WO2014177486A1 - Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen in einer reaktorkaskade - Google Patents

Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen in einer reaktorkaskade Download PDF

Info

Publication number
WO2014177486A1
WO2014177486A1 PCT/EP2014/058538 EP2014058538W WO2014177486A1 WO 2014177486 A1 WO2014177486 A1 WO 2014177486A1 EP 2014058538 W EP2014058538 W EP 2014058538W WO 2014177486 A1 WO2014177486 A1 WO 2014177486A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
reaction
formula
flow direction
reactors
Prior art date
Application number
PCT/EP2014/058538
Other languages
English (en)
French (fr)
Inventor
Timon STORK
Karl Beck
Klaus Ebel
Oliver Bey
Gabriele Gralla
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to ES14720115.6T priority Critical patent/ES2675360T3/es
Priority to EP14720115.6A priority patent/EP2991974B1/de
Priority to US14/787,285 priority patent/US9688650B2/en
Priority to JP2016511022A priority patent/JP6388916B2/ja
Priority to CN201480024075.1A priority patent/CN105164110B/zh
Priority to MX2015015148A priority patent/MX2015015148A/es
Publication of WO2014177486A1 publication Critical patent/WO2014177486A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/10Oxygen atoms

Definitions

  • the present invention relates to a process for the preparation of 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans.
  • 2-Substituted 4-hydroxy-4-methyl-tetrahydropyrans are valuable compounds for use as aroma chemicals.
  • the cis / trans diastereomeric mixture of 2- (2-methylpropyl) -4-hydroxy-4-methyltetrahydropyran is characterized
  • EP 1 493 737 A1 discloses a process for preparing mixtures of ethylenically unsaturated 4-methyl- or 4-methylene-pyrans and the corresponding 4-hydroxypyrans by reacting the corresponding aldehydes with isoprenol, the reaction being initiated in a reaction system in which the molar ratio of aldehyde to isoprenol is greater than 1, i. H. the aldehyde is used in excess.
  • the document discloses the subsequent dehydration of said mixtures to the desired ethylenically unsaturated pyramines.
  • Suitable catalysts for the first reaction step are mineral acids such as hydrochloric acid or sulfuric acid, but preferably methanesulfonic acid or p-toluenesulfonic acid.
  • EP 1 516 879 A1 discloses a process for the preparation of ethylenically unsaturated 4-methyl- or 4-methylene-pyrans by reacting a corresponding aldehyde with isoprenol under dehydrating conditions, wherein the amount of water in the reactor is up to 0.25 wt .-%, while the conversion of the starting compound used in the deficiency is less than 50%.
  • Suitable catalysts for this purpose are also mineral acids such as hydrochloric acid or sulfuric acid, but preferably methanesulfonic acid or p-toluenesulfonic acid.
  • WO 2010/133473 describes a process for the preparation of 2-substituted 4-hydroxy-4-methyltetrahydropyrans of the formula (I)
  • radical R 1 is a straight-chain or branched alkyl or alkenyl radical having 1 to 12 carbon atoms, an optionally alkyl-substituted cycloalkyl radical having a total of 3 to 12 carbon atoms or an optionally alkyl- and / or alkoxy-substituted aryl radical having a total of 6 to 12 carbon atoms, in which reacting isoprenol (3-methylbut-3-en-1-ol) with an aldehyde of the formula R 1 -CHO, wherein the reaction is carried out in the presence of water and in the presence of a strongly acidic cation exchanger.
  • WO 201 1/154330 describes a process comparable to WO 2010/133473, wherein the resulting reaction mixture is fed to a workup by distillation in a dividing wall column or in two thermally coupled distillation columns.
  • the unpublished European Patent Application 12188518.0 describes a process for the preparation of 2-substituted 4-hydroxy-4-methyltetrahydropyrans of the general formula (I) and of 2-substituted 4-methyltetrahydropyrans of the general formula (II) in which straight-chain or branched C 1 -C 12 -alkyl, straight-chain or branched C 2 -C 12 -alkenyl, unsubstituted or C 1 -C 12 -alkyl and / or C 1 -C 12 -alkoxy-substituted cycloalkyl having in total 3 to 20 carbon atoms or unsubstituted or with Ci2-alkyl and / or Ci-Ci2-alkoxy substituted aryl having a total of 6 to 20 carbon atoms which is a) 3-methylbut-3-en-1-ol of the formula (III)
  • the present invention has for its object to provide an improved process for the preparation of 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans available that enables effective production on an industrial scale with the least possible formation of unwanted and disposable by-products.
  • the invention relates to a process for the preparation of 2-substituted-4-hydroxy-4-methyl-tetrahydropyransen of the general formula (I)
  • R 1 is straight-chain or branched C 1 -C 12 -alkyl, straight-chain or branched C 2 -C 12 -alkenyl, unsubstituted or C 1 -C 12 -alkyl and / or C 1 -C 12 -alkoxy-substituted cycloalkyl having a total of 3 to 20 carbon atoms or unsubstituted or with C 1 -Ci2-alkyl and / or Ci-Ci2-alkoxy substituted aryl having a total of 6 to 20 carbon atoms, comprising a reaction of 3-methylbut-3-en-1-ol of the formula (III)
  • R1 -CHO (IV) where R1 in the formula (IV) has the abovementioned meaning, in the presence of an acidic catalyst, characterized in that the reaction takes place in an arrangement of n series-connected reactors, n being a natural number of at least 2 stands.
  • the process according to the invention has the following advantages:
  • the inventive method allows a lower thermal load of the reactor contents by a lower maximum temperature and / or the avoidance of temperature peaks.
  • the process thus enables higher yields and / or higher selectivity with respect to the target compounds.
  • a lower maximum temperature and / or the avoidance of temperature peaks are also advantageous in terms of safety and / or allow a longer catalyst service life.
  • the use of a fixed catalyst bed can additionally have an advantageous effect on the catalyst life. Thus, tedious startup and shutdown procedures for exchanging spent catalyst or catalyst regeneration are avoided.
  • the use of a fixed catalyst bed also reduces the mechanical stress and destruction of the catalyst. Unless otherwise specified below, the terms refer to
  • straight-chain or branched alkyl is preferably C 1 -C 6 -alkyl and particularly preferably C 1 -C 4 -alkyl.
  • Alkyl is especially methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl
  • alkyl is methyl, ethyl, n-propyl, isopropyl, or isobutyl.
  • alkoxy is preferably C 1 -C 6 -alkoxy and particularly preferably C 1 -C 4 -alkoxy.
  • Alkoxy is in particular methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy, n-pentyloxy or n-hexyloxy.
  • alkoxy is methoxy, ethoxy, n-propyloxy, isopropyloxy, or isobutyloxy.
  • straight-chain or branched alkenyl is preferably C2-C6-alkenyl and particularly preferably C2-C4-alkenyl.
  • the alkenyl radical also has one or more, preferably 1 to 3, more preferably 1 or 2 and most preferably one ethylenic double bond.
  • Alkenyl is in particular ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl or 2-methyl-2- propenyl.
  • cycloalkyl denotes a cycloaliphatic radical having preferably 3 to 10, particularly preferably 5 to 8, carbon atoms.
  • cycloalkyl groups are in particular cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
  • cycloalkyl is cyclohexyl.
  • Substituted cycloalkyl groups may have one or more (eg 1, 2, 3, 4 or 5) substituents depending on the ring size. These are preferably selected independently of one another from C 1 -C 6 -alkyl and C 1 -C 6 -alkoxy. In the case of a substitution, the cycloalkyl groups preferably carry one or more, for example one, two, three, four or five C 1 -C 6 -alkyl groups. Examples of substituted cycloalkyl groups are in particular 2- and 3-methylcyclopentyl, 2- and 3-methylcyclopentyl
  • aryl in the context of the present invention comprises mono- or polynuclear aromatic hydrocarbon radicals having usually 6 to 18, preferably 6 to 14, particularly preferably 6 to 10 carbon atoms.
  • aryl are in particular phenyl, naphthyl, indenyl, fluorenyl, anthracenyl, phenanthrenyl, naphthacenyl, chrysenyl, pyrenyl, etc., and especially phenyl or naphthyl.
  • Substituted aryls may have one or more (eg 1, 2, 3, 4 or 5) substituents depending on the number and size of their ring systems.
  • substituted aryl radicals are 2-, 3- and 4-methylphenyl, 2,4-, 2,5-, 3,5- and 2,6-dimethylphenyl, 2,4,6-trimethylphenyl, 2-, 3- and 4-ethylphenyl, 2,4-, 2,5-, 3,5- and 2,6-diethylphenyl, 2,4,6-triethylphenyl, 2-, 3- and 4-propylphenyl, 2,4-, 2, 5-, 3,5- and 2,6-dipropylphenyl, 2,4,6-tripropylphenyl, 2-, 3- and 4-isopropylphenyl, 2,4-, 2,5-, 3,5- and 2,6 Diisopropylphenyl, 2,4,6-triisopropylphenyl, 2-, 3- and
  • One of the starting materials for the process according to the invention is 3-methylbut-3-en-1-ol (isoprenol) of the formula (III)
  • Isoprenol is readily available and commercially available from isobutene and formaldehyde by known methods on any scale. There are no special requirements for the purity, quality or production process of the isoprenol to be used according to the invention. It can be used in commercial quality and purity in the process of the invention. Preference is given to using isoprenol which has a purity of 90% by weight or more, particularly preferably those having a purity of 95 to 100% by weight and very particularly preferably those having a purity of 97 to 99.9% by weight. % or even more preferably 98 to 99.8% by weight.
  • Another starting material for the process according to the invention is an aldehyde of the formula (IV) R 1 -CHO, where R 1 in the formula (IV) has the abovementioned meaning.
  • R 1 in the compounds of the formulas (I), (II) and (IV) is preferably straight-chain or branched C 1 -C 12 -alkyl or straight-chain or branched C 2 -C 12 -alkenyl.
  • R 1 particularly preferably represents straight-chain or branched C 1 -C 6 -alkyl or straight-chain or branched C 2 -C 6 -alkenyl.
  • R 1 is phenyl.
  • radical R 1 are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, n-hexyl or n-heptyl, preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, most preferably isobutyl (2-methylpropyl).
  • the radical R 1 is isobutyl or phenyl.
  • aldehydes of the formula (IV) to be used are: acetaldehyde, valeraldehyde, isovaleraldehyde, pentanal, hexanal, heptanal, benzaldehyde, citral, citronellal.
  • Aldehydes of the formula (IV) which are very particularly preferably employed according to the invention are isovaleraldehyde and benzaldehyde, in particular isovaleraldehyde.
  • the reaction of the compounds (III) and (IV) takes place in an arrangement of n series-connected reactors. Where n is a natural number of at least two. According to the invention, there are 2 to 8, preferably 2, 3, 4, 5 or 6 in the flow direction successively arranged reactors.
  • a single, several or all of the reactors connected in series can also be replaced by two or more reactors connected in parallel. This may result in a combined series and parallel connection of (n + m) reactors.
