WO2014179600A1 - Procédé de concentration de minerais de fer à teneur élevée en silice - Google Patents

Procédé de concentration de minerais de fer à teneur élevée en silice Download PDF

Info

Publication number
WO2014179600A1
WO2014179600A1 PCT/US2014/036412 US2014036412W WO2014179600A1 WO 2014179600 A1 WO2014179600 A1 WO 2014179600A1 US 2014036412 W US2014036412 W US 2014036412W WO 2014179600 A1 WO2014179600 A1 WO 2014179600A1
Authority
WO
WIPO (PCT)
Prior art keywords
ore
iron
density
separation
separator
Prior art date
Application number
PCT/US2014/036412
Other languages
English (en)
Inventor
Glenn E. Hoffman
Original Assignee
Hoffman & Sons Technologies, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffman & Sons Technologies, Llc filed Critical Hoffman & Sons Technologies, Llc
Publication of WO2014179600A1 publication Critical patent/WO2014179600A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap

Definitions

  • the present invention relates to a method and apparatus for concentrating high silica iron ores, tailings from iron ore processing plants, or an iron-containing waste stream, and more particularly to apparatus and methods for production of metallized iron-containing feed material for a blast furnace that has been conditioned to have reduced levels of gangue components.
  • BACKGROUND OF THE INVENTION [0002] Many iron ore deposits in the world (magnetite, hematite or mixed ore) are characterized as having medium to high grade iron content (25-40% Fe Total), but contain elevated gangue components especially silica content.
  • Those deposits that are characterized as having high silica with relative large iron oxide grain structure can be easily beneficiated by using a combination of standard comminution techniques (primary, secondary and tertiary grinding) to achieve successful iron particle liberation followed with concentrating by applying either low or medium intensity magnetic separation.
  • Silica flotation may also be applied to the concentrate product so as to effect maximum silica rejection or removal and result in an iron ore concentrate having greater than 60% FeTotal with silica content less than 3%.
  • the coarser the iron oxide grain size the easier and more efficient the liberation and concentrating steps become.
  • finely disseminated iron ore i.e., iron oxide grains that are tightly bound to silica, and having a grain size ranging from 2-15 microns
  • High intensity grinding increases the processing cost considerably.
  • both magnetic separation and silica floatation may not work because the ore particle size may be too fine (for instance 100% passing 500 Mesh).
  • these more challenging iron ore resources are usually overlooked and relegated to being unusable.
  • the procedure is as follows: Initially, the iron ore is ground to relatively coarse particle size (100% minus 1/4" to 100% minus 1mm), and then subsequently thermally processed using a relatively low temperature magnetizing roast in a furnace (rotary kiln, rotary hearth or other furnace that may either be direct or indirectly fired) at (700 ⁇ 1,200° C) by mixing the ore with a low rank thermal coal or other cheap carbon-containing reductant.
  • a relatively low temperature magnetizing roast in a furnace rotary kiln, rotary hearth or other furnace that may either be direct or indirectly fired
  • the reducing reactions in the roasting step promote conversion of the higher iron oxides to either lower iron oxide species, or metallic iron, actually causes a change in the iron crystal structure.
  • the apparatus consists of a comminution means or grinder 12 for reducing the particle size of the ore 10; a mixer 14 for mixing the sized ore with a reductant 16; a roasting furnace 20 for receiving and roasting the high silica iron ore; a cooler 22 (if required) to reduce the temperature of the roasted ore, a second grinder 24 and a separator, which can be a magnetic separator 26, or a wind classifier 28 and magnetic separator combined, so as to be a 'dry' coupled unit, or another type of density separator may be used in their place.
  • a comminution means or grinder 12 for reducing the particle size of the ore 10
  • a mixer 14 for mixing the sized ore with a reductant 16
  • a roasting furnace 20 for receiving and roasting the high silica iron ore
  • a cooler 22 if required to reduce the temperature of the roasted ore
  • a second grinder 24 and a separator which can be a magnetic separator 26, or a wind classifier 28
  • Another object of the invention is to provide an improved method of concentrating and recovering iron values from tailings from iron ore processing plants, or an iron-containing waste stream.
  • a further object of this invention is to provide a method of increasing the iron grade of the feed by effecting pre-reduction of the iron oxide species by using a solid or gaseous reductant.
  • Another object of the invention is to provide apparatus for concentrating and recovering iron values from high silica iron ores.
  • high silica iron ore 10 to be processed is ground in grinder 12 to reduce the particle size to at least 100% minus 1/4 inch, and preferably to a particle size of 100% minus 1.0 mm.
  • the ground particles are mixed in mixer 14 with a low rank thermal coal or other cheap carbon-containing reductant 16 such as dried or pyrolized or carbonized grass or other organic material.
  • the carbon-containing material 16 is selected from the group comprising: coal, coal wash plant fines, petcoke, petcoke fines, grass, cellulose, and organic matter such as waste sludge.
  • Iron ore tailings 18 may be introduced to the mixer 14, as desired, and mixed with the ground particles and reductant to form a mixture.
  • the mixture is then introduced into a roasting furnace 20, preferably a rotary kiln or rotary hearth type furnace in which the particulates are reduced at a temperature of about 700 - 1200°C (preferably about 900 - 1100°C) for a period of about 15 minutes to one hour.
  • the heated particulates are then cooled to a temperature at or below the iron Curie point ( ⁇ 770°C) in cooler 22, and then introduced to a density separator, such as magnetic separator 26 which separates and removes the gangue and reductant ash 30 which are mostly silica and silicates, leaving the concentrated iron ore 32, which has a high percentage of iron.
  • a density separator such as magnetic separator 26 which separates and removes the gangue and reductant ash 30 which are mostly silica and silicates, leaving the concentrated iron ore 32, which has a high percentage of iron.
  • separation of the dense iron particles from the less dense gangue / ash particles can be effected by means of wind classification 28 or other density separation method. Magnetic separation of the wind classified intermediate product can then follow as a subsequent step. If desired the particulate from the cooler can be further ground, before being classified.
  • the cooled particulate from cooler 22 or from grinder 24, or both can be introduced directly to the magnetic separator 26.
  • Magnetic separator 26 can be either a wet or dry separator system. It has been found that a wet magnetic separator is more efficient than a dry separator when handling fine particles, and allows the capture of fine dust. Even 'slimes' can be handled by a wet magnetic separator.
  • SUMMARY OF THE ACHIEVEMENT OF THE OBJECTS OF THE INVENTION [0014] From the foregoing, it is readily apparent that I have invented an improved method and apparatus for concentrating and recovering iron values from finely disseminated iron ore having high silica content, by employing a reducing roast followed by grinding and magnetic separation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un procédé et un appareil améliorés pour concentrer et récupérer des éléments de fer à partir d'un minerai de fer à teneur élevée en silice, comprenant les étapes de réduction de la dimension de particule du minerai, de mélange du minerai dimensionné avec un réducteur, de grillage magnétique du minerai de fer à teneur élevée en silice et de séparation de silicates à partir du minerai de valeur par séparation par densité.
PCT/US2014/036412 2013-05-02 2014-05-01 Procédé de concentration de minerais de fer à teneur élevée en silice WO2014179600A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361818879P 2013-05-02 2013-05-02
US61/818,879 2013-05-02

