WO2014176932A1 - 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺 - Google Patents

油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺 Download PDF

Info

Publication number
WO2014176932A1
WO2014176932A1 PCT/CN2014/000459 CN2014000459W WO2014176932A1 WO 2014176932 A1 WO2014176932 A1 WO 2014176932A1 CN 2014000459 W CN2014000459 W CN 2014000459W WO 2014176932 A1 WO2014176932 A1 WO 2014176932A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
fracturing
gas
shale
well
Prior art date
Application number
PCT/CN2014/000459
Other languages
English (en)
French (fr)
Inventor
赵金岷
Original Assignee
吉林省众诚汽车服务连锁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省众诚汽车服务连锁有限公司 filed Critical 吉林省众诚汽车服务连锁有限公司
Priority to US14/787,732 priority Critical patent/US20160069170A1/en
Publication of WO2014176932A1 publication Critical patent/WO2014176932A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/114Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well

Definitions

  • the invention discloses a method and a process for extracting shale oil and gas by oil shale in-situ shaft fracturing chemical dry distillation, and extracting shale oil in situ by using oil shale underground, as an unconventional oil and gas energy supplementing insufficient petroleum resources, belonging to petroleum retorting Technical field.
  • oil shale can be used to refine natural oil by refining shale oil--artificial oil; it can also be used to generate electricity.
  • shale refining has good economic benefits and is the most practical and feasible measure to supplement the shortage of natural oil.
  • Oil shale power generation has better economic and environmental protection for coal-deficient provinces and districts.
  • Social benefits However, the traditional development model is to use underground mining and retorting to produce shale oil. The disadvantages are many:
  • the invention discloses an oil shale in-situ shaft fracturing chemical drying method and a process, which fundamentally solves the above disadvantages and problems caused by underground mining and above-ground retorting.
  • the invention discloses an oil shale in-situ shaft fracturing chemical dry distillation method for extracting shale oil and gas, and the technical solution thereof is as follows:
  • the fracturing combustion well and several outlets are drilled on the ground to the underground oil shale layer, and the production well is the fracturing combustion well as the central honeycomb layout; the fracturing chamber is established in the fracturing combustion well.
  • oil shale layer Fracturing the oil shale layer; injecting oil shale layer high pressure medium (air, water, quartz sand) into the fracturing combustion well, fracturing several 1 to 3 ram cracks in the oil shale layer, filling the gap support in the crack (quartz sand), establishes oil and gas passages; establishes a combustion chamber in the fracturing combustion well, injects combustible gas and combustion-supporting gas into the combustion chamber, ignites the combustible gas, and combusts the combustible gas at the bottom of the combustion chamber (combustible in the fuel shale) ()), the oil shale layer is heated to 55 ( ⁇ 600 ⁇ , to achieve oil shale heating and retorting, shale oil, gas; shale oil, gas through oil and gas channels and export production wells In the oil shale layer, the oxidation of the asphaltenes and fixed carbon remaining after the
  • the process for realizing the oil shale in-situ shaft fracturing chemical dry distillation extraction shale oil and gas method according to the present invention comprises the following steps:
  • the fracturing combustion well selects the location of the fracturing combustion well and the derived production well, drill the fracturing combustion well on the ground and derive the production well to the underground oil shale layer.
  • the drilling depth of the fracturing combustion well should be Without penetrating the oil shale layer, the derived production well shall be based on the penetrating oil shale layer, and the derived production well shall be in a honeycomb layout centered on the fracturing combustion well;
  • the hydraulic shale nozzle is used to hydraulically blast the oil shale layer, first pumping the base liquid (water) and the sand carrying liquid 2 (35% mortar is used for cutting stage, when the sand carrying liquid is about 250m from the nozzle, it is rapid Increase the pump speed to ensure sufficient pressure differential (55 OMPa) required to cut the perforation;
  • the spray is sprayed, and the sand is supported to support the fracture gap;
  • the oil shale layer is heated to 55 (T600 °C, and the measured gas temperature of the production well reaches 200 °C, the gas supply is stopped, and part of the shale oil and gas are extracted through the oil and gas channel.
  • the combustible gas separated by the gas-liquid separation device is sent to a gas power generation device for power generation.
  • the derivation is produced and has a honeycomb layout of six ports.
  • the high pressure medium is selected from the group consisting of: air, water or mortar.
  • the oxidizing agent is selected from the group consisting of: air or an oxygen-rich gas.
  • the hydraulic sleeve nozzle is mainly composed of an upper centralizer, a spray gun, a check valve, a lower centralizer, a sieve tube, and a boot shoe.
  • the surface of the spray gun is provided with a nozzle, and one end of the spray gun is connected to the sleeve through a short connection, and One end is connected to the screen through a one-way valve; the outer side of the short joint is provided with an upper centralizer; the screen wall of the screen is evenly distributed with a plurality of sieve holes, the lower centralizer is sleeved on the screen tube, and the shoe is fixed on the top of the screen tube .
  • the positive effects of the invention are: the in-situ extraction of shale oil from the oil shale underground, the chemical thermal strengthening treatment process of the oil and gas shale by fracturing, eliminating the large-scale exploitation of the oil shale mine and avoiding the ground.
  • Environmental pollution caused by dry distillation The second is to use the asphaltene and fixed carbon remaining after dry distillation to achieve continuous underground retorting and self-sufficiency of heat.
  • the third is the process of chemical heat strengthening treatment, not a single physical heat treatment process, nor a subsurface spontaneous combustion process. During the reaction process, the pores in the rock gradually increase, which is suitable for most oil shale formations.
  • the invention has the advantages of low investment, low operating cost, small environmental pollution, high resource utilization rate and quick effect of producing oil and gas.
  • FIG. 1 is a schematic diagram of a method for chemical drying of an oil shale in-situ shaft fracturing in the present invention
  • FIG. 2 is a schematic view showing the distribution structure of the shaft of the present invention.
  • Figure 3 is a schematic structural view of the hydraulic sleeve nozzle of the present invention.
  • the total reserves of Fuyu Yichang Changchunling oil shale resources was 45.274 billion tons.
  • the average grade of oil shale is 5. 53%, the total amount of resources for industrial development is 18 billion, the depth of buried is 160-800m, the roof and floor are gray-brown shale, and the average thickness of oil shale layer is 5ra.
  • the specific location of the fracturing combustion well and the derived production well are selected, and a fracturing combustion is performed with 1 (wellhead diameter 200mm) and six outlets to export production well 2 (parallel diameter) 200 hidden) through the underground rock formation 7 to the underground oil shale formation 6 (380 meters from the ground); as shown in Figure 2, the fractured combustion well 1 is located at the center, and the six exit production wells 2 are centered on the fractured combustion well 1 In a honeycomb shape; drilling and fracturing combustion wells on the ground and deriving the production wells to the underground oil shale formation, the drilling depth of the fracturing combustion wells shall be based on the non-penetrating oil shale formation, and the production wells shall be drilled to penetrate the oil sheets.