  • the number of reactors in the longest row of connected reactors gives n.
  • the total number of all other reactors is m, where m can be any natural number.
  • the reaction takes place continuously. This means that all n series reactors are operated continuously.
  • the reaction takes place in the presence of a solvent.
  • the compounds of the formulas (III) and (IV), here and hereinafter also referred to as starting materials or starting materials are each fed in the form of a mixture with a suitable solvent for carrying out the reaction according to the invention.
  • Both starting materials (III) and (IV) are preferably initially charged in the same solvent.
  • the solvent is preferably water or a solvent which is inert under the reaction conditions, for example tert-butyl methyl ether, cyclohexane, toluene, hexane or xylene.
  • the solvents mentioned can be used alone or in the form of mixtures.
  • the reaction is carried out without addition of an organic solvent.
  • the reaction takes place in the presence of water.
  • a partial stream is taken between the first and last reactor in the flow direction and fed into a reactor located upstream of the removal point.
  • a partial stream is withdrawn from the reactor discharge of the first and / or second reactor in the flow direction and at least partially returned via an external recirculation to the first reactor in the flow direction.
  • at least the first reactor in the flow direction is operated back-mixed.
  • a partial stream of the reactor effluent is withdrawn from the first reactor and returned via an external circuit in the first reactor in the flow direction.
  • loop mode This mode of operation is referred to here and below as loop mode.
  • n stands for two.
  • the stream splitting for the recirculation can optionally take place before or after an intermediate cooling.
  • the reaction takes place in n reactors connected in series, where n stands for an integer of at least three.
  • a partial stream is withdrawn from the (n-1) -th reactor and recycled via an external circuit with the current supplied to the first reactor.
  • the first to (n-1) -th reactor together form a loop.
  • n stands for three.
  • the power split for the return can optionally be done before or after an intermediate cooling.
  • heat is withdrawn from the partial stream before it is fed into a reactor located upstream of the extraction point.
  • At least the first reactor in the flow direction is operated largely isothermally.
  • largely isothermally operated is to be understood as meaning that a narrow temperature interval is maintained in the respective reaction zone. If the reactor is operated “largely isothermally”, it should be understood in the context of the present invention that the temperature interval ⁇ T in the reactor is less than the adiabatic temperature increase.
  • the temperature interval in a reactor is preferably ⁇ T ⁇ 12 K, more preferably ⁇ ⁇ ⁇ 10 K.
  • heat transfer surfaces are suitably arranged in the interior of the first reactor.
  • the straight-through operation basically excludes backmixing internals and / or stirring devices in the reactor.
  • the first and second reactors in the flow direction are each operated largely isothermally.
  • suitable heat mersübertragungs vom arranged inside the two first reactors. In this way, if necessary, different temperature levels can be set in the reactors. In this case, it is possible to dispense with backmixing in the first and in the second reactor, so that both are particularly preferably operated in a straight pass.
  • one, several or all of the streams fed into a reactor are each tempered before they enter the reactor.
  • a conventional heat exchanger can be used.
  • the withdrawn from a reactor stream is cooled before entering the subsequent reactor. With the heat gained, it is possible to heat a stream at a suitable other location of the process.
  • the person skilled in appropriate methods for heat integration or pinch analysis are known.
  • heat is withdrawn from the reactor discharge from at least one of the first to (n-1) th reactors before being fed into the reactor following in the direction of flow.
  • At least the last reactor in the flow direction is operated without recycling the reactor discharge.
  • a complete or partial product return after exiting the last reactor in the flow direction is preferably not provided in continuous operation.
  • the last reactor in the direction of flow is operated essentially without backmixing.
  • a tubular reactor without backmixing internals is provided as the last reactor in the flow direction.
  • N is preferably 2 or 3.
  • n is particularly preferably 2.
  • the reaction mixture undergoes an increase in temperature when flowing through the reactor due to the exothermic reaction usually.
  • Adiabatic reaction is understood to mean a procedure in which the amount of heat liberated during the reaction is taken up by the reaction mixture in the reactor and no cooling by cooling directions.
  • the heat of reaction is largely removed with the reaction mixture from the reactor. It is obvious that a residual portion is released by natural heat conduction or radiation from the reactor to the environment.
  • the last reactor is operated in a straight pass.
  • a reactor arrangement comprising at least one fixed bed reactor is used for the reaction. Particular preference is given to using a reactor arrangement in which all n reactors are fixed bed reactors.
  • a reactor arrangement is used for the conversion, which comprises at least one reactor with an internally arranged heat exchanger.
  • the reaction is carried out in the presence of an acid catalyst which is selected from hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid and strongly acidic cation exchangers.
  • an acid catalyst which is selected from hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid and strongly acidic cation exchangers.
  • the reaction is carried out in the presence of a strongly acidic cation exchanger.
  • the alcohol of the formula (III) and the aldehyde of the formula (IV) are preferably used in a molar ratio in the range from 0.7: 1 to 2: 1.
  • the alcohol of the formula (III) and the aldehyde of the formula (IV) are preferably reacted in the presence of at least 3% by weight, particularly preferably at least 5% by weight, of water.
  • the alcohol of the formula (III) and the aldehyde of the formula (IV) are reacted, for example, in the presence of from 3% by weight to 15% by weight of water, preferably from 5% by weight to 12% by weight.
  • the stated above% by weight are based on the amount of the reaction mixture consisting of the components of the formulas (III) and (IV) and water.
  • the reaction of the alcohol of the formula (III) with the aldehyde of the formula (IV) is carried out in the presence of approximately at least 10 mol% of water, the amount of water being dependent on the amount of starting material optionally used in a deficit, or, in the case of equimolar conversion, refers to the molar amount of one of the two starting materials.
  • the amount of water can be chosen freely and is limited only by procedural or economic aspects. Water can also be used in large, for example, in 10 to 100-fold excess or even more.
  • a mixture of the alcohol of the formula (III) and the aldehyde of the formula (IV) is prepared. with the chosen amount of water, so that the added water remains dissolved in the mixture, ie that there is no two-phase system.
  • the starting materials are reacted in the presence of at least 25 mol%, preferably of at least 50 mol% of water.
  • the starting materials are reacted in the presence of from 25 to 150 mol%, preferably from 40 to 150 mol%, particularly preferably from 50 to 140 mol%, in particular from 50 to 80 mol%, of water.
  • the amount of water used on the amount of substance of the starting material optionally used in deficit or in the case of an equimolar conversion to the amount of substance of the two.
  • the reaction is carried out at a temperature in the range from 0 ° C. to 70 ° C., preferably in the range from 20 ° C. to 70 ° C., more preferably in the range from 20 ° C. to 60 ° C.
  • reaction is carried out at a pressure in the range from 1 bar to 15 bar.
  • the reaction mixture reacted in one of the reactors downstream of the first reactor ie the second to nth reactors
  • the temperature control can be carried out analogously to the previously described removal of the heat of reaction by heating an external recirculation flow or by internal heating via heat transfer surfaces.
  • the heat of reaction removed from at least one of the previous reactors can be used for temperature control.
  • the withdrawn heat of reaction can optionally also be used to heat the feed streams of the reactors.
  • This can z. B. the educt stream in the first reactor at least partially mixed with an external recycle stream of this reactor and the combined streams are then fed into the first reactor.
  • the feed streams can be fed together into one, several or all of the second to nth reactors with one circulating stream from the respective reactor together into this reactor.
  • the reactant stream and / or another feed stream can be heated by means of a heat exchanger, which is operated with the heat of reaction removed.
  • additional mixing can take place in at least one of the reactors used. An additional mixing is particularly advantageous if the reaction takes place at high residence times of the reaction mixture. Both static and dynamic mixing devices are suitable.
  • Suitable mixing devices are well known to those skilled in the art.
  • the feed streams fed into the reactors may preferably be fed into the respective reactors via suitable mixing devices, such as nozzles.
  • suitable mixing devices such as nozzles.
  • the loop procedure described above is particularly advantageous for regulating the reaction temperature and the heat transfer between the reaction medium, apparatus walls and the environment.
  • Another way to control the heat balance is to control the inlet temperature of the educt or the respective feed stream.
  • a lower temperature of the incoming feed usually leads to an improved dissipation of the heat of reaction.
  • the inlet temperature may be set higher to achieve a higher reaction rate and thus to compensate for the decreasing catalyst activity.
  • the service life of the catalyst used can be increased in an advantageous manner.
  • the first partial stream is generally recycled chemically unchanged into the reaction system. If desired, the temperature and / or pressure may be adjusted to the desired values prior to recycling.
  • the feed of the first partial stream into the reactor from which it was taken off can take place together with the respective feed stream or separately therefrom.
  • the ratio by weight of the first partial stream (recycle stream) fed into a reactor to the respective feed stream is preferably in a range from 1: 1 to 50: 1, more preferably in a range from 2: 1 to 30: 1, in particular in the range from 5: 1 to 20: 1.
