WO2014178376A1 - レーザレーダ装置 - Google Patents
レーザレーダ装置 Download PDFInfo
- Publication number
- WO2014178376A1 WO2014178376A1 PCT/JP2014/061878 JP2014061878W WO2014178376A1 WO 2014178376 A1 WO2014178376 A1 WO 2014178376A1 JP 2014061878 W JP2014061878 W JP 2014061878W WO 2014178376 A1 WO2014178376 A1 WO 2014178376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- scattered light
- distance
- target
- measuring
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/87—Combinations of systems using electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/933—Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present invention relates to a laser radar device that detects an object using light waves.
- a conventional laser radar apparatus irradiates a target with a light wave, calculates the distance to the target from the round-trip time of the reflected light, and specifies the position and size of the target by two-dimensionally scanning the light wave. At the same time, the target is detected based on the position and size thresholds (for example, Patent Document 1).
- the searchable distance that is narrowed by the attenuation of the light wave, even if you move while irradiating the light wave, there will be a region where the search by the light wave will not reach, and the target will be It may not be detected.
- the search range at a certain position and the search range at a position moved from the position In some cases, the search time is wasted. That is, in a situation where the searchable distance is unknown, the search by the laser radar device is inefficient.
- the present invention has been made to solve the above-described problems, and obtains a laser radar device capable of performing efficient search by preventing omission of detection of a target object and increase in search time due to overlap of search ranges. For the purpose.
- the laser radar apparatus includes a scattered light measuring means for measuring a temporal change in scattered light intensity in scattered light obtained by scattering a light wave during propagation, and distance measurement using the reflected light of the light wave.
- Distance measurement means that calculates the attenuation amount during propagation of the light wave from the time variation of the scattered light intensity measured by the scattered light measurement means, and calculates the distance that can be measured by the distance measurement means from the attenuation amount Means.
- the searchable distance of the laser radar device can be grasped, in the laser radar device, it is possible to prevent an omission of detection of a target object and an increase in search time due to overlap of search ranges, and an efficient search is performed. Can be done.
- FIG. 1 is a configuration diagram of a laser radar apparatus according to Embodiment 1 of the present invention.
- a laser radar device according to Embodiment 1 of the present invention includes a marine snow measurement device 1, a searchable distance calculation device 2, a vehicle movement path calculation device 3, a target search device 4, an inertial navigation device 5, and a vehicle motion control device 6. Is provided.
- the configuration of the marine snow measuring device 1 is shown in FIG.
- the marine snow measurement device 1 includes a laser device 11, an oscillator 12, a modulator 13, a transmission lens 14, a reception lens 15, a light receiver 16, and a scattered light intensity detection device 17.
- the laser device 11 has a function of oscillating the first laser beam.
- the oscillator 12 has a function of outputting the first modulation signal.
- the modulator 13 has a function of applying intensity modulation to the first laser light in accordance with the first modulation signal.
- the transmission lens 14 has a function of adjusting the divergence angle of the first laser beam.
- the receiving lens 15 has a function of collecting scattered light from an object propagating in the coaxial direction with respect to the reception visual field center.
- the light receiver 16 has a function of converting the light collected by the receiving lens 15 into an electrical signal and outputting it as a first received signal.
- the scattered light intensity detection device 17 measures the temporal change of the scattered light intensity from the first received signal and the first modulated signal with the input timing of the first modulated signal as the time origin, and outputs it as a scattered light intensity signal.
- the laser device 11, the oscillator 12, the modulator 13, and the transmission lens 14 constitute scattered light measurement light projecting means.
- the receiving lens 15 and the light receiver 16 constitute a light receiving means for measuring scattered light. Further, the scattered light intensity detection device 17 constitutes scattered light measurement means.
- Searchable distance calculation unit 2 pre-like with two threshold voltages V 1, V 2, which is set by the user, the time when the scattered light intensity signal falls below the threshold voltage V 1, V 2 t 1, t 2 And has a function of calculating an attenuation coefficient indicating the degree of attenuation of the laser beam.
- the searchable distance calculation device 2 has a function of calculating a searchable distance from this attenuation coefficient and outputting it as a searchable distance signal.
- the searchable distance calculation device 2 constitutes a distance measurement possible distance calculation means.
- the vehicle movement path calculation device 3 uses the searchable distance signal and a target search area set in advance by a user or the like to search for a movement path that can search for a target without omission or overlap in the target search area. It has a function to calculate and output as a movement route signal. Note that the vehicle movement route calculation device 3 constitutes a movement route calculation means.
- the configuration of the target searching device 4 is shown in FIG.
- the target searching device 4 includes a laser device 41, an oscillator 42, a modulator 43, a transmission lens 44, a scanner 45, a scanner driver 46, a reception lens 47, a light receiver 48, a distance detection device 49, and a signal processing device 50.
- the laser device 41 has a function of oscillating the second laser beam.
- the oscillator 42 has a function of outputting the second modulation signal.
- the modulator 43 has a function of applying intensity modulation to the second laser light in accordance with the second modulation signal.
- the transmission lens 44 has a function of adjusting the divergence angle of the second laser light.
- the scanner driver 46 has a function of outputting a scanner angle signal that specifies the angle of the scanner 45.
- the scanner 45 has a function of scanning the transmission direction and the reception visual field of the second laser light according to the scanner angle signal.
- the reception lens 47 has a function of condensing the reflected light from the object propagating in the coaxial direction with respect to the reception visual field center.
- the light receiver 48 has a function of converting the light collected by the receiving lens 47 into an electric signal and outputting it as a second received signal.
- the distance detection device 49 detects the distance from the object that generated the reflected light to the laser radar device by measuring the flight distance time of the reflected light from the second received signal and the second modulated signal. , Has a function to output as a distance signal.
- the signal processing device 50 has a function of creating three-dimensional data around the vehicle using the distance signal and the scanner angle signal. Further, the signal processing device 50 determines whether there is an object equivalent to the assumed size of the target specified in advance by the user or the like using the three-dimensional data, and when it is determined that the object exists, the target Has a function to output detection signals.
- the laser device 41, the oscillator 42, the modulator 43, the transmission lens 44, the scanner 45, and the scanner driver 46 constitute a distance measuring light projecting unit.
- the receiving lens 47 and the light receiver 48 constitute a light receiving means for distance measurement.
- the distance detection device 49 constitutes a distance measuring unit.
- the signal processing device 50 constitutes a target detection unit.
- the structure of the inertial navigation device 5 is shown in FIG.
- the inertial navigation device 5 includes a gyroscope 51, an accelerometer 52, and a position / orientation calculation device 53.
- the function of the inertial navigation device 5 will be described.
- the gyroscope 51 has a function of measuring the angular velocity of the vehicle and outputting it as an angular velocity signal.
- the accelerometer 52 has a function of measuring the acceleration of the vehicle and outputting it as an acceleration signal.
- the position / orientation calculation device 53 calculates the azimuth change amount by time-integrating the angular velocity indicated by the angular velocity signal on the basis of the orientation measured by GPS or the like on the sea or on land before navigating underwater, thereby calculating the current orientation.
- the inertial navigation device 5 constitutes a position / direction recognition means.
- the vehicle operation control device 6 has a function of controlling the vehicle to move according to the movement path indicated by the movement path signal, based on the current position and direction indicated by the position signal and the direction signal.
- the vehicle operation control device 6 has a function of stopping the movement of the vehicle when a target detection signal is input.
- the vehicle operation control device 6 constitutes movement control means.
- the laser device 11 of the marine snow measuring device 1 oscillates the first laser beam and outputs it to the modulator 13.
- the oscillator 12 outputs the first modulation signal to the modulator 13 and the scattered light intensity detection device 17.
- the modulator 13 modulates the intensity of the first laser beam according to the first modulation signal and outputs the modulated laser beam to the transmission lens 14.
- the transmission lens 14 adjusts the divergence angle of the input first laser beam and outputs it to the sea.
- the receiving lens 15 collects the scattered light scattered by the marine snow in the sea and outputs it to the light receiver 16.
- the light receiver 16 converts the light collected by the receiving lens 15 into an electrical signal, and outputs the electrical signal to the scattered light intensity detection device 17 as a first received signal.
- the scattered light intensity detection device 17 can measure the time change of the scattered light intensity from the first received signal and the first modulated signal with the input timing of the first modulated signal as the time origin, and can search for the scattered light intensity signal. Output to the distance calculation device 2.
- FIG. 5 shows an example of the scattered light intensity signal.
- the searchable distance calculating device 2 uses two threshold voltages V 1 and V 2 set in advance by a user or the like, and the input scattered light intensity signal is converted into threshold voltages V 1 and V 2. Times t 1 and t 2 when falling below are measured. Note that the threshold voltage V 1 is set to satisfy V 1 > V 2, and the threshold voltage V 2 is set higher than the noise voltage. Further, the searchable distance calculation device 2 calculates the attenuation coefficient using the measured times t 1 and t 2 . The calculation formula of the attenuation coefficient is shown in the following formula (1). In equation (1), c represents the speed of light and ⁇ represents the attenuation coefficient.
- the time t 1 can not be measured, can not be measured the attenuation coefficient. In this case, it is determined that the amount of marine snow is small, and the attenuation coefficient when there is no marine snow preset by the user or the like is used.
- the searchable distance calculation device 2 calculates the searchable distance L using the attenuation coefficient ⁇ , and outputs the searchable distance L to the vehicle movement route calculation device 3 as a searchable distance signal.
- the formula for calculating the searchable distance L is shown in the following formula (2).
- P R is the light receiving power of the detection limit
- P L is the laser beam power
- R represents shows the reflectivity of the target.
- P R, P L, ⁇ , parameters of R is set in advance by the user.
- the vehicle movement path calculation device 3 does not overlap the search range from the searchable distance L and the target search area where a target set in advance by a user or the like may exist, and also leaks the target search area. Instead, the movement path of the vehicle to be searched is calculated and output to the vehicle operation control device 6 as a movement path signal.
- the calculated travel route is the distance between the boundary of the target search area and the travel route of the vehicle (for example, K 1 in the figure)
- K 1 in the figure The distance (K 2 in the figure) between adjacent routes in the movement route becomes wider, and the overall length of the movement route becomes shorter.
- the searchable distance is short, and as shown in FIG. 7, the calculated travel route is the distance between the boundary of the target search region and the travel route of the vehicle (for example, In the figure, K 1 ), the distance between adjacent paths in the movement path (K 2 in the figure), and the like are narrowed, and the entire movement path is long.
- the route is such that the target search area can be searched without omission and the search range is not redundantly overlapped.