  • the formation is in the form of a honeycomb layout centered on the fractured combustion well.
  • the hydraulic shale nozzle 6 is used for hydraulic blasting perforation, and the base fluid (water) and the oil shale layer 6 are injected from the fracturing fluid tank 13 through the material conveyor 9 in the fracturing combustion well 1 Sand liquid (2 ( ⁇ 35% sand paddle) (cutting stage), when the sand carrying liquid is about 250m from the nozzle, the pump speed is quickly increased to ensure sufficient pressure difference (55 ⁇ 80MPa) required to cut the perforating hole.
  • the shale layer 6 is fractured out of the 1st and 3rd cracks 12,
  • the quartz sand is left to fill the gap support, and a plurality of oil and gas passages 8 are formed, and the plurality of oil and gas passages 8 are connected to the output production well 2; 8 injecting a liquid temporary plugging agent into the wellbore;
  • the first step is to wash the well and put the sand in the ground on the ground.
  • the wellhead is installed to the oil shale layer below 0. 5m sealed casing, and the expansion joint is used to close the gap between the casing and the well wall;
  • the third step is to install a combustible gas and air input conduit and an electronic ignition system in the well, and close a wellhead that forms a combustion chamber in the oil shale interval;
  • the LPG storage tank 14 and the oxidant tank 15 are fed with LPG and air from the fracturing combustion well 1 to the oil shale layer 6 through the material conveyor 9, and the igniting gas is ignited by the electronic ignition system;
  • the oil shale layer 6 is heated to 55 ( ⁇ 600 ⁇ , the measured production well 2 is brought to a temperature of 200'C, the gas supply is stopped, and some shale oil and gas are driven out.
  • the oil and gas channel 8 leads the production well 2 to the surface oil and gas separation device 3;
  • the oxidation energy generated by the oxidation of the asphaltenes and the fixed carbon contained in the oil shale layer 6 into the oil shale layer 6 is used as a heat source for the subsequent dry distillation, and the shale generated by the progressive dry distillation oil shale.
  • the high-pressure air (air: 1000m7 hours) is continuously injected into the fracturing combustion well 1 from the oxidant tank 15 through the material conveyor 9, so that the remaining asphaltenes and fixed carbon in the oil shale layer 6 after retorting are oxidized under high temperature conditions.
  • the reaction generates a new combustible gas (while driving the shale oil and gas), and then the oil and gas channel 8 leads the ground to the gas-liquid separation device 3 by deriving the production well 2, thereby realizing underground in-situ extraction of shale oil and gas;
  • the combustible gas separated by the gas-liquid separation device 3 is sent to the gas power generating device 5 through the discharge machine 10 for power generation.
  • the total area of the mining area is 675. 5km2, the total resources are 6.172 billion tons, the developable resources are 4.94 billion tons, the average grade of oil shale is 5%, and the buried depth is 160-800m.
  • the top and bottom plates are taupe shale, and the oil shale layer has an average thickness of 6m.
  • the specific location of the fracturing combustion well and the derived production well are selected, and a fracturing combustion well 1 (wellhead diameter of 200 let) and six outlets of production well 2 (wellhead) are taken. 200mm in diameter) From the lower strata 7 to the underground oil shale formation 6 (380 m from the ground); as shown in Figure 2, the fracturing combustion well 1 is located at the center, and the six outlet production wells 2 are honeycomb-shaped with the fracturing combustion well 1 as the center. Drilling and fracturing combustion wells on the ground and deriving production wells to the underground oil shale formation.
  • the drilling depth of the fracturing combustion wells shall be based on the non-penetrating oil shale formation.
  • the production wells shall be guided by the penetrating oil shale formation.
  • the derived production well is in a honeycomb layout centered on the fractured combustion well.
  • the hydraulic shale layer 6 is hydraulically blasted by the hydraulic casing nozzle, and the base fluid (water) and sand carrying are injected into the oil shale layer 6 from the fracturing fluid tank 13 through the material conveyor 9 in the fracturing combustion well 1 Liquid (2 ( ⁇ 35% mortar) (cutting stage), when the sand carrying liquid is about 250m from the nozzle, the pump speed is quickly increased to ensure sufficient pressure difference (55 80MPa) required to cut the perforation. Fracturing 1 to 3 mm crack 12;
  • the quartz sand is left to fill the gap support, and a plurality of oil and gas passages are formed, and a plurality of oil and gas passages 8 are connected to the output production well 2;
  • the first step is to wash the well and put the sand in the well on the ground.
  • the wellhead is installed to the oil shale layer below 0. 5m sealed casing, and the expansion joint is used to close the gap between the casing and the well wall;
  • the third step is to install a combustible gas and air input conduit and an electronic ignition system in the well, and close a wellhead that forms a combustion chamber in the oil shale interval;
  • the LPG storage tank 14 and the oxidant tank 15 are passed from the fracturing combustion well 1 to the oil shale through the material conveyor 9.
  • Layer 6 is added to the LPG and air to ignite the combustible gas using an electronic ignition system;
  • the oil shale layer 6 is heated to 55 (T600 ° C, and the measured production well 2 is measured to reach a temperature of 200 ° C, the gas supply is stopped, and part of the shale oil is removed.
  • the gas leads the production well 2 to the surface oil and gas separation device 3 through the oil and gas passage 8;
  • the oxidation energy generated by the oxidation of the asphaltenes and the fixed carbon contained in the oil shale layer 6 into the oil shale layer 6 is used as a heat source for the subsequent retorting, and the progressive oil refining oil shale, the generated page Rock oil, gas passage
  • the high-pressure air (air: lOOOtnV hours) is continuously injected into the fracturing combustion well 1 from the oxidant tank 15 through the material conveyor 9, so that the remaining asphaltenes and fixed carbon in the oil shale layer 6 after retorting are oxidized under high temperature conditions.
  • the reaction generates a new combustible gas (while driving the shale oil and gas), and then the oil and gas channel 8 leads the ground to the gas-liquid separation device 3 by deriving the production well 2, thereby realizing underground in-situ extraction of shale oil and gas;
  • the shale oil and gas extracted from the ground are separated by the surface gas-liquid separation device 3, and the separated shale oil is sent to the product oil tank 4 through the oil pump 11 for storage and sale.
  • the combustible gas separated by the gas-liquid separation device 3 is sent to the gas power generating device 5 through the discharge machine 10 for power generation.
  • the hydraulic sleeve nozzles according to Embodiments 1 to 2 are mainly composed of an upper centralizer 16, a spray gun 17, a check valve 19, a lower centralizer 20, a screen 22, a shoe 23, a sleeve 23, and a short
  • the composition of the nozzle 24 is provided, wherein the surface of the spray gun 17 is provided with a nozzle 18, one end of the spray gun 17 communicates with the sleeve 23 through the short joint 24, and the other end communicates with the screen 21 through the one-way valve 19; the outer sleeve of the short joint 24 is sleeved
  • the centralizer 16 has a plurality of sieve holes distributed on the wall of the screen 21, the lower centralizer 20 is sleeved on the screen 21, and the shoe 22 is fixed on the top of the screen 21.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺,通过向地下油页岩层(6)打钻竖井(1),并向油页岩层注入高压介质,以此井为中心将油页岩层压裂出1-3mm裂缝,填充缝隙支撑物,建立起油气通道(8)。再向油页岩层加入加热装置,给油页岩层加温至550°C,初始干馏油页岩,驱提页岩油气,页岩油气通过油气通道导出地面。之后通入氧化剂与油页岩层干馏后所含的沥青质和固定碳发生氧化反应,产生的热能作为后续干馏之热源,实现地下原位提取页岩油。解决了当前地上干馏开采成本大、尾渣处理难、环保问题多、土地占用量大等问题。

