WO2014180177A1 - 石墨烯作为x射线管阴极及其x射线管 - Google Patents

石墨烯作为x射线管阴极及其x射线管 Download PDF

Info

Publication number
WO2014180177A1
WO2014180177A1 PCT/CN2014/072019 CN2014072019W WO2014180177A1 WO 2014180177 A1 WO2014180177 A1 WO 2014180177A1 CN 2014072019 W CN2014072019 W CN 2014072019W WO 2014180177 A1 WO2014180177 A1 WO 2014180177A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
graphene
ray tube
field emission
anode
Prior art date
Application number
PCT/CN2014/072019
Other languages
English (en)
French (fr)
Inventor
李葵阳
Original Assignee
重庆启越涌阳微电子科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆启越涌阳微电子科技发展有限公司 filed Critical 重庆启越涌阳微电子科技发展有限公司
Priority to US14/785,348 priority Critical patent/US9734980B2/en
Priority to DE112014002318.3T priority patent/DE112014002318B4/de
Priority to JP2016509273A priority patent/JP2016517151A/ja
Publication of WO2014180177A1 publication Critical patent/WO2014180177A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes

Definitions

  • the present invention relates to graphene as an X-ray tube cathode, and more particularly to a high efficiency graphene cathode field emission X-ray tube.
  • X-ray tubes are devices mainly used for medical diagnosis and treatment, and are used in industrial technology for non-destructive testing of materials, structural analysis, spectral analysis, and film exposure. X-rays are harmful to humans and must be protected during use.
  • An X-ray tube is a vacuum electronic device that uses high-speed electrons to strike a gold-emitting target surface to generate X-rays.
  • Conventional X-ray tubes generally use a hot electron emission cathode to heat materials such as tungsten and lanthanum hexaboride to a temperature high enough to allow some electrons with large kinetic energy to escape the surface barrier of the object and form a book plasma around the material.
  • an external electric field is applied, electron beam emission is formed.
  • the X-ray tube consumes a large amount of energy and has low efficiency.
  • the efficiency of converting electric energy into X-rays is less than 1%, and a considerable part of the scattered light is present, and most of the electric energy is converted into heat. It requires a large current and is resistant to high temperatures.
  • Field emission does not require cathode heating, using a strong electric field to cause electrons near the surface of the object to emit electrons through the surface barrier.
  • the performance of field emission depends on the energy band structure of the material, the work function and the surface structure of the material;
  • the electron-emitting source has the advantages of high emission density, low energy consumption, and quick start-up.
  • Field emission X-ray tubes use carbon nanotubes as cathodes
  • the present invention solves the problem that the X-ray tube has a large radiation dose, and the existing X-ray tube has low conversion efficiency, poor stability, and short life, and provides graphene as X.
  • the cathode of the ray tube is the electron emission source.
  • the present invention also provides a high efficiency graphene cathode field emission X-ray tube.
  • the present invention adopts the following technical solution: Graphene is used as a cathode of an X-ray tube, that is, an electron emission source.
  • the present invention also provides a high efficiency graphene cathode field emission X-ray tube, comprising a cathode assembly, an anode assembly, and a vacuum glass tube;
  • the high-efficiency graphene cathode field emission X-ray tube of the present invention uses graphene as a cathode (electron emission source) of an X-ray tube, a graphene specific band structure and a quasi-SP3 state, thereby generating a negative electron affinity.
  • graphene as a cathode (electron emission source) of an X-ray tube, a graphene specific band structure and a quasi-SP3 state, thereby generating a negative electron affinity.
  • the large curvature of the graphene film leads to the formation of a high-density electronic local distribution, which enhances the local field, making it easier for electrons to escape from the surface, making the material have excellent electron field emission capability, graphite.
  • the electrons of the olefin electron source are emitted from the top edge of the material (as shown in Figure 5), with good directionality, uniformity, easy focus, and a proportional increase in the ratio of X-rays to heat generated by the electron flow bombarding the anode.