  • the reaction takes place in the presence of a strongly acidic cation exchanger.
  • strongly acidic cation exchanger is understood to mean a cation exchanger in the H + form which has strongly acidic groups.
  • the strongly acidic groups are usually sulfonic acid groups.
  • the acidic groups are usually attached to a polymer matrix, the z. B. may be gel or macroporous.
  • a preferred embodiment of the method according to the invention is accordingly characterized in that uses a strongly acidic, sulfonic acid-containing cation exchanger.
  • Strongly acidic ion exchangers such as Amberlyst, Amberlite, Dowex, Lewatit, Purolite, Serdolit
  • strongly acidic ion exchangers which are based on polystyrene and contain the copolymers of styrene and divinylbenzene as carrier matrix with sulfonic acid groups in H + form are suitable for use as well as with sulfonic acid groups (-SO3H) functionalized ion exchange groups.
  • the ion exchangers differ in the structure of their polymer skeletons, and a distinction gel-like and macroporous resins.
  • a perfluorinated polymeric ion exchange resin is used. Such resins are z. B. under the name Nafion ® sold by DuPont. An example of such a perfluorinated polymeric ion exchange resin is Nafion® NR-50.
  • Preferred strongly acidic cation exchangers are: Lewatit® K 1221, Lewatit® K 1461, Lewatit® K 2431, Lewatit® K 2620, Lewatit® K 2621, Lewatit® K 2629, Lewatit® K 2649, Amberlite® FPC 22, Amberlite® FPC 23 , Amberlite® IR 120, Amberlyst (TM) 131, Amberlyst (TM) 15, Amberlyst (TM) 31, Amberlyst (TM) 35, Amberlyst (TM) 36, Amberlyst (TM) 39, Amberlyst (TM) 46, Amberlyst ( TM) 70, Purolite® SGC650, Purolite® C100H, Purolite® C150H, Dowex® 50X8, Serdolit® Red and National® NR-50.
  • the strongly acidic ion exchange resins are usually regenerated with hydrochloric acid and / or sulfuric acid.
  • the 3-methylbut-3-en-ol (III) and the aldehyde (IV) are reacted in the presence of a strongly acidic cation exchanger and in the presence of water.
  • the reaction mixture may already contain small amounts of water which can be released as a possible side reaction by the dehydration of the process product of the formula (I).
  • water is additionally added to the reaction mixture in addition to isoprenol (III) and the aldehyde of the formula (IV) and any water from the reaction.
  • the alcohol of the formula (III) and the aldehyde of the formula (IV) are preferably reacted in the presence of at least 3% by weight, particularly preferably at least 5% by weight, of water.
  • the alcohol of the formula (III) and the aldehyde of the formula (IV) are reacted, for example, in the presence of from 3% by weight to 15% by weight of water, preferably from 5% by weight to 12% by weight.
  • the stated above% by weight are based on the total amount of the reaction mixture consisting of the components of the formulas (III) and (IV) and water.
  • the amount of water can be chosen freely and, if at all, limited only by procedural or economic aspects and can certainly be used in large, for example in 5- to 15-fold excess or even more.
  • a mixture of isoprenol (III) and the aldehyde of formula (IV), preferably isovaleraldehyde is prepared with the amount of water to be added so that the added water remains dissolved in the mixture of isoprenol and the aldehyde d. H. there is no two-phase system.
  • the starting materials isoprenol (III) and the aldehyde of the formula (IV) are usually reacted in the presence of at least 25 mol%, preferably of at least 50 mol%.
  • the starting materials are reacted in the presence of from 25 to 150 mol%, preferably from 40 to 150 mol%, particularly preferably from 50 to 140 mol%, in particular from 50 to 80 mol%, of water.
  • the amount of water used on the amount of substance of the starting material optionally used in deficiency or in the case of an equimolar conversion to the amount of one of the two.
  • isoprenol (III) For the reaction of isoprenol (III) with the aldehyde (IV), it is possible to bring the abovementioned starting materials and optionally the added water into contact with the acidic cation exchanger.
  • isoprenol (III), aldehyde (IV) and optionally the added water are used in the form of a mixture.
  • Said starting materials, ie isoprenol (III) and the aldehyde (IV) and the water to be used in the above amount can be brought into contact with each other in any order.
  • the amount of strongly acidic cation exchanger is not critical and can be chosen freely within wide limits, taking into account the economic and procedural aspect.
  • reaction can be carried out both in the presence of catalytic amounts and in the presence of large excesses of the strongly acidic cation exchanger.
  • the above-mentioned strongly acidic cations Exchanger can be used either individually or in the form of mixtures.
  • the catalyst loading is, for example, in the range from 50 to 2500 mol per m 3 of catalyst and h, preferably in the range from 100 to 2000 mol per m 3 of catalyst and h, in particular in the range from 130 to 1700 mol per m 3 of catalyst and h, where the molar amount in mol refers to the starting material of the formula (IV).
  • the reaction in the presence of a strongly acidic cation exchanger can optionally also be carried out in the presence of a solvent which is inert under the reaction conditions.
  • Suitable solvents are, for example, tert-butyl methyl ether, cyclohexane, decalin, hexane, heptane, ligroin, petroleum ether, toluene or xylene.
  • the solvents mentioned can be used alone or in the form of mixtures with one another.
  • the reaction is preferably carried out in the presence of a strongly acidic cation exchanger without addition of an organic solvent.
  • the work-up of the reaction product to obtain the desired product can be carried out by customary methods known to the person skilled in the art.
  • the work-up of the reaction mixture preferably comprises at least one distillation step.
  • the reaction can be separated in a known manner by distillation or rectification, so as to obtain the desired product.
  • the work-up can be carried out analogously to the method described in WO 201 1/154330.
  • FIG. 1 shows an embodiment of the process according to the invention with a main reactor with recycle stream and a postreactor.
  • FIG. 2 shows an embodiment of the process according to the invention with a main reactor with integrated heat exchanger and a postreactor.
  • FIG. 3 shows an embodiment of the process according to the invention with two reactor stages with recycle stream and a postreactor.
  • FIGS. 1 to 3 The following reference symbols are used in FIGS. 1 to 3:
  • the process according to the invention can be carried out in cascade with at least one main reactor, preferably 1 to 2 main reactors.
  • the main reactors can be operated in parallel or in series, preferably in series, and optionally with intermediate cooling. It can be driven, for example, in the back-mixed reactor system or in isothermal mode.
  • the entire recycle stream of the main reactor section can be backmixed and cooled, or each main reactor can be remixed and cooled by its own recycle stream and / or intercooled after each main reactor.
  • the division into several beds, possibly also with intermediate cooling, can also be implemented in an apparatus.
  • FIG. 1 shows a suitable embodiment of a suitable two-stage reactor cascade with a main reactor (1) and a post-reactor (3).
  • the three educt streams isoprenol (A), aldehyde (B) and water (C) are introduced into the reactor (1).
  • Via a line and the pump (5) a discharge from the reactor (1) is removed, which is divided into two partial streams.
  • a feed stream is fed via a cooler (4) to the second reactor (3).
  • the educt (E) is removed directly as discharge from the post-reactor (3) and optionally fed to a work-up.
  • Both reactors are preferably designed as fixed bed reactors in this embodiment.
  • the main reactor (1) is operated in loop mode, whereas the secondary reactor is operated in a straight pass.
  • the main reactor (1) and the postreactor (3) are connected in series so that a temperature profile can be set over the catalyst bed via backmixing in the main reactor system. As a result, a large increase in temperature at the beginning of the reaction can be prevented.
  • FIG. 2 shows an alternative embodiment of a suitable two-stage reactor cascade with a main reactor (1) and a post-reactor (3). shown. Instead of recycling, an isothermal reaction procedure is achieved via a heat exchanger integrated in the reactor (1).
  • FIG. 3 shows a suitable embodiment of a three-stage reactor cascade with two main reactors (1), (6) and a post-reactor (3).
  • the three educt streams isoprenol (A), aldehyde (B) and water (C) are introduced into the reactor (1).
  • a discharge taken is fed as a feed stream via a cooler (7) to the second reactor (6).
  • a discharge from the reactor (6) is taken, which is divided into two partial streams.
  • a recycle stream (D) with the educt streams (A), (B) and (C) together in the main reactor (1) is returned.
  • a feed stream is fed via a cooler (4) to the third reactor (3).
  • the educt (E) is removed directly as discharge from the secondary reactor (3) and optionally fed to a work-up.
  • All three reactors are preferably designed as fixed bed reactors in this embodiment.
  • the main reactors (1) and (6) are operated together in loop mode, whereas the secondary reactor (3) is operated in a straight pass.
  • the main reactors (1), (6) and the postreactor (3) are connected in series so that via a backmixing in the main reactor system and an intermediate cooling between the first and second main reactors, the setting of a temperature profile over the catalyst bed can be done. As a result, temperature peaks can be effectively prevented in both reactors.
  • the main reactor used was a double jacket reactor of RA4 without heating medium for adiabatic driving with a length of 150 cm and an inner diameter of 2.6 cm.
  • As a post-reactor three jacketed reactors of RA4 with a length of 150 cm, with an inner diameter of 1, 0 cm and heated at 30 ° C, 40 ° C and 50 ° C were used.
  • the apparatus was filled with a total of 328 g of the strongly acid cation exchanger Amberlyst TM 131.
  • the main reactor was filled with 230 g (305 ml), the post-reactors each with 32.5 g (44 ml) of the cation exchanger.
  • the cation exchanger was first washed several times with water, then once with methanol and finally with water, methanol-free.
  • the system was conditioned by the addition of a mixture of pyranol: water in the mass ratio of 95: 5.
  • the main reactor was then operated backmixed with a recycle stream of 2000 g / hr, the recycle stream being cooled to a temperature of 25 ° C before reentry into the main reactor.
  • the postreactor was operated in a straight pass to full conversion.
  • Isovaleraldehyde 1, 03 GC% by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 2-substituierten 4-Hydroxy-4-methyl-tetrahydropyranen.