Description

油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺 技术领域
本发明公开一种油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺,利用油 页岩地下原位提取页岩油, 作为补充石油资源不足的非常规油气能源, 属于石油干馏技 术领域。
技术背景
目前, 油页岩可通过干馏技术炼制页岩油 -一-人造石油, 来替补天然石油; 亦可利 用其燃烧发电。 在当前油价居高不下形势下, 页岩炼油具有良好的经济效益, 是补充天 然石油不足的最现实可用的一大措施; 油页岩发电, 对缺煤省、 区更具有良好的经济、 环保、 社会效益。 但是, 传统的开发模式都是采取地下开采, 地上干馏生产页岩油, 其 缺点很多:
( 1 ) 地上干馏采掘成本大;
(2) 地上干馏土地占用量大;
(3) 地上干馏造成幵采区大量的土地塌陷;
( 4 ) 地上干馏后的残渣处理难度大, 大量堆积造成二次污染;
(5) 地上干馏后残渣带走大量热量, 残渣的热能不能利用, 造成能源浪费;
(6) 地上干镏产生的废气、 污水对环境污染超标。
发明内容
本发明公开了油页岩原位竖井压裂化学干镏方法及工艺, 从根本上解决了地下开 采、 地上干馏所带来的上述缺点和问题。
本发明公开的油页岩原位竖井压裂化学干馏提取页岩油气的方法,其技术解决方案 如下:
根据油页岩层情况, 在地面上打钻压裂燃烧井和数口导出生产井至地下油页岩层, 导出生产井为压裂燃烧井为中心蜂窝形布局; 在压裂燃烧井中建立压裂室, 对油页岩层 进行压裂; 在压裂燃烧井中注入油页岩层高压介质 (空气、 水、 石英砂), 在油页岩层 中压裂出若干条 1一 3ram的裂缝, 裂缝中填充缝隙支撑物 (石英砂), 建立起油气通道; 在压裂燃烧井中建立燃烧室, 向燃烧室注入可燃气体和助燃气体, 点燃可燃气体使可燃 气体在燃烧室底部进行燃烧 (引燃油页岩中的可燃物), 将油页岩层加温至 55(Γ600Ό, 实现油页岩加热干馏, 驱提页岩油、 气; 页岩油、 气通过油气通道及导出生产井导出地 面; 在油页岩层中, 通过竖井通入氧化剂与油页岩干馏后所剩的沥青质和固定碳发生氧 化反应, 产生的热能作为后续干馏之热源, 实现油页岩地下原位连续干馏提取页岩油、 气; 导出地面的页岩油、 气经过地面气液分离装置分离, 分离的页岩油送至成品油罐存 储销售; 可燃气送至燃气发电装置用来发电。
实现本发明所述油页岩原位竖井压裂化学干馏提取页岩油气方法的工艺, 包括以 下步骤:
1 ) 根据油页岩层分布、 走向, 选定压裂燃烧井和导出生产井具体位置, 在地面上 打钻压裂燃烧井和导出生产井至地下油页岩层,压裂燃烧井钻井深度应以不穿透油页岩 层为准, 导出生产井应以穿透油页岩层为准, 所述的导出生产井以压裂燃烧井为中心的 呈蜂窝形布局;
2 )在压裂燃烧井中建立压裂室, 取出钻井套管, 通过压裂燃烧井向油页岩层注入 高压介质, 将油页岩层压裂出若干条 1一 3膽的裂缝, 填充缝隙支撑物石英砂, 建立起 油气通道, 具体步骤如下:
①通井和洗井;
②向井筒内下入水力套管喷头;
③封闭套管与岩壁空隙, 使油页岩层形成封闭的压裂空间;
④采用水力套管喷头对油页岩层进行水力喷砂射孔, 先泵入基液(水)和携砂液 2(Γ35%的砂浆进行切割阶段, 当携砂液距喷嘴 250m左右时, 迅速提升泵速以确保获得 切割射孔所需的足够的压差 (55 OMPa) ;
⑤在喷砂射孔 2- 3min后, 将喷孔碎岩顶替;
⑥再泵入交联胍胶和砂 (比例 2(Γ30 : 4(Γ60 ) 以增加膨胀力度;
⑦压后放喷, 冲砂支撑压裂缝隙;
⑧向井筒内注入液体暂堵剂;
⑨上提钻具, 上提钻具至设计位置, 压裂下一层, 重复③〜⑥步。
3 )在压裂燃烧井建立燃烧室,
①洗井, 将压裂燃烧井内的砂水提出地面,
②压裂燃烧井口加装至油页岩层下 0. 5m密封套管, 利用膨胀剂封闭套管与井壁空 隙;
③在压裂燃烧井内加装可燃气和空气输入导管和电子点火系统, 封闭井口, 在油页 岩层段形成燃烧室; ④通过可燃气输送管向燃烧室输送 LPG和空气; 利用电子点火系统点燃可燃气;
⑤引燃油页岩后,给油页岩层加温至 55(T600°C ,测得导出生产井来气温度达到 200 °C,停止供可燃气,驱提部分页岩油、气通过油气通道导出生产井至地面油气分离装置;
4 ) 继续向井内注入高压空气, 使油页岩层中干馏后剩余的沥青质和固定碳发生氧 化反应, 在高温条件下进行氧化反应, 产生新的可燃气体 (同时驱提页岩油、 气)通过 油气通道及导出生产井导出地面;
5 ) 导出地面的页岩油、 气经过地面气液分离装置分离, 分离下来的页岩油送至成 品油罐存储销售;
6 ) 经气液分离装置分离下来的可燃气体送至燃气发电装置用来发电。
所述的导出生产并为六口呈蜂窝形布局。
所述的高压介质选自: 空气、 水或砂浆。