  • the proportion of hot cathode is less than 1%), less secondary electrons and stray scattering lines, improve X-ray tube efficiency;
  • Graphene is prepared by high temperature chemical vapor phase process, reasonable catalytic medium selection, temperature parameter control, strict mixed gas Proportion, and RF and plasma book control, grown on a nickel substrate at a high temperature of 1400, while undergoing strict Laser ablation, electron bombardment, plasma post-bombardment treatment, the graphene cathode having a high resistance to pressure (greater than 150KV), stability, long life.
  • the present invention has the following advantages:
  • FIG. 1 is a schematic view showing the overall structure of a high efficiency graphene cathode field emission X-ray tube according to the present invention
  • FIG. 2 is a schematic structural view of a cathode assembly of the present invention
  • Figure 3 is a cross-sectional view of the cathode of the present invention taken along line A-A;
  • Figure 4 is a cross-sectional view taken along line B-B of the vacuum glass tube of the present invention.
  • Figure 5 is a photograph of electrons from a graphene electron source emitting light from the top edge of the material.
  • the high-efficiency graphene cathode field emission X-ray tube of the present invention is characterized in that the graphene cathode is used as an electron emission source in the cathode assembly and sealed together with the anode assembly, using the characteristics of good field emission performance of the graphene cathode.
  • the graphene emits electrons through a high voltage between the anode and the cathode, and electrons are bombarded with the anode target at a high speed in a certain direction to generate X-rays under the action of the cathode cover focusing and the anode high voltage.
  • the graphene cathode has an emission threshold of less than 0.40 V/m and a maximum withstand voltage greater than 150 kV;
  • a high efficiency graphene cathode field emission X-ray tube includes a cathode assembly 3, an anode assembly 2, a vacuum glass tube 1 ; wherein the anode assembly 2 includes an anode target 7, a kovar ring 8 And the anode handle 9, the anode target 7 and the anode handle 9 are integral; one end of the cuttable ring 8 is welded to the cathode target 7 by the intermediate frequency power supply heating silver copper solder, and the other end is sintered with the glass tube 1 to seal the anode target to the vacuum.
  • the anode shank 9 extends out of the glass tube 1 for connection to the anode high voltage.
  • the cathode assembly 3 comprises a book cathode head 4, a cathode cover 6, a glass stem 5, a cathode holder 10, a graphene cathode 11, a process filament 12, a ceramic insulating column 13, 14 , 15, molybdenum rods 16, 17, 20, 28, corrugated core columns 18, 19, 21, 22; the upper end of the cathode head 4 has two rectangular slots for mounting the graphene cathode 11 and the process filament 12, graphene
  • the cathode 11 is spot-welded on the surface of the cathode holder 10; the ceramic insulating columns 13, 14, 15, the molybdenum rods 16, 17, 20, 28 are used for the graphene cathode 11, the cathode head 4, the coring core columns 18, 19, 21, Electrical connection between 22 and support of the cathode head; the cathode cover 6 and the cathode head 4 are riveted as a whole, and the ends of the cut cores 19, 21 are welded to the lower
  • the graphene cathode 11 may be a graphene cathode wire group deposited on a single nickel wire, or a graphene cathode separately deposited on a nickel piece surface.
  • the upper end of the cathode cover 6 is opened with two square holes, the small hole length L2 is wide K2 and the corresponding process filament 12, the large hole corresponds to the graphene cathode 11, the large hole length L1 width K1 and graphene
  • the height of the cathode 11 from the top of the cathode cover D1 determines the X-ray tube focus size and the intermediate value of the current at the fixed anode high voltage.
  • the graphene cathode 11 is located at a certain distance below the top surface of the pole cover 6.
  • the electric field distribution formed by the geometric structure further constrains the direction of electrons flying toward the anode, and controls the fixed area of the electron bombardment anode target and X.
  • the focus of the tube, the high voltage causes the electron to accelerate the bombardment under the action of the high voltage electric field
  • the anode target 7 thus produces X-rays.