- the gyroscope 51 of the inertial navigation apparatus 5 measures the angular velocity and outputs the angular velocity signal to the position / orientation calculation device 53 as an angular velocity signal.
- the accelerometer 52 measures acceleration and outputs it as an acceleration signal to the position / orientation calculation device 53.
- the position / orientation calculation device 53 calculates the azimuth change amount by time-integrating the angular velocity indicated by the angular velocity signal on the basis of the orientation measured by GPS or the like on the sea or on land before navigating underwater, thereby calculating the current orientation. Calculate and output as a bearing signal.
- the position / orientation calculation device 53 calculates the amount of change in speed by time-integrating the acceleration indicated by the acceleration signal with reference to the position measured by GPS or the like on the sea or on land before navigating under the sea. By calculating the position change amount by time-integrating the speed change amount, the current position is calculated and output as a position signal.
- the vehicle motion control device 6 moves according to the movement route indicated by the movement route signal output from the vehicle movement route calculation device 3 based on the position signal output from the position / orientation calculation device 53 and the current position and direction indicated by the direction signal. Control the vehicle. Further, the vehicle motion control device 6 stops the movement of the vehicle when a target detection signal described later is input from the target search device 4.
- the laser radar device of the present invention controls the movement of the vehicle as described above and searches for a target by the target searching device 4.
- the laser device 41 of the target searching device 4 oscillates the second laser beam and outputs it to the modulator 43.
- the oscillator 42 outputs the second modulation signal to the modulator 43 and the distance detection device 49.
- the modulator 43 modulates the intensity of the second laser light in accordance with the second modulation signal and outputs it to the transmission lens 44.
- the transmission lens 44 adjusts the divergence angle of the second laser light and outputs it to the sea. At this time, the second laser beam is scanned by the scanner 45.
- the scanner driver 46 outputs a scanner angle signal for designating the angle of the scanner 45 to the scanner 45, and the scanner 45 scans the transmission direction and reception field of the second laser light according to the scanner angle signal. Further, the scanner driver 46 outputs a scanner angle signal to the signal processing device 50.
- the reception lens 47 condenses the reflected light from the object propagating in the coaxial direction with respect to the reception visual field center, and outputs it to the light receiver 48.
- the light receiver 48 converts the collected light into an electrical signal and outputs it as a second received signal to the distance detection device 49.
- the distance detection device 49 detects the distance to the object by measuring the flight distance time of the reflected light from the second received signal and the second modulated signal, and outputs the detected distance to the signal processing device 50 as a distance signal. .
- the signal processing device 50 creates three-dimensional data around the vehicle using the distance signal and the scanner angle signal. Further, the signal processing device 50 determines whether there is an object equivalent to the assumed size of the target specified in advance by the user or the like using the three-dimensional data, and when determining that the object exists, An object detection signal is output. As described above, when the target object detection signal is output to the vehicle operation control device 6, the movement of the vehicle is stopped.
- the searchable distance is calculated, the vehicle along the route that can be searched without leaking the region where the target may exist and without overlapping the search range. Can be moved. Accordingly, it is possible to prevent an object detection omission due to a decrease in searchable distance due to marine snow and an increase in search time due to overlapping search ranges, and an efficient search can be performed.
- the vehicle movement route calculation device 3 has been described as calculating the vehicle movement route. However, the target detection omission and the search range overlap with reference to the searchable distance calculated by a person as appropriate. A vehicle movement path that does not occur may be manually set to control the operation of the vehicle.
- the laser device 41 of the target object search device 4 and the laser device 11 of the marine snow measurement device 1 may be light sources that are not laser light, such as LEDs and lamps.
- the wavelength of the light output from the laser device 41 and the laser device 11 may be set in advance to a wavelength with high transmittance in the sea. Further, when the transmission loss of marine snow has spectral characteristics, it may be set to a wavelength at which the transmission loss of marine snow is low. Thereby, the searchable distance can be extended and the search time can be shortened.
- the attenuation coefficient ⁇ When calculating the attenuation coefficient ⁇ from the scattered light intensity signal, it may be determined by fitting an exponential function. The above fitting will be described with reference to FIG.
- the scattered light intensity signal once increases after a lapse of time from the time origin, and decreases from the middle. Fitting with an exponential function is performed on the signal after the time when the decrease starts, and the attenuation coefficient ⁇ is determined.
- the function used for fitting is shown in the following formula (3).
- A is an arbitrary constant.
- the marine snow measuring device 1 may be operated only once before the movement of the vehicle is started, or may be continuously operated during the movement.
- the searchable distance also changes. May increase the search time.
- the searchable distance and movement route are calculated again, and the searchable distance is reduced by correcting the movement route in the middle. It is possible to prevent a target detection omission due to or an increase in search time due to overlapping search ranges.
- the marine snow measuring device 1 and the target object searching device 4 may be operated at the same time or may be operated at different timings.
- the scattered light of the marine snow by the 2nd laser beam of the target search apparatus 4 is input into the marine snow measuring apparatus 1, and there exists a possibility that the scattered light intensity by the marine snow cannot be measured accurately due to crosstalk.
- the reflected light from the target by the first laser beam of the marine snow measuring device 1 is input to the target searching device 4, and there is a possibility that the three-dimensional shape of the target cannot be measured accurately due to crosstalk.
- the first laser beam and the second laser beam are set to different wavelengths, and the first filter that transmits the first laser beam to the marine snow measuring device 1 but does not transmit the second laser beam is provided.
- the target searching device 4 With the second filter that does not transmit the first laser beam but transmits the second laser beam, crosstalk can be avoided.
- the first and second filters are unnecessary, and the number of parts can be reduced.
- the gyroscope 51 may be a azimuth magnetic needle.
- an active sonar or a laser radar can measure a seabed topography or an artificial object in the sea, the position and orientation of the vehicle may be calculated using such information. In this case, since the inertial navigation device 5 is not necessary, the number of parts can be reduced.
- the laser radar device of the present invention may be used in combination with an active sonar using sound waves.
- Active sonar using sound waves has less attenuation during propagation in the sea than laser light, and can detect echoes from distant targets. Therefore, by using both the laser radar device and the active sonar using sound waves, it becomes possible to use them properly according to the purpose. For example, a distant target is detected with an active sonar and approached in that direction with a vehicle. Thereafter, the object shape and size can be determined and detected by measuring with high accuracy by the laser radar device.
- high spatial resolution is required in the vicinity of complex terrain such as the seabed, so it can be measured with high accuracy by using a laser radar device, and it can be measured over a wide range by using active sonar in other wide spaces. be able to.
- the target searching device 4 may detect the target using the scattered light intensity.
- the distance detection device 49 is changed to a distance intensity detection device that can detect the scattered light intensity in addition to the distance.
- the signal processing device 50 includes a pattern of the scattered light intensity of the target assumed in advance, and by matching with the measured scattered light intensity pattern, Detect the target. Thereby, when the target has a hull display, it is possible to determine the hull display and detect the target.
- the target may be provided with a high-reflectivity object such as a prism in advance, and the target search device 4 may detect the target based on the high-reflectivity object. Thereby, since a farther target can be measured, the searchable distance can be extended.
- the modulation method of the laser light in the target object search device 4 and the marine snow measurement device 1 may be CW modulation.
- time is measured from the phase difference between the modulated signal and the received signal.
- the second laser beam may be irradiated in one step after being diffused two-dimensionally without being scanned by the scanner 45.
- the light receiver 48 needs to be a two-dimensional array.
- the position of the communication device may be recognized using the three-dimensional information of the target acquired by the target searching device 4.
- the laser radar device of the present invention is mounted on a moving body such as a car, aircraft, helicopter, or ship instead of an underwater vehicle, and the searchable distance is determined by measuring light wave attenuation due to fog or rain instead of marine snow. May be.
- the laser radar device of the present invention is used outside the sea as described above, when the water depth is shallow enough to receive a GPS signal even under the sea, or when the GPS signal can be received at sea using a periscope, etc. Instead of the navigation device 5, the GPS signal may be received directly to determine the position and direction. In this case, since the inertial navigation device 5 is not necessary, the number of parts can be reduced.
- the laser radar device of the present invention may detect an object different from the seabed or the target as an obstacle and change the movement path so as to avoid a collision. Thereby, when an obstacle exists in the moving route, a collision can be avoided.
- FIG. 8 is a block diagram of a laser radar apparatus according to Embodiment 2 of the present invention.
- a laser radar device according to Embodiment 2 of the present invention includes a marine snow measuring device 1, a target searching device 4, an inertial navigation device 5, a vehicle motion control device 6, a frame rate calculating device 7, and a vehicle moving speed calculating device 8. Prepare. Note that the same components as those described in Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
- the configuration and function of the marine snow measuring apparatus 1 are the same as those shown in the first embodiment.
- the configuration of the target searching device 4 is shown in FIG.
- the target searching device 4 has a configuration in which an optical amplifier 401 is added to the one shown in the first embodiment, that is, a laser device 41, an oscillator 42, a modulator 43, an optical amplifier 401, a transmission lens 44, a scanner 45, A scanner driver 46, a receiving lens 47, a light receiver 48, a distance detection device 49, and a signal processing device 50 are provided.
- the optical amplifier 401 has a function of amplifying and outputting the power of the pulse-modulated second laser light in proportion to the repetition period of the pulse modulation.
- the scanner driver 46 has a function of repeatedly outputting a scanner angle signal indicating the angle of the scanner 45 in accordance with a periodic signal.
- the oscillator 42 has a function of outputting the second modulation signal at a repetition period according to the repetition period signal.
- the optical amplifier 401 constitutes an optical amplifying unit.
- the configuration and function of the inertial navigation device 5 are the same as those shown in the first embodiment.
- the vehicle operation control device 6 sets the vehicle movement speed according to the movement speed signal, and controls the vehicle to move according to the movement path indicated by the movement path signal based on the current position and direction indicated by the position signal and the direction signal. have.
- the vehicle operation control device 6 has a function of stopping the movement of the vehicle when a target detection signal is input.
- the frame rate calculation device 7 uses the two threshold voltages V 1 and V 2 set in advance by the user or the like to calculate the times t 1 and t 2 when the scattered light intensity signal falls below the threshold voltages V 1 and V 2. It has a function of measuring and calculating an attenuation coefficient indicating the degree of attenuation of the laser beam.
- the frame rate calculation device 7 has a function of calculating the frame rate from the attenuation coefficient and the repetition cycle of the modulation of the second laser light in the target object search device 4 and outputting the frame rate signal and the repetition cycle signal, respectively. .
- the frame rate calculation device 7 constitutes a repetition period calculation means.