所述的氧化剂选自: 空气或富氧气体。
所述的水力套管喷头, 主要由上扶正器、 喷枪、 单向阀、 下扶正器、 筛管、 引鞋组 成, 喷枪的表面设有喷嘴, 喷枪的一端通过短接与套管连通, 另一端通过单向阀与筛管 连通; 短接的外侧套有上扶正器; 筛管的管壁上均匀分布有若干筛孔, 下扶正器套在筛 管上, 引鞋固定在筛管的顶部。
本发明的积极效果在于: 利用油页岩地下原位提取页岩油, 通过压裂化学千馏页岩 油气的化学热强化处理过程, 免去了对油页岩矿的大量开采、 避免了地上干馏带来的环 境污染。二是利用干馏后剩余的沥青质、固定碳, 实现了地下连续干馏, 热量自给自足。 三是化学热强化处理的过程,不是单一的物理加热处理过程,也不是地下自燃处理过程, 在反应过程中岩石内孔隙逐步增大, 其适用于多数油页岩地层。 本发明具有投资少、 运 营成本低、 环境污染小、 资源利用率高和产油产气见效快等优点。
附图说明
图 1为本发明油页岩原位竖井压裂化学干镏方法原理图;
图 2本本发明竖井分布结构示意图;
图 3为本发明水力套管喷头结构原理图;
图中: 1、 压裂燃烧井; 2、 导出生产井; 3、 气液分离装置; 4、 成品油罐; 5、 燃 气发电装置; 6、 油页岩层; 7、 其他岩层; 8、 油气通道; 9、 物料输送机; 10排送机; 11、 抽油泵; 12、 裂缝; 13、 压裂液罐; 14、 LPG储存罐; 15、 氧化剂罐; 16、 上扶正 器; 17、 喷枪; 18、 喷嘴; 19、 单向阀; 20、 下扶正器; 21、 筛管; 22、 引鞋; 23、 套 管; 24、 短接。
具体实施方式
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果, 旨在帮助阅读 者更好地理解本发明的实质和特点, 不作为对本案可实施范围的限定。
实施例 1
结合扶余一长春岭油页岩矿作为实施基地, 扶余一一长春岭油页岩资源总储量为 452. 74亿吨。油页岩平均品位 5. 53%,可工业开发的资源总量为 180亿,埋深 160— 800m, 顶板和底板均为灰褐色页岩, 油页岩层平均厚度 5ra。
如附图 1所示,根据油页岩层分布、走向,选定压裂燃烧井和导出生产井具体位置, 打一口压裂燃烧并 1 (井口直径 200mm)和六口导出生产井 2 (并口直径 200隱)通过地 下岩层 7至地下油页岩层 6中 (距地面 380米); 结合附图 2所示, 压裂燃烧井 1位于 中心, 六口导出生产井 2以压裂燃烧井 1为中心呈蜂窝形分布; 在地面上打钻压裂燃烧 井和导出生产井至地下油页岩层, 压裂燃烧井钻井深度应以不穿透油页岩层为准, 导出 生产井应以穿透油页岩层为准, 所述的导出生产井以压裂燃烧井为中心的呈蜂窝形布 局。
2 ) 在压裂燃烧井中建立压裂室, 取出钻井套管, 通过压裂燃烧井向油页岩层注入 高压介质, 将油页岩层压裂出若干条 1一 3隱的裂缝, 填充缝隙支撑物石英砂, 建立起 油气通道, 具体步骤如下-
①通井和洗井;
②向井筒内下入水力套管喷头;
③封闭套管与岩壁空隙, 使油页岩层形成封闭的压裂空间;
④釆用水力套管喷头对油页岩层 6进行水力喷砂射孔,在压裂燃烧井 1中通过物料 输送机 9由压裂液罐 13向油页岩层 6注入基液(水)和携砂液(2(Γ35%的砂桨)(切割阶 段), 当携砂液距喷嘴 250m左右时, 迅速提升泵速以确保获得切割射孔所需的足够的压 差 (55〜80MPa) 将油页岩层 6压裂出 1一 3画裂缝 12,
⑤在喷砂射孔 2-3min后, 将喷空碎岩顶替;
⑥按照设计环空排量或环空最高压力所允许的最高泵速由环空泵入胍胶基液,按照 设计由油管的泵入交联胍胶和砂 (增加膨胀力度);
⑦压后放喷, 剩下石英砂成为填充缝隙支撑物, 形成多条油气通道 8, 多条油气通 道 8与导出生产井 2汇集连通; ⑧向井筒内注入液体暂堵剂;
(D上提钻具, 上提钻具至设计位置, 继续进行上层压裂过程重复压裂, 直至油页 岩层全部压裂完全。
3 ) 在压裂燃烧井建立燃烧室,
第一步, 洗井, 将并内的砂水提出地面,
第二步, 井口加装至油页岩层下 0. 5m密封套管, 利用膨胀剂封闭套管与井壁空隙; 第三步, 在井内加装可燃气和空气输入导管和电子点火系统, 封闭井口, 在油页岩 层段形成燃烧室;
第四步, LPG储存罐 14和氧化剂罐 15通过物料输送机 9由压裂燃烧井 1向油页岩 层 6加入 LPG和空气, 利用电子点火系统点燃可燃气;
第六步, 引燃油页岩后, 给油页岩层 6加温至 55(Γ600Γ, 测得导出生产井 2来气 温度达到 200'C, 停止供可燃气, 驱提部分页岩油、 气通过油气通道 8导出生产井 2至 地面油气分离装置 3;
通过向油页岩层 6中通入氧化剂与油页岩干馏后所含的沥青质和固定碳发生氧化反 应, 产生的热能作为后续干馏之热源, 递进式干馏后期油页岩, 生成的页岩油、 气通过