Abstract

由石墨烯作为X射线管阴极,以及一种高效率石墨烯阴极场发射X射线管。石墨烯阴极场发射X射线管包括阴极组件,阳极组件和真空玻管;其中,阴极组件包括石墨烯阴极。它具有转换效率高,杂散射线少,在医疗、安检等领域应用时减少人体所承受的辐射剂量;易于实现微焦点X射线管,发射能力强,耐压高,可广泛应用于半导体检测,工业探伤等领域;可控性好,无需加热阴极,瞬时发射,通过调节栅极电压,控制电子发射数量,控制管电流。还具有稳定性好,寿命长的特点。

Description

石墨烯作为 X射线管阴极及其 X射线管 技术领域
[0001] 本发明涉及石墨烯作为 X射线管阴极, 特别是一种高效率石墨烯阴极场发射 X射线 管。
背景技术
[0002] X射线管是主要用于医学上诊断和治疗, 在工业技术方面用于材料的无损检测、 结构 分析、 光谱分析和底片曝光等的装置。 X射线对人体有害, 使用时须采取有效防护措施。
[0003] X射线管是利用高速电子撞击金说属靶面产生 X射线的真空电子器件。 传统 X射线管 一般采用热电子发射阴极, 将钨, 六硼化镧等材料加热到足够高温度, 使一部分动能大的电 子克服物体表面势垒逸出体外, 在材料周围形成书等离子体, 当有外加电场作用时, 形成电子 束发射, 此种 X射线管能耗大, 效率低, 电能转换为 X射线的效率不到 1%, 而且存在相当 一部分杂散射线, 绝大部分电能转换为热能, 使用时需要大电流, 耐高温使用。
[0004] 场致发射不需要阴极加热, 利用强电场使物体表面附近的电子穿过表面势垒发射电 子, 场致发射的性能依赖于材料的能带结构, 功函数以及材料的表面结构; 场致电子发射源 具有发射密度大, 能耗低, 快速启动等优点。 场致发射 X射线管都采用纳米碳管作为阴极
(电子发射源), 纳米碳管由于生长工艺及结构限制存在碳管与基底结合不牢固, 耐压能力 不足, 最高电压一般不超过 100KV; 高压工作时容易损坏碳管结构, 发射失效, 同时降低 管内真空度, 使射线管损坏, 寿命短; 碳管生长杂乱无章, 电子发射方向性不好等一系列缺 点。 现有技术中, 尚无采用石墨烯作阴极的 X射线管。
发明内容
[0005] 鉴于现有 X射线管存在上述不足, 本发明解决 X射线管辐射剂量大的问题, 以及现 有 X射线管转换效率低, 稳定性不好、 寿命短的问题, 提供石墨烯作为 X射线管的阴极即 电子发射源。
[0006] 本发明还提供一种高效率石墨烯阴极场发射 X射线管。
[0007] 为达到上述目的, 本发明采用下述技术方案: 石墨烯作为 X射线管的阴极即电子发 射源。
[0008] 本发明还提供一种高效率石墨烯阴极场发射 X射线管, 包括阴极组件, 阳极组件, 真空玻管;
[0009] 在所述高效率石墨烯阴极场发射 X射线管中, 高压通过于阳极柄引入, 石墨烯阴极 通过可伐芯柱接地, 阳极与阴极之间高压使石墨烯阴极发射电子, 阴极头和阴极罩铆接为一 个等点位体, 作为 X射线管的栅极, 在两者与石墨烯阴极间加 -2000— +2000v电压, 控制电 子发射大小, 高压使电子在高压电场的作用下加速轰击阳极靶从而产生 X射线。