Description

Verfahren zur Herstellung von 2-substituierten 4-Hydroxy-4-methyl-tetrahydropyranen in einer Reaktorkaskade
HINTERGRUND DER ERFINDUNG
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 2-substituierten 4-Hydroxy-4-methyl-tetrahydropyranen.
STAND DER TECHNIK
2-substituierte 4-Hydroxy-4-methyl-tetrahydropyrane sind wertvolle Verbindungen für den Einsatz als Aromachemikalien. So zeichnet sich beispielsweise das cis/trans- Diastereomerengemisch des 2-(2-Methylpropyl)-4-hydroxy-4-methyl-tetrahydropyrans
Figure imgf000002_0001
durch einen angenehmen Maiglöckchenduft aus und ist in besonderem Maße zur Verwendung als Aromachemikalie, z. B. zur Herstellung von Riechstoffkompositionen, geeignet.
Die EP 1 493 737 A1 offenbart ein Verfahren zur Herstellung von Gemischen von ethylenisch ungesättigten 4-Methyl- bzw. 4-Methylenpyranen und den entsprechenden 4-Hydroxypyranen durch Umsetzung der entsprechenden Aldehyde mit Isoprenol, wobei die Umsetzung in einem Reaktionssystem initiiert wird, in dem das molare Verhält- nis von Aldehyd zu Isoprenol größer als 1 ist, d. h. der Aldehyd im Überschuss eingesetzt wird. Darüber hinaus offenbart das Dokument die anschließende Dehydratisie- rung der genannten Gemische zu den gewünschten ethylenisch ungesättigten Pyra- nen. Als geeignete Katalysatoren für den ersten Reaktionsschritt werden Mineralsäuren wie Salzsäure oder Schwefelsäure, bevorzugt jedoch Methansulfonsäure oder p-Toluolsulfonsäure genannt.
EP 1 516 879 A1 offenbart ein Verfahren zur Herstellung von ethylenisch ungesättigten 4-Methyl- bzw. 4-Methylenpyranen durch Umsetzung eines entsprechenden Aldehyds mit Isoprenol unter dehydratisierenden Bedingungen, wobei die Wassermenge im Reaktor bis zu 0,25 Gew.-% beträgt, während der Umsatz der im Unterschuss eingesetzten Ausgangsverbindung weniger als 50 % beträgt. Als hierfür geeignete Katalysatoren werden ebenfalls Mineralsäuren wie Salzsäure oder Schwefelsäure, bevorzugt jedoch Methansulfonsäure oder p-Toluolsulfonsäure genannt.
Die WO 2010/133473 beschreibt ein Verfahren zur Herstellung von 2-substituierten 4-Hydroxy-4-methyl-tetrahydropyranen der Formel (I)
Figure imgf000003_0001
(i) wobei der Rest R1 für einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit 1 bis 12 Kohlenstoffatomen, einen gegebenenfalls Alkyl-substituierten Cycloalkylrest mit insgesamt 3 bis 12 Kohlenstoffatomen oder einen gegebenenfalls Alkyl- und/oder Alkoxy-substituierten Arylrest mit insgesamt 6 bis 12 Kohlenstoffatomen steht, bei dem man Isoprenol (3-Methylbut-3-en-1 -ol) mit einem Aldehyd der Formel R1-CHO umsetzt, wobei man die Umsetzung in Gegenwart von Wasser und in Gegenwart eines stark sauren Kationenaustauschers durchführt. Die WO 201 1/154330 beschreibt ein zur WO 2010/133473 vergleichbares Verfahren, wobei das erhaltene Reaktionsgemisch einer destillativen Aufarbeitung in einer Trennwandkolonne oder in zwei thermisch gekoppelten Destillationskolonnen zugeführt wird.
Die unveröffentlichte europäische Patentanmeldung 12188518.0 beschreibt ein Verfah- ren zur Herstellung von 2-substituierten 4-Hydroxy-4-methyl-tetrahydropyranen der allgemeinen Formel (I) und von 2-substituierten 4-Methyl-tetrahydropyranen der allgemeinen Formel (II)
Figure imgf000004_0001
worin für geradkettiges oder verzweigtes Ci-Ci2-Alkyl, geradkettiges oder verzweigtes C2-Ci2-Alkenyl, unsubstituiertes oder mit Ci-Ci2-Alkyl und/oder Ci-Ci2-Alkoxy substituiertes Cycloalkyl mit insgesamt 3 bis 20 Kohlenstoffatomen oder unsubstituiertes oder mit Ci-Ci2-Alkyl und/oder Ci-Ci2-Alkoxy substituiertes Aryl mit insgesamt 6 bis 20 Kohlenstoffatomen steht, dem man a) 3-Methylbut-3-en-1 -ol der Formel (III)
Figure imgf000004_0002
(III) mit einem Aldehyd der Formel (IV)
R -CHO (IV) wobei R1 in der Formel (IV) die zuvor angegebene Bedeutung hat, in Gegenwart eines sauren Katalysators umsetzt, wobei ein Reaktionsgemisch erhalten wird, das wenigstens ein 2-substituiertes 4-Hydroxy-4-methyl-tetrahydro- pyran der allgemeinen Formel (I), wenigstens eine der Verbindungen (V.1 ), (V.2) oder (V.3) und wenigstens eine Dioxanverbindung (VI) enthält
Figure imgf000005_0001
wobei R1 in der Formel (VI) die zuvor angegebene Bedeutung hat, b) das Reaktionsprodukt aus Schritt a) einer Auftrennung unter Erhalt einer an
2-substituierten 4-Hydroxy-4-methyl-tetrahydropyranen der allgemeinen Formel (I) angereicherten Fraktion und einer Fraktion, die wenigstens eine der Verbindungen (V.1 ), (V.2) oder (V.3) und wenigstens eine Dioxanverbindung (VI) enthält, unterzieht, c) die Fraktion, die wenigstens eine der Verbindungen (V.1 ), (V.2) oder (V.3) und wenigstens eine Dioxanverbindung (VI) enthält, einer Hydrierung unterzieht, d) aus dem in Schritt c) erhaltenen Hydrierprodukt eine an 2-substituierten 4-Methyl- tetrahydropyranen (II) angereicherte Fraktion und eine an der wenigstens einen
Dioxanverbindung (VI) angereicherte Fraktion isoliert.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Herstellung 2-substituierter 4-Hydroxy-4-methyl-tetrahydropyrane zur Verfügung zu stellen, das eine effektive Herstellung in technischem Maßstab unter möglichst geringer Bildung unerwünschter und zu entsorgender Nebenprodukte ermöglicht.
Überraschenderweise wurde jetzt gefunden, dass diese Aufgabe durch eine Fahrweise unter Einsatz von wenigstens zwei in Reihe geschalteten Reaktoren gelöst wird. Dabei handelt es sich speziell um ein kontinuierliches Verfahren.
ZUSAMMENFASSUNG DER ERFINDUNG
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von 2-substituierten 4- Hydroxy-4-methyl-tetrahydropyranen der allgemeinen Formel (I)
Figure imgf000006_0001
(I)
worin
R1 für geradkettiges oder verzweigtes Ci-Ci2-Alkyl, geradkettiges oder verzweigtes C2-Ci2-Alkenyl, unsubstituiertes oder mit Ci-Ci2-Alkyl und/oder Ci-Ci2-Alkoxy substituiertes Cycloalkyl mit insgesamt 3 bis 20 Kohlenstoffatomen oder unsubstituiertes oder mit Ci-Ci2-Alkyl und/oder Ci-Ci2-Alkoxy substituiertes Aryl mit insgesamt 6 bis 20 Kohlenstoffatomen steht, umfassend eine Umsetzung von 3-Methylbut-3-en-1 -ol der Formel (III)
Figure imgf000006_0002
(III) mit einem Aldehyd der Formel (IV)
R1 -CHO (IV) wobei R1 in der Formel (IV) die zuvor angegebene Bedeutung hat, in Gegenwart eines sauren Katalysators, dadurch gekennzeichnet, dass die Umsetzung in einer Anordnung aus n in Reihe geschalteter Reaktoren erfolgt, wobei n für eine natürliche Zahl von wenigstens 2 steht. BESCHREIBUNG DER ERFINDUNG
Das erfindungsgemäße Verfahren weist die folgenden Vorteile auf: Das erfindungsgemäße Verfahren ermöglicht eine geringere thermische Belastung des Reaktorinhalts durch eine geringere Maximaltemperatur und/oder die Vermeidung von Temperaturspitzen.
Das Verfahren ermöglicht somit höhere Ausbeuten und/oder eine höhere Selektivität bezüglich der Zielverbindungen.
Eine geringere Maximaltemperatur und/oder die Vermeidung von Temperaturspitzen sind auch sicherheitstechnisch vorteilhaft und/oder ermöglichen eine längere Katalysatorstandzeit.
Speziell der Einsatz eines Katalysatorfestbetts kann sich zusätzlich vorteilhaft auf die Katalysatorstandzeit auswirken. Somit werden langwierige An- und Abfahrvorgänge zum Tausch von verbrauchtem Katalysator bzw. zur Katalysatorregenerierung vermieden. Zudem verringert der Einsatz eines Katalysatorfestbetts auch die mechanische Belastung und Zerstörung des Katalysators. Sofern im Folgenden nicht genauer angegeben, bezeichnen die Begriffe
"2-substituiertes 4-Hydroxy-4-methyl-tetrahydropyran" und
"2-(2-Methylpropyl)-4-hydroxy-4-methyl-tetrahydropyran"
im Rahmen der Erfindung cis/trans-Gemische jedweder Zusammensetzung sowie die reinen Konformations-Isomere. Die zuvor genannten Begriffe bezeichnen weiterhin alle Enantiomere in Reinform sowie racemische und optisch aktive Gemische der Enantio- meren dieser Verbindungen.
Im Rahmen der vorliegenden Erfindung steht der Ausdruck geradkettiges oder verzweigtes Alkyl vorzugsweise für Ci-C6-Alkyl und besonders bevorzugt für Ci-C4-Alkyl. Alkyl steht insbesondere für Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl
(2-Methylpropyl), sec.-Butyl (1 -Methylpropyl), tert.-Butyl (1 ,1 -Dimethylethyl), n-Pentyl oder n-Hexyl. Speziell steht Alkyl für Methyl, Ethyl, n-Propyl, Isopropyl, oder Isobutyl.
Im Rahmen der vorliegenden Erfindung steht der Ausdruck geradkettiges oder ver- zweigtes Alkoxy vorzugsweise für Ci-C6-Alkoxy und besonders bevorzugt für C1-C4- Alkoxy. Alkoxy steht insbesondere für Methoxy, Ethoxy, n-Propyloxy, Isopropyloxy, n-Butyloxy, Isobutyloxy, sec.-Butyloxy, tert.-Butyloxy, n-Pentyloxy oder n-Hexyloxy. Speziell steht Alkoxy für Methoxy, Ethoxy, n-Propyloxy, Isopropyloxy, oder Isobutyloxy.
Im Rahmen der vorliegenden Erfindung steht der Ausdruck geradkettiges oder verzweigtes Alkenyl vorzugsweise für C2-C6-Alkenyl und besonders bevorzugt für C2-C4- Alkenyl. Der Alkenyl rest weist neben Einfachbindungen noch eine oder mehrere, bevorzugt 1 bis 3, besonders bevorzugt 1 oder 2 und ganz besonders bevorzugt eine ethylenische Doppelbindung auf. Alkenyl steht insbesondere für Ethenyl, 1 -Propenyl, 2-Propenyl, 1 -Methylethenyl, 1 -Butenyl, 2-Butenyl, 3-Butenyl, 1 -Methyl-1 -propenyl, 2-Methyl-1 -propenyl, 1 -Methyl-2-propenyl oder 2-Methyl-2-propenyl.
Im Rahmen der Erfindung bezeichnet Cycloalkyl einen cycloaliphatischen Rest mit vor- zugsweise 3 bis 10, besonders bevorzugt 5 bis 8, Kohlenstoffatomen. Beispiele für Cycloalkylgruppen sind insbesondere Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl. Speziell steht Cycloalkyl für Cyclohexyl.
Substituierte Cycloalkylgruppen können in Abhängigkeit von der Ringgröße einen oder mehrere (z. B. 1 , 2, 3, 4 oder 5) Substituenten aufweisen. Diese sind vorzugsweise unabhängig voneinander ausgewählt unter Ci-C6-Alkyl und Ci-C6-Alkoxy. Die Cycloalkylgruppen tragen im Falle einer Substitution vorzugsweise eine oder mehrere, beispielsweise eine, zwei, drei, vier oder fünf Ci-C6-Alkylgruppen. Beispiele für substituierte Cycloalkylgruppen sind insbesondere 2- und 3-Methylcyclopentyl, 2- und
3-Ethylcyclopentyl, 2-, 3- und 4-Methylcyclohexyl, 2-, 3- und 4-Ethylcyclohexyl, 2-, 3- und 4-Propylcyclohexyl, 2-, 3- und 4-lsopropylcyclohexyl, 2-, 3- und 4-Butylcyclohexyl und 2-, 3- und 4-lsobutylcyclohexyl.
Der Ausdruck "Aryl" umfasst im Rahmen der vorliegenden Erfindung ein- oder mehr- kernige aromatische Kohlenwasserstoffreste mit üblicherweise 6 bis 18, vorzugsweise 6 bis 14, besonders bevorzugt 6 bis 10 Kohlenstoffatomen. Beispiele für Aryl sind insbesondere Phenyl, Naphthyl, Indenyl, Fluorenyl, Anthracenyl, Phenanthrenyl, Naph- thacenyl, Chrysenyl, Pyrenyl, etc., und speziell Phenyl oder Naphthyl. Substituierte Aryle können in Abhängigkeit von der Anzahl und Größe ihrer Ringsysteme einen oder mehrere (z. B. 1 , 2, 3, 4 oder 5) Substituenten aufweisen. Diese sind vorzugsweise unabhängig voneinander ausgewählt unter Ci-C6-Alkyl und C1-C6- Alkoxy. Beispiele für substituierte Arylreste sind 2-, 3- und 4-Methylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2-, 3- und 4-Ethylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diethylphenyl, 2,4,6-Triethylphenyl, 2-, 3- und 4-Propylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dipropylphenyl, 2,4,6-Tripropylphenyl, 2-, 3- und 4-lsopropylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisopropylphenyl, 2,4,6-Triisopropylphenyl, 2-, 3- und