- the vehicle movement speed calculation device 8 has a function of calculating a movement speed using a frame rate signal and outputting it as a movement speed signal. Further, based on the searchable distance set in advance by the user or the like, the vehicle movement path for searching the target object search area without the overlapping search ranges and the omission as in the vehicle movement path calculation device 3 of the first embodiment. Is calculated and output to the vehicle operation control device 6 as a movement path signal.
- the vehicle movement speed calculation device 8 constitutes a movement speed calculation unit.
- the frame rate calculation device 7 calculates the attenuation coefficient ⁇ due to marine snow from the scattered light intensity signal output from the marine snow measurement device 1 by the same method as the searchable distance calculation device 2 in the first embodiment. Further, the frame rate calculation device 7 uses the calculated attenuation coefficient ⁇ to calculate a frame rate F at which the target object search device 4 measures three-dimensional data around the vehicle, and uses the vehicle movement speed calculation device 8 as a frame rate signal. Output to. Further, the repetition period T of the pulse modulation is calculated and output to the oscillator 42 and the scanner driver 46 as a repetition period signal. A method for calculating the frame rate F and the repetition period T will be described below.
- Attenuation coefficient alpha calculates the laser beam power P L that satisfies the search distance L set in advance by the user.
- the calculation formula of the laser beam power P L shown in the following equation (4).
- P R is the light receiving power of the detection limit, eta system efficiency
- R represents reflectivity of the target
- L is shows the search distance.
- the parameters P R , L, ⁇ , and R are set in advance by a user or the like.
- the laser beam power P L is determined by the output of the optical amplifier 401. Since the optical amplifier 401 outputs power proportional to the repetition period T of the pulse modulation in the modulator 43, the repetition period T is calculated using the following equation (5).
- a is a proportional coefficient of the laser beam power P L of the repetition period T and the optical amplifier 401.
- the parameter a is set in advance by the user or the like.
- the frame rate F is calculated by the following equation (6) using the repetition period T and the number N of measurement points in one frame.
- the number N of measurement points is set in advance by a user or the like.
- the frame rate F calculated as described above is output as a frame rate signal to the vehicle movement speed calculation device 8, and the repetition period T is output as a repetition period signal to the oscillator 42 and the scanner driver 46.
- the vehicle movement speed calculation device 8 calculates a vehicle movement speed v from the frame rate F input as a frame rate signal and the set searchable distance L, and outputs the vehicle movement speed v to the vehicle operation control device 6 as a movement speed signal. .
- a calculation formula (7) of the vehicle moving speed v is shown below. Further, based on the searchable distance set in advance by the user or the like, the vehicle movement path for searching the target object search area without the overlapping search ranges and the omission as in the vehicle movement path calculation device 3 of the first embodiment. Is output to the vehicle operation control device 6 as a movement path signal.
- the vehicle operation control device 6 sets the vehicle movement speed according to the movement speed signal, and moves according to the movement path indicated by the movement path signal based on the current position and direction indicated by the position signal and the direction signal output from the inertial navigation apparatus 5. Control the vehicle to Further, the vehicle operation control device 6 stops the movement of the vehicle when the target detection signal is input.
- the laser radar device of the present invention controls the movement of the vehicle as described above and searches for a target by the target searching device 4.
- the oscillator 42 of the target searching device 4 outputs the second modulation signal to the modulator 43 and the distance detection device 49 at a repetition period T according to the repetition period signal.
- the optical amplifier 401 amplifies the power of the pulse-modulated second laser light in proportion to the pulse modulation repetition period T and outputs the amplified power to the transmission lens 44.
- the scanner driver 46 outputs a scanner angle signal indicating the angle of the scanner 45 to the scanner 45 and the signal processing device 50 in accordance with the repetition period signal.
- the other components of the target searching device 4 perform the same operations as those described in the first embodiment, and output a target detection signal to the vehicle motion control device 6 when a target is detected.
- the laser of the optical amplifier 401 is changed by changing the repetition period of the pulse modulation of the laser light so as to keep the searchable distance constant.
- the searchable distance is kept constant, it is not necessary to change the vehicle movement route as compared with the first embodiment, and only the vehicle speed needs to be adjusted. No maneuvering is required and vehicle operation control can be simplified.
- the vehicle movement speed calculation device 8 has been described as calculating the vehicle movement route and the vehicle movement speed.
- a separate device for calculating the movement route based on the searchable distance is provided, and the vehicle moves from the device.
- a route signal may be output.
- the user can refer to the searchable distance set by the person as appropriate, set the movement speed by referring to the searchable distance and the frame rate signal, and the target detection omission or the search range may overlap. It is also possible to control the operation of the vehicle so that there is no problem.
- Embodiment 3 In the first embodiment and the second embodiment, the marine snow measurement device 1 and the target object search device 4 are separately provided. However, in the third embodiment, the marine snow measurement device 1 and the target object search device 4 are provided.
- a laser radar apparatus constructed by integrating the above will be described.
- a laser radar device according to Embodiment 3 of the present invention will be described with reference to FIG.
- FIG. 10 is a block diagram of a laser radar apparatus according to Embodiment 3 of the present invention.
- the laser radar device according to Embodiment 3 of the present invention includes a searchable distance calculation device 2, a vehicle movement path calculation device 3, an inertial navigation device 5, a vehicle operation control device 6, and a laser radar 9. Note that the same components as those described in Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
- the configuration of the laser radar 9 is shown in FIG.
- the laser radar 9 includes a laser device 41, an oscillator 42, a modulator 43, a transmission lens 44, a scanner 45, a scanner driver 46, a reception lens 47, a light receiver 48, a distance detection device 49, a scattered light intensity detection device 17, and a signal processing device. 50.
- the signal processing device 50 includes a switching control device 501 having a function of outputting a measurement mode signal for setting a measurement mode.
- a search start signal is input to the switching control device 501.
- the switching control device 501 constitutes a switching control means.
- the scanner driver 46 has a function of stopping operation when a marine snow measurement mode (scattered light measurement mode) signal, which is one of measurement mode signals, is input. Further, it has a function of starting an operation when a target search mode (ranging mode) signal, which is one of measurement mode signals, is input.
- the laser device 41, the oscillator 42, the modulator 43, the transmission lens 44, the scanner 45, and the scanner driver 46 constitute common light projecting means, and the reception lens 47 and the light receiver 48 constitute common light receiving means.
- the distance detecting device 49 has a function of detecting the distance by measuring the flight distance time of the reflected light from the second received signal and the second modulated signal and outputting the distance signal to the signal processing device 50. Also, it has a function to stop operation when a marine snow measurement mode signal is input. Further, it has a function of starting operation when a target search mode signal is input.
- the scattered light intensity detection device 17 measures the temporal change of the scattered light intensity from the second received signal and the second modulated signal, using the input timing of the second modulated signal as the time origin, and outputs it as a scattered light intensity signal.
- Has function It also has a function to start operation when a marine snow measurement mode signal is input. Further, it has a function of stopping the operation when a target search mode signal is input.
- the vehicle operation control device 6 has a function of outputting a search start signal when a movement path signal is input.
- the signal processing device 50 of the laser radar 9 outputs a marine snow measurement mode signal, which is one of the measurement mode signals, to the distance detection device 49, the scanner driver 46, and the scattered light intensity detection device 17 when the operation of the laser radar device is started.
- a marine snow measurement mode signal is input, the distance detecting device 49 and the scanner driver 46 stop operating, and the scattered light intensity detecting device 17 starts operating.
- the scattered light intensity detection device 17 can measure the time change of the scattered light intensity from the second received signal and the second modulated signal with the input timing of the second modulated signal as the time origin, and can search for the scattered light intensity signal. Output to the distance calculation device 2.
- the second received signal is a signal obtained by converting the scattered light collected by the receiving lens 41 into an electric signal by the light receiver 48, as described in the first embodiment.
- the second laser light which is oscillated by the laser device 41 and modulated by the modulator 43 and outputted through the transmission lens 44 and the scanner 45 is scattered in the sea.
- the searchable distance calculation device 2 calculates a searchable distance using the scattered light intensity signal and outputs it to the vehicle movement path calculation device 3 as a searchable distance signal.
- the vehicle movement route calculation device 3 calculates a movement route using the searchable distance signal and outputs it to the vehicle operation control device 6 as a movement route signal.
- the vehicle operation control device 6 uses the position signal and the direction signal output from the inertial navigation device 5 to start the movement of the vehicle according to the movement path signal.
- a search start signal is output to the signal processing device 50 when the movement route signal is input.
- the signal processing device 50 When the search start signal is input, the signal processing device 50 outputs a target search mode signal, which is one of the measurement mode signals, to the distance detection device 49, the scanner driver 46, and the scattered light intensity detection device 17.
- the distance detecting device 49 and the scanner driver 46 start operating, and the scattered light intensity detecting device 17 stops operating.
- the scanner driver 46 outputs a scanner angle signal that specifies the angle of the scanner 45 to the scanner 45.
- the scanner 45 oscillates by the laser device 41 according to the scanner angle signal, is modulated by the modulator 43, and scans the transmission direction and the reception visual field of the second laser light that has passed through the transmission lens 44.
- the reflected light collected by the reception lens 41 is converted into a second reception signal by the light receiver 48 and output to the distance detection device 49.
- the distance detection device 49 detects the distance by measuring the flight distance time of the reflected light from the second received signal and the second modulated signal, and outputs the distance to the signal processing device 50 as a distance signal.
- the signal processing device 50 When detecting the target, the signal processing device 50 outputs a target detection signal to the vehicle operation control device 6.
- the marine snow measurement device 1 and the target object search device 4 according to the first embodiment have been described as being integrated as the laser radar 9. However, the marine snow measurement device 1 and the target object according to the second embodiment are illustrated.
- the search device 4 may be integrated as a laser radar 9.
- the searchable distance is calculated, the vehicle along the route that can be searched without leaking the region where the target may exist and without overlapping the search range. Can be moved. Accordingly, it is possible to prevent an object detection omission due to a decrease in searchable distance due to marine snow and an increase in search time due to overlapping search ranges, and an efficient search can be performed.
- the laser radar device according to the third embodiment is obtained by integrating the target search device 4 and the marine snow measurement device 1 as a laser radar 9 in the laser radar device shown in the first and second embodiments.
- the laser device, the oscillator, the modulator, the transmission lens, the reception lens, and the light receiver are shared, the number of device parts is reduced, and the device can be reduced in cost and size.
- the marine snow measurement mode may be operated only once when the operation of the laser radar apparatus is started, or may be switched from the target search mode to the marine snow measurement mode while the vehicle is moving.