[00010】 本发明高效率石墨烯阴极场发射 X射线管采用石墨烯作为 X射线管的阴极 (电子发 射源), 石墨烯特殊能带结构和准 SP3 态的形成, 从而产生了负电子亲和势; 另一方面, 石 墨烯薄膜大曲率导致了高密度电子局域分布的形成, 使局域场得到增强, 从而使电子更容易 逸出表面, 使得该材料具有优良的电子场发射能力, 石墨烯电子源的电子从材料顶部边沿 (如图 5所示) 发射, 具有良好方向性, 一致性, 易于聚焦, 方向性、 一致性的电子流轰击 阳极时产生的 X 射线与热量的比例增加说(热阴极的比例不到 1%), 较少二次电子及杂散射 线, 提高 X射线管效率; 石墨烯采用高温化学气相工艺制备, 合理的催化介质选择, 温度参 数控制, 严格的混合气体比例, 及射频和等离子书体控制, 在 1400 的高温中生长在镍基底 上, 同时经过严格的激光烧蚀, 电子轰击, 等离子体轰击后期处理, 使石墨烯阴极具有高耐 压 (大于 150KV), 稳定性, 寿命长。
[00011】 相比现有技术, 本发明具有如下优点:
[00012】 1、 转换效率高, 杂散射线少, 在医疗, 安检等领域应该时减少人体所承受的辐射剂
[00013】 2、 易于实现微焦点 X射线管, 发射能力强, 耐压高, 可广泛应用于半导体检测, 工 业探伤等领域;
[00014】 3、 高效率, 高穿透性, 易于聚焦, 可在高压下长时间持续稳定工作, 可实现一定大 小的焦斑及可控的电子流大小; 稳定性好, 寿命长, 寿命大于 2000小时;
[00015] 4、 可控性好, 无需加热阴极, 瞬时发射, 通过调节栅极电压, 控制电子发射数量, 控制管电流。
[00016】 附图说明
[00017】 图 1为本发明所述高效率石墨烯阴极场发射 X射线管整体结构示意图;
[00018】 图 2为本发明之阴极组件结构示意图;
[00019】 图 3为本发明之阴极的 A-A剖视图;
[00020】 图 4是本发明之真空玻管的 B-B剖视图;
[00021】 图 5是石墨烯电子源的电子从材料顶部边沿发射照片。
[00022】 具体实施方式
[00023】 下面结合附图以及具体组装过程和工作原理对本发明所述高效率石墨烯阴极场发射 X射线管进一步详细说明。
[00024】 本发明所述高效率石墨烯阴极场发射 X射线管, 应用石墨烯阴极良好的场发射性能 的特点, 将石墨烯阴极作为电子发射源固定在阴极组件中并与阳极组件一起封接真空玻管 1 内, 通过阳极与阴极之间高压使石墨烯发射电子, 电子在阴极罩聚焦以及阳极高压作用下, 沿一定得方向高速轰击阳极靶产生 X射线。 所述石墨烯阴极的发射阈值小于 0.40 V/ m, 最高可承受电压大于 150KV;
[00025】 如图 1所示, 一种高效率石墨烯阴极场发射 X射线管, 包括阴极组件 3, 阳极组件 2, 真空玻管 1 ; 其中, 阳极组件 2包括阳极靶 7、 可伐圈 8和阳极柄 9, 阳极靶 7与阳极柄 9为一个整体; 可伐圈 8的一端通过中频说电源加热银铜焊料与阴极靶 7焊接, 另一端与玻管 1烧结, 使阳极靶密封于真空玻管 1内, 阳极柄 9延伸出玻管 1外用于接阳极高压。