4-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dibutylphenyl, 2,4,6-Tributylphenyl, 2-, 3- und 4-lsobutylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisobutylphenyl, 2,4,6-Triisobutylphenyl, 2-, 3- und 4-sec-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Di-sec-butylphenyl, 2,4,6-Tri-sec- butylphenyl, 2-, 3- und 4-tert.-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Di-tert.-butylphenyl und 2,4,6-Tri-tert.-butylphenyl.
Einer der Ausgangsstoffe für das erfindungsgemäße Verfahren ist 3-Methylbut-3-en-1 - ol (Isoprenol) der Formel (III),
Figure imgf000009_0001
(III). Isoprenol ist nach bekannten Verfahren aus Isobuten und Formaldehyd in jedem Maßstab gut zugänglich und kommerziell verfügbar. An die Reinheit, Qualität oder Herstellverfahren des erfindungsgemäß einzusetzenden Isoprenols sind keine besonderen Anforderungen zu stellen. Es kann in handelsüblicher Qualität und Reinheit in das erfindungsgemäße Verfahren eingesetzt werden. Bevorzugt setzt man Isoprenol ein, das eine Reinheit von 90 Gew.-% oder darüber hat, besonders bevorzugt solches mit einer Reinheit von 95 bis 100 Gew.-% und ganz besonders bevorzugt solches mit einer Reinheit von 97 bis 99,9 Gew.-% oder noch mehr bevorzugt 98 bis 99,8 Gew.-%.
Ein weiterer Ausgangsstoff für das erfindungsgemäße Verfahren ist ein Aldehyd der Formel (IV) R1-CHO, wobei R1 in der Formel (IV) die zuvor angegebene Bedeutung hat.
Bevorzugt steht R1 in den Verbindungen der Formeln (I), (II) und (IV) für geradkettiges oder verzweigtes Ci-Ci2-Alkyl oder geradkettiges oder verzweigtes C2-Ci2-Alkenyl. Besonders bevorzugt steht R1 für geradkettiges oder verzweigtes Ci-C6-Alkyl oder geradkettiges oder verzweigtes C2-C6-Alkenyl. In einer weiteren bevorzugten Ausführung steht R1 für Phenyl.
Erfindungsgemäß bevorzugte Bedeutungen für den Rest R1 sind somit beispielsweise Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, n-Pentyl, n-Hexyl oder n-Heptyl, bevorzugt Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, ganz besonders bevorzugt Isobutyl (2-Methylpropyl).
Besonders bevorzugt steht der Rest R1 für Isobutyl oder Phenyl.
Bevorzugt einzusetzende Aldehyde der Formel (IV) sind: Acetaldehyd, Valeraldehyd, Isovaleraldehyd, Pentanal, Hexanal, Heptanal, Benzaldehyd, Citral, Citronellal. Erfindungsgemäß ganz besonders bevorzugt einzusetzende Aldehyde der Formel (IV) sind Isovaleraldehyd und Benzaldehyd, insbesondere Isovaleraldehyd. Die Umsetzung der Verbindungen (III) und (IV) erfolgt in einer Anordnung aus n in Reihe geschalteter Reaktoren. Dabei steht n für eine natürliche Zahl von wenigstens zwei. Erfindungsgemäß handelt es sich um 2 bis 8, vorzugsweise 2, 3, 4, 5 oder 6 in Strömungsrichtung hintereinander angeordnete Reaktoren.
In einer erfindungsgemäßen Anordnung können auch ein einzelner, mehrere oder alle der in Reihe geschalteten Reaktoren durch zwei oder mehr parallel geschaltete Reaktoren ersetzt werden. Daraus kann sich eine kombinierte Reihen- und Parallelschaltung von (n+m) Reaktoren ergeben. Die Anzahl der Reaktoren in der längsten Reihe hinter- einander geschalteter Reaktoren ergibt n. Die Anzahl aller anderen Reaktoren ergibt in Summe m, wobei m eine beliebige natürliche Zahl sein kann.
Vorzugsweise erfolgt die Umsetzung kontinuierlich. Das bedeutet, dass alle n in Reihe geschalteten Reaktoren jeweils kontinuierlich betrieben werden.
In einer geeigneten Ausführungsform erfolgt die Umsetzung in Gegenwart eines Lösungsmittels. Gegebenenfalls werden zur Durchführung der erfindungsgemäßen Umsetzung die Verbindungen der Formeln (III) und (IV), hier und im Folgenden auch als Ausgangsstoffe oder Edukte bezeichnet, jeweils in Form eines Gemisches mit einem geeigneten Lösungsmittel zugeführt. Bevorzugt werden beide Ausgangsstoffe (III) und (IV) im gleichen Lösungsmittel vorgelegt. Bei dem Lösungsmittel handelt es sich vorzugsweise um Wasser oder ein unter den Reaktionsbedingungen inertes Lösungsmittel wie beispielsweise tert-Butylmethylether, Cyclohexan, Toluol, Hexan oder Xylol. Die genannten Lösungsmittel können alleine oder in Form von Gemischen eingesetzt wer- den. In einer bevorzugten Ausgestaltung führt man die Umsetzung ohne Zusatz eines organischen Lösungsmittels durch. In einer besonders bevorzugten Ausgestaltung erfolgt die Umsetzung in Gegenwart von Wasser.
In einer geeigneten Ausführungsform des erfindungsgemäßen Verfahrens wird zwi- sehen dem in Strömungsrichtung ersten und letzten Reaktor einen Teilstrom entnommen und in einen stromaufwärts der Entnahmestelle gelegenen Reaktor eingespeist.
In einer bevorzugten Ausgestaltung wird dem Reaktoraustrag des in Strömungsrichtung ersten und/oder zweiten Reaktors ein Teilstrom entnommen und über eine exter- ne Rückführung zumindest teilweise in den in Strömungsrichtung ersten Reaktor zurückgeführt. Gemäß dieser Ausgestaltung wird zumindest der in Strömungsrichtung erste Reaktor rückvermischt betrieben. Insbesondere wird ein Teilstrom des Reaktoraustrags aus dem ersten Reaktor abgezogen und über einen externen Kreislauf in den in Strömungsrichtung ersten Reaktor zurückgeführt. Diese Betriebsweise wird hier und im Folgenden auch als Schlaufenfahrweise bezeichnet. Vorzugsweise steht n dabei für zwei. Die Stromteilung für die Rückführung kann gegebenenfalls vor oder nach einer Zwischenkühlung erfolgen.
Gemäß einer alternativen Ausgestaltung erfolgt die Umsetzung in n hintereinander geschalteten Reaktoren, wobei n für eine ganze Zahl von wenigstens drei steht. In dieser Ausgestaltung wird ein Teilstrom aus dem (n-1 )-ten Reaktor abgezogen und über einen externen Kreislauf mit dem in den ersten Reaktor zugeführten Strom zurückgeführt. Damit bilden der erste bis (n-1 )-te Reaktor gemeinsam eine Schlaufe. Insbesondere steht n dabei für drei. Auch hier kann die Stromteilung für die Rückführung gegebenenfalls vor oder nach einer Zwischenkühlung erfolgen. In einer besonders bevorzugten Ausgestaltung wird dem Teilstrom vor der Einspeisung in einen stromaufwärts der Entnahmestelle gelegenen Reaktor Wärme entzogen.
In einer alternativen Ausführungsform des erfindungsgemäßen Verfahrens wird zumindest der in Strömungsrichtung erste Reaktor weitgehend isotherm betrieben.
Unter "weitgehend isotherm betrieben" soll im Rahmen der vorliegenden Erfindung verstanden werden, dass in der jeweiligen Reaktionszone ein enges Temperaturintervall eingehalten wird. Wird der Reaktor "weitgehend isotherm betrieben", so soll im Rahmen der vorliegenden Erfindung darunter verstanden werden, dass das Tempera- turintervall Δ T im Reaktor kleiner als die adiabatische Temperaturerhöhung ist. Für das Temperaturintervall in einem Reaktor gilt bevorzugt Δ T < 12 K, besonders bevorzugt Δ Τ < 10 K.
Für eine weitgehend isotherme Fahrweise werden geeigneter Weise Wärmeübertra- gungsflächen im Inneren des ersten Reaktors angeordnet. In diesem Fall kann auf eine Rückvermischung im ersten Reaktor verzichtet werden, so dass er besonders bevorzugt im geraden Durchgang betrieben wird. Wird ein Reaktor "im geraden Durchgang" betrieben, so soll hier und im Folgenden darunter verstanden werden, dass ein Reaktor ohne Rückführung des Reaktionsproduktes im Sinne der Schlaufenfahrweise betrieben wird. Die Betriebsweise im geraden Durchgang schließt dabei rückvermischende Einbauten und/oder Rühreinrichtungen im Reaktor grundsätzlich nicht aus.
In einer geeigneten Ausgestaltung werden der in Strömungsrichtung erste und zweite Reaktor jeweils weitgehend isotherm betrieben. Dazu werden geeigneter Weise Wär- meübertragungsflächen im Inneren der beiden ersten Reaktoren angeordnet. Auf diese Weise lassen sich gegebenenfalls unterschiedliche Temperaturniveaus in den Reaktoren einstellen. In diesem Fall kann auf eine Rückvermischung im ersten und im zweiten Reaktor verzichtet werden, so dass beide besonders bevorzugt im geraden Durchgang betrieben werden.
In einer geeigneten Ausführungsform werden ein, mehrere oder alle in einen Reaktor zugeführten Ströme jeweils vor Eintritt in den Reaktor temperiert. Dazu kann ein üblicher Wärmeübertrager eingesetzt werden. In der Regel wird der aus einem Reaktor abgezogene Strom vor Eintritt in den nachfolgenden Reaktor zwischengekühlt. Mit der dabei gewonnenen Wärme ist es möglich, einen Strom an einer geeigneten anderen Stelle des Verfahrens zu erwärmen. Dem Fachmann sind entsprechende Verfahren zur Wärmeintegration bzw. Pinch-Analyse bekannt. In einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird dem Reaktoraustrag aus mindestens einem der ersten bis (n-1 )-ten Reaktoren vor Zuführung in den in Strömungsrichtung folgenden Reaktor Wärme entzogen.
In einer ebenfalls bevorzugten Ausführungsform wird zumindest der in Strömungsrich- tung letzte Reaktor ohne Rückführung des Reaktoraustrags betrieben. Eine vollständige oder teilweise Produktrückführung nach Austritt aus dem in Strömungsrichtung letzten Reaktor ist im kontinuierlichen Betrieb vorzugsweise nicht vorzusehen.
Insbesondere wird der in Strömungsrichtung letzte Reaktor im Wesentlichen ohne Rückvermischung betrieben. In diesem Fall ist als in Strömungsrichtung letzter Reaktor speziell ein Rohrreaktor ohne rückvermischende Einbauten vorgesehen.
Bevorzugt steht n für 2 oder 3. Besonders bevorzugt steht n für 2. In einer geeigneten Ausführungsform des erfindungsgemäßen Verfahrens wird die
Umsetzung zumindest in dem in Strömungsrichtung letzten Reaktor adiabatisch durchgeführt.
Der Begriff "adiabatisch" wird im Rahmen der vorliegenden Erfindung im technischen und nicht im physikalisch-chemischen Sinne verstanden. So erfährt das Reaktionsgemisch beim Strömen durch den Reaktor auf Grund der exothermen Reaktion in der Regel eine Temperaturerhöhung. Unter adiabatischer Reaktionsführung wird eine Vorgehensweise verstanden, bei der die bei der Reaktion freiwerdende Wärmemenge von der Reaktionsmischung im Reaktor aufgenommen und keine Kühlung durch Kühlvor- richtungen erfolgt. Somit wird die Reaktionswärme weitestgehend mit dem Reaktionsgemisch aus dem Reaktor abgeführt. Es liegt auf der Hand, dass ein Restanteil durch natürliche Wärmeleitung bzw. -Strahlung vom Reaktor an die Umgebung abgegeben wird. Vorzugsweise wird der letzte Reaktor dabei im geraden Durchgang betrieben.
Gemäß einer bevorzugten Ausführungsform wird zur Umsetzung eine Reaktoranordnung verwendet, die wenigstens einen Festbettreaktor umfasst. Besonders bevorzugt wird eine Reaktoranordnung eingesetzt, in der alle n Reaktoren Festbettreaktoren sind. Gemäß einer geeigneten Ausführungsform wird zur Umsetzung eine Reaktoranordnung verwendet, die wenigstens einen Reaktor mit einem intern angeordneten Wärmeübertrager umfasst.