- the searchable distance When operating only once, if the amount of marine snow changes while moving according to the travel route, the searchable distance also changes. May increase the search time.
- calculate the searchable distance again, calculate the movement route, and correct the movement route halfway, the target detection omission due to the decrease in the searchable distance, An increase in search time due to overlapping search ranges can be prevented.
- Embodiment 4 In the first to third embodiments, the target is searched using the second laser beam. In the fourth embodiment, the target is detected by detecting the laser beam transmitted from the target.
- a laser radar device that searches for an object will be described.
- a laser radar apparatus according to Embodiment 4 of the present invention will be described with reference to FIG.
- FIG. 12 is a block diagram of a laser radar device according to Embodiment 4 of the present invention.
- a laser radar device according to Embodiment 4 of the present invention includes a marine snow measurement device 1, a vehicle movement path calculation device 3, an inertial navigation device 5, a vehicle motion control device 6, a laser irradiation range radius calculation device 10, and a target transmission laser.
- a light measuring device 20 is provided. Note that the same components as those described in Embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
- the laser irradiation range radius calculation device 10 uses the scattered light intensity signal output from the marine snow measurement device 1 to indicate an attenuation coefficient indicating the degree of laser light attenuation. It has a function of calculating ⁇ based on the above equation (1).
- the laser irradiation range radius calculation device 10 has a function of calculating the laser irradiation range radius L t using the calculated attenuation coefficient ⁇ and outputting it to the vehicle movement path calculation device 3 as a laser irradiation range radius signal.
- the laser irradiation range radius Lt indicates the radius of a range in which the target object transmission laser light measurement device 20 can detect the laser beam transmitted from the target centering on the target object, and the calculation formula thereof is the following formula (8). Shown in In the formula (8), P R is the light receiving power of the detection limit in the target transmission laser measuring device 20, P t denotes the laser light power target is irradiated.
- the parameters P R and P t are set in advance by the user or the like.
- the laser irradiation range radius calculation device 10 constitutes a light wave irradiation range calculation unit.
- the vehicle movement path calculation device 3 uses the laser irradiation range radius signal and a target search area in which a target set in advance by a user or the like may exist, so that there is no leakage in the target search area. It has a function of calculating a movement route that can search for a target without duplication and outputting it as a movement route signal.
- a target (not shown) transmits laser light in all directions as target transmission laser light.
- the target transmission laser light measurement apparatus 20 includes a reception lens 201 and an array type receiver 202.
- the receiving lens 201 has a function of condensing a target transmission laser beam, which is a laser beam transmitted from the target, and outputting it to the array type receiver 202.
- the array-type receiver 202 converts the focused target transmission laser beam into an electric signal when the power of the target transmission laser beam focused by the receiving lens 201 is equal to or higher than its own detection limit. And has the function of outputting as an intensity signal.
- the array type receiver 202 calculates the incident direction of the target transmission laser light from the condensing position that is the position of the target transmission laser light condensed at this time by the receiving lens 201, and the target direction signal With the function to output as.
- the incident direction ⁇ of the target transmission laser beam is calculated by the following equation (9), where f is the focal length of the receiving lens 201 and h is the distance from the center of the array type receiver 202 to the focusing position.
- the target transmission laser light measurement device 20 constitutes a target light wave detection means.
- the vehicle operation control device 6 has a function of controlling the vehicle so as to move according to the movement route indicated by the movement route signal based on the current position and direction indicated by the position signal output from the inertial navigation device 5 and the direction signal. Further, the vehicle operation control device 6 has a function of stopping the movement of the vehicle when an intensity signal and a target direction signal are input.
- Laser irradiation range radius calculation device 10 calculates attenuation coefficient ⁇ due to marine snow from the scattered light intensity signal output from marine snow measurement device 1 by the same method as searchable distance calculation device 2 in the first embodiment. Further, the laser irradiation range radius calculation device 10 calculates the laser irradiation range radius L t using the calculated attenuation coefficient ⁇ as shown in the above equation (8), and the vehicle movement path calculation device 3 as a laser irradiation range radius signal. Output to.
- Vehicle movement path calculation device 3 includes a laser irradiation range radius L t which is entered as the laser irradiation range radius signals, a target search area target that is set in advance by the user are likely to be present, the search range A vehicle movement path for searching the target search area without omission is calculated and output to the vehicle operation control device 6 as a movement path signal.
- the laser irradiation range radius Lt is long, and as shown in FIG. 13, the calculated movement path is the distance between the boundary of the target search area and the movement path of the vehicle (for example, K in the figure). 1 ), the distance (K 2 in the figure) between adjacent routes in the movement route becomes wider, and the length of the entire movement route becomes shorter.
- the laser irradiation range radius Lt is short. Therefore, as shown in FIG. 14, the calculated movement path is the boundary between the target search area and the movement path of the vehicle.
- An interval for example, K 1 in the figure
- an interval between adjacent movement paths K 2 in the figure
- the route is such that the target search area can be searched without omission and the search ranges can be searched without wastefully overlapping.
- the vehicle operation control unit 6 moves according to the movement path indicated by the movement path signal output from the vehicle movement path calculation device 3. Control the vehicle. Further, the vehicle operation control device 6 stops the movement of the vehicle when the intensity signal and the target direction signal are input from the target transmission laser light measurement device 20.
- the laser radar device of the present invention controls the movement of the vehicle as described above, and detects the target transmission laser light transmitted from the target by the target transmission laser light measurement device 20, thereby searching for the target. .
- the target to be searched is transmitting laser light in all directions as target transmission laser light, and the receiving lens 201 condenses the target transmission laser light transmitted from the target to form an array type. Output to the receiver 202.
- the array-type receiver 202 converts the focused target transmission laser beam into an electric signal when the power of the target transmission laser beam focused by the receiving lens 201 is equal to or higher than its own detection limit. And output to the vehicle operation control device 6 as an intensity signal. Further, the array type receiver 202 receives the incident direction ⁇ of the target transmission laser light from the condensing position that is the position of the target transmission laser light condensed at this time by the receiving lens 201 as shown in the above equation (9). Is output to the vehicle motion control device 6 as a target direction signal. As described above, when the intensity signal and the target direction signal are output to the vehicle motion control device 6, the movement of the vehicle is stopped.
- the radius of the laser irradiation range is calculated, and the region in which the target may exist is not leaked, and along the route that can be searched without overlapping the search range.
- the vehicle can be moved. Therefore, it is possible to prevent an object detection omission due to a decrease in the laser irradiation range radius caused by marine snow and an increase in search time due to overlap of search ranges, and an efficient search can be performed.
- the laser radar device of the fourth embodiment does not need to include the target searching device 4, the number of parts such as the scanner 45 and the laser device 41 and the power consumption are reduced as compared with the first and second embodiments.
- the vehicle can be reduced, and the vehicle can be reduced in weight and power consumption.
- the vehicle movement path calculation device 3 has been described as calculating the movement path of the vehicle.
- the target detection omission and the search range overlap with reference to the laser irradiation range radius calculated by a person as appropriate.
- a vehicle movement path that does not occur may be manually set to control the operation of the vehicle.
- the laser beam transmitted from the target in all directions may be transmitted in all directions at once, or may be transmitted by being scanned in all directions.
- the reception lens 201 of the target transmission laser light measuring device 20 may be configured to reliably receive the target transmission laser light using a wide-angle lens such as a fisheye lens.
- the target transmission laser light measurement device 20 may be configured by installing one target transmission laser light measurement device 20a, 20b having a hemispherical field of view on each side of the vehicle. A plan view of the vehicle in this case is shown in FIG. By doing in this way, it becomes possible to receive the target transmission laser beam transmitted in all directions without missing it.
- the array-type receiver 202 may be able to ensure a two-dimensional field of view by using a two-dimensional array of light receivers.
- the vehicle motion control device 6 causes the vehicle to approach the target based on the target direction signal output from the target transmission laser light measurement device 20. You may control to. This enables communication with a high signal-to-noise ratio (SN ratio). Further, the vehicle operation control device 6 calculates the distance from the vehicle to the target based on the intensity signal output from the target transmission laser light measurement device 20 and the attenuation coefficient ⁇ calculated by the laser irradiation range radius calculation device 10. May be.
- the vehicle operation control device 6 can control the movement of the vehicle so that the vehicle approaches the target object up to a certain distance. Furthermore, by calculating the distance from the vehicle to the target, it is possible to prevent the vehicle from colliding with the target when approaching the target, so that the target can be safely approached.
- the target may transmit light other than laser light such as an LED (Light Emitting Diode) or a lamp.
- the wavelength of the laser beam transmitted by the target may be set in advance to a wavelength with high transmittance in the sea. Further, when the transmission loss of marine snow has spectral characteristics, it may be set to a wavelength at which the transmission loss of marine snow is low. Thereby, the radius of the laser irradiation range can be extended and the search time can be shortened.
- the marine snow measuring device 1 may be operated only once before the movement of the vehicle is started, or may be continuously operated during the movement. In the case of operating only once, if the amount of marine snow changes while moving along the movement path, the laser irradiation range radius also changes. Search time may increase due to duplication. On the other hand, if the operation continues during movement, even if the amount of marine snow changes during movement, the laser irradiation range radius is calculated again by correcting the movement path in the middle by calculating the laser irradiation range radius and movement path again. It is possible to prevent a target detection omission due to decrease in search time and an increase in search time due to overlapping search ranges.
- the laser radar device may be used in combination with an active sonar using sound waves.
- Active sonar using sound waves has less attenuation during propagation in the sea than laser light, and can detect echoes from distant targets. Therefore, by using both the laser radar device and the active sonar using sound waves, it becomes possible to use them properly according to the purpose. For example, a distant target is detected with an active sonar and approached in that direction with a vehicle. Thereafter, the position of the target can be accurately grasped by detecting the laser beam from the target with the laser radar device.
- the laser radar device is mounted on a moving body such as a car, an aircraft, a helicopter, a ship or the like instead of an underwater vehicle, measures attenuation of light waves due to fog, rain, etc. instead of marine snow, and performs laser irradiation.
- the range radius may be determined.
- the laser radar device can detect an object using light waves because it can prevent an increase in the search time due to a detection failure of a target and an overlap of search ranges, and perform an efficient search. Suitable for use as a device.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
しかしながら、上記のような場合において特許文献1に示される技術を適用した場合、光波が伝搬する媒質中に散乱物質が存在すると、光波が散乱により減衰するため、探索可能距離(測距可能距離)つまりレーザレーダ装置位置からその反射光を検知できる範囲が狭くなることになる。そして、光波が減衰することで狭くなった探索可能距離の値を認識していない場合、光波を照射しながら移動しても、光波による探索が行き届かない領域が発生してしまい、目標物を検出できない可能性がある。
一方、散乱物質があまり存在せずに探索可能距離が広い場合であっても、探索可能距離の値を認識していない場合、ある位置での探索範囲と該位置から移動した位置での探索範囲との一部において重複が生じて、探索時間に無駄が生じることがある。
つまり、探索可能距離が分からない状況下では、レーザレーダ装置による探索は非効率的なものとなる。
実施の形態1.