[00026】 结合图 2、 图 3和图 4, 阴极组件 3包括书阴极头 4, 阴极罩 6, 玻璃芯柱 5, 阴极座 10, 石墨烯阴极 11, 工艺灯丝 12, 陶瓷绝缘柱 13、 14、 15, 钼支杆 16、 17、 20、 28, 可伐 芯柱 18、 19、 21、 22; 阴极头 4上端开大小两个矩形槽用于安装石墨烯阴极 11及工艺灯丝 12, 石墨烯阴极 11 点焊在阴极座 10表面; 陶瓷绝缘柱 13、 14、 15, 钼支杆 16、 17、 20、 28 用于石墨烯阴极 11, 阴极头 4, 可伐芯柱 18、 19、 21、 22 之间的电气连接及支撑阴极 头; 阴极罩 6与阴极头 4铆接为一个整体, 可伐芯柱 19、 21一端点焊在阴极头 4的下端, 可伐芯柱 18、 19、 21、 22 的另一端穿过玻璃芯柱 5用于外部电气连接; 玻璃芯柱 5, 真空 玻管 1, 可伐圈 8通过玻璃烧结形成一个密封整体, 将阴极组件 3, 阳极靶 7密封于真空玻 管 1内。
[00027】 此外, 所述石墨烯阴极 11可为沉积于单独镍丝上的石墨烯阴极丝组, 也可为单独沉 积于一块镍片表面的石墨烯阴极。
[00028] 参见图 3和图 4, 阴极罩 6上端开大小两个方孔, 小孔长 L2宽 K2与对应工艺灯丝 12, 大孔对应石墨烯阴极 11, 大孔长 L1宽 K1与石墨烯阴极 11距离阴极罩顶部高度 D1共 同决定 X射线管焦点大小以及固定阳极高压下的电流中间值。
[00029】 在所述高效率石墨烯阴极场发射 X射线管中, 高压通过于阳极柄 9引入, 石墨烯阴 极 11通过可伐芯柱 18接地, 阳极与阴极之间高压使石墨烯阴极 11发射电子, 阴极头 4和 阴极罩 6铆接为一个等点位体, 可作为 X射线管的栅极, 在两者与石墨烯阴极间加 -2000— +2000v电压, 控制电子发射大小, 阴极罩 6顶面顶面开大方孔, 石墨烯阴极 11位于极罩 6 顶面下方一定距离, 通过此几何结构形成的电场分布, 进一步约束电子飞向阳极的方向, 控 制电子轰击阳极靶的固定区域及 X 射线管焦点, 高压使电子在高压电场的作用下加速轰击 阳极靶 7从而产生 X射线。
[00030】 在所述高效率石墨烯阴极场发射 X射线管中工艺灯丝 12, 在 X射线管生产过程辅 助 X射线管排气, 保护石墨烯阴极: 工艺灯丝两端加 4-5v 电压, 加热工艺灯丝, 同时阳极 与阴极头之间加高压, 工艺灯丝加热后产生的电子轰击阳极靶, 加热阳极保证阳极靶排气干 净; 同时电子在运行到阳极靶的过程中电离真空管内残余气体, 进一步提高真空度。
[00031】 最后说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较佳 实施例对本实发明进行了详细说明, 本领域的普通技术人员应当理解, 可以对本发明的技术 方案进行修改或者等同替换, 而不脱离本发明技术方案的宗旨和范围, 其均应涵盖在本发明 的权利要求范围当中。 说