4 ) 通过物料输送机 9由氧化剂罐 15继续向压裂燃烧井 1内注入高压空气 (空气: 1000m7小时), 使油页岩层 6中干馏后剩余的沥青质和固定碳在高温条件下进行氧化反 应, 产生新的可燃气体 (同时驱提页岩油、 气), 再由油气通道 8通过导出生产井 2导 出地面进入到气液分离装置 3, 实现地下原位提取页岩油、 气;
5 ) 导出地面的页岩油、 气经过地面气液分离装置 3分离, 分离下来的页岩油通过 抽油泵 11送至成品油罐 4存储销售。
6 )经气液分离装置 3分离下来的可燃气体通过排送机 10送至燃气发电装置 5用来 发电。
实施例 2
结合前郭油页岩矿作为实施基地, 矿区总面积 675. 5km2 , 总资源量 61. 72亿吨, 可 开发资源量 49. 4亿吨, 油页岩平均品位 5%, 埋深 160— 800m, 顶板和底板均为灰褐色 页岩, 油页岩层平均厚度 6m。
如附图 1所示,根据油页岩层分布、走向,选定压裂燃烧井和导出生产井具体位置, 打一口压裂燃烧井 1 (井口直径 200讓)和六口导出生产井 2 (井口直径 200mm)通过地 下岩层 7至地下油页岩层 6中 (距地面 380米); 结合附图 2所示, 压裂燃烧井 1位于 中心, 六口导出生产井 2以压裂燃烧井 1为中心呈蜂窝形分布; 在地面上打钻压裂燃烧 井和导出生产井至地下油页岩层, 压裂燃烧井钻井深度应以不穿透油页岩层为准, 导出 生产井应以穿透油页岩层为准, 所述的导出生产井以压裂燃烧井为中心的呈蜂窝形布 局。
2 ) 在压裂燃烧井中建立压裂室, 取出钻井套管, 通过压裂燃烧井向油页岩层注入 高压介质, 将油页岩层压裂出若干条 1一 3画的裂缝, 填充缝隙支撑物石英砂, 建立起 油气通道, 具体步骤如下:
①通井和洗井;
②向井筒内下入水力套管喷头;
③封闭套管与岩壁空隙, 使油页岩层形成封闭的压裂空间;
④采用水力套管喷头对油页岩层 6进行水力喷砂射孔,在压裂燃烧井 1中通过物料 输送机 9由压裂液罐 13向油页岩层 6注入基液 (水)和携砂液(2(Γ35%的砂浆)(切割阶 段), 当携砂液距喷嘴 250m左右时, 迅速提升泵速以确保获得切割射孔所需的足够的压 差 (55 80MPa ) 将油页岩层 6压裂出 1一 3mm裂缝 12 ;
⑤在喷砂射孔 2- 3min后, 将喷空碎岩顶替;
⑥按照设计环空排量或环空最高压力所允许的最高泵速由环空泵入胍胶基液,按照 设计由油管的泵入交联胍胶和砂 (增加膨胀力度);
⑦压后放喷, 剩下石英砂成为填充缝隙支撑物, 形成多条油气通道 8, 多条油气通 道 8与导出生产井 2汇集连通;
⑧向井筒内注入液体暂堵剂;
(D上提钻具, 上提钻具至设计位置, 继续进行上层压裂过程重复压裂, 直至油页 岩层全部压裂完全。
3 ) 在压裂燃烧井建立燃烧室,
第一步, 洗井, 将井内的砂水提出地面,
第二步, 井口加装至油页岩层下 0. 5m密封套管, 利用膨胀剂封闭套管与井壁空隙; 第三步, 在井内加装可燃气和空气输入导管和电子点火系统, 封闭井口, 在油页岩 层段形成燃烧室;
第四步, LPG储存罐 14和氧化剂罐 15通过物料输送机 9由压裂燃烧井 1向油页岩 层 6加入 LPG和空气, 利用电子点火系统点燃可燃气;
第六步, 引燃油页岩后, 给油页岩层 6加温至 55(T600°C, 测得导出生产井 2来气 温度达到 200°C, 停止供可燃气, 驱提部分页岩油、 气通过油气通道 8导出生产井 2至 地面油气分离装置 3;
通过向油页岩层 6中通入氧化剂与油页岩干镏后所含的沥青质和固定碳发生氧化反 应, 产生的热能作为后续干馏之热源, 递进式干馏后期油页岩, 生成的页岩油、 气通过
4 )通过物料输送机 9由氧化剂罐 15继续向压裂燃烧井 1内注入高压空气 (空气: lOOOtnV小时), 使油页岩层 6中干馏后剩余的沥青质和固定碳在高温条件下进行氧化反 应, 产生新的可燃气体 (同时驱提页岩油、 气), 再由油气通道 8通过导出生产井 2导 出地面进入到气液分离装置 3, 实现地下原位提取页岩油、 气;
导出地面的页岩油、 气经过地面气液分离装置 3分离, 分离下来的页岩油通过抽油 泵 11送至成品油罐 4存储销售。
经气液分离装置 3分离下来的可燃气体通过排送机 10送至燃气发电装置 5用来发 电。
实施例 3
根据图 3, 实施例 1〜2涉及的水力套管喷头, 主要是由上扶正器 16、 喷枪 17、 单向 阀 19、 下扶正器 20、 筛管 22、 引鞋 23、 套管 23、 短接 24组成, 其中, 喷枪 17的表面 设有喷嘴 18,喷枪 17的一端通过短接 24与套管 23连通,另一端通过单向阀 19与筛管 21连通; 短接 24的外侧套有上扶正器 16; 筛管 21的管壁上均勾分布有若干筛孔, 下 扶正器 20套在筛管 21上, 引鞋 22固定在筛管 21的顶部。