Vorzugsweise erfolgt die Umsetzung in Gegenwart eines sauren Katalysators, der ausgewählt ist unter Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluol- sulfonsäure und stark sauren Kationenaustauschern. Insbesondere wird die Umsetzung in Gegenwart eines stark sauren Kationenaustauschers durchgeführt.
Bevorzugt werden der Alkohol der Formel (III) und der Aldehyd der Formel (IV) in ei- nem molaren Verhältnis im Bereich von 0,7 : 1 bis 2 : 1 eingesetzt.
Vorzugsweise werden der Alkohol der Formel (III) und der Aldehyd der Formel (IV) in Gegenwart von mindestens 3 Gew.-%, besonders bevorzugt von mindestens 5 Gew.- % Wasser umgesetzt. Der Alkohol der Formel (III) und der Aldehyd der Formel (IV) werden beispielsweise in Gegenwart von 3 Gew.-% bis 15 Gew.-% Wasser, bevorzugt von 5 Gew.-% bis 12 Gew.-% umgesetzt. Die angegebenen vorstehenden Gew.-% sind dabei bezogen auf die Menge des Reaktionsgemisches, bestehend aus den Komponenten der Formeln (III) und (IV)sowie Wasser. In der Regel führt man die Umsetzung des Alkohols der Formel (III) mit dem Aldehyd der Formel (IV) in Gegenwart von etwa mindestens 10 Mol-% Wasser durch, wobei sich die Menge an Wasser auf die Menge des gegebenenfalls im Unterschuss eingesetzten Ausgangsstoffes, oder im Fall einer äquimolaren Umsetzung auf die Stoffmenge eines der beiden Ausgangsstoffe bezieht. Oberhalb des angegebenen Wertes kann die Menge an Wasser frei gewählt werden und ist nur durch verfahrenstechnische oder ökonomische Aspekte limitiert. Wasser kann auch in großem, beispielsweise in 10- bis 100-fachem Überschuss oder sogar darüber eingesetzt werden. Vorzugsweise bereitet man ein Gemisch aus dem Alkohol der Formel (III) und dem Aldehyd der Formel (IV) mit der gewählten Menge Wasser, so dass das zugegebene Wasser in dem Gemisch gelöst bleibt, d. h. dass kein zweiphasiges System vorliegt.
In einer geeigneten Ausgestaltung werden die Ausgangsstoffe in Gegenwart von min- destens 25 Mol-%, bevorzugt von mindestens 50 Mol-% Wasser umgesetzt. Beispielsweise werden die Ausgangsstoffe in Gegenwart von 25 bis 150 Mol-%, bevorzugt von 40 bis 150 Mol-%, besonders bevorzugt von 50 bis 140 Mol-%, insbesondere von 50 bis 80 Mol-% Wasser umgesetzt. Dabei bezieht sich die Menge an eingesetztem Wasser auf die Stoffmenge des gegebenenfalls im Unterschuss eingesetzten Ausgangs- Stoffes oder im Fall einer äquimolaren Umsetzung auf die Stoffmenge eines der beiden.
In einer geeigneten Ausführungsform des erfindungsgemäßen Verfahrens wird die Umsetzung bei einer Temperatur im Bereich von 0 °C bis 70 °C, bevorzugt im Bereich von 20 °C bis 70 °C, besonders bevorzugt im Bereich von 20 °C bis 60 °C durchgeführt.
In einer ebenfalls geeigneten Ausführungsform des erfindungsgemäßen Verfahrens wird die Umsetzung bei einem Druck im Bereich von 1 bar bis 15 bar durchgeführt.
Sofern das in einem der dem ersten Reaktor nachgeschalteten Reaktoren (d. h. dem zweiten bis n-ten Reaktor) umgesetzte Reaktionsgemisch zu geringe Anteile an Eduk- ten aufweist, um über die auftretende Reaktionswärme die gewünschte Temperatur im Reaktor zu halten, kann auch eine Temperierung des Reaktors (oder einzelner Reakti- onszonen) erforderlich sein. Die Temperierung kann analog der zuvor beschriebenen Abfuhr der Reaktionswärme durch Erwärmung eines externen Umlaufstroms oder durch interne Erwärmung über Wärmeübertragungsflächen erfolgen. In einer geeigneten Ausführung kann zur Temperierung die abgeführte Reaktionswärme aus wenigstens einem der vorherigen Reaktoren verwendet werden.
Die abgezogene Reaktionswärme kann gegebenenfalls auch zur Erwärmung der Feedstrome der Reaktoren verwendet werden. Dazu kann z. B. der Eduktstrom in den ersten Reaktor zumindest teilweise mit einem externen Umlaufstrom dieses Reaktors gemischt und die vereinigten Ströme dann in den ersten Reaktor geführt werden. Des Weiteren können die Feedstrome in einen, mehrere oder alle der zweiten bis n-ten Reaktoren mit einem Umlaufstrom aus dem jeweiligen Reaktor gemeinsam in diesen Reaktor geführt werden. Des Weiteren kann der Eduktstrom und/oder ein anderer Feedstrom mit Hilfe eines Wärmetauschers erwärmt werden, der mit entzogener Reaktionswärme betrieben wird. In einer Ausführungsform kann in wenigstens einem der eingesetzten Reaktoren eine zusätzliche Durchmischung erfolgen. Eine zusätzliche Durchmischung ist insbesondere vorteilhaft, wenn die Reaktion bei großen Verweilzeiten des Reaktionsgemischs erfolgt. Geeignet sind sowohl statische als auch dynamische Mischvorrichtungen. Geeignete Mischvorrichtungen sind dem Fachmann hinlänglich bekannt. Zur Durchmischung können bevorzugt die in die Reaktoren eingespeisten Feedströme über geeignete Mischvorrichtungen, wie Düsen, in die jeweiligen Reaktoren eingespeist werden. Zur Durchmischung können ebenfalls bevorzugt in einem externen Kreislauf geführte (Teil-) Ströme aus dem jeweiligen Reaktor eingesetzt werden, wie oben als Schlaufenfahr- weise beschrieben.
Die zuvor beschriebene Schlaufenfahrweise eignet sich besonders vorteilhaft zur Regulierung der Reaktionstemperatur und des Wärmeübergangs zwischen Reaktionsme- dium, Apparatewänden und Umgebung. Eine weitere Möglichkeit zur Steuerung der Wärmebilanz besteht in der Regelung der Eintrittstemperatur des Eduktes bzw. des jeweiligen Feedstromes. So führt eine tiefere Temperatur des eintretenden Feeds in der Regel zu einer verbesserten Abführung der Reaktionswärme. Beim Nachlassen der Katalysatoraktivität kann die Eintrittstemperatur höher gewählt werden, um eine höhere Reaktionsgeschwindigkeit zu erreichen und somit die nachlassende Katalysatoraktivität zu kompensieren. So kann die Standzeit des eingesetzten Katalysators in vorteilhafter Weise erhöht werden.
Der erste Teilstrom wird im Allgemeinen chemisch unverändert in das Reaktionssys- tem zurückgeführt. Sofern gewünscht, können die Temperatur und/oder der Druck vor der Zurückführung auf die gewünschten Werte eingestellt werden. Die Einspeisung des ersten Teilstroms in den Reaktor, dem er entnommen wurde, kann gemeinsam mit dem jeweiligen Feedstrom oder separat davon erfolgen. Das Gewichtsmengenverhältnis von in einen Reaktor eingespeistem ersten Teilstrom (Rückführstrom) zu jeweiligem Feedstrom liegt vorzugsweise in einem Bereich von 1 : 1 bis 50 : 1 , besonders bevorzugt in einem Bereich von 2 : 1 bis 30 : 1 , insbesondere im Bereich von 5 : 1 bis 20 : 1.
In einer zweiten Variante erfolgt die Umsetzung in Gegenwart eines stark sauren Kationenaustauschers. Unter dem Begriff stark saurer Kationenaustauscher wird dabei ein Kationenaustauscher in der H+-Form verstanden, der stark saure Gruppen aufweist. Bei den stark sauren Gruppen handelt es sich in der Regel um Sulfonsäuregruppen. Die sauren Gruppen sind in der Regel angebunden an eine Polymermatrix, die z. B. gelförmig bzw. makroporös sein kann. Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist dementsprechend dadurch gekennzeichnet, dass man einen stark sauren, Sulfonsauregruppen aufweisenden Kationenaustauscher einsetzt.
Geeignete stark saure Kationenaustauscher sind in der WO 2010/133473 und
WO 201 1/154330 beschrieben, worauf hier in vollem Umfang Bezug genommen wird. Geeignet für den Einsatz sind stark saure Ionenaustauscher (wie z. B. Amberlyst, Amberlite, Dowex, Lewatit, Purolite, Serdolit), die auf Polystyrol basieren und die Copoly- mere aus Styrol und Divinylbenzol als Trägermatrix mit Sulfonsauregruppen in H+-Form enthalten sowie mit Sulfonsauregruppen (-SO3H) funktionalisierte lonenaustauscher- gruppen. Die Ionenaustauscher unterscheiden sich im Aufbau ihrer Polymergerüste, und man unterscheidet gelformige und makroporöse Harze. In einer speziellen Ausführung wird ein perfluoriertes polymeres lonenaustauscherharz eingesetzt. Derartige Harze werden z. B. unter der Bezeichnung Nafion ® von der Firma DuPont vertrieben. Als Beispiel für ein solches perfluoriertes polymeres lonenaustauscherharz sei Nafion ® NR-50 genannt.
Für die Umsetzung geeignete kommerziell verfügbare stark saure Kationenaustauscher sind beispielsweise unter den Handelsnamen Lewatit ® (Lanxess), Purolite ® (The Purolite Company), Dowex ® (Dow Chemical Company), Amberlite ® (Rohm and Haas Company), Amberlyst (TM) (Rohm and Haas Company) bekannt. Bevorzugte stark saure Kationenaustauscher sind: Lewatit ® K 1221 , Lewatit ® K 1461 , Lewatit ® K 2431 , Lewatit ® K 2620, Lewatit ® K 2621 , Lewatit ® K 2629, Lewatit ® K 2649, Amberlite ® FPC 22, Amberlite ® FPC 23, Amberlite ® IR 120, Amberlyst (TM) 131 , Amberlyst (TM) 15, Amberlyst (TM) 31 , Amberlyst (TM) 35, Amberlyst (TM) 36, Amberlyst (TM) 39, Amberlyst (TM) 46, Amberlyst (TM) 70, Purolite ® SGC650, Purolite ® C100H, Purolite ® C150H, Dowex ® 50X8, Serdolit ® rot und Nation ® NR-50.
Die stark sauren lonentauscherharze werden in der Regel mit Salzsäure und/oder Schwefelsäure regeneriert. In einer speziellen Ausführung werden das 3-Methylbut-3-en-ol (III) und der Aldehyd (IV) in Gegenwart eines stark sauren Kationenaustauschers und in Gegenwart von Wasser umgesetzt. Prinzipiell kann das Reaktionsgemisch bereits geringe Mengen Wasser enthalten, das durch die Dehydratisierung des Verfahrensproduktes der Formel (I) als mögliche Nebenreaktion freigesetzt werden kann. Nach einer speziellen Ausführung wird dem Reaktionsgemisch neben Isoprenol (III) und dem Aldehyd der Formel (IV) sowie etwaigem Wasser aus der Reaktion zusätzlich noch Wasser zugesetzt. Vorzugsweise werden der Alkohol der Formel (III) und der Aldehyd der Formel (IV) in Gegenwart von mindestens 3 Gew.-%, besonders bevorzugt von mindestens 5 Gew.- % Wasser umgesetzt. Der Alkohol der Formel (III) und der Aldehyd der Formel (IV) werden beispielsweise in Gegenwart von 3 Gew.-% bis 15 Gew.-% Wasser, bevorzugt von 5 Gew.-% bis 12 Gew.-% umgesetzt. Die angegebenen vorstehenden Gew.-% sind dabei bezogen auf die Gesamtmenge des Reaktionsgemisches, bestehend aus den Komponenten der Formeln (III) und (IV) sowie Wasser.
Oberhalb des angegebenen Wertes kann die Menge an Wasser frei gewählt werden und ist, wenn überhaupt, nur durch verfahrenstechnische oder ökonomische Aspekte begrenzt und kann durchaus in großem, beispielsweise in 5- bis 15-fachem Über- schuss oder auch darüber eingesetzt werden. Vorzugsweise bereitet man ein Gemisch aus Isoprenol (III) und dem Aldehyd der Formel (IV), vorzugsweise Isovaleraldehyd, mit der zuzusetzenden Menge Wasser, so dass das zugegebene Wasser in dem Gemisch aus Isoprenol und dem Aldehyd gelöst bleibt d. h. kein zweiphasiges System vorliegt.