この発明の実施の形態1に係るレーザレーダ装置について、図1を用いて説明する。図1は、この発明の実施の形態1に係るレーザレーダ装置の構成図である。この発明の実施の形態1に係るレーザレーダ装置は、マリンスノー測定装置1、探索可能距離算出装置2、ビークル移動経路算出装置3、目標物探索装置4、慣性航法装置5、ビークル動作制御装置6を備える。
レーザ装置11は、第1のレーザ光を発振させる機能を持つ。発振器12は、第1の変調信号を出力する機能を持つ。変調器13は、第1の変調信号に従い第1のレーザ光に強度変調をかける機能を持つ。送信レンズ14は、第1のレーザ光の拡がり角を調整する機能を持つ。
受信レンズ15は、受信視野中心に対して同軸方向に伝搬する対象物からの散乱光を集光する機能を持つ。受光器16は、受信レンズ15により集光された光を電気信号に変換し、第1の受信信号として出力する機能を持つ。
散乱光強度検出装置17は、第1の受信信号と第1の変調信号から、第1の変調信号の入力タイミングを時間原点として散乱光強度の時間変化を測定し、散乱光強度信号として出力する機能を持つ。
なお、レーザ装置11、発振器12、変調器13、送信レンズ14は、散乱光測定用投光手段を構成している。
また、受信レンズ15、受光器16は、散乱光測定用受光手段を構成している。
また、散乱光強度検出装置17は、散乱光測定手段を構成している。
なお、探索可能距離算出装置2は、測距可能距離算出手段を構成している。
なお、ビークル移動経路算出装置3は、移動経路算出手段を構成している。
レーザ装置41は、第2のレーザ光を発振させる機能を持つ。発振器42は、第2の変調信号を出力する機能を持つ。変調器43は、第2の変調信号に従い第2のレーザ光に強度変調をかける機能を持つ。送信レンズ44は、第2のレーザ光の拡がり角を調整する機能を持つ。スキャナドライバ46は、スキャナ45の角度を指定するスキャナ角度信号を出力する機能を持つ。スキャナ45は、スキャナ角度信号に従い、第2のレーザ光の送信方向と受信視野をスキャンする機能を持つ。
受信レンズ47は、受信視野中心に対して同軸方向に伝搬する対象物からの反射光を集光する機能を持つ。受光器48は、受信レンズ47により集光された光を電気信号に変換し、第2の受信信号として出力する機能を持つ。
距離検出装置49は、第2の受信信号と第2の変調信号から、上記反射光の飛行距離時間を測定することで、反射光を発生させた対象物からレーザレーダ装置までの距離を検出し、距離信号として出力する機能を持つ。
なお、レーザ装置41、発振器42、変調器43、送信レンズ44、スキャナ45、スキャナドライバ46は、測距用投光手段を構成している。
また、受信レンズ47、受光器48は、測距用受光手段を構成している。
また、距離検出装置49は、測距手段を構成している。
なお、信号処理装置50は、目標物検出手段を構成している。
慣性航法装置5の機能について説明する。ジャイロスコープ51はビークルの角速度を測定し、角速度信号として出力する機能を持つ。加速度計52はビークルの加速度を測定し、加速度信号として出力する機能を持つ。
位置方位算出装置53は、海中航行する前の海上あるいは陸上においてGPS等により測定した方位を基準として、角速度信号により示される角速度を時間積分して方位変化量を算出することで、現在の方位を算出し、方位信号として出力する機能を持つ。
また、位置方位算出装置53は、海中航行する前の海上あるいは陸上においてGPS等により測定した位置を基準として、加速度信号により示される加速度を時間積分して速度の変化量を算出し、さらに速度の変化量を時間積分して位置の変化量を算出することで、現在の位置を算出し、位置信号として出力する機能を持つ。
なお、慣性航法装置5は、位置方向認識手段を構成している。
なお、ビークル動作制御装置6は、移動制御手段を構成している。
マリンスノー測定装置1のレーザ装置11は、第1のレーザ光を発振して変調器13へ出力する。発振器12は、第1の変調信号を変調器13および散乱光強度検出装置17へ出力する。変調器13は、第1の変調信号に従い第1のレーザ光の強度を変調し、送信レンズ14へ出力する。送信レンズ14は、入力された第1のレーザ光の拡がり角を調整し、海中へと出力する。
散乱光強度検出装置17は、第1の受信信号と第1の変調信号から、第1の変調信号の入力タイミングを時間原点として散乱光強度の時間変化を測定し、散乱光強度信号として探索可能距離算出装置2へ出力する。図5に散乱光強度信号の一例を示す。
また、探索可能距離算出装置2は、計測した時間t1、t2を用いて、減衰係数を算出する。減衰係数の算出式を以下の式(1)に示す。
式(1)において、cは光速、αは減衰係数を示す。
もし、散乱光強度信号のピーク電圧が閾値電圧V1よりも低い場合、上記時間t1は測定できず、減衰係数を測定できない。この場合には、マリンスノーの量が少ないと判断して、あらかじめユーザなどにより設定されたマリンスノーが存在しない場合の減衰係数を用いる。
式(2)において、PRは検出限界の受光パワー、PLはレーザ光パワー、ηはシステム効率、Rは目標物の反射率を示す。PR、PL、η、Rのパラメータはあらかじめユーザなどにより設定される。
例えばマリンスノーが少ない場合、探索可能距離が長いため、図6に示すように、算出される移動経路は、目標物探索領域の境界とビークルの移動経路との間隔(例えば図中K1)や、移動経路で隣合う経路の間隔(図中K2)などが広くなり、移動経路全体の長さは短くなる。一方、図7のようにマリンスノーが多い場合、探索可能距離が短いため、図7に示すように、算出される移動経路は、目標物探索領域の境界とビークルの移動経路との間隔(例えば図中K1)や、移動経路で隣合う経路の間隔(図中K2)などが狭くなり、移動経路全体の長さは長くなる。
図6、図7いずれの場合においても、目標物探索領域を漏れなく、また、探索範囲が無駄に重複することなく探索できる経路となっている。
位置方位算出装置53は、海中航行する前の海上あるいは陸上においてGPS等により測定した方位を基準として、角速度信号により示される角速度を時間積分して方位変化量を算出することで、現在の方位を算出し、方位信号として出力する。また、位置方位算出装置53は同様に、海中航行する前の海上あるいは陸上においてGPS等により測定した位置を基準として、加速度信号により示される加速度を時間積分して速度の変化量を算出し、さらに速度の変化量を時間積分して位置の変化量を算出することで、現在の位置を算出し、位置信号として出力する。
目標物探索装置4のレーザ装置41は、第2のレーザ光を発振して変調器43へ出力する。発振器42は、第2の変調信号を変調器43および距離検出装置49へ出力する。変調器43は、第2の変調信号に従い第2のレーザ光の強度を変調し、送信レンズ44へ出力する。送信レンズ44は、第2のレーザ光の拡がり角を調整し、海中へ出力する。このとき、第2のレーザ光は、スキャナ45により走査される。つまり、スキャナドライバ46は、スキャナ45の角度を指定するスキャナ角度信号をスキャナ45へ出力し、スキャナ45はスキャナ角度信号に従い、第2のレーザ光の送信方向と受信視野をスキャンする。また、スキャナドライバ46は、信号処理装置50へスキャナ角度信号を出力する。
受信レンズ47は、受信視野中心に対して同軸方向に伝搬する対象物からの反射光を集光し、受光器48へ出力する。受光器48は、上記集光された光を電気信号に変換し、第2の受信信号として距離検出装置49へ出力する。
距離検出装置49は、第2の受信信号と第2の変調信号から、上記反射光の飛行距離時間を測定することで対象物までの距離を検出し、距離信号として信号処理装置50へ出力する。
なお、上記では、ビークル移動経路算出装置3がビークルの移動経路を算出するものとして説明したが、適宜人が算出された探索可能距離を参照して、目標物検知漏れや、探索範囲が重複することのないビークルの移動経路を、手動で設定し、ビークルの動作を制御するようにしてもよい。
また、レーザ装置41およびレーザ装置11が出力する光の波長は、あらかじめ海中の透過率の高い波長に設定してもよい。また、マリンスノーの透過損失に分光特性がある場合、マリンスノーの透過損失が低い波長に設定してもよい。これにより、探索可能距離を延伸し、探索時間を短縮することができる。
ここでAは任意定数である。
一度だけ動作させる場合においては、移動経路に従って移動している間にマリンスノーの量が変化した場合、探索可能距離も変化するため、探索可能距離の減少による目標物検知漏れや、探索範囲の重複による探索時間の増加が発生することがある。
一方、移動中に動作させ続けた場合、移動中にマリンスノーの量が変化しても、再度探索可能距離、移動経路を算出し、移動経路を途中で修正することで、探索可能距離の減少による目標物検知漏れや、探索範囲の重複による探索時間の増加を防ぐことができる。
同時に動作させる場合、目標物探索装置4の第2のレーザ光によるマリンスノーの散乱光がマリンスノー測定装置1に入力され、クロストークによりマリンスノーによる散乱光強度が正確に測定できない可能性がある。同様に、マリンスノー測定装置1の第1のレーザ光による目標物からの反射光が目標物探索装置4に入力され、クロストークにより目標物の三次元形状が正確に測定できない可能性がある。この場合、第1のレーザ光と第2のレーザ光をそれぞれ異なる波長に設定し、マリンスノー測定装置1に第1のレーザ光を透過し、第2のレーザ光を透過させない第1のフィルタを、目標物探索装置4に第1のレーザ光を透過せず、第2のレーザ光を透過する第2のフィルタを備えることで、クロストークを回避することができる。
また、タイミングをずらして動作させる場合、第1および第2のフィルタは不要となり、部品点数を削減することができる。一方、タイミングをずらして動作させるため、各レーザ光のパルス変調のタイミングを制御する必要がある。
アクティブソナーやレーザレーダにより海底地形や海中の人工物が測定できる場合、これらの情報を用いてビークルの位置および方位を算出してもよい。この場合、慣性航法装置5が不要になるため、部品点数を減らすことができる。
音波を用いたアクティブソナーは、レーザ光と比較して海中伝搬時の減衰が少ないため、遠方の目標物からのエコーを検出することができる。よって、レーザレーダ装置と音波を用いたアクティブソナーを併用することで、目的に応じて使い分けることが可能になる。
例えば、遠方の目標物をアクティブソナーで検出し、ビークルでその方向に接近する。その後、レーザレーダ装置で高精度に測定することで、物体形状や大きさを判別して検出することができる。
また、海底等の複雑地形近辺では高い空間分解能が必要になるため、レーザレーダ装置を使うことで高精度に測定することができ、それ以外の広い空間ではアクティブソナーを使うことで広範囲に測定することができる。
上記のように散乱光強度を用いて目標物を検出する場合、信号処理装置50であらかじめ想定した目標物の散乱光強度のパターンを備え、測定した散乱光強度のパターンとマッチングを行うことで、目標物を検出する。これにより、目標物に船体表示がある場合、船体表示を判別して目標物を検出することが可能になる。
目標物探索装置4では、第2のレーザ光をスキャナ45によりスキャンせず、二次元に拡散させて一度に照射しても良い。この場合、受光器48を二次元アレイにする必要がある。
目標物を検出した後にレーザ光通信を実施する場合には、目標物探索装置4で取得した目標物の三次元情報を用いて通信装置の位置を認識してもよい。
また、上記のように海中以外において本発明のレーザレーダ装置を使用する場合や、海中においてもGPS信号が受信できる浅い水深の場合や、潜望鏡等により海上でGPS信号が受信できる場合には、慣性航法装置5の代わりにGPS信号を直接受信して位置および方位を決定してもよい。この場合、慣性航法装置5が不要になるため、部品点数を減らすことができる。
本発明のレーザレーダ装置は、海底や目標とは異なる物体を障害物として検知し、衝突を回避するよう移動経路を変更してもよい。これにより、移動経路中に障害物が存在した場合、衝突を回避することができる。
上記実施の形態1は、光波の減衰量から測定可能距離を算出するようにしたものであるが、実施の形態2では、測定可能距離を一定に保つようにしたレーザレーダ装置について示す。