Claims

1、 一种油页岩原位竖井压裂化学千馏提取页岩油气的方法, 其特征在于: 根据油页岩层情况,在地面上打钻压裂燃烧井和数口导出生产井至地下油页岩层, 导出生产井为压裂燃烧井为中心蜂窝形布局; 在压裂燃烧井中建立压裂室, 对油页岩 层进行压裂; 在压裂燃烧井中注入油页岩层高压介质(空气、 水、 石英砂), 在油页岩 层中压裂出若干条 l~3mm的裂缝, 裂缝中填充缝隙支撑物 (石英砂), 建立起油气通 道; 在压裂燃烧井中建立燃烧室, 向燃烧室注入可燃气体和助燃气体, 点燃可燃气体 使可燃气体在燃烧室底部进行燃烧 (引燃油页岩中的可燃物), 将油页岩层加温至 550-600 °C , 实现油页岩加热干馏, 驱提页岩油、 气; 页岩油、 气通过油气通道及导出 生产井导出地面; 在油页岩层中, 通过竖井通入氧化剂与油页岩干馏后所剩的沥青质 和固定碳发生氧化反应, 产生的热能作为后续干镏之热源, 实现油页岩地下原位连续 干馏提取页岩油、 气; 导出地面的页岩油、 气经过地面气液分离装置分离, 分离的页 岩油送至成品油罐存储销售; 可燃气送至燃气发电装置用来发电。
2、 实现权利要求 1所述油页岩原位竖井压裂化学干馏提取页岩油气方法的工艺, 包括以下步骤:
1 )根据油页岩层分布、 走向, 选定压裂燃烧井和导出生产井具体位置, 在地面上 打钻压裂燃烧井和导出生产井至地下油页岩层, 压裂燃烧井钻井深度应以不穿透油页 岩层为准, 导出生产井应以穿透油页岩层为准, 所述的导出生产井以压裂燃烧井为中 心的呈蜂窝形布局;
2)在压裂燃烧井中建立压裂室, 取出钻井套管, 通过压裂燃烧井向油页岩层注入 高压介质, 将油页岩层压裂出若干条 l~3mm的裂缝, 填充缝隙支撑物石英砂, 建立起 油气通道, 具体步骤如下-
①通井和洗井;
②向井筒内下入水力套管喷头;
③封闭套管与岩壁空隙, 使油页岩层形成封闭的压裂空间;
④采用水力套管喷头对油页岩层进行水力喷砂射孔, 先泵入基液 (水)和携砂液 20~35%的砂浆进行切割阶段, 当携砂液距喷嘴 250m左右时, 迅速提升泵速以确保获 得切割射孔所需的足够的压差 (55~80MPa);
⑤在喷砂射孔 2-3min后, 将喷孔碎岩顶替;
⑥再泵入交联胍胶和砂 (比例 20〜30:40~60) 以增加膨胀力度; ⑦压后放喷, 冲砂支撑压裂缝隙;
⑧向井筒内注入液体暂堵剂;
⑨上提钻具, 上提钻具至设计位置, 压裂下一层, 重复③〜⑥步。
3 ) 在压裂燃烧井建立燃烧室,
①洗井, 将压裂燃烧井内的砂水提出地面,
②压裂燃烧井口加装至油页岩层下 0.5m密封套管,利用膨胀剂封闭套管与井壁空 隙;
③在压裂燃烧井内加装可燃气和空气输入导管和电子点火系统, 封闭并口, 在油 页岩层段形成燃烧室;
④通过可燃气输送管向燃烧室输送 LPG和空气; 利用电子点火系统点燃可燃气;
⑤引燃油页岩后, 给油页岩层加温至 550〜600°C , 测得导出生产井来气温度达到 200°C, 停止供可燃气, 驱提部分页岩油、 气通过油气通道导出生产井至地面油气分离 装置;
4)继续向井内注入高压空气, 使油页岩层中千馏后剩余的沥青质和固定碳发生氧 化反应, 在高温条件下进行氧化反应, 产生新的可燃气体, 同时驱提页岩油、 气, 通 过油气通道及导出生产井将它们导出地面;
5 )导出地面的页岩油、 气经过地面气液分离装置分离, 分离下来的页岩油送至成 品油罐存储;
6) 经气液分离装置分离下来的可燃气体送至燃气发电装置用来发电。
3、 一种水力套管喷头, 其特征在于: 由上扶正器、 喷枪、 单向阀、 下扶正器、 筛 管、 引鞋组成, 喷枪的表面设有喷嘴, 喷枪的一端通过短接与套管连通, 另一端通过 单向阀与筛管连通; 短接的外侧套有上扶正器; 筛管的管壁上均匀分布有若干筛孔, 下扶正器套在筛管上, 引鞋固定在筛管的顶部。
PCT/CN2014/000459 2013-04-28 2014-05-04 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺 WO2014176932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/787,732 US20160069170A1 (en) 2013-04-28 2014-05-04 Method and process for extracting shale oil and gas by fracturing and chemical retorting in oil shale in-situ vertical well