Üblicherweise setzt man im Rahmen dieser Ausführungsform des erfindungsgemäßen Verfahrens die Ausgangsstoffe Isoprenol (III) und den Aldehyd der Formel (IV) in Gegenwart von mindestens 25 mol-%, bevorzugt von mindestens 50 mol-% um. Bei- spielsweise werden die Ausgangsstoffe in Gegenwart von 25 bis 150 Mol-%, bevorzugt von 40 bis 150 Mol-%, besonders bevorzugt von 50 bis 140 Mol-%, insbesondere von 50 bis 80 Mol-% Wasser umgesetzt. Dabei bezieht sich die Menge an eingesetztem Wasser auf die Stoffmenge des gegebenenfalls im Unterschuss eingesetzten Ausgangsstoffes oder im Fall einer äquimolaren Umsetzung auf die Stoffmenge eines der beiden.
Zur Umsetzung von Isoprenol (III) mit dem Aldehyd (IV) kann man die genannten Ausgangsstoffe und gegebenenfalls das zugesetzte Wasser mit dem sauren Kationenaustauscher in Kontakt bringen. Vorzugsweise werden Isoprenol (III), Aldehyd (IV) und gegebenenfalls das zugesetzte Wasser in Form eines Gemisches eingesetzt. Die genannten Ausgangsstoffe, d. h. Isoprenol (III) und der Aldehyd (IV) und das in der vorstehenden Menge einzusetzende Wasser können in beliebiger Reihenfolge miteinander in Kontakt gebracht bzw. gemischt werden. Die Menge an stark saurem Kationenaustauscher ist nicht kritisch und kann unter Berücksichtigung des wirtschaftlichen und verfahrenstechnischen Aspektes in breiten Grenzen frei gewählt werden. Die Umsetzung kann dementsprechend sowohl in Gegenwart katalytischer Mengen als auch in Gegenwart großer Überschüsse des stark sauren Kationenaustauschers durchgeführt werden. Die genannten stark sauren Katio- nenaustauscher können sowohl einzeln oder auch in Form von Gemischen eingesetzt werden.
Die Katalysatorbelastung liegt beispielsweise im Bereich von 50 bis 2500 mol pro m3 Katalysator und h, bevorzugt im Bereich von 100 bis 2000 mol pro m3 Katalysator und h, insbesondere im Bereich von 130 bis 1700 mol pro m3 Katalysator und h, wobei sich die Stoffmenge in mol auf den Ausgangsstoff der Formel (IV) bezieht.
Die Umsetzung in Gegenwart eines stark sauren Kationenaustauschers kann wahlwei- se auch zusätzlich in Gegenwart eines unter den Reaktionsbedingungen inerten Lösungsmittels durchgeführt werden. Geeignete Lösungsmittel sind beispielsweise tert- Butylmethylether, Cyclohexan, Dekalin, Hexan, Heptan, Ligroin, Petrolether, Toluol oder Xylol. Die genannten Lösungsmittel können alleine oder in Form von Gemischen untereinander eingesetzt werden. Bevorzugt führt man die Umsetzung in Gegenwart eines stark sauren Kationenaustauschers ohne Zusatz eines organischen Lösungsmittels durch.
Bevorzugt wird die Umsetzung von Isoprenol (III) mit dem gewählten Aldehyd (IV) in Gegenwart von Wasser und in Gegenwart eines stark sauren Kationentauschers bei einer Temperatur im Bereich von 0 bis 70 °C, besonders bevorzugt bei einer Temperatur im Bereich von 20 bis 70 °C und insbesondere bei einer Temperatur im Bereich von 20 bis 60 °C durchgeführt. Dabei handelt es sich um die Temperatur des Reaktionsgemisches. Die Aufarbeitung des Reaktionsaustrags zur Gewinnung des Wertprodukts kann nach üblichen, dem Fachmann bekannten Verfahren erfolgen. Bevorzugt umfasst die Aufarbeitung des Reaktionsgemisches wenigstens einen Destillationsschritt. Der Reaktions- austrag kann sich in bekannter Weise durch Destillation bzw. Rektifikation aufgetrennt werden, um so das Wertprodukt zu erhalten. Beispielsweise kann die Aufarbeitung analog zu der in der WO 201 1/154330 beschriebenen Methode erfolgen.
FIGURENBESCHREIBUNG
Das erfindungsgemäße Verfahren wird anhand der Figuren 1 bis 3 im Folgenden näher erläutert, ohne es auf diese Ausführungsformen einzuschränken.
Figur 1 zeigt eine Ausführungsform des erfindungsgemäßen Verfahrens mit einem Hauptreaktor mit Rückführstrom und einem Nachreaktor. Figur 2 zeigt eine Ausführungsform des erfindungsgemäßen Verfahrens mit einem Hauptreaktor mit integriertem Wärmeaustauscher und einem Nachreaktor.
Figur 3 zeigt eine Ausführungsform des erfindungsgemäßen Verfahrens mit zwei Reaktorstufen mit Rückführstrom und einem Nachreaktor.
In den Figuren 1 bis 3 werden folgende Bezugszeichen verwendet:
1 (Haupt-)Reaktor
2 Kühler
3 (Nach-)Reaktor
4 (Zwischen-)Kühler
5 Pumpe
6 Reaktor
7 Kühler
8 Trennkolonne
A Isoprenol-Strom
B Aldehyd-Strom
C Wasser
D Rückführstrom
E Edukt
Das erfindungsgemäße Verfahren kann mit mindestens einem Hauptreaktor, bevorzugt 1 bis 2 Hauptreaktoren, kaskadiert durchgeführt werden. Die Hauptreaktoren können parallel oder in Reihe, bevorzugt in Reihe, und gegebenenfalls mit Zwischenkühlung betrieben werden. Dabei kann beispielsweise im rückvermischten Reaktorsystem oder in isothermer Fahrweise gefahren werden. Im rückvermischten Reaktorsystem kann der gesamte Umlaufstrom des Hauptreaktorteils rückvermischt und gekühlt oder jeder Hauptreaktor für sich durch einen eigenen Umlaufstrom rückvermischt und gekühlt werden und/oder nach jedem Hauptreaktor zwischengekühlt werden kann. Die Aufteilung in mehrere Betten, gegebenenfalls auch mit Zwischenkühlung, kann auch in einem Apparat umgesetzt werden.
Nach dem Austritt aus dem Hauptreaktorteil der Umsetzung folgt mindestens ein Nachreaktor, bevorzugt 1 bis 2 Nachreaktoren. Diese können im geraden Durchlauf (isotherm oder rückvermischt), parallel oder in Reihe betrieben werden. Bevorzugt werden sie in Reihe geschaltet und in geradem Durchlauf ohne Rückvermischung betrieben. Figur 1 zeigt eine geeignete Ausführungsform einer geeigneten zweistufigen Reaktorkaskade mit einem Hauptreaktor (1 ) und einem Nachreaktor (3).
Über drei Zuführungen werden die drei Eduktströme Isoprenol (A), Aldehyd (B) und Wasser (C) in den Reaktor (1 ) eingeleitet. Über eine Leitung und die Pumpe (5) wird ein Austrag aus dem Reaktor (1 ) entnommen, der in zwei Teilströme geteilt wird. Über den Kühler (2) wird ein Rückführstrom (D) mit den Eduktströmen (A), (B) und (C) zusammen in den Hauptreaktor (1 ) geführt. Ein Feedstrom wird über einen Kühler (4) dem zweiten Reaktor (3) zugeführt. Das Edukt (E) wird als Austrag aus dem Nachreak- tor (3) direkt entnommen und gegebenenfalls einer Aufarbeitung zugeführt.
Beide Reaktoren werden in dieser Ausgestaltung bevorzugt als Festbettreaktoren ausgeführt. Der Hauptreaktor (1 ) wird in Schlaufenfahrweise betrieben, wohingegen der Nachreaktor im geraden Durchgang betrieben wird. In der in Figur 1 dargestellten An- Ordnung sind der Hauptreaktor (1 ) und der Nachreaktor (3) so in Reihe geschaltet, dass über eine Rückvermischung im Hauptreaktorsystem die Einstellung eines Temperaturprofils über dem Katalysatorbett erfolgen kann. Dadurch kann ein starker Temperaturanstieg zu Beginn der Reaktion verhindert werden. In Figur 2 wird eine alternative Ausführungsform einer geeigneten zweistufigen Reaktorkaskade mit einem Hauptreaktor (1 ) und einem Nachreaktor (3). gezeigt. Statt der Rückführung wird über einen in den Reaktor (1 ) integrierten Wärmeübertrager eine isotherme Reaktionsführung erzielt. Über drei Zuführungen werden die drei Eduktströme Isoprenol (A), Aldehyd (B) und Wasser (C) in den Reaktor (1 ) eingeleitet. Aus dem Reaktor (1 ) wird ein Austrag entnommen, der als Feedstrom über einen Kühler (4) dem zweiten Reaktor (3) zugeführt wird. Das Edukt (E) wird als Austrag aus dem Nachreaktor (3) direkt entnommen und gegebenenfalls einer Aufarbeitung zugeführt. Der Hauptreaktor ist mit integrierten Wärmeübertragungsflächen ausgestattet, wohingegen der Nachreaktor (3) als einfacher Festbettreaktor ausgeführt ist. Beide Reaktoren werden in dieser Ausgestaltung geraden Durchgang betrieben. Durch die in Figur 2 veranschaulichte isotherme Reaktionsführung werden unerwünschte Temperaturspitzen vermieden. Figur 3 zeigt eine geeignete Ausführungsform einer dreistufigen Reaktorkaskade mit zwei Hauptreaktoren (1 ), (6) und einem Nachreaktor (3).
Über drei Zuführungen werden die drei Eduktströme Isoprenol (A), Aldehyd (B) und Wasser (C) in den Reaktor (1 ) eingeleitet. Aus dem Reaktor (1 ) wird ein Austrag ent- nommen, der als Feedstrom über einen Kühler (7) dem zweiten Reaktor (6) zugeführt wird. Über eine Leitung und die Pumpe (5) wird ein Austrag aus dem Reaktor (6) entnommen, der in zwei Teilströme geteilt wird. Über den Kühler (2) wird ein Rückführstrom (D) mit den Eduktströmen (A), (B) und (C) zusammen in den Hauptreaktor (1 ) zurückgeführt. Ein Feedstrom wird über einen Kühler (4) dem dritten Reaktor (3) zugeführt. Das Edukt (E) wird als Austrag aus dem Nachreaktor (3) direkt entnommen und gegebenenfalls einer Aufarbeitung zugeführt.
Alle drei Reaktoren werden in dieser Ausgestaltung bevorzugt als Festbettreaktoren ausgeführt. Die Hauptreaktoren (1 ) und (6) werden gemeinsam in Schlaufenfahrweise betrieben, wohingegen der Nachreaktor (3) im geraden Durchgang betrieben wird. In der in Figur 3 dargestellten Anordnung sind die Hauptreaktoren (1 ), (6) und der Nachreaktor (3) so in Reihe geschaltet, dass über eine Rückvermischung im Hauptreaktorsystem und eine Zwischenkühlung zwischen dem ersten und zweiten Hauptreaktor die Einstellung eines Temperaturprofils über dem Katalysatorbett erfolgen kann. Dadurch können Temperaturspitzen in beiden Reaktoren wirksam verhindert werden.
BEISPIELE Beispiel 1 (kontinuierlich betriebener Prozess)
Es wurde eine Apparatur aus einem Hauptreaktor und einem aus drei Einzelreaktoren bestehenden Nachreaktor verwendet. Als Hauptreaktor wurde ein Doppelmantelreaktor aus RA4 ohne Heizmedium für eine adiabatische Fahrweise mit einer Länge von 150 cm und einem Innendurchmesser von 2,6 cm verwendet. Als Nachreaktor wurden drei Doppelmantelreaktoren aus RA4 mit einer Länge von je 150 cm, mit einem Innendurchmesser von je 1 ,0 cm und beheizt mit jeweils 30 °C, 40 °C sowie 50 °C, eingesetzt. Die Apparatur wurde mit insgesamt 328 g des stark sauren Kationenaustauschers Am- berlyst™ 131 gefüllt. Der Hauptreaktor wurde dabei mit 230 g (305 ml), die Nachreaktoren mit je 32,5 g (44 ml) des Kationenaustauschers gefüllt. Der Kationenaustauscher wurde vor dem Einsatz zunächst mehrmals mit Wasser, dann einmal mit Methanol und abschließend mit Wasser Methanol-frei gewaschen. Das System wurde durch Zufah- ren einer Mischung aus Pyranol : Wasser im Massen-Verhältnis von 95 : 5 konditioniert. Der Hauptreaktor wurde anschließend rückvermischt mit einem Umwälzstrom von 2000 g/h betrieben, wobei der rückgeführte Strom vor Wiedereintritt in den Hauptreaktor auf eine Temperatur von 25 °C abgekühlt wurde. Der Nachreaktor wurde im geraden Durchgang zum Vollumsatz betrieben. Nach Konditionierung des Kationenaustauschers auf das genannte Pyranol-Wasser- Gemisch wurde ein Gemisch aus Isovaleraldehyd : Isoprenol : Wasser im Massen- Verhältnis von 45 : 50 : 5 bei 25 °C und mit einem Gesamtmengenstrom von 100 g/h zugefahren. Man erhielt ein Rohprodukt mit einer Austrittstemperatur aus dem letzten Nachreaktor von 50 °C in einer Ausbeute von 76 % und mit einer Selektivität von 77,6 %, jeweils bezogen auf Isovaleraldehyd mit der folgenden Zusammensetzung:
Isovaleraldehyd: 1 ,03 GC-Gew.-%,
Isoprenol: 3,6 GC-Gew.-%,
Dihydropyran-Isomere: 8,69 GC-Gew.-%,
1 ,3-Dioxan: 5,56 GC-Gew.-%,
Acetal: 0,57 GC-Gew.-%,
trans-Pyranol: 18,26 GC-Gew.-%,
cis-Pyranol: 50,08 GC-Gew.-%,
Wasser: 6,8 Gew.-% (nach Karl Fischer).