Claims

权 利 要 求 书
1. 石墨烯作为 X射线管的阴极即电子发射源。
2. 一种高效率石墨烯阴极场发射 X射线管, 包括阴极组件, 阳极组件, 真空玻 管; 其特征在于, 阳极组件包括阳极靶、 可伐圈和阳极柄, 阳极靶与阳极柄为一 个整体;
在所述高效率石墨烯阴极场发射 X射线管中, 高压通过于阳极柄引入,石墨烯阴 极通过可伐芯柱接地, 阳极与阴极之间高压使石墨烯阴极发射电子, 阴极头和阴 极罩铆接为一个等电位体,作为 X射线管的栅极,在两者与石墨烯阴极间加 -2000 — +2000v电压, 控制电子发射大小, 高压使电子在高压电场的作用下加速轰击 阳极靶从而产生 X射线。
3. 根据权利要求 2所述高效率石墨烯阴极场发射 X射线管, 其特征在于, 所述 石墨烯阴极沉积于单独镍丝上的石墨烯阴极丝组,或单独沉积于一块镍片表面的 石墨烯阴极。
4. 根据权利要求 2所述高效率石墨烯阴极场发射 X射线管, 其特征在于, 所述 石墨烯阴极丝组为单层石墨烯薄膜, 或为多层石墨烯阵列, 或立式石墨烯阵列。
5. 根据权利要求 2所述高效率石墨烯阴极场发射 X射线管, 其特征在于, 所述 石墨烯阴极距阴极罩顶面之间距离 D1 : 0. 5— 2. 5mm; 阳极靶与阴极之间距离为 D2: 10mm-15mm, 最高电压大于 150KV。
6. 根据权利要求 2所述高效率石墨烯阴极场发射 X射线管, 其特征在于, 所述 石墨烯阴极的发射阈值小于 0. 40 V/ μ ιιι, 最高可承受电压大于 150KV。
PCT/CN2014/072019 2013-05-08 2014-02-13 石墨烯作为x射线管阴极及其x射线管 WO2014180177A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/785,348 US9734980B2 (en) 2013-05-08 2014-02-13 Graphene serving as cathode of X-ray tube and X-ray tube thereof
DE112014002318.3T DE112014002318B4 (de) 2013-05-08 2014-02-13 Graphen zur Verwendung als Kathodenröntgenröhre und Röntgenröhre
JP2016509273A JP2016517151A (ja) 2013-05-08 2014-02-13 X線管の陰極として用いるグラフェン及びx線管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310166516.9 2013-05-08
CN201310166516.9A CN103219212B (zh) 2013-05-08 2013-05-08 石墨烯作为x射线管阴极及其x射线管

Publications (1)

Publication Number Publication Date
WO2014180177A1 true WO2014180177A1 (zh) 2014-11-13

Family

ID=48816900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072019 WO2014180177A1 (zh) 2013-05-08 2014-02-13 石墨烯作为x射线管阴极及其x射线管

Country Status (5)

Country Link
US (1) US9734980B2 (zh)
JP (1) JP2016517151A (zh)
CN (1) CN103219212B (zh)
DE (1) DE112014002318B4 (zh)
WO (1) WO2014180177A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105399A (ja) * 2014-11-20 2016-06-09 能▲資▼国▲際▼股▲ふん▼有限公司Energy Resources International Co., Ltd 冷陰極を有するx線発生装置の封入構造およびその排気方法
EP3174083A1 (en) * 2015-11-25 2017-05-31 Carestream Health, Inc. Field-emission x-ray source

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219212B (zh) * 2013-05-08 2015-06-10 重庆启越涌阳微电子科技发展有限公司 石墨烯作为x射线管阴极及其x射线管
CN104470178A (zh) * 2013-09-18 2015-03-25 清华大学 X射线装置以及具有该x射线装置的ct设备
CN103681181B (zh) * 2013-11-26 2016-04-06 无锡日联科技股份有限公司 用于微焦点x射线管的阴极电子枪
CN104134594B (zh) * 2014-07-31 2016-11-02 国家纳米科学中心 一种石墨烯薄膜场发射阴极
TWI580315B (zh) * 2015-01-15 2017-04-21 能資國際股份有限公司 手持式冷陰極x光機
KR101648063B1 (ko) * 2015-03-31 2016-08-12 주식회사 쎄크 X선 발생장치 및 그 제어방법
CA3007304A1 (en) * 2015-12-04 2017-06-08 Luxbright Ab An electron guiding and receiving element
US10545258B2 (en) * 2016-03-24 2020-01-28 Schlumberger Technology Corporation Charged particle emitter assembly for radiation generator
CN106128924B (zh) * 2016-09-29 2017-12-22 昆山国力电子科技股份有限公司 阴极芯柱组件及x射线管
US10056218B1 (en) * 2017-02-17 2018-08-21 Savannah River Nuclear Solutions, Llc Graphene/graphite-based filament for thermal ionization
KR102288924B1 (ko) * 2017-07-28 2021-08-11 (주) 브이에스아이 원통형 엑스선 튜브 및 그 제조 방법
JP6961452B2 (ja) * 2017-10-13 2021-11-05 キヤノン電子管デバイス株式会社 固定陽極型x線管
RU2676672C1 (ru) * 2018-03-21 2019-01-10 Общество с ограниченной ответственностью "Реф-Свет" Рентгеновский острофокусный излучатель с стержневым анодом
US11264228B2 (en) 2018-10-09 2022-03-01 Savannah River Nuclear Solutions, Llc Method of making a carbon filament for thermal ionization
EP4024436A1 (en) * 2020-12-31 2022-07-06 VEC Imaging GmbH & Co. KG Hybrid multi-source x-ray source and imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076849A1 (en) * 2005-09-30 2007-04-05 Moxtek,Inc X-ray tube cathode with reduced unintended electrical field emission
CN101521135A (zh) * 2009-03-26 2009-09-02 公安部第一研究所 栅控碳纳米阴极场发射x射线管
CN101966987A (zh) * 2010-10-13 2011-02-09 重庆启越涌阳微电子科技发展有限公司 具有负电子亲和势的分形石墨烯材料及其制备方法和应用
CN102159000A (zh) * 2010-11-24 2011-08-17 重庆启越涌阳微电子科技发展有限公司 石墨烯新的用途以及一种石墨烯阴极荧光灯
CN103050346A (zh) * 2013-01-06 2013-04-17 电子科技大学 场致发射电子源及其碳纳米管石墨烯复合结构的制备方法
CN103219212A (zh) * 2013-05-08 2013-07-24 重庆启越涌阳微电子科技发展有限公司 石墨烯作为x射线管阴极及其x射线管