この発明の実施の形態2に係るレーザレーダ装置について、図8を用いて説明する。図8は、この発明の実施の形態2に係るレーザレーダ装置の構成図である。この発明の実施の形態2に係るレーザレーダ装置は、マリンスノー測定装置1、目標物探索装置4、慣性航法装置5、ビークル動作制御装置6、フレームレート算出装置7、ビークル移動速度算出装置8を備える。
なお、実施の形態1で示したものと同じものについては、同一の符号を付し、適宜その説明を省略する。
目標物探索装置4の構成を図9に示す。目標物探索装置4は、実施の形態1で示したものに光アンプ401を加えた構成であり、すなわち、レーザ装置41、発振器42、変調器43、光アンプ401、送信レンズ44、スキャナ45、スキャナドライバ46、受信レンズ47、受光器48、距離検出装置49、信号処理装置50を備える。
光アンプ401は、パルス変調された第2のレーザ光のパワーを、パルス変調の繰り返し周期に比例して増幅して出力する機能を持つ。スキャナドライバ46はスキャナ45の角度を示すスキャナ角度信号を繰り返し周期信号に従って出力する機能を持つ。発振器42は、繰り返し周期信号に従った繰り返し周期で第2の変調信号を出力する機能を持つ。
なお、光アンプ401は、光増幅手段を構成している。
ビークル動作制御装置6は、移動速度信号に従いビークルの移動速度を設定し、位置信号と方位信号が示す現在位置および方位に基づいて、移動経路信号が示す移動経路に従い移動するようビークルを制御する機能を持つ。また、ビークル動作制御装置6は、目標物検出信号が入力された場合、ビークルの移動を停止させる機能を持つ。
なお、フレームレート算出装置7は、繰り返し周期算出手段を構成している。
ビークル移動速度算出装置8は、フレームレート信号を用いて移動速度を算出し、移動速度信号として出力する機能を持つ。また、あらかじめユーザなどにより設定される探索可能距離に基づき、実施の形態1のビークル移動経路算出装置3と同様に検索範囲が重複せず、また漏れなく目標物探索領域を探索するビークルの移動経路を算出し、移動経路信号としてビークル動作制御装置6に出力する機能を持つ。
なお、ビークル移動速度算出装置8は、移動速度算出手段を構成している。
フレームレート算出装置7は、実施の形態1における探索可能距離算出装置2と同様の方法で、マリンスノー測定装置1が出力した散乱光強度信号からマリンスノーによる減衰係数αを算出する。
また、フレームレート算出装置7は、算出した減衰係数αを用いて、目標物探索装置4においてビークル周辺の三次元データを測定するフレームレートFを算出し、フレームレート信号としてビークル移動速度算出装置8に出力する。また、パルス変調の繰り返し周期Tを算出し、繰り返し周期信号として発振器42およびスキャナドライバ46へ出力する。フレームレートFおよび繰り返し周期Tの算出方法を以下に示す。
ここで、PRは検出限界の受光パワー、ηはシステム効率、Rは目標物の反射率、Lは探索可能距離を示す。上記PR、L、η、Rのパラメータは、あらかじめユーザなどにより設定される。
上記レーザ光パワーPLは、光アンプ401の出力により決定される。光アンプ401は、変調器43におけるパルス変調の繰り返し周期Tに比例したパワーを出力するので、以下の式(5)を用いて繰り返し周期Tを算出する。
ここで、aは繰り返し周期Tと光アンプ401のレーザ光パワーPLの比例係数である。このパラメータaは、あらかじめユーザなどにより設定される。
また、フレームレートFは、繰り返し周期Tと1フレーム内の測定点数Nを用いて以下の式(6)により算出する。
ここで、測定点数Nはあらかじめユーザなどにより設定される。
以上のようにして算出したフレームレートFをフレームレート信号としてビークル移動速度算出装置8へ、また、繰り返し周期Tを繰り返し周期信号として発振器42およびスキャナドライバ46へ出力する。
また、あらかじめユーザなどにより設定される探索可能距離に基づき、実施の形態1のビークル移動経路算出装置3と同様に検索範囲が重複せず、また漏れなく目標物探索領域を探索するビークルの移動経路を算出し、移動経路信号としてビークル動作制御装置6へ出力する。
目標物探索装置4の発振器42は、繰り返し周期信号に従った繰り返し周期Tで第2の変調信号を変調器43および距離検出装置49へ出力する。光アンプ401は、パルス変調された第2のレーザ光のパワーを、パルス変調の繰り返し周期Tに比例して増幅し、送信レンズ44へ出力する。スキャナドライバ46は繰り返し周期信号に従って、スキャナ45の角度を示すスキャナ角度信号をスキャナ45と信号処理装置50へ出力する。その他の目標物探索装置4の各構成は、実施の形態1で示したものと同様の動作を行い、目標物を検出した場合には、ビークル動作制御装置6へ目標物検出信号を出力する。
また、探索可能距離を一定に保つので、実施の形態1と比較してビークルの移動経路を変更する必要がなくなり、ビークルの速度の調整だけ実施すればよいため、ビークルの方向転換等の複雑な機動が必要なくなり、ビークル動作制御を簡素化することができる。
なお、上記では、ビークル移動速度算出装置8がビークルの移動経路とビークル移動速度とを算出するものとして説明したが、探索可能距離に基づき移動経路を算出する装置を別に設けて、その装置から移動経路信号を出力させてもよい。あるいは、適宜人が設定された探索可能距離を参照して移動経路を、また、探索可能距離とフレームレート信号を参照して移動速度を設定し、目標物検知漏れや、探索範囲が重複することのないようにビークルの動作を制御するようにしてもよい。
上記実施の形態1および実施の形態2では、マリンスノー測定装置1と目標物探索装置4とを別個に備えていたが、実施の形態3では、マリンスノー測定装置1と目標物探索装置4とを一体化して構成したレーザレーダ装置について示す。
この発明の実施の形態3に係るレーザレーダ装置について、図10を用いて説明する。図10は、この発明の実施の形態3に係るレーザレーダ装置の構成図である。この発明の実施の形態3に係るレーザレーダ装置は、探索可能距離算出装置2、ビークル移動経路算出装置3、慣性航法装置5、ビークル動作制御装置6、レーザレーダ9を備える。
なお、実施の形態1で示したものと同じものについては、同一の符号を付し、適宜その説明を省略する。
信号処理装置50は、実施の形態1で示した機能を持つことに加え、測定モードを設定する測定モード信号を出力する機能を持つ切替制御装置501を持つ。切替制御装置501には、探索開始信号が入力される。
なお、切替制御装置501は、切替制御手段を構成している。
スキャナドライバ46は、実施の形態1で示した機能に加え、測定モード信号の一つであるマリンスノー測定モード(散乱光測定モード)信号が入力されると動作を停止する機能を持つ。また、測定モード信号の1つである目標物探索モード(測距モード)信号が入力されると動作を開始する機能を持つ。
なお、レーザ装置41、発振器42、変調器43、送信レンズ44、スキャナ45、スキャナドライバ46は共通投光手段を、受信レンズ47、受光器48は共通受光手段を構成している。
散乱光強度検出装置17は、第2の受信信号と第2の変調信号から、第2の変調信号の入力タイミングを時間原点として散乱光強度の時間変化を測定し、散乱光強度信号として出力する機能を持つ。また、マリンスノー測定モード信号が入力されると動作を開始する機能を持つ。また、目標物探索モード信号が入力されると動作を停止する機能を持つ。
ビークル動作制御装置6は、実施の形態1で示した機能に加え、移動経路信号が入力された場合、探索開始信号を出力する機能を持つ。
レーザレーダ9の信号処理装置50は、レーザレーダ装置の動作開始時に測定モード信号の1つであるマリンスノー測定モード信号を距離検出装置49とスキャナドライバ46と散乱光強度検出装置17へ出力する。
マリンスノー測定モード信号が入力されると、距離検出装置49およびスキャナドライバ46は動作を停止し、散乱光強度検出装置17は動作を開始する。
散乱光強度検出装置17は、第2の受信信号と第2の変調信号から、第2の変調信号の入力タイミングを時間原点として散乱光強度の時間変化を測定し、散乱光強度信号として探索可能距離算出装置2へ出力する。
ここで、第2の受信信号は、実施の形態1での説明と同様に、受信レンズ41で集光された散乱光が、受光器48で電気信号に変換されたものであり、散乱光は、レーザ装置41で発振、変調器43にて変調され、送信レンズ44とスキャナ45を介して出力された第2のレーザ光が、海中で散乱されたものである。
ビークル移動経路算出装置3は、探索可能距離信号を用いて移動経路を算出し、移動経路信号としてビークル動作制御装置6へ出力する。
ビークル動作制御装置6は、慣性航法装置5が出力する位置信号と方向信号を用い、移動経路信号に従ってビークルの移動を開始させる。また、移動経路信号が入力されたことを契機に、探索開始信号を信号処理装置50へ出力する。
信号処理装置50は、探索開始信号が入力されると、測定モード信号の1つである目標物探索モード信号を、距離検出装置49とスキャナドライバ46と散乱光強度検出装置17へ出力する。
スキャナドライバ46は、スキャナ45の角度を指定するスキャナ角度信号をスキャナ45へ出力する。
スキャナ45はスキャナ角度信号に従い、レーザ装置41で発振、変調器43にて変調され、送信レンズ44を通った第2のレーザ光の送信方向と受信視野とをスキャンする。
受信レンズ41で集光された反射光は、受光器48で第2の受信信号に変換されて、距離検出装置49へ出力される。
距離検出装置49は、第2の受信信号と第2の変調信号から、反射光の飛行距離時間を測定することで距離を検出し、距離信号として信号処理装置50へ出力する。
なお、上記では、実施の形態1におけるマリンスノー測定装置1と目標物探索装置4とを、レーザレーダ9として一体化した構成について示したが、実施の形態2におけるマリンスノー測定装置1と目標物探索装置4とを、レーザレーダ9として一体化して構成してもよい。
また、実施の形態3のレーザレーダ装置は、実施の形態1および実施の形態2で示したレーザレーダ装置において目標物探索装置4とマリンスノー測定装置1とをレーザレーダ9として一体化したものであり、レーザ装置、発振器、変調器、送信レンズ、受信レンズ、受光器を共用するため、装置品点数が少なくなり、装置を低コストおよび小型化することができる。
一度だけ動作させる場合においては、移動経路に従って移動している間にマリンスノーの量が変化した場合、探索可能距離も変化するため、探索可能距離の減少による目標物検知漏れや、探索範囲の重複による探索時間の増加が発生することがある。
一方、移動中にマリンスノー測定モードに切り替えた場合、再度探索可能距離を算出し、移動経路を算出し、移動経路を途中で修正することで、探索可能距離の減少による目標物検知漏れや、探索範囲の重複による探索時間の増加を防ぐことができる。
上記実施の形態1~3は、第2のレーザ光を用いて目標物の探索を行なうようにしたものであるが、実施の形態4では、目標物が送信するレーザ光を検出することで目標物の探索を行なうようにしたレーザレーダ装置について示す。
この発明の実施の形態4に係るレーザレーダ装置について、図12を用いて説明する。図12は、この発明の実施の形態4に係るレーザレーダ装置の構成図である。この発明の実施の形態4に係るレーザレーダ装置は、マリンスノー測定装置1、ビークル移動経路算出装置3、慣性航法装置5、ビークル動作制御装置6、レーザ照射範囲半径算出装置10、目標物送信レーザ光測定装置20を備える。
なお、実施の形態1で示したものと同じものについては、同一の符号を付し、適宜その説明を省略する。
レーザ照射範囲半径算出装置10は、実施の形態1における探索可能距離算出装置2と同様に、マリンスノー測定装置1が出力する散乱光強度信号を用いて、レーザ光の減衰の程度を示す減衰係数αを上記の式(1)に基づき算出する機能を持つ。
式(8)において、PRは目標物送信レーザ光測定装置20での検出限界の受光パワー、Ptは目標物が照射するレーザ光パワーを示す。PR、Ptのパラメータはあらかじめユーザなどにより設定される。
なお、レーザ照射範囲半径算出装置10は、光波照射範囲算出手段を構成している。
