssystems
EP4042111B1 (fr) Procédé de surveillance d'un système de dispositif de mesure
CH647863A5 (de) Turbinendurchflussmesser mit einem messrotor.
EP2715293B1 (fr) Dispositif de mesure avec capteur thermique pour mesurer le débit d'un fluide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14728083

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14728083

Country of ref document: EP

Kind code of ref document: A1