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310152533.7A CN103232852B (zh) 2013-04-28 2013-04-28 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN201310152533.7 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176932A1 true WO2014176932A1 (zh) 2014-11-06

Family

ID=48880924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000459 WO2014176932A1 (zh) 2013-04-28 2014-05-04 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺

Country Status (3)

Country Link
US (1) US20160069170A1 (zh)
CN (1) CN103232852B (zh)
WO (1) WO2014176932A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854219A (zh) * 2019-02-14 2019-06-07 赵金岷 油页岩对流原位开采循环加热系统及开采方法
CN111022021A (zh) * 2020-01-02 2020-04-17 吉林大学 一种应对油页岩地层热膨胀特性的油页岩原位加热方法
CN115012891A (zh) * 2022-06-23 2022-09-06 赵金岷 基于多米诺骨牌效应的原位开采油页岩方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233713B (zh) 2013-04-28 2014-02-26 吉林省众诚汽车服务连锁有限公司 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN103232852B (zh) * 2013-04-28 2014-03-26 吉林省众诚汽车服务连锁有限公司 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN106285597B (zh) * 2015-05-27 2019-06-18 中国石油化工股份有限公司 油页岩原位采油方法
CN106285596A (zh) * 2015-05-27 2017-01-04 中国石油化工股份有限公司 油页岩原位采油方法
CN107060716B (zh) * 2017-06-14 2023-02-07 长春工程学院 一种油页岩地下原位喷射劈裂施工装置及施工工艺
CN107420077A (zh) * 2017-09-06 2017-12-01 中国矿业大学(北京) 一种基于高能co2流体压裂的页岩油开采方法和装置
CN107829744B (zh) * 2017-09-26 2019-12-10 中国石油天然气股份有限公司 桩基式试验井的建设方法
CN107564395B (zh) * 2017-09-26 2019-12-10 中国石油天然气股份有限公司 模拟实验井
CN107474868B (zh) * 2017-09-29 2023-06-27 新疆国利衡清洁能源科技有限公司 油页岩地下制油系统及其制油方法
CN107764718A (zh) * 2017-11-14 2018-03-06 北京科技大学 裂缝性页岩气水两相流动裂缝导流能力评价装置及方法
CN110541695A (zh) * 2019-09-05 2019-12-06 西安科技大学 一种过热水蒸汽原位热解富油煤高效提油方法
CN112196506B (zh) * 2020-09-26 2022-12-09 陕西省煤田地质集团有限公司 一种煤层原位热解方法
CN114439436A (zh) * 2020-11-04 2022-05-06 中国石油天然气股份有限公司 油页岩注氮气热采系统
CN113447516B (zh) * 2021-06-19 2024-03-19 辽宁石油化工大学 一种水化泥页岩热破碎的实验研究方法
CN113374460B (zh) * 2021-06-23 2022-09-02 沈阳化工大学 自热式地下干馏油页岩提取页岩油和高热值燃料气的方法
CN114718539B (zh) * 2022-05-12 2024-01-02 中国石油大学(华东) 一种多轮次甲烷层内原位燃爆压裂方法
CN115095306B (zh) * 2022-06-14 2024-04-30 长江大学 油页岩空气/co2交替注入原位燃烧方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887160A (en) * 1955-08-01 1959-05-19 California Research Corp Apparatus for well stimulation by gas-air burners
CN101558216A (zh) * 2006-10-13 2009-10-14 埃克森美孚上游研究公司 使用水力压裂生产井、通过原位加热增强页岩油生产
CN201367892Y (zh) * 2009-02-16 2009-12-23 中国石油集团川庆钻探工程有限公司井下作业公司 油气井井下水力喷射压裂酸化工具管柱结构
CN102425399A (zh) * 2011-12-29 2012-04-25 新奥气化采煤有限公司 油页岩开采方法
CN103232852A (zh) * 2013-04-28 2013-08-07 吉林省众诚汽车服务连锁有限公司 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN103233713A (zh) * 2013-04-28 2013-08-07 吉林省众诚汽车服务连锁有限公司 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN203499664U (zh) * 2013-04-28 2014-03-26 吉林省众诚汽车服务连锁有限公司 一种用于油页岩原位竖井压裂化学干馏提取页岩油气装置
CN203499663U (zh) * 2013-04-28 2014-03-26 吉林省众诚汽车服务连锁有限公司 用于油页岩原位水平井压裂化学干馏提取页岩油气的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122225A (zh) * 2007-07-05 2008-02-13 尤尼斯油气技术(中国)有限公司 一种用于立井注汽水平井采油的火驱采油方法