目標物送信レーザ光測定装置20は、受信レンズ201、アレイ型受信機202を備える。受信レンズ201は、目標物から送信されるレーザ光である目標物送信レーザ光を集光し、アレイ型受信機202に出力する機能を持つ。アレイ型受信機202は、受信レンズ201により集光された目標物送信レーザ光のパワーが、自身の検出限界以上のパワーであると、当該集光された目標物送信レーザ光を電気信号に変換し、強度信号として出力する機能を持つ。また、アレイ型受信機202は、受信レンズ201によりこのときに集光された目標物送信レーザ光の位置である集光位置から、目標物送信レーザ光の入射方向を算出し、目標物方位信号として出力する機能を持つ。
なお、目標物送信レーザ光測定装置20は、目標物光波検出手段を構成している。
レーザ照射範囲半径算出装置10は、実施の形態1における探索可能距離算出装置2と同様の方法で、マリンスノー測定装置1が出力した散乱光強度信号からマリンスノーによる減衰係数αを算出する。
また、レーザ照射範囲半径算出装置10は、算出した減衰係数αを用いて、上記の式(8)の通りレーザ照射範囲半径Ltを算出し、レーザ照射範囲半径信号としてビークル移動経路算出装置3に出力する。
図13、図14いずれの場合においても、目標物探索領域を漏れなく、また、探索範囲が無駄に重複することなく探索できる経路となっている。
探索対象の目標物は、目標物送信レーザ光として、レーザ光を全方位に送信しており、受信レンズ201は、目標物から送信されたこの目標物送信レーザ光を集光して、アレイ型受信機202に出力する。
前述したように、強度信号及び目標物方位信号がビークル動作制御装置6へ出力されると、ビークルの移動は停止される。
また、実施の形態4のレーザレーダ装置は、目標物探索装置4を備える必要がないために、実施の形態1,2と比較して、スキャナ45、レーザ装置41等の部品点数及び消費電力を減少でき、ビークルを軽量化及び省電力化することができる。
目標物送信レーザ光測定装置20の受信レンズ201は、魚眼レンズ等の広角レンズを用いて、目標物送信レーザ光を確実に受信できるように構成してもよい。
ビークルと目標物が通信を行うように構成される場合、ビークル動作制御装置6は、目標物送信レーザ光測定装置20が出力する目標物方位信号に基づき、ビークルを目標物に向かって接近させるように制御してもよい。これにより、信号対雑音比(SN比)が高い状態での通信が可能となる。
また、ビークル動作制御装置6は、目標物送信レーザ光測定装置20が出力する強度信号と、レーザ照射範囲半径算出装置10が算出する減衰係数αに基づき、ビークルから目標物までの距離を算出してもよい。これにより、ビークルが一定距離まで目標物に接近するように、ビークル動作制御装置6はビークルの移動を制御することができる。さらに、ビークルから目標物までの距離を算出することで、ビークルを目標物に接近させる際に目標物に衝突することを防ぐことができるので、安全に目標物に接近することができる。
また、目標物が送信するレーザ光の波長は、あらかじめ海中の透過率の高い波長に設定してもよい。また、マリンスノーの透過損失に分光特性がある場合、マリンスノーの透過損失が低い波長に設定してもよい。これにより、レーザ照射範囲半径を延伸し、探索時間を短縮することができる。
一度だけ動作させる場合においては、移動経路に従って移動している間にマリンスノーの量が変化した場合、レーザ照射範囲半径も変化するため、レーザ照射範囲半径の減少による目標物検知漏れ、探索範囲の重複による探索時間の増加が発生することがある。
一方、移動中に動作させ続けた場合、移動中にマリンスノーの量が変化しても、再度レーザ照射範囲半径、移動経路を算出し、移動経路を途中で修正することで、レーザ照射範囲半径の減少による目標物検知漏れ、探索範囲の重複による探索時間の増加を防ぐことができる。
音波を用いたアクティブソナーは、レーザ光と比較して海中伝搬時の減衰が少ないため、遠方の目標物からのエコーを検出することができる。よって、レーザレーダ装置と音波を用いたアクティブソナーを併用することで、目的に応じて使い分けることが可能になる。
例えば、遠方の目標物をアクティブソナーで検出し、ビークルでその方向に接近する。その後、レーザレーダ装置により目標物からのレーザ光を検出することで、目標物の位置を正確に把握することができる。
Claims (10)
- 光波が伝搬中に散乱されることで得られる散乱光における散乱光強度の時間変化を測定する散乱光測定手段と、
光波の反射光を用いて周囲を測距する測距手段と、
上記散乱光測定手段が測定した散乱光強度の時間変化から光波の伝搬時の減衰量を算出し、上記減衰量から上記測距手段における測距可能距離を算出する測距可能距離算出手段とを備えることを特徴とするレーザレーダ装置。 - 光波が伝搬中に散乱されることで得られる散乱光における散乱光強度の時間変化を測定する散乱光測定手段と、
上記散乱光測定手段が測定した散乱光強度の時間変化から光波の伝搬時の減衰量を算出し、上記減衰量から繰り返し周期を算出する繰り返し周期算出手段と、
上記繰り返し周期算出手段が算出した繰り返し周期に比例して光波のパワーを増幅する光増幅手段と、
光波の反射光を用いて周囲を測距する測距手段とを備えることを特徴とするレーザレーダ装置。 - 上記測距手段により測定した周囲各点の距離から三次元データを算出し、上記三次元データから目標物を検出する目標物検出手段と、
上記測距可能距離算出手段が算出した測距可能距離を用いて移動体の移動経路を算出する移動経路算出手段と、
上記移動体の位置および方向を認識する位置方向認識手段と、
上記移動経路算出手段が算出した移動経路に従い上記移動体を移動させる移動制御手段とを備えることを特徴とする請求項1記載のレーザレーダ装置。 - 上記測距手段により測定した周囲各点の距離から三次元データを算出し、上記三次元データから目標物を検出する目標物検出手段と、
上記繰り返し周期算出手段が算出した繰り返し周期を用いて移動体の移動速度を算出する移動速度算出手段と、
上記移動速度算出手段が算出した移動速度に従い上記移動体を移動させる移動制御手段とを備えることを特徴とする請求項2記載のレーザレーダ装置。 - 上記散乱光測定手段用の光波を投光する散乱光測定用投光手段と、
上記散乱光測定用投光手段が投光した光波の散乱光を受光する散乱光測定用受光手段と、
上記測距手段用の光波を投光する測距用投光手段と、
上記測距用投光手段が投光した光波の反射光を受光する測距用受光手段とを備えることを特徴とする請求項1記載のレーザレーダ装置。 - 上記散乱光測定手段用の光波を投光する散乱光測定用投光手段と、
上記散乱光測定用投光手段が投光した光波の散乱光を受光する散乱光測定用受光手段と、
上記測距手段用の光波を投光する測距用投光手段と、
上記測距用投光手段が投光した光波の反射光を受光する測距用受光手段とを備えることを特徴とする請求項2記載のレーザレーダ装置。 - 上記散乱光測定手段用及び上記測距手段用の光波を投光する共通投光手段と、
上記散乱光測定手段用及び上記測距手段用の共通受光手段と、
上記散乱光測定手段を動作させる散乱光測定モードと、上記測距手段を動作させる測距モードとの切替制御を行なう切替制御手段とを備えることを特徴とする請求項1記載のレーザレーダ装置。 - 上記散乱光測定手段用及び上記測距手段用の光波を投光する共通投光手段と、
上記散乱光測定手段用及び上記測距手段用の共通受光手段と、
上記散乱光測定手段を動作させる散乱光測定モードと、上記測距手段を動作させる測距モードとの切替制御を行なう切替制御手段とを備えることを特徴とする請求項2記載のレーザレーダ装置。 - 光波が伝搬中に散乱されることで得られる散乱光における散乱光強度の時間変化を測定する散乱光測定手段と、
上記散乱光測定手段が測定した散乱光強度の時間変化から光波の伝搬時の減衰量を算出し、上記減衰量から目標物からの光波の光波照射範囲を算出する光波照射範囲算出手段とを備えることを特徴とするレーザレーダ装置。 - 上記目標物からの光波を検出する目標物光波検出手段と、
上記光波照射範囲算出手段が算出した光波照射範囲を用いて移動体の移動経路を算出する移動経路算出手段と、
上記移動体の位置および方向を認識する位置方向認識手段と、
上記移動経路算出手段が算出した移動経路に従い上記移動体を移動させる移動制御手段とを備えることを特徴とする請求項9記載のレーザレーダ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14792226.4A EP2993489B1 (en) | 2013-04-30 | 2014-04-28 | Laser radar device |
JP2015514846A JP5955458B2 (ja) | 2013-04-30 | 2014-04-28 | レーザレーダ装置 |
US14/784,688 US9869767B2 (en) | 2013-04-30 | 2014-04-28 | Laser radar device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-095236 | 2013-04-30 | ||
JP2013095236 | 2013-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014178376A1 true WO2014178376A1 (ja) | 2014-11-06 |
Family
ID=51843502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061878 WO2014178376A1 (ja) | 2013-04-30 | 2014-04-28 | レーザレーダ装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9869767B2 (ja) |
EP (1) | EP2993489B1 (ja) |
JP (1) | JP5955458B2 (ja) |
WO (1) | WO2014178376A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017110417A1 (ja) * | 2015-12-21 | 2017-06-29 | 株式会社小糸製作所 | 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法 |
JP6250197B1 (ja) * | 2016-07-14 | 2017-12-20 | 三菱電機株式会社 | レーザレーダ装置 |
JP2020112449A (ja) * | 2019-01-11 | 2020-07-27 | 一般財団法人電力中央研究所 | 水中生息生物の位置情報の収集方法 |
US11204425B2 (en) | 2015-12-21 | 2021-12-21 | Koito Manufacturing Co., Ltd. | Image acquisition device for vehicles and vehicle provided with same |
US11249172B2 (en) | 2015-12-21 | 2022-02-15 | Koito Manufacturing Co., Ltd. | Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160061855A1 (en) * | 2013-04-16 | 2016-03-03 | Trajet Gmbh | Method for the combined determination of a speed and an image taken from a vehicle, and apparatus suitable therefor |
US11187805B2 (en) | 2015-12-21 | 2021-11-30 | Koito Manufacturing Co., Ltd. | Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle |
DE102017128369A1 (de) * | 2017-11-30 | 2019-06-06 | Infineon Technologies Ag | Vorrichtung und verfahren zum lokalisieren eines ersten bauelements, lokalisierungsvorrichtung und verfahren zur lokalisierung |