Claims

Patentansprüche
1 . Verfahren zur Herstellung von 2-substituierten 4-Hydroxy-4-methyl-tetrahydro- pyranen der allgemeinen Formel (I)
Figure imgf000023_0001
(I)
worin für geradkettiges oder verzweigtes Ci-Ci2-Alkyl, geradkettiges oder verzweigtes C2-Ci2-Alkenyl, unsubstituiertes oder mit Ci-Ci2-Alkyl und/oder Ci-Ci2-Alkoxy substituiertes Cycloalkyl mit insgesamt 3 bis 20 Kohlenstoffatomen oder unsubstituiertes oder mit Ci-Ci2-Alkyl und/oder Ci-Ci2-Alkoxy substituiertes Aryl mit insgesamt 6 bis 20 Kohlenstoffatomen steht, umfassend eine Umsetzung von 3-Methylbut-3-en-1 -ol der Formel (III)
Figure imgf000023_0002
mit einem Aldehyd der Formel (IV)
R -CHO (IV) wobei R1 in der Formel (IV) die zuvor angegebene Bedeutung hat, in Gegenwart eines sauren Katalysators, dadurch gekennzeichnet, dass die Umsetzung in einer Anordnung aus n in Reihe geschalteter Reaktoren erfolgt, wobei n für eine natürliche Zahl von wenigstens 2 steht.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Umsetzung kontinuierlich erfolgt.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines Lösungsmittels, insbesondere in Gegenwart von Wasser erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen dem in Strömungsrichtung ersten und letzten Reaktor einen Teilstrom entnommen und in einen stromaufwärts der Entnahmestelle gelegenen Reaktor eingespeist wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass dem Reaktoraustrag des in Strömungsrichtung ersten und/oder zweiten Reaktors ein Teilstrom entnommen und über eine externe Rückführung zumindest teilweise in den in Strömungsrichtung ersten Reaktor zurückgeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet dass ein Teilstrom des Re- aktoraustrags aus dem ersten Reaktor abgezogen und über einen externen Kreislauf in den in Strömungsrichtung ersten Reaktor zurückgeführt wird. 7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass dem Teilstrom vor der Einspeisung in einen stromaufwärts der Entnahmestelle gelegenen Reaktor Wärme entzogen wird.
8. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zu- mindest der in Strömungsrichtung erste Reaktor weitgehend isotherm betrieben wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der in Strömungsrichtung erste und zweite Reaktor jeweils weitgehend isotherm betrieben werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der in Strömungsrichtung (n-1 )-te Reaktor weitgehend isotherm betrieben wird. 1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Reaktoraustrag aus mindestens einem der ersten bis (n-1 )-ten Reaktoren vor Zuführung in den in Strömungsrichtung folgenden Reaktor Wärme entzogen wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest der in Strömungsrichtung letzte Reaktor ohne Rückführung des Reaktoraustrags betrieben wird. 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass n für 2 oder 3, vorzugsweise für 2, steht.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung zumindest in dem in Strömungsrichtung letzten Reaktor adi- abatisch durchgeführt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Umsetzung eine Reaktoranordnung verwendet wird, die wenigstens einen Festbettreaktor umfasst, vorzugsweise eine Reaktoranordnung eingesetzt wird, in der alle n Reaktoren Festbettreaktoren sind.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Umsetzung eine Reaktoranordnung verwendet wird, die wenigstens einen Reaktor mit einem intern angeordneten Wärmeübertrager umfasst.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rest R1 für Isobutyl oder Phenyl steht.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines sauren Katalysators erfolgt, der vorzugsweise ausgewählt ist unter Salzsäure, Schwefelsäure, Methansulfonsäure, p-Toluolsulfonsäure und stark sauren Kationenaustauschern.
19. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines stark sauren Kationenaustauschers durchgeführt wird.
20. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass der Alkohol der Formel (III) und der Aldehyd der Formel (IV) in einem molaren Verhältnis im Bereich von 0,7 : 1 bis 2 : 1 eingesetzt werden.
21 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass der Alkohol der Formel (III) und der Aldehyd der Formel (IV) in Gegenwart von 3 Gew.-% bis 15 Gew.-% Wasser, bevorzugt 5 Gew.-% bis 12 Gew.-%, be- zogen auf die Menge des Reaktionsgemisches bestehend aus den Komponenten der Formeln (III) und (IV) sowie Wasser, umgesetzt werden.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass die Umsetzung bei einer Temperatur im Bereich von 0 °C bis 70 °C, bevorzugt im Bereich von 20 °C bis 70 °C, besonders bevorzugt im Bereich von 20 °C bis 60 °C durchgeführt wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass die Umsetzung bei einem Druck im Bereich von 1 bar bis 15 bar durchgeführt wird.
PCT/EP2014/058538 2013-04-29 2014-04-28 Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen in einer reaktorkaskade WO2014177486A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES14720115.6T ES2675360T3 (es) 2013-04-29 2014-04-28 Procedimiento para la preparación de 4-hidroxi-4-metil-tetrahidropiranos sustituidos en posición 2 en una cascada de reactores
EP14720115.6A EP2991974B1 (de) 2013-04-29 2014-04-28 Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen in einer reaktorkaskade
US14/787,285 US9688650B2 (en) 2013-04-29 2014-04-28 Method for producing 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans in a reactor cascade
JP2016511022A JP6388916B2 (ja) 2013-04-29 2014-04-28 反応器カスケード中で2−置換4−ヒドロキシ−4−メチルテトラヒドロピランを製造する方法
CN201480024075.1A CN105164110B (zh) 2013-04-29 2014-04-28 在反应器级联中制备2-取代的4-羟基-4-甲基四氢吡喃的方法
MX2015015148A MX2015015148A (es) 2013-04-29 2014-04-28 Proceso para la preparacion de 4-hidroxi-4-metiltetrahidropiranos 2-sustituidos en una cascada de reactores.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13165767 2013-04-29
EP13165767.8 2013-04-29

Publications (1)

Publication Number Publication Date
WO2014177486A1 true WO2014177486A1 (de) 2014-11-06

Family

ID=48190322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/058538 WO2014177486A1 (de) 2013-04-29 2014-04-28 Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen in einer reaktorkaskade

Country Status (7)

Country Link
US (1) US9688650B2 (de)
EP (1) EP2991974B1 (de)
JP (1) JP6388916B2 (de)
CN (1) CN105164110B (de)
ES (1) ES2675360T3 (de)
MX (1) MX2015015148A (de)
WO (1) WO2014177486A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695142B2 (en) * 2013-04-29 2017-07-04 Basf Se Method for producing 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans, said method using recycling
CN103489934B (zh) * 2013-09-25 2016-03-02 晶澳(扬州)太阳能科技有限公司 一种双面透光的局部铝背场太阳能电池及其制备方法
MX362551B (es) 2014-01-17 2019-01-24 Basf Se Método para la producción de arilpropenos.
JP6549611B2 (ja) 2014-04-14 2019-07-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 匂いの品質が安定した2−置換4−ヒドロキシ−4−メチルテトラヒドロピランの製造
EP2865676A1 (de) 2014-04-14 2015-04-29 Basf Se Herstellung von 2-substituierten 4-Methyl-tetrahydropyranen aus 2-Alkyl-4,4-dimethyl-1,3-dioxan-haltigen Ausgangsstoffen
WO2015158585A1 (de) 2014-04-14 2015-10-22 Basf Se Herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen aus 2-alkyl-4,4-dimethyl-1,3-dioxan-haltigen ausgangsstoffen
CN109608426B (zh) * 2018-12-04 2020-11-24 万华化学集团股份有限公司 一种以生产柠檬醛的废液为原料合成铃兰吡喃的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133473A1 (de) * 2009-05-19 2010-11-25 Basf Se Verfahren zur herstellung von 2-substituierten tetrahydropyranolen
US20110295024A1 (en) * 2010-05-27 2011-12-01 Basf Se Process for the preparation of 2 substituted tetrahydropyranols

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU573483A1 (ru) * 1975-12-17 1977-09-25 Институт Органической Химии Ан Армянской Сср Способ получени тетрагидропиранолов
SU618374A1 (ru) * 1977-03-01 1978-08-05 Институт Органической Химии Ан Армянской Сср 4-Метил-2-(2,6-диметилгептадиен1,5-ил-1-)тетрагидропиранол-4 в качестве душистого вещества дл парфюмерных композиций
SU891669A1 (ru) * 1979-10-18 1981-12-23 Уфимский Нефтяной Институт Способ получени замещенных тетрагидропиранолов
DE4141222A1 (de) * 1991-12-13 1993-06-17 Basf Ag Verfahren zur herstellung von 4-hydroxymethyl- tetrahydropyranan
US20050004210A1 (en) 2003-07-04 2005-01-06 Kao Corporation Process for producing a pyran compound
US7064221B2 (en) 2003-09-17 2006-06-20 Kao Corporation Process for producing pyran
CN101432255B (zh) * 2006-04-28 2013-04-24 株式会社可乐丽 3-甲基-1,5-戊二醇的制备方法
JP4890107B2 (ja) * 2006-06-05 2012-03-07 株式会社クラレ 2−ヒドロキシ−4−メチルテトラヒドロピランの製造方法
EP2112144A1 (de) * 2008-04-22 2009-10-28 V. Mane Fils Neuartige Pyranderivate, ihre Zubereitung und Verwendung in der Parfümerie
CN103003258B (zh) 2010-06-10 2014-12-10 巴斯夫欧洲公司 制备和分离2-取代的四氢吡喃醇的方法
US9056812B2 (en) 2011-09-16 2015-06-16 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
US9073826B2 (en) 2011-11-29 2015-07-07 Basf Se Process for preparing and purifying salts of acrylamido-2-methylpropanesulfonic acid
US9139549B2 (en) 2012-10-15 2015-09-22 Basf Se Process for the integrated preparation of 2-substituted 4-hydroxy-4-methyltetrahydropyrans and of 2-substituted 4-Methyltetrahydropyrans
ES2607840T3 (es) 2012-10-15 2017-04-04 Basf Se Procedimiento para la producción integrada de 4-hidroxi-4-metil-tetrahidropiranos sustituidos en posición 2 y de 4-metil-tetrahidropiranos sustituidos en posición 2
US9340754B2 (en) 2012-11-27 2016-05-17 Basf Se Process for the preparation of cyclohexyl-substituted tertiary alkanols
US9295971B2 (en) 2013-01-11 2016-03-29 Basf Se Apparatus and process for the continuous reaction of liquids with gases
US20140200351A1 (en) 2013-01-11 2014-07-17 Basf Se Apparatus and process for the continuous reaction of liquids with gases
US9302237B2 (en) 2013-01-11 2016-04-05 Basf Se Apparatus and process for the continuous reaction of liquids with gases
US9695142B2 (en) * 2013-04-29 2017-07-04 Basf Se Method for producing 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans, said method using recycling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133473A1 (de) * 2009-05-19 2010-11-25 Basf Se Verfahren zur herstellung von 2-substituierten tetrahydropyranolen
US20110295024A1 (en) * 2010-05-27 2011-12-01 Basf Se Process for the preparation of 2 substituted tetrahydropyranols

Also Published As

Publication number Publication date
JP2016522185A (ja) 2016-07-28
MX2015015148A (es) 2016-08-11
CN105164110B (zh) 2019-01-22
US9688650B2 (en) 2017-06-27
JP6388916B2 (ja) 2018-09-12
EP2991974B1 (de) 2018-04-11
CN105164110A (zh) 2015-12-16
US20160068500A1 (en) 2016-03-10
EP2991974A1 (de) 2016-03-09
ES2675360T3 (es) 2018-07-10

Similar Documents

Publication Publication Date Title
EP2991974B1 (de) Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen in einer reaktorkaskade
EP2432773B1 (de) Verfahren zur Herstellung von 2-substituierten Tetrahydropyranolen
EP2991973B1 (de) Verfahren zur herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen mit rückführung
EP3131885B1 (de) Herstellung von 2-substituierten 4-methyl-tetrahydropyranen aus 2-alkyl-4,4-dimethyl-1,3-dioxan-haltigen ausgangsstoffen
EP0876316B1 (de) Verfahren zur herstellung von polyalkoholen
EP3131888B1 (de) Herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen aus 2-alkyl-4,4-dimethyl-1,3-dioxan-haltigen ausgangsstoffen
EP2576533B1 (de) Verfahren zur herstellung von in 2-stellung substituierten tetrahydropyranolen
EP2906545B1 (de) Verfahren zur integrierten herstellung von 2-substituierten 4-hydroxy-4-methyl-tetrahydropyranen und von 2-substituierten 4-methyl-tetrahydropyranen
EP3483151A1 (de) Tetrahydropyranylester als riechstoffe
EP3994120A1 (de) Verfahren zur herstellung von alkylmethacrylaten und optional methacrylsäure
EP1220824B1 (de) Kontinuierliches verfahren zur herstellung von zimtaldehyd- und dihydrozimtaldehydderivaten
DE69510152T2 (de) Verfahren zur Herstellung eines polyhydrischen Alkohols
WO2015086827A1 (de) Verfahren zur herstellung von adipinsäure oder wenigstens einem folgeprodukt davon
EP3908566B1 (de) Herstellung von 5-aryl-pentanolen
DE19781729C2 (de) Verfahren zur Herstellung von Monoestern von 1,3-Diolen
DE10359026A1 (de) Verfahren zur Herstellung von Tetrahydrogeranylaceton
EP2780308B1 (de) Verfahren zur gewinnung von di-trimethylolpropan und mit trimethylolpropan angereicherten produktströmen aus den nebenströmen der trimethylolpropanherstellung
EP0235532B1 (de) Verfahren zur Herstellung von 4-Monoacetalen des 2-Methyl-2-buten-1,4-dials
DE102004011543A1 (de) Verfahren zur Herstellung optisch aktiver Carbonylverbindungen
DE10121058A1 (de) Neues Verfahren zur Herstellung von ungesättigten Ketonen
EP2822921B1 (de) Verfahren zur wärmeintegration bei der hydrierung und destillation von c3-c20 aldehyden
DE1643402C3 (de) Verfahren zur Herstellung von 2,6-Diphenylphenol
EP0064180B1 (de) Verfahren zur Herstellung von 2,3-Dimethylbutan-2,3-diol
DE2937768C2 (de) Verfahren zur Herstellung von Diolen bzw. Triolen durch Hydroxylierung von Styrol und Styrolderivaten
DE69100847T2 (de) Verfahren zur Herstellung von 4,4&#39;-Dihydroxybiphenyl.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024075.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14720115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014720115

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14787285

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016511022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/015148

Country of ref document: MX