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538789B2 (zh) * 1973-04-06 1980-10-06
JPS5753411Y2 (zh) * 1978-01-11 1982-11-19
JPS586141Y2 (ja) * 1978-09-08 1983-02-02 株式会社日立製作所 三極x線管の陰極構体
JPS59165353A (ja) * 1983-03-11 1984-09-18 Toshiba Corp 回転陽極型x線管
JPS6193536A (ja) * 1984-10-12 1986-05-12 Toshiba Corp X線管の陰極構体
JPH02144835A (ja) * 1988-11-25 1990-06-04 Toshiba Corp X線管の陰極構体
JPH1131458A (ja) * 1997-07-11 1999-02-02 Toshiba Corp 電子管部品の処理方法
EP0986090A4 (en) * 1998-03-16 2002-01-16 Toshiba Kk X-RAY TUBE
JP2001250496A (ja) * 2000-03-06 2001-09-14 Rigaku Corp X線発生装置
US6661876B2 (en) * 2001-07-30 2003-12-09 Moxtek, Inc. Mobile miniature X-ray source
US7526069B2 (en) * 2003-09-16 2009-04-28 Hamamatsu Photonics K.K. X-ray tube
EP1747570A1 (de) * 2004-05-19 2007-01-31 Comet Holding AG Röntgenröhre für hohe dosisleistungen
JPWO2006009053A1 (ja) * 2004-07-15 2008-05-01 株式会社日立メディコ 固定陽極x線管とそれを用いたx線検査装置及びx線照射装置
DE102008026634B4 (de) 2008-06-04 2011-01-05 Siemens Aktiengesellschaft Feldemissionskathode sowie Röntgenröhre mit einer Feldemissionskathode
JP5424098B2 (ja) * 2009-06-24 2014-02-26 独立行政法人産業技術総合研究所 電子放出体およびx線放射装置
JP2011071022A (ja) * 2009-09-28 2011-04-07 Horizon:Kk 電子放出装置及びそれを用いた電子放出型電子機器
US8559599B2 (en) * 2010-02-04 2013-10-15 Energy Resources International Co., Ltd. X-ray generation device and cathode thereof
JP5769244B2 (ja) * 2010-07-30 2015-08-26 株式会社リガク 工業用x線管
JP5071949B1 (ja) * 2011-08-02 2012-11-14 マイクロXジャパン株式会社 ステレオx線発生装置
CN102339713B (zh) * 2011-11-01 2013-07-10 电子科技大学 一种光-栅复合控制的场致发射x射线管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076849A1 (en) * 2005-09-30 2007-04-05 Moxtek,Inc X-ray tube cathode with reduced unintended electrical field emission
CN101521135A (zh) * 2009-03-26 2009-09-02 公安部第一研究所 栅控碳纳米阴极场发射x射线管
CN101966987A (zh) * 2010-10-13 2011-02-09 重庆启越涌阳微电子科技发展有限公司 具有负电子亲和势的分形石墨烯材料及其制备方法和应用
CN102159000A (zh) * 2010-11-24 2011-08-17 重庆启越涌阳微电子科技发展有限公司 石墨烯新的用途以及一种石墨烯阴极荧光灯
CN103050346A (zh) * 2013-01-06 2013-04-17 电子科技大学 场致发射电子源及其碳纳米管石墨烯复合结构的制备方法
CN103219212A (zh) * 2013-05-08 2013-07-24 重庆启越涌阳微电子科技发展有限公司 石墨烯作为x射线管阴极及其x射线管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105399A (ja) * 2014-11-20 2016-06-09 能▲資▼国▲際▼股▲ふん▼有限公司Energy Resources International Co., Ltd 冷陰極を有するx線発生装置の封入構造およびその排気方法
EP3174083A1 (en) * 2015-11-25 2017-05-31 Carestream Health, Inc. Field-emission x-ray source
US10453644B2 (en) 2015-11-25 2019-10-22 Carestream Health, Inc. Field-emission X-ray source