WO2009100518A1 (en) * 2008-02-13 2009-08-20 Archon Technologies Ltd. A modified process for hydrocarbon recovery using in situ combustion
CN101864935B (zh) * 2010-03-23 2013-08-28 邓惠荣 堵油层裂缝改造油层进行二氧化碳复合多项驱的技术
CN103080469B (zh) * 2010-05-12 2015-11-25 普拉德研究及开发股份有限公司 以用于增强裂缝网连通性的应力卸荷进行非常规气藏模拟的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2887160A (en) * 1955-08-01 1959-05-19 California Research Corp Apparatus for well stimulation by gas-air burners
CN101558216A (zh) * 2006-10-13 2009-10-14 埃克森美孚上游研究公司 使用水力压裂生产井、通过原位加热增强页岩油生产
CN201367892Y (zh) * 2009-02-16 2009-12-23 中国石油集团川庆钻探工程有限公司井下作业公司 油气井井下水力喷射压裂酸化工具管柱结构
CN102425399A (zh) * 2011-12-29 2012-04-25 新奥气化采煤有限公司 油页岩开采方法
CN103232852A (zh) * 2013-04-28 2013-08-07 吉林省众诚汽车服务连锁有限公司 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN103233713A (zh) * 2013-04-28 2013-08-07 吉林省众诚汽车服务连锁有限公司 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN203499664U (zh) * 2013-04-28 2014-03-26 吉林省众诚汽车服务连锁有限公司 一种用于油页岩原位竖井压裂化学干馏提取页岩油气装置
CN203499663U (zh) * 2013-04-28 2014-03-26 吉林省众诚汽车服务连锁有限公司 用于油页岩原位水平井压裂化学干馏提取页岩油气的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854219A (zh) * 2019-02-14 2019-06-07 赵金岷 油页岩对流原位开采循环加热系统及开采方法
CN109854219B (zh) * 2019-02-14 2023-12-12 赵金岷 油页岩对流原位开采循环加热系统及开采方法
CN111022021A (zh) * 2020-01-02 2020-04-17 吉林大学 一种应对油页岩地层热膨胀特性的油页岩原位加热方法
CN115012891A (zh) * 2022-06-23 2022-09-06 赵金岷 基于多米诺骨牌效应的原位开采油页岩方法
CN115012891B (zh) * 2022-06-23 2024-03-22 赵金岷 基于多米诺骨牌效应的原位开采油页岩方法

Also Published As

Publication number Publication date
US20160069170A1 (en) 2016-03-10
CN103232852B (zh) 2014-03-26
CN103232852A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2014176932A1 (zh) 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
WO2014176933A1 (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN103696747B (zh) 一种油页岩原位提取页岩油气的方法
CN102477857B (zh) 一种煤炭地下气化贯通方法
CN103790563B (zh) 一种油页岩原位局部化学法提取页岩油气的方法
RU2263774C2 (ru) Способ получения углеводородов из богатой органическими соединениями породы
CN103790516B (zh) 一种利用热力射流高效破岩的钻井方法
CN108756839B (zh) 油页岩隔热增效原位转化方法及系统
WO2014044192A1 (zh) 一种煤层气与煤共采方法
RU2539048C2 (ru) Способ добычи нефти при помощи внутрипластового горения (варианты)
CN110644963B (zh) 一种基于多分支井开采水合物的方法
CN102230372A (zh) 一种稠油井多元热流体热采工艺
CN203499663U (zh) 用于油页岩原位水平井压裂化学干馏提取页岩油气的装置
CN103670357A (zh) 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法
CN104196507A (zh) 一种火驱吞吐与火驱联动开采稠油的方法
CN109736762A (zh) 一种油页岩原位催化氧化法提取页岩油气的方法
CN106223910B (zh) 向油藏注空气、富氧油裂解加电磁波增温空气驱采油方法
CN104265258A (zh) 一种压裂辅助火烧油层吞吐开采稠油的方法
RU2322586C2 (ru) Способ извлечения метана из пластов угольных месторождений
CN114412433A (zh) 一种基于取热发电的深部煤炭原位流态化开采方法
CN109707356B (zh) 一种油页岩原位开采井下点火加热装置及加热方法
CN109854221B (zh) 一种井下注冷、制热交替工作循环致裂增透煤层系统及抽采方法
CN111608624B (zh) 一种利用地热开采稠油油藏的方法
CN104265257B (zh) 压裂支撑剂充填辅助催化点火的火烧油层吞吐采油方法
CN105201477A (zh) 一种用于油页岩原位体积破碎定向造缝方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14787732

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14792174

Country of ref document: EP

Kind code of ref document: A1