Publications (1)

Publication Number Publication Date
WO2014179600A1 true WO2014179600A1 (fr) 2014-11-06

Family

ID=51843956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/036412 WO2014179600A1 (fr) 2013-05-02 2014-05-01 Procédé de concentration de minerais de fer à teneur élevée en silice

Country Status (1)

Country Link
WO (1) WO2014179600A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833686A (en) * 1931-04-02 1931-11-24 Meyer Mineral Separation Compa Process of beneficiating iron ores
US2829042A (en) * 1956-01-09 1958-04-01 Nat Lead Co Furnacing process
US3232744A (en) * 1961-11-16 1966-02-01 Inst Noguchi Process for producing iron oxide with a low silica content
FR1476026A (fr) * 1966-03-22 1967-04-07 R N Corp Procédé de réduction directe des minerais de fer, des laitiers et des produits analogues
US20120036960A1 (en) * 2010-01-23 2012-02-16 Cardero Resource Corporation Direct processing of metallic ore concentrates into ferroalloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1833686A (en) * 1931-04-02 1931-11-24 Meyer Mineral Separation Compa Process of beneficiating iron ores
US2829042A (en) * 1956-01-09 1958-04-01 Nat Lead Co Furnacing process
US3232744A (en) * 1961-11-16 1966-02-01 Inst Noguchi Process for producing iron oxide with a low silica content
FR1476026A (fr) * 1966-03-22 1967-04-07 R N Corp Procédé de réduction directe des minerais de fer, des laitiers et des produits analogues
US20120036960A1 (en) * 2010-01-23 2012-02-16 Cardero Resource Corporation Direct processing of metallic ore concentrates into ferroalloys

Similar Documents

Publication Publication Date Title
CN101413057B (zh) 低品位及复杂铁矿高效分选方法
CN108531717B (zh) 一种基于分级联合磁化焙烧处理难选红铁矿的方法
CA2309611C (fr) Procede de valorisation d'un minerai de fer au moyen de plusieurs separateurs magnetiques
CN109604051B (zh) 一种从含铌铁金红石的稀土尾矿中综合回收铌铁的方法
CN108325738B (zh) 一种铝灰中金属铝的梯级回收方法
CN101775485B (zh) 一种炼磺烧渣预选抛尾—磁化焙烧提铁降硫选矿方法
CN105478232B (zh) 一种从石墨型钒矿富集五氧化二钒的选矿方法
CN107385199B (zh) 一种难选矿磁化焙烧干磨干选工艺
CN108531742B (zh) 一种由电炉粉尘制备纳米锌及铁精矿的方法
CN109967229B (zh) 一种风化型含钒钛赤铁矿选冶回收钒钛铁的方法
EP2226403B1 (fr) Procédé de concentration du nickel dans un minerai de saprolite
JP6422037B2 (ja) 鉱物の処理
JP6604346B2 (ja) 鉄鋼スラグの選別方法、鉄鋼スラグの再利用方法および製鉄用原料の製造方法
CN111593197A (zh) 一种铝土矿悬浮焙烧脱水干法除铁的方法
WO2014179600A1 (fr) Procédé de concentration de minerais de fer à teneur élevée en silice
US8028939B2 (en) Method for nickel concentration processing of saprolite ore
CN110732403A (zh) 铜冶炼炉渣的选矿方法
CN105903560B (zh) 一种难选冶菱铁矿石资源深度提铁降杂工艺
JP2013019004A (ja) 酸化ニッケル鉱石のニッケル濃縮方法
CN115870088A (zh) 一种伟晶岩制备4n5级高纯石英的方法
KR101091244B1 (ko) 스케일의 정제에 의한 산화철 제조방법
CN109201313A (zh) 一种红柱石矿选矿的预先抛尾方法
WO2014009769A1 (fr) Procédé de traitement d'un minerai de fer contenant du phosphore, le minerai de fer ayant une gangue
CN109465094A (zh) 一种基于赤泥提取物的铁精粉制备方法
CN113245054B (zh) 铁矿石还原焙烧-磁选方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792278

Country of ref document: EP

Kind code of ref document: A1