Also Published As

Publication number Publication date
JP2016517151A (ja) 2016-06-09
CN103219212B (zh) 2015-06-10
CN103219212A (zh) 2013-07-24
DE112014002318B4 (de) 2018-10-31
DE112014002318T5 (de) 2016-01-21
US9734980B2 (en) 2017-08-15
US20160079029A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
WO2014180177A1 (zh) 石墨烯作为x射线管阴极及其x射线管
JP5800578B2 (ja) X線管
EP2740331B1 (en) Radiation generating apparatus and radiation imaging apparatus
KR101868009B1 (ko) 전계 방출 엑스선원 및 이를 이용한 전자 빔 집속 방법
US11183357B2 (en) MBFEX tube
CN101494150B (zh) 一种冷阴极聚焦型x射线管
JP2013051164A (ja) 透過型x線発生装置
JP2009238750A (ja) ビーム・エミッタンス増大を最小限にした電界エミッタ利用電子源
JP2011077027A (ja) X線発生用ターゲット、x線発生装置、及びx線発生用ターゲットの製造方法
KR20160145548A (ko) X-선 장치
US20080267354A1 (en) High-Dose X-Ray Tube
KR101040536B1 (ko) 나노구조 물질 기반 x-선관을 위한 게이트-집속전극 일체형 전극 구조
JP2010186694A (ja) X線源、x線発生方法およびx線源製造方法。
CN102420088B (zh) 一种背栅极式可栅控冷阴极x射线管
JP2013051165A (ja) 透過型x線発生装置
Morev et al. Electron-optical systems with planar field-emission cathode matrices for high-power microwave devices
JP5787626B2 (ja) X線管
JP2012104283A (ja) 電界放射装置
KR102238574B1 (ko) 전계 방출 장치
US20080049902A1 (en) "X-Ray Tube for High Dose Rates, Method of Generating High Dose Rates wit X-Ray Tubes and a Method of Producing Corresponding X-Ray Devices"
CN117038419A (zh) 一种碳纳米管冷阴极微焦点x射线管
CN109473326B (zh) 场发射电子源及其用途与真空电子器件及装置
JP5436131B2 (ja) X線管およびx線発生装置
JPH08255558A (ja) 冷陰極およびこれを用いた電子銃とマイクロ波管
KR102283035B1 (ko) 전자빔 증폭형 초소형 엑스선 튜브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785348

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016509273

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014002318

Country of ref document: DE

Ref document number: 1120140023183

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794121

Country of ref document: EP

Kind code of ref document: A1