JP7240121B2 (ja) * | 2018-09-28 | 2023-03-15 | 株式会社Subaru | 目標物検出システム |
JP7015801B2 (ja) * | 2019-03-18 | 2022-02-03 | 株式会社東芝 | 電子装置および方法 |
CN112997096B (zh) * | 2020-07-21 | 2024-06-07 | 深圳市速腾聚创科技有限公司 | 激光雷达及自动驾驶设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03501652A (ja) * | 1988-07-07 | 1991-04-11 | カマン アエロスペース コーポレイシヨン | Kファクターおよび深さの測定値を決定するための方法および装置 |
JPH05205191A (ja) * | 1992-01-24 | 1993-08-13 | Nissan Motor Co Ltd | 障害物検出装置 |
JPH07318650A (ja) * | 1994-05-24 | 1995-12-08 | Mitsubishi Electric Corp | 障害物検知装置 |
JPH0843532A (ja) * | 1994-07-27 | 1996-02-16 | Sumitomo Electric Ind Ltd | パルスレ−ザ光の出力制御装置 |
JP2010217995A (ja) * | 2009-03-13 | 2010-09-30 | Mitsubishi Electric Corp | 探索装置及び探索方法及び探索プログラム |
JP2011016421A (ja) | 2009-07-08 | 2011-01-27 | Higashi Nippon Transportec Kk | 支障物検知装置及びこれを備えたプラットホームドアシステム並びに支障物検知方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010133802A (ja) * | 2008-12-03 | 2010-06-17 | Mitsubishi Heavy Ind Ltd | 海上監視・捜索方法 |
EP2515143A1 (de) * | 2011-04-18 | 2012-10-24 | Sick Ag | Verfahren zur sicheren Erfassung und Positionsbestimmung von Objekten und Sicherheitsvorrichtung |
US9111444B2 (en) * | 2012-10-31 | 2015-08-18 | Raytheon Company | Video and lidar target detection and tracking system and method for segmenting moving targets |
-
2014
- 2014-04-28 WO PCT/JP2014/061878 patent/WO2014178376A1/ja active Application Filing
- 2014-04-28 EP EP14792226.4A patent/EP2993489B1/en not_active Not-in-force
- 2014-04-28 US US14/784,688 patent/US9869767B2/en active Active
- 2014-04-28 JP JP2015514846A patent/JP5955458B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03501652A (ja) * | 1988-07-07 | 1991-04-11 | カマン アエロスペース コーポレイシヨン | Kファクターおよび深さの測定値を決定するための方法および装置 |
JPH05205191A (ja) * | 1992-01-24 | 1993-08-13 | Nissan Motor Co Ltd | 障害物検出装置 |
JPH07318650A (ja) * | 1994-05-24 | 1995-12-08 | Mitsubishi Electric Corp | 障害物検知装置 |
JPH0843532A (ja) * | 1994-07-27 | 1996-02-16 | Sumitomo Electric Ind Ltd | パルスレ−ザ光の出力制御装置 |
JP2010217995A (ja) * | 2009-03-13 | 2010-09-30 | Mitsubishi Electric Corp | 探索装置及び探索方法及び探索プログラム |
JP2011016421A (ja) | 2009-07-08 | 2011-01-27 | Higashi Nippon Transportec Kk | 支障物検知装置及びこれを備えたプラットホームドアシステム並びに支障物検知方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2993489A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017110417A1 (ja) * | 2015-12-21 | 2017-06-29 | 株式会社小糸製作所 | 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法 |
JPWO2017110417A1 (ja) * | 2015-12-21 | 2018-10-04 | 株式会社小糸製作所 | 車両用画像取得装置、制御装置、車両用画像取得装置または制御装置を備えた車両および車両用画像取得方法 |
US11194023B2 (en) | 2015-12-21 | 2021-12-07 | Koito Manufacturing Co., Ltd. | Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle |
US11204425B2 (en) | 2015-12-21 | 2021-12-21 | Koito Manufacturing Co., Ltd. | Image acquisition device for vehicles and vehicle provided with same |
US11249172B2 (en) | 2015-12-21 | 2022-02-15 | Koito Manufacturing Co., Ltd. | Image acquiring apparatus for vehicle, control device, vehicle having image acquiring apparatus for vehicle or control device, and image acquiring method for vehicle |
JP6250197B1 (ja) * | 2016-07-14 | 2017-12-20 | 三菱電機株式会社 | レーザレーダ装置 |
JP2020112449A (ja) * | 2019-01-11 | 2020-07-27 | 一般財団法人電力中央研究所 | 水中生息生物の位置情報の収集方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2993489A1 (en) | 2016-03-09 |
JP5955458B2 (ja) | 2016-07-20 |
EP2993489A4 (en) | 2016-12-21 |
US9869767B2 (en) | 2018-01-16 |
EP2993489B1 (en) | 2020-05-27 |
JPWO2014178376A1 (ja) | 2017-02-23 |
US20160061952A1 (en) | 2016-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5955458B2 (ja) | レーザレーダ装置 | |
KR102352206B1 (ko) | 다수의 가설에 의한 라이다(lidar) 디바이스 레인지 앨리어싱 회복력 | |
EP2389599B1 (en) | Energy efficient laser detection and ranging system | |
US10281262B2 (en) | Range-finder apparatus, methods, and applications | |
US20150204977A1 (en) | Object detection device and sensing apparatus | |
KR101785253B1 (ko) | 라이다 장치 | |
KR101785254B1 (ko) | 전방향 라이다 장치 | |
JP2016540199A (ja) | 水面の物体を探知するための探知システム | |
US10996052B2 (en) | Sensing vehicle positions with optical sensors | |
KR20170134945A (ko) | 개선된 구조를 갖는 라이다 광학장치 | |
JP2017032459A (ja) | 目標識別レーザ観測システム | |
KR20190017451A (ko) | 라이다 센서 및 그것의 동작 방법 | |
US11053005B2 (en) | Circular light source for obstacle detection | |
US20150330774A1 (en) | Object detection by whirling system | |
KR102154712B1 (ko) | 차량용 라이다 장치 | |
KR20140144611A (ko) | 대상 이동체 무력화 시스템 및 그의 동작 방법 | |
WO2023220316A1 (en) | Dual emitting co-axial lidar system with zero blind zone | |
US12055630B2 (en) | Light detection and ranging device using combined pulse and continuous optical signals | |
US20230023043A1 (en) | Optimized multichannel optical system for lidar sensors | |
KR102670467B1 (ko) | 스마트 지팡이 | |
US20230039691A1 (en) | Distance-velocity disambiguation in hybrid light detection and ranging devices | |
WO2022040937A1 (zh) | 激光扫描装置和激光扫描系统 | |
US20230015218A1 (en) | Multimode lidar receiver for coherent distance and velocity measurements | |
US20220120904A1 (en) | Imaging lidar | |
US20230324526A1 (en) | Method for accurate time-of-flight calculation on the cost-effective tof lidar system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14792226 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015514846 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014792226 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14784688 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |