WO2014044192A1 - 一种煤层气与煤共采方法 - Google Patents

一种煤层气与煤共采方法 Download PDF

Info

Publication number
WO2014044192A1
WO2014044192A1 PCT/CN2013/083781 CN2013083781W WO2014044192A1 WO 2014044192 A1 WO2014044192 A1 WO 2014044192A1 CN 2013083781 W CN2013083781 W CN 2013083781W WO 2014044192 A1 WO2014044192 A1 WO 2014044192A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
gas
gasification
coalbed methane
coal seam
Prior art date
Application number
PCT/CN2013/083781
Other languages
English (en)
French (fr)
Inventor
陈�峰
张树川
甘中学
Original Assignee
新奥气化采煤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥气化采煤有限公司 filed Critical 新奥气化采煤有限公司
Priority to US14/430,086 priority Critical patent/US20150247385A1/en
Priority to AU2013317409A priority patent/AU2013317409B2/en
Priority to EP13838778.2A priority patent/EP2899363A4/en
Publication of WO2014044192A1 publication Critical patent/WO2014044192A1/zh
Priority to ZA2015/02650A priority patent/ZA201502650B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling

Definitions

  • the invention relates to a mining process of a novel underground carbonaceous organic mineral reservoir, more specifically to a method of co-production of underground coalbed methane and coal. Background technique
  • Coal is China's main energy source, accounting for about 70% of the primary energy composition, and the total amount of resources is relatively abundant.
  • the total forecasted resources are about 4.5 trillion tons (2000 meters is shallow), and the resources with a depth of 600 meters are shallow. The amount is only about 25%.
  • the current coal mining depth 400 meters
  • at least about 80% of the total coal resources in China's underground coal reserves have not been developed and utilized.
  • the development of deep coal resources will be A long-term job.
  • the associated gas-gas (also called coalbed methane) content of coal also increases rapidly.
  • the geological resources of shallow coalbed methane with a depth of 2,000 meters in China is about 36 trillion cubic meters. Ranked third in the world, equivalent to the amount of conventional natural gas resources on land.
  • underground coal gasification technology can control the combustion of underground coal seams, and generate gas energy that can be effectively utilized through pyrolysis and chemical action.
  • the in-situ gasification of coal has been achieved.
  • This technology has achieved considerable success in gasification of shallow coal seams and has been commercialized in the former Soviet Union.
  • some countries in Europe used underground coal gasification technology to obtain energy from deep coal seams that could not be mined by conventional methods. From 1978 to 1986, Belgium and Germany jointly carried out deep coal seams in Turin, Belgium.
  • Underground coal gasification technology is currently the most effective technology for mining deep coal resources, but the existing underground coal gasification technology usually only considers the gasification of coal seams, and as the coal mining depth increases, the coalbed methane content will increase rapidly. Inevitably, there will be problems in the extraction of coalbed methane.
  • the specific problems include: (1) For the coal seams with coalbed methane enrichment, if the coal seam gasification is directly implemented, there will be safety threats and waste of resources.
  • the inventors have found that there are some similarities and synergistic effects between coalbed methane extraction and underground coal gasification in the process of drilling, fracturing, and gap-enhancing transformation, which can combine coal underground technology with coalbed methane extraction technology. Coordinated development and utilization of underground coal resources and coalbed methane resources. On the one hand, the coal seam can be heated by the high temperature medium generated by underground coal gasification.
  • the adsorption capacity of CH 4 in the coalbed methane is greatly reduced at high temperature, and the heat is thermally expanded during the transfer of thermal energy to the coal seam, which is conducive to establishing a production pressure difference, thereby improving Seepage velocity of coalbed methane; on the other hand, the process of gas pressure cracking, drainage and depressurization in the early stage of coal seams will improve the permeability of the coal seam, which will be beneficial to the establishment of the fire zone of the underground coal gasification process and the subsequent gasification process.
  • the permeability of coal seam after heating can be mentioned It is 2 to 10 times higher, which is more conducive to promoting CH 4 desorption.
  • the present invention aims to provide a new method for co-production of coalbed methane and coal.
  • the method couples coalbed methane mining with underground coal gasification technology, and a medium containing carbon dioxide is used in the co-production process.
  • the present invention provides a method for co-production of coalbed methane and coal, comprising:
  • drilling step drilling from a ground-facing underground carbonaceous organic mineral reservoir such as a coal seam to provide at least one intake bore and at least one outlet bore for communicating the coal seam to the ground;
  • Ignition step establishing a fire zone in the coal seam at the bottom of the gas outlet to ignite the coal seam;
  • underground gasification step injecting a carbon dioxide-containing gasifying agent into the coal seam by the air intake hole, and the gasifying agent performs gasification reaction and pyrolysis reaction with the coal layer to generate heat energy and gasification gas And transferring the thermal energy to the interior of the coal seam to generate pyrolysis gas, and simultaneously driving the coalbed methane to generate free formazan, the free formam and the gasification gas and the pyrolysis gas together
  • the gas holes are discharged and collected.
  • the method of the present invention is not a simple combination of underground gasification and coalbed methane extraction technology, and it is necessary to improve the respective original processes to adapt to the coupling of the two process technologies, specifically as follows:
  • coalbed methane When drilling coalbed methane, it is preferred to drill horizontal wells in the vertical direction of the main fracture of the coal seam.
  • the main fracture direction is located in the horizontal plane of the coal seam and can be determined by means of geostress measurement and directional coring analysis. Coalbed methane extraction does not consider the direction of horizontal wells
  • the distance of the horizontal section of the CBM horizontal well is determined according to the longitudinal extension range of the underground gasification fire zone (ie, the horizontal well direction).
  • the main parameters determining the extension range are the distribution and size of the coal seam and the original permeability of the coal seam. And permeability at different temperatures, coal reactivity, coal seam structure and faults, rock mechanical properties of coal rock at different temperatures. If necessary, it is also necessary to combine field tests to summarize the appropriate lengths. Current CBM extraction does not take into account the horizontal section length of horizontal wells in accordance with this standard;
  • the specifications of the inlet and outlet of coalbed methane are determined according to the underground gasification process, specifically the amount of gas in and out, temperature, operating pressure, service life, etc.
  • the inlet and outlet holes are only determined according to the pressure and the amount of gas output;
  • the well is drilled horizontally in a vertical direction along the coal seam level and along the main seam of the coal seam.
  • the coalbed methane extraction takes into account the depth of the casing and the horizontal section of the horizontal well when drilling the vertical well in the lower part of the coal seam, 1 to 3 meters from the bottom of the coal seam.
  • the fracturing medium is a mixture of carbon dioxide and oxygen, and wherein the volume concentration of oxygen is 20% or less.
  • the displacement of the coalbed methane in the coal seam in the pumping coalbed methane step 3) is injection of CO 2 or nitrogen for displacement.
  • the method further comprises: 6) recovering C0 2 ho step: the underground gasification step ho generated C0 2 is recovered, and a portion of the recovered 02 Used as the gasifying agent.
  • the recovered 0 2 recovered in the C0 2 step is used as a fracturing medium for the fracturing through-step or as a displacement medium for the extraction of the coalbed methane.
  • the method further comprises: 7) a C0 2 sealing step: a portion to be recovered after the underground gasification is completed by the coal seam between the intake hole and the outlet hole C0 2 is stored in the fuel-burning zone (the gas-filled zone is a cavity remaining after gasification of the coal seam) for burial and storage.
  • a safety check is also performed prior to said ignition step 4) to ensure ignition safety.
  • the fracturing medium in the fracturing through-step is a gaseous, liquid or supercritical carbon dioxide, or a mixture of carbon dioxide and oxygen in which the volume concentration of oxygen is 20% or less, or a liquid state C0 2 , water jelly (such as silicone, its role is to increase the consistency of the fracturing medium, reduce the fluid loss of the fracturing medium, increase the crack width) and chemical additives (such as potassium chloride, its role is to make the fracturing medium Form a stable system) a mixture of components.
  • water jelly such as silicone, its role is to increase the consistency of the fracturing medium, reduce the fluid loss of the fracturing medium, increase the crack width
  • chemical additives such as potassium chloride, its role is to make the fracturing medium Form a stable system
  • the volumetric concentration of oxygen in the carbon dioxide-containing gasifying agent in the underground gasification step is 20 to 70% to ensure that the ash does not melt.
  • the volumetric oxygen concentration of the carbon dioxide-containing gasifying agent in the underground gasification step is 20 to 50% to construct a gasification passage.
  • the volumetric oxygen concentration of the carbon dioxide-containing gasifying agent in the underground gasification step is 40 to 70%, and is used for gasification of the coal seam after completion of the gasification passage.
  • the gasifying agent is a mixture of oxygen, carbon dioxide and water vapor if the water content of the coal seam is less than the amount of water required for gasification of the coal seam after the coalbed methane is extracted.
  • the amount of water vapor added should be the amount of water required for gasification of the coal seam minus the water content of the coal seam divided by the decomposition rate of the water vapor.
  • the establishing the fire zone is electrically ignited (for example, placing an electric heater in the coal seam to be established in the fire zone, controlling the ignition hole pressure to be greater than the hydrostatic head, ensuring that the ignition hole is waterless, and then heating the electricity. , igniting the coal seam to establish a fire zone) or solid fuel ignition (for example, placing hot coke in the coal seam to be established in the fire zone, introducing oxygen to burn coke and then burning the coal seam to establish a fire zone).
  • the intake bore and the outlet bore are A connecting crack has been formed in the coal seam.
  • the underground gasification comprises forward combustion (ie, the direction of flame movement of the gasification face is consistent with the direction of the gas flow), reverse combustion (ie, the direction of flame movement of the gasification face is opposite to the direction of the gas flow) or back injection.
  • Gas point combustion ie, in a horizontal well, insert a set of continuous tubes, pull the continuous tube on the ground to achieve continuous movement of the tube in the horizontal well, ignition and gasification at different locations).
  • the gasified gas, pyrolysis gas, and coalbed methane are collected through the gas venting holes for collection of formazan synthesis, formazan-power generation or formazan-methanol production.
  • the transport of the gasifying agent in the underground gasification step is transported from the ground to the fire zone through an annulus (ie double-layer casing) conveying pipe or directly through a borehole.
  • the ground is transported to the fire zone.
  • the recovered 0 2 recovered in the C0 2 step is used as a fracturing medium for the fracturing through-step or as a displacement medium for the extraction of the coalbed methane.
  • the method of the invention combines the underground coal gasification technology with the coalbed methane drainage technology, can not only use the underground gasification high temperature heating coal seam, increase the coal seam permeability, and improve the coalbed gas recovery rate; and can also realize the coupling of the drilling process and the fracturing technology.
  • C0 2 can be directly captured as a medium for coalbed methane displacement and a gasification agent for underground gasification process to regulate the effective component content of coal gas.
  • the coalbed methane recovery rate is increased, the gas effective gas composition is regulated, the gas production cost is reduced, and C0 2 capture and resource utilization are realized.
  • FIG. 1 is a schematic flow chart of a method for co-production of coalbed methane and coal according to the present invention
  • FIG. 2 is a schematic diagram of a method for co-production of coalbed methane and coal according to an embodiment of the present invention, wherein the coal seam between the boreholes is cold-fractured and injected with C0 2 to extract coalbed methane;
  • FIG. 3 is a schematic diagram of a method for co-production of coalbed methane and coal according to an embodiment of the present invention, wherein a fire zone is established to thermally process the fracture, expand into a gasification passage, and simultaneously drive the coalbed methane;
  • FIG. 4 is another embodiment according to the present invention.
  • 5 is a schematic diagram of a method for co-production of coalbed methane and coal according to another embodiment of the present invention, wherein ignition and channel thermal processing are performed, and the gasification channel is expanded to drive the coalbed methane;
  • FIG. 6 is a schematic diagram of a method for co-production of coalbed methane and coal according to still another embodiment of the present invention, wherein directional horizontal drilling technology is used to extract coalbed methane;
  • FIG. 7 is a schematic view of a method for co-production of coalbed methane and coal according to still another embodiment of the present invention, in which ignition and channel thermal processing are performed, and the gasification channel is expanded to drive the coalbed methane.
  • the present invention provides a new method for co-production of coalbed methane and coal.
  • the method of the present invention couples coalbed methane mining and coal underground gasification technology. Since underground gasification and surface coalbed methane extraction processes need to be realized by drilling, an underground gasification unit usually requires at least one Gas drilling, an outlet drilling and a gasification passage connecting the two boreholes, the gasification passage is usually achieved by means of fracturing and fire penetration;
  • the coalbed methane extraction unit usually requires at least one blind hole, such as a vertical hole or a multi-branched horizontal well, and requires fracturing to increase the gap, and may also include a gas injection well and a plurality of production wells. Therefore, the underground gasification and the ground coalbed methane extraction have a certain degree of similarity in technology.
  • the underground coal gasification high temperature heating coal seam can be used to increase the coal seam permeability and improve Coalbed methane recovery; It can also realize the coupling of drilling technology and fracturing technology.
  • CO 2 can be directly captured as a medium for coalbed methane displacement and a gasification agent for underground gasification process to regulate the effective component content of coal.
  • the coalbed methane recovery rate is increased, the gas effective gas composition is adjusted, the gas production cost is reduced, and co 2 capture and resource utilization are realized.
  • the method of the present invention shown in Figure 1 may include drilling, fracturing through the pumping CBM, ignition seam, underground gasification, and the recovered co 2 ho co 2 sequestration step.
  • the method for co-production of coalbed methane and coal of the present invention comprises the following steps:
  • Step al Drill at least 2 holes from the ground facing the coal seam.
  • the connection between the bottom ends of the two holes is consistent with the main fracture direction of the coal seam.
  • One of them serves as the intake hole and the other serves as the outlet hole.
  • the borehole is injected into the fracturing medium containing carbon dioxide as a high pressure of the fracturing medium (ie, higher than the fracture pressure of the coal seam), forcing C0 2 to move along the pores and fissures in the coal seam and discharged from the gas venting hole, thereby drilling the coal seam between the holes Establishing a connected fracture;
  • Step a2 Close the outgassing hole, continue to inject C0 2 into the coal seam by the intake hole, then stop injecting C0 2 , close the intake hole and close the outflow hole to carry out the well, so that C0 2 drives the coal seam CH 4 , then re-open the gas drilling hole, pumping coalbed methane;
  • Step a3 Repeat step a2 according to the analysis of coalbed methane.
  • the coal seam is ignited at the bottom of the gas outlet, and then C0 is 2 and pure oxygen is formulated into a certain concentration of C0 2 oxygen-rich gas (called C0 2 oxygen-rich gas), which is continuously transported to the fire zone through the connecting crack formed by the coal seam between the holes through the inlet borehole, so that the fire source faces C0 2
  • C0 2 oxygen-rich gas C0 2 oxygen-rich gas
  • the direction of the rich oxygen flow moves toward the direction of the intake hole, and the CO 2 rich oxygen and the coal seam undergo gasification reaction and pyrolysis reaction, and the connected fracture is processed into a gasification channel and continues to be gasified to generate gasification gas and pyrolysis gas:
  • Step a4 When the C0 2 is rich in oxygen intake pressure difference and the pressure of the gas outlet significant reduction (typically about 0.3MPa), the flow rate is increased 02 enriched enriched oxygen concentration or increasing the C0 2, into a reaction zone temperature increase ho, strengthening desorbed CH 4, and The fire source is moved against the C0 2 rich oxygen flow direction toward the gas outlet hole to ensure that the C0 2 is in full contact with the hot coal seam, and the in-situ gasification of the coal seam between the boreholes is completed;
  • step C0 2 it may be a gaseous, liquid, supercritical state C0 2 , or may be a liquid C0 2 , a water jelly (such as tannin), which acts to increase the consistency of the fracture medium and reduce the pressure.
  • a fluid mixture of cracking media, increasing crack width) and chemical additives such as potassium chloride, which acts to form a stable system of fracturing media.
  • the change of the C0 2 injection drilling pressure is monitored, and the drilling pressure drops rapidly (that is, the pressure drop reaches the original pressure value of 5% or more per day or more), and the outlet flow rate is not less than 100 Nm 3 /h indicates that a connected fracture has been formed in the coal seam between the boreholes.
  • the C0 2 is rich in oxygen, and the oxygen concentration of the step a3 is required to be 20 to 50%, and the oxygen concentration of the step a4 is required to be 40 to 70% to ensure that the ash does not melt. If the amount of coal seam water is insufficient to gasify the coal required, water vapor is also added to the gasification agent, and the amount of water vapor is determined as described above.
  • co 2 oxygen-enriched conveying can be transported from the ground to the fire zone through the annulus type conveying pipe; or directly from the ground to the fire zone through the drilling.
  • the method may further comprise ho step a5, recovering C0 2:
  • the seam underground gasification process produces C0 2 is recovered, and the part 02 as underground gasification of coal gasification agent, for regulating the gas composition and Calorific value.
  • the method may further include the step a6, C0 2 sealing: after the coal seam between the two boreholes is gasified, the recovered portion C0 2 is filled into the burning space formed by the gasification of the coal seam, and is buried and sealed.
  • the gasification process can be ensured in two boreholes, one for intake air, One is used for outgassing; at the same time, during the CBM extraction process, one hole can be used for gas injection to drive coalbed methane, and one hole is used for producing coalbed methane that is displaced from the coal seam;
  • the method of coal fracturing in the method includes at least: gas fracturing, hydraulic fracturing or bubble fracturing, mechanical drilling technology.
  • the step a1 can also be fractured with 0 2 and C0 2 , and the concentration of 0 2 is within 20%, which is determined according to the content of formazan in the coal seam and the explosion limit of formazan.
  • the method for establishing a fire zone in the method may be that a mixed gas of high temperature and high pressure carbon dioxide and oxygen is introduced into the bottom of the borehole, wherein the temperature is determined according to the oxygen concentration, the ignition point of the coal seam, the exposed area of the coal seam, the heat loss of the pipeline, etc., and the pressure is static according to the coal seam.
  • the hydraulic head is determined.
  • the method of establishing a fire zone in the method further includes: electric ignition, solid fuel ignition, or utilizing an existing fire zone or a high temperature coal seam in the fuel-air zone in the work area.
  • the underground gasification mode in the method includes at least: forward combustion, reverse combustion or reverse gas injection point combustion.
  • Forward combustion means that the moving direction of the flame working surface is consistent with the direction of the air flow.
  • Reverse combustion means that the moving direction of the flame working surface is opposite to the direction of the air flow, and the burning of the backward gas injection point means inserting a set of continuous tubes in the horizontal well and pumping on the ground. Pull the continuous tube to realize the continuous movement of the continuous tube in the horizontal well and ignite and vaporize at different positions.
  • CO 2 can be recovered through various ways, mainly depending on the use and quality of the gas, such as power generation, and can recover C0 2 in the flue gas generated after the gas is generated, for example, as a chemical synthesis,
  • the CO 2 in the gas is separated and recovered, and the flue gas generated by direct combustion of the gas or the coalbed methane can also be used.
  • the gasification gas, the pyrolysis gas, and the coalbed methane can be used for the synthesis of formazan after being discharged through the gas outlet borehole, or can be produced by multiple generations, such as the production of formazan, methanol, methanol, etc., to produce various energy sources. Chemical Products.
  • the invention also provides a method for co-production of coalbed methane and coal, and the whole process takes the resource utilization of C0 2 as the core, and the specific advantages of the method are as follows:
  • the invention combines coalbed methane mining with underground gasification, and greatly improves the recovery rate of coalbed methane and reduces the cost compared with other coalbed methane drainage technologies, and also considers the recovery and utilization of C0 2 , especially suitable for low permeability.
  • Coal seams, coalbed methane mining and underground gasification have strong synergies, which are manifested in:
  • the drill hole drilled in the first raft can be used for both coal seam gas pressure cracking and second ⁇ coalbed methane drainage wells. It can also be used for the third enthalpy and the fourth enthalpy pyrolysis and gasification inlet and outlet pores, so that the coalbed methane drilling and underground gasification drilling can be coupled to each other, which is beneficial to reduce drilling investment and save cost. For deep coal seam resource exploitation, cost saving Especially obvious;
  • the first helium carbon dioxide fracturing can improve the analysis of formazan gas in the second coalbed methane extraction process.
  • the large amount of carbon dioxide adsorbed in the coal seam can control the coal seam temperature during the subsequent third helium ignition and the fourth helium pyrolysis and gasification process. Preventing local over-temperature of coal seams, causing problems such as spontaneous combustion or melting of gasification passages, which are not conducive to ignition and gasification, and can also increase the yield of coalbed pyrolysis gas in the fourth crucible;
  • the first crucible process greatly improves the permeability of coal seams.
  • the oxygen remaining in the coal seam is favorable for ignition and can react with the combustible gas during the gasification process of the fourth crucible to further increase the temperature of the coal seam, thereby preventing the problem of coal seam crack closure after carbon dioxide fracturing. It can accelerate the analysis of formazan in coalbed methane and pyrolysis of coal, thereby increasing the content of formazan in the produced gas, gas quality Available improved significantly. However, it is necessary to control the oxygen content in the mixed gas outside the explosion limit of formazan, specifically by controlling the oxygen concentration;
  • the second coalbed methane extraction process precipitates a large amount of formazan.
  • the coal seam repeatedly undergoes the process of pressurization and decompression, and the permeability of the coal seam is greatly improved, which is conducive to the expansion of the gasification working face in the fourth plutonium. Also beneficial to ignition;
  • the high temperature generated by the underground gasification reaction promotes the formation of coal seam fissures (ie, thermal gap-increasing), so that the cold fracturing of the coal seam and the thermal gravifosm complement each other to produce a synergistic effect, thereby improving the seepage capacity of the coalbed methane.
  • coal seam fissures ie, thermal gap-increasing
  • the thermal gravifosm complement each other to produce a synergistic effect, thereby improving the seepage capacity of the coalbed methane.
  • FIG. Example 1 The present invention will be further described in detail with reference to the accompanying drawings, in which, FIG. Example 1
  • FIGS. 2 and 3 are schematic views of a coalbed methane and coal co-production method according to the present invention, wherein the coal seam between the boreholes is cold-fractured and injected with C0 2 to extract coalbed methane; and FIG. 3 is the coalbed methane and coal.
  • a schematic diagram of the co-production method in which a fire zone is established to thermally process the fracture, expand into a gasification passage, and simultaneously drive the coalbed methane. As shown in FIG. 2 and FIG.
  • the drilling is set according to the range of the gasification coal seam, and the number of the drilling holes is determined by the coal seam reserve and the gas production scale, etc., but at least one intake hole and at least one should be included in order to realize the present invention.
  • An air outlet the specific implementation is as follows:
  • a vertical hole is constructed from the ground 2 through the overburden 3 to the coal seam 1 as the intake hole 5, within a certain distance from the intake hole 5 (generally 200 to 600 meters) Specifically, it can be determined by a person skilled in the art according to the type of coal, for example, the deeper the degree of metamorphism, the longer the length of the drill hole, the choice of brown coal is generally about 200 meters, and the bituminous coal is about 500 meters.)
  • the vertical hole is constructed as the gas outlet hole 6, which The bottom of the inlet and outlet holes is located in the coal seam 1 and is 2 meters away from the bottom layer of the coal seam. The bottom end of the inlet hole 5 and the outlet hole 6 are aligned with the main fracture direction of the coal seam, and the spacing between the inlet and outlet holes can be determined by the prior art. Personnel are determined according to the situation of coal seams and strata.
  • the drain line 9 is used for fracturing And extracting coalbed methane from the stage of extracting coalbed methane, which is used to discharge coalbed methane in the stage of extracting coalbed methane, and transporting C0 2 after gasification is completed to store C0 2 after gasification of coal seam
  • the gas line 13 is used to transport the crude gas generated by the post-ignition gasification process.
  • the specific operation process is:
  • the high-pressure carbon dioxide transported by the CO 2 line 8 and the oxygen transported by the 0 2 line 7 are continuously injected into the coal seam 1 via the intake bore 5, the injection pressure is 1.1 times the fracture pressure of the coal seam, and the forced gas medium moves along the natural pores and cracks of the coal seam.
  • the coal body is fractured to form a communication fracture 4, thereby communicating with the gas outlet hole 6 in the coal seam 1, and the gas after the completion of the fracture is discharged through the gas outlet hole 6 and discharged from the coal bed gas line 10 to the ground.
  • the gas outlet hole 6 is closed, and the high pressure C0 2 is continuously injected into the coal seam 1 by the intake hole 5, and the injection pressure is not greater than the coal seam fracture pressure, and the total injection amount is determined according to the saturated gas content of the coal seam, and the total injection to be C0 2
  • stop the injection close the intake hole 5, and close the outlet hole for 1 to 15 days to ensure that C0 2 is in full contact with the coal seam and displace the CH 4 adsorbed in the coal seam ; then reopen the gas outlet hole. 6.
  • the coal seam water is drained by the drain line 9 to dewater the coal seam 1 while the coalbed methane pipeline 10 is opened to reduce the pressure of the gas outlet bore 6 to facilitate desorption or desorption of the coalbed methane and is collected by the coalbed methane pipeline 10 To the ground pipe network. After a period of extraction, when the bottom hole pressure of the outlet hole is reduced to below 10 kPa, the injection and extraction of the next cycle are performed.
  • the gas outlet hole 6 When the CH 4 content in the gas of the gas outlet 6 is significantly reduced (i.e., its volume concentration is less than 5%), the gas outlet hole 6 is opened, the drain line 9 is proposed, and the gas line 13 is installed. After that, the communication valve between the gas outlet hole 6 and the gas line 13 is opened, and the high pressure C0 2 is continuously injected into the coal seam 1 by the intake hole 5, the injection pressure is greater than the hydrostatic pressure of the coal seam, and the injection amount is determined according to the water content of the coal seam, and is determined by the gas pipeline. 13 is discharged to take out the moisture in the coal seam between the boreholes, that is, to drain the moisture of the coal seam, so that the 6-hole bottom coal seam of the outlet hole is kept dry.
  • the electric igniter is lowered to the 6-hole bottom coal seam section of the gas outlet hole, the communication valve between the gas outlet hole 6 and the gas line 13 is opened, and the pure oxygen sent from the 0 2 line 7 and the C0 2 sent by the C0 2 line 8 are In the intake hole 5, CO 2 oxygen-rich gas having a volume concentration of 20 to 30% of oxygen is mixed and used as a gasifying agent, and is fed into the 6-hole bottom coal seam of the gas outlet hole along the communication crack 4 . After that, the content of the sputum in the stomata is monitored, and the oxygen content in the intake air is controlled to ensure that the concentration of the venting hole 0 2 is not within the explosion limit of the nail.
  • the igniter is activated to ignite the 6-hole coal seam of the outlet hole to establish an initial fire zone 11 .
  • the crude gas produced by the reaction of the gasifying agent with the coal seam 1 is discharged through the gas line 13, and the C0 2 rich oxygen flow rate (about 300-500 m 3 /hr) is controlled so that the temperature of the fire zone is not lower than the temperature of the spontaneous combustion point of the coal seam.
  • the flow rate and the concentration of 0 2 are maintained, and the reverse combustion is performed (that is, the direction in which the flame front extends is opposite to the flow direction of the supplied gas), and the pressure of the intake bore 5 is monitored in real time.
  • the pressure of the intake hole 5 and the outlet hole 6 is not much different (the pressure difference is less than about 0.3 MPa), it indicates that the gasification channel 12 between the lower end of the intake hole 5 and the lower end of the outlet hole 6 is successfully constructed. .
  • the increased oxygen concentration ( 2 to 5% per day) of the CO 2 rich oxygen gas supplied from the upper end of the intake bore 5 to the downhole is increased to 40 to 60% to increase the temperature of the reaction zone, and Positive gasification (ie, the direction of expansion of the flame front is the same as the direction of the feed gas), ensuring that C0 2 is in full contact with the hot coal seam in the gasification channel to complete the gasification of the coal seam between the boreholes;
  • the gasification space is enlarged, and the geostress effect appears. Under the joint action of heat, the coal seam around the gasification channel produces a fracture zone and accelerates the release of coalbed methane.
  • the C0 2 oxygen-rich gas flow rate and/or oxygen concentration can be adjusted according to the thickness of the coal seam, the water content, the drilling distance, etc. If the water content of the coal seam is less than the water required for the gasification reaction, it can be injected. Carbon dioxide oxygen-enriched and steam gas, the amount of water vapor injected is the difference between the amount of water required for the gasification reaction and the water content of the coal seam divided by the water vapor decomposition rate.
  • a gas-filled zone is formed, and its space is filled with ash, coke, pinch, roof rock, and unvaporized coal seam, which can serve as a space for storing C0 2 .
  • the pressure of C0 2 is generally controlled at 6 ⁇ 8MPa, and the injection volume of C0 2 is generally controlled at 400 ⁇ 500Nm 3 /m 3 (per unit volume C0 2 ) of 400 ⁇ 500 standard cubic meters can be sealed in the fuel-air zone, depending on the volume of the fuel-air zone and the hydrogeological conditions of the coal seam.
  • the gasification gas, pyrolysis gas and coalbed methane produced in the present invention are discharged through a gas-boring hole and used for the synthesis of formamidine.
  • Example 2
  • Example 2 uses the feather branch horizontal drilling technology to accelerate the coalbed methane extraction speed and utilize The branch well technology communicates the natural fractures and cleats of the coal seam, increases the exposed area of the coal seam, and facilitates the subsequent gasification process.
  • This embodiment will be described with reference to FIGS. 4 and 5.
  • 4 is a schematic view of a method for co-production of coalbed methane and coal according to the present invention, wherein a coal-bed gas is extracted by a feather-like horizontal drilling technique; and FIG.
  • the intake borehole 5 is a feather-like horizontal borehole comprising a plurality of sets of pinnate branch horizontal wells 14, the bottom of which is located in the pre-gasified coal seam 1.
  • the main horizontal well of the plume horizontal well, the diameter of the branch well, the length and the number of branch wells are determined according to the coal seam and coalbed methane mining area.
  • the screen can also be lowered into the main horizontal well for support.
  • the pumping rod pump is lowered, the drainage line 9 and the coalbed methane line 10 are installed; the inlet hole 5 is installed with 0 2 line 7, C0 2 line 8, and the gas drill is closed.
  • the communication valve between the hole 6 and the gas line 10 is continuously injected with high pressure N 2 from the intake hole 5 to the coal seam 1, the injection pressure is not greater than the fracture pressure of the coal seam, and the total injection amount is determined according to the saturated gas content of the coal seam, and the total injection amount of the N 2 is to be
  • stop the injection close the intake hole 5, and close the outlet hole for 10 to 20 days to ensure that the N 2 is in full contact with the coal seam and displace the CH 4 adsorbed in the coal seam; then reopen the gas outlet hole 6,
  • the coal seam water is drained by the drainage pipeline 9 to dehydrate the coal seam 1 while the coalbed methane pipeline 10 is opened to reduce the pressure of the gas outlet bore 6 to facilitate desorption or desorption of the coalbed methane, and is collected from the coalbed methane pipeline 10 to the ground pipe. network. After a period of extraction, when the bottom hole pressure of the outlet hole is reduced to below 10 kPa, the injection and extraction of the next cycle are performed.
  • the gas outlet hole 6 When the CH 4 content in the gas of the gas outlet 6 is significantly reduced (the volume concentration is less than 5%), the gas outlet hole 6 is opened, the drain line 9 is proposed, and the gas line 13 is installed. After that, the communication valve between the gas outlet hole 6 and the gas line 13 is opened, and the high pressure co 2 is continuously injected into the coal seam 1 by the inlet hole 5, the injection pressure is greater than the hydrostatic pressure of the coal seam, and the injection amount is determined according to the water content of the coal seam, and is determined by the gas pipeline. 13 is discharged to remove the moisture in the coal seam between the boreholes, that is, to drain the moisture of the coal seam, so that the 6-hole bottom coal seam of the outlet hole is kept dry.
  • the 02 line 7 fed oxygen, C0 2 C0 2 fed line 8, in the intake bore 5 formulated mixing 20 to 30% by volume concentration of C0 2 enriched as a gasifying agent, along communication
  • the crack 4 is fed into the 6-hole bottom coal seam of the gas outlet borehole. After that, the content of nails in the pores is monitored, and the amount of oxygen in the intake air is controlled. Ensure that the 0 2 concentration of the outlet hole is not within the explosion limit of the nail. After the concentration of 0 2 or the content of formazan meets the requirements, the communication valve between the gas outlet hole 6 and the gas line 13 is opened, and the hot coke is put into the bottom of the gas outlet hole. The amount of coke is according to the thickness of the coal seam, the casing size, and the coal seam.
  • the ignition point is determined, and the 6-hole bottom coal seam of the gas outlet is ignited to establish an initial fire zone 11.
  • the crude gas generated by the reaction of the gasifying agent with the coal seam 1 is discharged through the gas line 13, and the C0 2 rich oxygen flow rate is controlled so that the temperature of the fire zone is not lower than the temperature of the spontaneous combustion point of the coal seam.
  • This flow is then maintained for reverse combustion (i.e., the direction of expansion of the flame front is opposite to the flow of the supplied gas), and the pressure of the intake bore 5 is monitored in real time.
  • the pressure displayed by the pressure gauge connected to the upper end of the intake hole 5 is significantly reduced (the pressure drop is generally 10 to 60% of the initial pressure), it indicates that the initial fire zone 11 extends to the vicinity of the bottom of the inlet hole 5 hole.
  • the pressure of the intake hole 5 and the outlet hole 6 is not much different (or the pressure difference is less than 0.3 MPa), it indicates that the gasification channel 12 between the lower end of the intake hole 5 and the lower end of the outlet hole 6 is successfully constructed. .
  • the oxygen concentration of the CO 2 oxygen-rich gas supplied from the upper end of the intake hole 5 to the well is increased ( 2 to 5% per day) to 50 to 70% to increase the temperature of the reaction zone, and Positive gasification (ie, the direction of expansion of the flame front is the same as the flow of the supplied gas), Ensure that the co 2 is in full contact with the hot coal seam in the gasification channel to complete the gasification of the coal seam between the boreholes.
  • the geostress effect appears, and the coal seam around the gasification channel is acted upon by the action of heat. A broken zone is generated to accelerate the release of coalbed methane.
  • the seam folder gangue particular circumstances thickness, moisture content, borehole spacing, the flow rate of enriched gas 02 and the oxygen concentration / or adjusted.
  • the gasification gas, pyrolysis gas and coalbed methane produced in the present invention are discharged through a gas-exhausted borehole and used for power generation.
  • Embodiment 3 is basically the same as Embodiment 2 except that the directional horizontal drilling technique is used to establish an initial drainage gas passage, and a U-shaped horizontal well 15 is arranged, the horizontal well is perpendicular to the main fracture direction of the coal seam, and The vertical well is the outlet hole 6 for drainage, the intake hole 5 for gas production, after the initial discharge of the coalbed methane, the fire zone is established in the outlet hole 6 and the hot processing channel is started, and the coalbed methane is driven by the same.
  • the coal seam gasification between the boreholes is completed, and this embodiment will be described with reference to Figs. 6 and 7.
  • FIG. 6 is a schematic diagram of a method for co-production of coalbed methane and coal according to the present invention, wherein directional horizontal drilling technology is used to extract coalbed methane
  • FIG. 7 is a schematic diagram of a method for co-production of coalbed methane and coal, wherein ignition is performed.
  • channel thermal processing expand into a gasification channel, and drive coalbed methane.
  • the gasification gas, pyrolysis gas and coalbed methane produced by the invention are discharged through a gas-boring hole and used for the production of formazan-methanol.
  • the invention utilizes underground gasification to generate a large amount of heat, and while heating the coal seam and improving the analytical ability of the coal seam toxin, the channel used for the gas pressure cracking of the coal seam is greatly expanded, and the coalbed methane production can be greatly improved, and the Chinese coalbed methane can be fundamentally solved. Low permeability problems in reservoirs.
  • underground gasification chemically utilizes the coal seams extracted by coalbed methane. The gas produced contains a large amount of formazan, carbon monoxide and hydrogen, and through the conversion of the ground process, it obtains clean formazan.
  • the invention jointly develops and comprehensively utilizes the coalbed methane and the coal seam itself, not only can greatly reduce the production and development cost, but also can increase the output of the final product, the quality of the gas, and the quality of the gas is also greatly improved, realizing the coal and coalbed methane. Collected together.
  • the carbon dioxide-containing fluid is used as a processing medium for fracturing and gasification, which not only improves the analytical ability of formazan in the coal seam, but also increases the exploitation rate of coalbed methane, and improves the effective gas composition of combustible gas such as formazan in underground gasification gas.
  • the content of carbon dioxide produced in the process can also be recycled.
  • the present invention is a new method of low carbon, high efficiency and cleanness. The invention has been described in detail above, but the invention is not limited to the specific embodiments described herein. Other variations and modifications can be made by those skilled in the art without departing from the scope of the invention. The scope of the invention is defined by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)

Abstract

提供一种煤层气与煤共采方法,该方法包括:钻井步骤:压裂贯通步骤:抽采煤层气步骤:点火步骤及地下气化步骤;该方法将煤炭地下气化技术与煤层气抽采技术结合,既可以利用地下气化高温加热煤层,增加煤层透气性,提高煤层气采收率,还可以利用煤层气进行钻井和压裂贯通过程,提升地下气化采煤的效率。

Description

一种煤层气与煤共采方法
技术领域
本发明涉及一种新型地下含碳有机矿物储层的开采工艺, 更具体地是 地下煤层气和煤炭的共采方法。 背景技术
煤炭是我国的主要能源, 在一次能源构成中占比 70%左右, 而且资源 总量相对丰富, 预测资源总量约 4.5万亿吨 (2000米以浅), 其中赋存深 度在 600米以浅的资源量仅占比 25%左右,就目前煤矿开采深度(400米) 估计,我国地下煤炭预测总资源量中至少还有大约 80%的煤炭资源还没有 被开发和利用, 深部煤炭资源的开发将是一项长期的工作。 随着开采深度 的增加, 煤炭的伴生资源一瓦斯 (也称煤层气)含量亦迅速增大, 据煤层 气资源评价,我国埋深 2000米以浅煤层气地质资源量约为 36万亿立方米, 居世界第三位, 与陆上常规天然气资源量相当。
尽管我国煤层气资源丰富, 但我国煤层气赋存条件区域性差异大, 多 数地区呈低压力、 低渗透、 低饱和特点, 除沁水盆地和鄂尔多斯盆地东缘 外, 其他地区目前实现规模化、 产业化开发难度大。 而且高瓦斯和煤与瓦 斯突出矿井多, 随着开采深度加大, 地应力和瓦斯压力进一歩增加, 井下 抽采难度增大。不仅如此, 随着开采深度的不断增加,地质环境更加复杂, 地应力增大、 涌水量加大、 地温升高, 导致突发性工程灾害和重大恶性事 故增加, 如矿井冲击地压、 瓦斯爆炸、 矿压显现加剧、 巷道围岩大变形、 流变、 地温升高等, 对深部资源的安全高效开采造成了巨大威胁。 因而无 论是从采煤过程中安全需求的角度考虑, 还是从提高煤炭资源利用率, 促 进煤炭工业可持续发展的角度考虑, 都必须研究和解决难采煤及煤层气的 开采和利用问题。
公开的资料显示, 煤炭地下气化技术可以将赋存在地下的煤层进行可 控燃烧, 通过热解作用和化学作用, 产生可以有效利用的气体能源, 从而 实现对煤炭的原位气化开采, 该技术对于浅部煤层的气化取得了相当大的 成功, 并在前苏联实现了商业化运行。 上世纪石油危机后, 欧洲部分国家 曾采用煤炭地下气化技术, 从不能用常规方法开采的深部煤层取得能源, 其中 1978年〜 1986年, 比利时和德国联合在比利时的图林首次进行了深 部煤层地下气化试验 (煤层深度为 860 m); 1988年, 欧盟的 6个成员国 建立了欧洲地下煤炭气化工作组, 于 1998年在西班牙特鲁埃尔矿区进行 了中等深部煤层地下气化(煤层深度为 550〜650 m)试验, 验证了欧洲深 部煤层地下气化技术的可行性。
煤炭地下气化技术是目前开采深部煤炭资源最有效的技术, 但是现有 煤炭地下气化技术通常仅仅考虑煤层的气化, 而随着煤炭开采深度的增 加, 煤层气含量将迅速增大, 因而不可避免的会遇到煤层气的抽采问题, 具体问题包括: (1 )对于煤层气富集的煤层来说, 如果直接实施煤层的气 化, 会存在安全方面的威胁和资源的浪费等问题; (2)如果采用常规的煤 层气开采手段, 而不考虑与地下气化技术的结合, 那么后续实施煤炭地下 气化, 则会存在钻孔等功能的重叠, 和投资成本的增加等; (3 ) 向煤层中 注入 C02可以提高煤层 CH4的采收率,但仅在煤层气抽采初期可以调高煤 层气产量, 但是后期裂隙容易闭合, 煤层气产量下降很快; (4) 作为气化 过程的中间体及产物组成之一, C02参与了一系列的氧化还原反应, 是出 口煤气中的重要组分, 含量约占 15〜60%, 是关系煤气热值和有效组分含 量的重要因素之一, 但是现有工艺通常没有考虑 C02的回收与利用。 发明内容
本发明人发现, 煤层气抽采与煤炭地下气化在钻孔、 压裂、 增隙改造 等工艺环节存在一些相似性和协同效应, 可以将煤炭地下技术与煤层气抽 采技术结合起来综合考虑地下煤炭资源和煤层气资源的协同开发利用。一 方面, 可以利用煤炭地下气化产生的高温介质加热煤层, 高温下煤层气中 CH4吸附能力大大降低, 同时热能在向煤层传递的过程中气体受热膨胀, 有利于建立生产压差, 从而提高煤层气渗流速度; 另一方面, 前期煤层气 压裂增产、 排水降压等过程, 使煤层透气性提高, 将有利于煤炭地下气化 工艺的火区的建立和后续气化过程的进行, 同时煤层受热后渗透性可以提 高 2〜10倍, 因而更有利于促进 CH4解吸。 另外, 从产品角度看, 二氧化 碳和甲垸分离的成本较氮气和甲垸的分离成本低, 煤气中的一氧化碳和氢 气可以直接合成甲垸, 其最终产品和煤层气一样都是甲垸。 可见, 煤层气 抽采可以同地下气化相结合, 两者相互促进, 相互协同, 既可以提高煤层 气的采出率, 同时由于提高了煤层的透气性, 增加了反应表面积, 又有利 于煤炭地下气化反应的进行。
鉴于我国煤层气开采的难点, 煤炭地下气化技术在煤炭开采中的优 势, 以及两者在工艺技术上存在的上述协同效应, 本发明的目的是提供一 种煤层气与煤的共采新方法, 该方法将煤层气开采和煤炭地下气化技术相 耦合, 共采过程中使用了含有二氧化碳的介质。
为此, 本发明提供一种煤层气与煤共采方法, 包括:
1 ) 钻井歩骤: 由地面向地下含碳有机矿物储层例如煤层进行钻井以 提供使所述煤层与地面连通的至少一个进气钻孔和至少一个出气钻孔;
2) 压裂贯通歩骤: 由所述进气钻孔向所述煤层注入含有二氧化碳的 压裂介质,强制所述压裂介质在所述煤层中流动,并由所述出气钻孔排出, 从而使所述进气钻孔和所述出气钻孔在所述煤层中通过连通裂隙连通;
3 ) 抽采煤层气歩骤: 由所述进气钻孔向所述煤层注入驱替介质, 对 所述煤层中的煤层气进行驱替, 并由所述出气钻孔收集;
4) 点火歩骤: 在所述出气钻孔底部的煤层中建立火区, 以引燃煤层; 以及
5 ) 地下气化歩骤: 由所述进气钻孔向所述煤层注入含二氧化碳的气 化剂, 所述气化剂与所述煤层进行气化反应和热解反应, 产生热能和气化 煤气, 所述热能向所述煤层内部传递以产生热解煤气, 同歩驱替所述煤层 气以产生游离甲垸, 所述游离甲垸与所述气化煤气、 所述热解煤气一起从 所述出气钻孔排出并收集。
然而, 需要强调的是, 本发明方法不是地下气化与煤层气抽采技术的 简单组合,必须对各自原有的工艺加以改进,以适应两种工艺技术的耦合, 具体表现在采用了如下至少一项改进:
a. 煤层气钻井时优选按照煤层主裂隙垂直方向钻水平井。主裂隙方向 位于煤层水平面, 可以通过地应力测量、 定向取芯分析等手段确定, 现行 的煤层气抽采没有考虑水平井的方向问题
b. 煤层气水平井水平段的距离按照地下气化火区纵向扩展范围(即水 平井方向)来确定, 而决定这个扩展范围的主要参数有煤层的地应力分布 和大小、 煤层的原始渗透率和不同温度下的渗透率, 煤的反应活性, 煤层 的构造及断层, 煤岩在不同温度下的岩石力学性质等。 必要时还需要结合 现场试验, 归纳总结合适的长度。 现行的煤层气抽采没有按照这个标准考 虑水平井水平段长度;
c 煤层气的进出气孔规格(即材质、 内外径、 井结构、 施工工艺)按 照地下气化的工艺确定, 具体是进出气量, 温度, 运行压力, 服务年限等。 而煤层气抽采中进出气孔仅根据压力和出气量大小来确定规格;
d. 煤层气抽采在钻垂直井时考虑套管的下放深度和水平井水平段的 轨迹在煤层的下部, 接近底板, 以保证煤层的回采率。 这一点在煤层气抽 采中没有考虑;
e. 设计地下气化的气化炉时考虑煤层气压裂的范围(通过现场各孔压 力值分布确定), 确定炉区布置范围; 地下气化设计气化炉时只根据煤层 热态影响范围 (通过现场测温孔确定)确定炉区的布置范围, 而煤层气压 裂的范围显然大于这个热态影响范围;
f. 地下气化点火前, 监测进出气孔的甲垸含量, 控制进气中氧气的含 量,保证不发生爆炸事故; 由于煤层气抽采是冷态下进行,没有氧气介入, 不需要考虑甲垸的爆炸问题。
在一个优选实施方式中, 所述钻井按照在煤层水平面并沿煤层主裂隙 垂直方向钻水平井。
在一个优选实施方式中, 煤层气抽采在钻垂直井时考虑套管的下放深 度和水平井水平段的轨迹在在煤层下部, 距离煤层底板 1〜3米。
在一个优选实施方式中, 所述压裂介质是二氧化碳和氧气的混合物, 并且其中氧气的体积浓度为 20%以下。
在一个优选实施方式中, 在所述抽采煤层气歩骤 3 )中对所述煤层中 的煤层气进行驱替是注入 C02或氮气进行驱替。
在一个优选实施方式中, 所述方法还包括: 6) 回收 C02歩骤: 将所 述地下气化歩骤中产生的 C02进行回收, 并且将所回收的 02的一部分 用作所述气化剂。
在一个优选实施方式中, 所述回收 C02歩骤中回收的 02用作所述 压裂贯通歩骤的压裂介质或用作所述抽采煤层气歩骤的驱替介质。
在一个优选实施方式中, 所述方法还包括: 7) C02封存歩骤: 在所 述进气钻孔和所述出气钻孔之间的煤层完成所述地下气化后,将回收的部 分 C02封存到燃空区 (该燃空区是煤层气化后残留的空腔), 进行埋藏和 封存。
在一个优选实施方式中, 还包括在所述点火歩骤 4)之前进行安全检 测歩骤以确保点火安全。
在一个优选实施方式中,所述压裂贯通歩骤中的压裂介质是气态、液 态或超临界态二氧化碳, 或者其中氧气的体积浓度为 20%以下的二氧化 碳和氧气的混合物, 或者是由液态 C02、 水冻胶(如胍胶, 其作用是提高 压裂介质的稠度,降低压裂介质的滤失,增大裂缝宽度)和化学添加剂(如 氯化钾, 其作用是使压裂介质形成稳定的体系) 组成的混合液。
在一个优选实施方式中,所述地下气化歩骤中含二氧化碳的气化剂中 氧气的体积浓度为 20〜70%, 以保证灰分不发生熔融。
在一个优先实施方式中,所述地下气化歩骤中含二氧化碳的气化剂中 的氧气体积浓度为 20〜50%, 以构建气化通道。
在一个优先实施方式中,所述地下气化歩骤中含二氧化碳的气化剂中 的氧气体积浓度为 40〜70%, 用于气化通道构建完成后的煤层气化。
在一个优选的实施方式中,如果在煤层气抽采完,煤层的含水量小于 煤层气化所需的水量时, 气化剂为氧气、二氧化碳和水蒸气的混合物。其 中加入水蒸气的量应该是煤层气化所需水量减去煤层含水量再除以水蒸 气的分解率。
在一个优选实施方式中, 所述建立火区通过电点火(例如, 在拟建立 火区的煤层中放置电加热器,控制点火孔压力大于静水压头,保证点火孔 无水, 然后通电加热、 引燃煤层建立火区)或固体燃料点火(例如在拟建 立火区的煤层中放置炽热的焦炭,通入氧气以燃烧焦炭进而弓 I燃煤层建立 火区) 完成。
在一个优选实施方式中,在所述压裂贯通歩骤中, 当所述进气孔中的 压力急剧下降(指压力下降幅度达到原始压力的 5%/天左右或更大)并且 所述出气孔的出气流量为 100Nm3/h以上时, 所述进气钻孔和所述出气钻 孔在所述煤层中已经形成连通裂隙。
在一个优选实施方式中,所述地下气化包括正向燃烧(即气化工作面 火焰移动方向和气流方向一致)、 逆向燃烧 (即气化工作面火焰移动方向 和气流方向相反) 或后退注气点燃烧 (即在水平井中, 插入一套连续管, 在地面抽拉这套连续管,实现连续管在水平井中后退移动,在不同位置进 行点火和气化)。
在一个优选实施方式中,所述气化煤气、热解煤气和煤层气经过所述 出气钻孔排出后被收集用于甲垸合成、 甲垸 -发电或甲垸 -甲醇生产。
在一个优选实施方式中,所述地下气化歩骤中的所述气化剂的输送通 过环空型(即双层套管)输送管道由地面输送至所述火区或者直接通过钻 孔由地面输送至所述火区。
在一个优选实施方式中, 所述回收 C02歩骤中回收的 02用作所述 压裂贯通歩骤的压裂介质或用作所述抽采煤层气歩骤的驱替介质。
本发明方法将煤炭地下气化技术与煤层气抽采技术结合, 既可以利用 地下气化高温加热煤层, 增加煤层透气性, 提高煤层气采收率; 又可以实 现钻井工艺与压裂技术的耦合, 同时可将 C02直接捕集作为煤层气驱替的 介质以及地下气化过程的气化剂, 调控煤气有效组分含量。 通过技术的耦 合, 提高煤层气采出率、 调节煤气有效气体组成、 降低煤气生产成本, 同 时实现 C02捕集和资源化利用。 附图说明
图 1是根据本发明的煤层气与煤共采方法的流程示意图;
图 2 是根据本发明一个实施方式的煤层气与煤共采方法的示意图,其 中钻孔之间的煤层通过冷态压裂, 注入 C02抽采煤层气;
图 3是根据本发明一个实施方式的煤层气与煤共采方法的示意图, 其 中建立火区对裂隙进行热加工, 扩大成气化通道, 同歩驱替煤层气; 图 4是根据本发明另一个实施方式的煤层气与煤共采方法的示意图, 其中采用羽状分支水平钻井技术抽采煤层气; 图 5是根据本发明另一个实施方式的煤层气与煤共采方法的示意图, 其中进行点火及通道热加工, 扩大成气化通道, 同歩驱替煤层气;
图 6是根据本发明又一个实施方式的煤层气与煤共采方法的示意图, 其中采用定向水平钻井技术抽采煤层气; 以及
图 7是根据本发明又一个实施方式的煤层气与煤共采方法的示意图, 其中进行点火及通道热加工, 扩大成气化通道, 同歩驱替煤层气。
附图标记说明
I一煤层
2—地面
3—上覆岩层
4一连通裂隙
5—进气钻孔
6—出气钻孔
8— C02管线
9一排水管线
10—煤层气管线
I I一初始火区
12—气化通道
13—煤气管线
14一羽状分支水平井
15—水平井 具体实施方式
鉴于我国煤层气开采的难点, 以及煤炭地下气化技术在煤炭开采中的 优势, 本发明提供一种煤层气与煤的共采新方法。
鉴于这些方面, 本发明方法将煤层气开采和煤炭地下气化技术相耦 合, 由于地下气化与地面煤层气抽采过程都需要借助钻孔来实现, 一个地 下气化单元, 通常至少需要一个进气钻孔、 一个出气钻孔及连接两个钻孔 之间的气化通道, 气化通道通常采用压裂和火力贯通等手段实现; 而一个 煤层气抽采单元, 通常需要至少一个盲孔, 如一个垂直孔或多分枝的水平 井, 并且需要采用压裂手段进行增隙, 也可以包括一个注气井和多个生产 井。 所以地下气化与地面煤层气抽采在技术上某种程度的相似性, 将煤炭 地下气化技术与煤层气抽采技术结合, 既可以利用地下气化高温加热煤 层, 增加煤层透气性, 提高煤层气采收率; 又可以实现钻井工艺与压裂技 术的耦合, 同时可将 co2直接捕集作为煤层气驱替的介质以及地下气化过 程的气化剂, 调控煤气有效组分含量。 通过技术的耦合, 提高煤层气采出 率、 调节煤气有效气体组成、 降低煤气生产成本, 同时实现 co2捕集和资 源化利用。
如图 1所示, 本发明的方法可以包括钻井、 压裂贯通、 抽采煤层气、 煤层点火、 地下气化、 回收 co2以及 co2封存等歩骤。
更具体地, 本发明的煤层气与煤的共采方法包括如下歩骤:
歩骤 al : 从地面向煤层中钻至少 2个钻孔, 两个钻孔底端的连线与煤 层的主裂隙方向一致, 其中一个作为进气钻孔, 另一个作为出气钻孔, 由 进气钻孔注入作为压裂介质的高压(即高于煤层的破裂压力)含有二氧化 碳的压裂介质, 强制 C02沿着煤层中的孔隙和裂隙移动并从出气钻孔排 出, 从而在钻孔间煤层中建立连通裂隙;
歩骤 a2: 关闭出气钻孔, 由进气钻孔继续向煤层连续注入 C02, 然后 停止注入 C02, 关闭进气钻孔并关闭出气钻孔进行焖井, 使 C02驱替煤层 CH4, 之后重新开启出气钻孔, 抽采煤层气;
歩骤 a3: 根据煤层气解析情况重复歩骤 a2, 当出气钻孔气体中 CH4 含量出现明显降低 (例如甲垸体积浓度小于 5%) 后, 则在出气钻孔底部 煤层点火, 之后将 C02和纯氧配成一定浓度的 C02富氧气体 (称为 C02 富氧), 经由进气钻孔沿着孔间煤层形成的连通裂隙连续输送至火区, 使 火源迎着 C02富氧气流方向向进气钻孔方向移动, C02富氧与煤层发生气 化反应、 热解反应, 连通裂隙被加工为气化通道并继续气化同时生成气化 煤气和热解煤气:
C + 02→- CO2 -394kJ/mol
C + -O,→- CO -l l lkJ/mol
2 2 C + C02→ 2CO + 173kJ/mol C + H20→H2 + CO + \3 lkJ/mol 煤→H2 + cH4 + o¾ +焦油 +半焦 + · · · 同时, 释放出来的热量传递到煤层中, 促进 CH4解吸, 并干燥煤层增 加煤层透气性,解吸后的甲垸与气化煤气、热解煤气一并由出气钻孔排出; 歩骤 a4:当所述 C02富氧进气压力和煤气出气压力之差出现明显降低 (一般为 0.3MPa左右) 后, 增大 02富氧流量或增加 C02富氧氧浓度, 进一歩提高反应区温度, 强化 CH4解吸, 并使火源逆着 C02富氧气流方向 向出气钻孔方向移动, 保证 C02与炽热的煤层充分接触反应, 同时完成钻 孔间煤层的原位气化开采;
进一歩, 所述歩骤中 C02, 可以为气态、 液态、 超临界态 C02, 也可 以由液态 C02、 水冻胶 (如胍胶, 其作用是提高压裂介质的稠度, 降低压 裂介质的滤失, 增大裂缝宽度) 和化学添加剂 (如氯化钾, 其作用是使压 裂介质形成稳定的体系) 组成的混合液。
进一歩, 在压裂作业中, 监测 C02注入钻孔压力变化情况, 当钻孔压 力出现迅速下降(即压力降幅达到原压力值 5%每天左右或更大), 且出气 流量不小于 100Nm3/h时, 表明在钻孔间煤层中已经形成连通裂隙。
进一歩, 所述 C02富氧, 要求歩骤 a3氧气体积浓度为 20〜50%, 要 求歩骤 a4氧气浓度为 40〜70%, 以保证灰分不发生熔融。 如果煤层水量 不足以气化所需煤炭, 气化剂中还需添加水蒸气, 水蒸气的量根据上文所 述确定。
进一歩, 所述 co2富氧的输送, 可以通过环空型输送管道由地面输送 至火区; 也可以直接通过钻孔由地面输送至火区。
所述方法中还可以包括歩骤 a5, 回收 C02: 将煤层地下气化过程产生 的 C02进行回收, 并将部分 02作为煤层地下气化的气化剂,用于调控煤 气组分与热值。
所述方法中还可以包括歩骤 a6, C02封存:两钻孔间煤层完成气化后, 将回收的部分 C02填充到煤层气化后形成的燃空区, 进行埋藏和封存。
所述钻孔中, 两个钻孔中可以保证气化过程的进行, 一个用于进气, 一个用于出气; 同时煤层气抽采过程中, 可以一个钻孔用于注气驱替煤层 气, 一个钻孔用于生产收集从煤层中被驱替出来的煤层气;
所述方法中煤层压裂方式至少包括: 气体压裂、 水力压裂或者泡沬压 裂、 机械式钻进技术。
所述方法中, 歩骤 al也可以用 02和 C02进行压裂, 02浓度在 20% 以内, 具体根据煤层中甲垸含量和甲垸爆炸极限确定。
所述方法中建立火区的方式可以是高温和高压二氧化碳和氧气的混 合气体通入钻孔孔底, 其中温度按照氧气浓度、 煤层着火点、 煤层裸露面 积、 管道热损等确定, 压力根据煤层静水压头确定。
所述方法中建立火区的方式还包括: 电点火、 固体燃料点火, 或者利 用作业区域内原有火区或燃空区高温煤层。
所述方法中地下气化方式至少包括: 正向燃烧、 逆向燃烧或者后退注 气点燃烧。 正向燃烧是指火焰工作面移动方向和气流方向一致, 逆向燃烧 是指火焰工作面移动方向和气流方向相反, 而后退注气点燃烧是指在水平 井中, 插入一套连续管, 在地面抽拉这套连续管, 实现连续管在水平井中 后退移动, 在不同位置进行点火和气化。
所述方法中 C02可以通过多种途径回收,主要取决于煤气的用途和品 质等, 如用作发电, 可以回收煤气发电后产生的烟气中的 C02, 如用作化 工合成, 可以在煤气净化中脱碳工段分离并回收煤气中的 C02, 也可以利 用煤气或煤层气直接燃烧生成的烟气。
所述方法中气化煤气、 热解煤气、 煤层气经过出气钻孔排出后, 可用 于甲垸合成, 或者进行多联产生产, 如甲垸一发电, 甲垸一甲醇等, 生产 多种能源化工产品。
本发明还提供了一种优选煤层气与煤的共采方法, 整个流程以 C02 的资源化利用为核心, 该方法的具体优点如下:
本发明将煤层气开采与地下气化相结合, 相比其他煤层气抽采技术, 大大提高了煤层气的采收率, 降低成本, 同时也考虑 C02的回收和利用, 特别适合于低渗透煤层, 煤层气开采与地下气化具有很强的相互协同作 用, 具体表现在:
第一歩中所钻钻孔, 既可以用于煤层气压裂和第二歩煤层气抽采井, 也可以用于第三歩点火和第四歩热解和气化的进出气孔, 使煤层气钻井与 地下气化钻井相互耦合, 有利于减少钻井投入, 节省成本, 对于深部煤层 资源的开采, 成本节约尤其明显;
第一歩中二氧化碳压裂可以提高第二歩煤层气抽采过程中甲垸气的 解析, 煤层中吸附的大量二氧化碳可以为后续第三歩点火和第四歩热解和 气化过程中控制煤层温度, 防止煤层局部超温, 产生自燃或气化通道熔融 等不利于点火和气化的问题, 还可以提高第四歩中煤层热解气的产量; 另 外, 第一歩压裂过程大大提高煤层渗透率, 为第四歩热解和气化提供了有 利的传热和传质条件,增加气化工作面的扩展范围,提高煤层气化回采率; 如果第一歩中加入二氧化碳和氧气的混合物作为压裂介质, 则停留在煤层 的氧气则有利于点火并且可以在第四歩的气化过程中, 和可燃气体反应, 进一歩提高煤层的温度, 既可防止在二氧化碳压裂后煤层裂隙闭合问题, 又可加速煤层气中甲垸的解析和煤的热解, 从而提高了生成的煤气中甲垸 的含量, 煤气品质也可得到明显提升。 但是必须控制混合气体中的氧含量 在甲垸的爆炸极限之外, 具体可以通过控制氧浓度实现;
第二歩煤层气抽采过程析出大量甲垸, 煤层反复经历加压和减压过 程, 煤层渗透率大大提高, 有利于第四歩中气化工作面的扩展, 出气井周 围富集的甲垸也有利于点火;
第四歩中通过地下气化反应产生的高温促进煤层裂隙的形成(即热态 增隙), 使煤层冷态压裂与热态增隙互补来产生协同效应, 提高了煤层气 的渗流能力, 煤层升温后也大大有利于甲垸的解析, 并且防止了第一歩二 氧化碳压裂后煤层裂隙闭合问题产生; 通过物理解吸和化学反应结合, 可 大大增加煤层气产量; C02能够加快 CO的生成速率, 抑制水煤气变换反 应, 有效的调节煤气中有效组分含量, 氢碳比适合于合成甲垸, 同时 C02 用于驱替 CH4也提高煤层气采出率, 实现 C02捕集和资源化利用, 实现 C02减排。
下面通过具体实施例并结合附图对本发明做进一歩的详细描述, 但应 当理解, 本发明并不局限于这些实施例。 实施例 1
本实施例参照图 2和图 3进行描述。图 2 是根据本发明的一种煤层气 与煤共采方法的示意图, 其中钻孔之间的煤层通过冷态压裂, 注入 C02 抽采煤层气; 而图 3是该煤层气与煤共采方法的示意图, 其中建立火区对 裂隙进行热加工,扩大成气化通道, 同歩驱替煤层气。如图 2和图 3所示, 在本实施例中根据拟气化煤层范围设置钻孔, 钻孔数量由煤层储量和煤气 生产规模等决定, 但为实现本发明至少应该包括一个进气孔和一个出气 孔, 具体实施方式如下所述:
参见图 2和图 3, 由地面 2经由上覆岩层 3向煤层 1中施工垂直孔作 为进气钻孔 5, 在距进气钻孔 5—定距离范围内 (一般在 200米到 600米 之间, 具体可以由本领域技术人员根据煤种等确定, 例如变质程度越深其 钻孔长度越长, 对于褐煤一般选取 200米左右, 烟煤选取 500米左右) 施 工垂直孔作为出气钻孔 6, 该进、 出气钻孔的底部位于煤层 1中, 距离煤 层底板 2米,进气钻孔 5和出气钻孔 6的底端连线与煤层主裂隙方向一致, 进出气钻孔的间距可由本领域技术人员根据煤层、 地层等情况确定。
进气钻孔 5孔口安装 02管线 7、 C02管线 8, 出气钻孔 6孔口安装排 水管线 9、 煤层气管线 10、 煤气管线 13, 其中 02管线 7用于输送纯氧、 C02管线 8用于输送 C02,并在进气钻孔 5内混合配成一定体积浓度的 C02 富氧 (本实施例中, 氧气浓度为 10%左右); 排水管线 9用于在压裂和抽 采煤层气阶段来抽排煤层水, 煤层气管线 10用于在抽采煤层气阶段来排 放煤层气, 以及气化完成后输送 C02, 以将 C02封存至煤层气化后形成的 燃空区内, 煤气管线 13用于输送点火后气化过程生成的粗煤气。 具体操 作过程为:
将 C02管线 8输送的高压二氧化碳和 02管线 7输送的氧气经由进气 钻孔 5连续注入煤层 1中, 注入压力为煤层破裂压力的 1.1倍, 强制气体 介质沿煤层天然孔隙和裂隙移动, 对煤体进行压裂, 产生连通裂隙 4, 从 而与出气钻孔 6在煤层 1中相互连通, 完成压裂后的气体经由出气钻孔 6 并从煤层气管线 10排出至地面。
关闭出气钻孔 6, 由进气钻孔 5向煤层 1继续注入高压 C02, 注入压 力不大于煤层破裂压力, 注入总量根据煤层饱和气含量决定, 待 C02总注 入量满足要求后停止注入, 关闭进气钻孔 5, 并关闭出气孔焖井 1〜15天, 以保证 C02与煤层充分接触、 驱替煤层中吸附的 CH4; 之后重新开启出气 钻孔 6, 并由排水管线 9对煤层水进行抽排, 以对煤层 1脱水, 同时打 开煤层气管线 10以降低出气钻孔 6压力, 以利于煤层气解吸或脱附, 并由煤层气管线 10收集至地面管网。抽采一段时间后, 当出气钻孔 6孔 底压力降至 lOkPa以下后, 进行下一个循环的注入和抽采。
当出气钻孔 6气体中 CH4含量出现明显降低(即其体积浓度小于 5%) 后, 打开出气钻孔 6, 提出排水管线 9, 安装煤气管线 13。 之后打开出气 钻孔 6与煤气管线 13间的连通阀门, 并由进气钻孔 5向煤层 1继续注入 高压 C02, 注入压力大于煤层静水压力, 注入量根据煤层含水量决定, 并 由煤气管线 13排出, 以将钻孔间煤层内的水分带出, 即疏干煤层水分, 使出气钻孔 6孔底煤层保持干燥。
将电点火器下放至出气钻孔 6孔底煤层段, 打开出气钻孔 6与煤气管 线 13间的连通阀门, 将 02管线 7送来的纯氧、 C02管线 8送来的 C02, 在进气钻孔 5内混合配成氧气体积浓度 20〜30%的 C02富氧作为气化剂, 沿连通裂隙 4送入出气钻孔 6孔底煤层。 之后监测出气孔的甲垸含量, 控 制进气中氧气的含量, 保证出气钻孔 02浓度不在甲垸爆炸极限范围内。 02浓度或者甲垸含量满足要求后,启动点火器对出气钻孔 6孔底煤层进行 点火, 建立初始火区 11。气化剂与煤层 1发生反应生成的粗煤气经由煤气 管线 13排出, 控制 C02富氧流量 (约 300-500m3/小时) 使火区温度不低 于煤层自燃着火点温度。
待火区温度超过 1000°C后,如果进气压力下降幅度超过 10%时, 以每 次 500〜1000Nm3/h增加 C02富氧流量, 直至流量达到 5000〜8000Nm3/h 之间, 以使火源迎着 C02富氧气流方向向进气钻孔方向移动, 由于 C02 富氧与煤层发生气化反应、 热解反应:
C + 02→- C02 -394kJ/mol
C +-0,→CO -l l lkJ/mol
2 2
C + Ca→ 2CO + 173kJ/mol
C + H O→H + CO + 13 lkJ/mol 煤→H2 +cH4 +o¾ +焦油 +半焦 + · · · 沿连通裂隙 4并将部分煤层气化掉, 扩大了连通裂隙, 逐渐形成气化 通道 12, 以利于煤气排出; 同时释放出来的热量传递到煤层中, 促进 CH4 解吸, 并干燥煤层增加煤层透气性, 解吸后的甲垸与气化煤气、 热解煤气 一并由出气钻孔 6及煤气管线 13排出。
之后维持该流量和 02浓度, 进行逆向燃烧 (即, 火焰前沿的扩展方 向与供入气体的流向相反), 并实时监测进气钻孔 5的压力。当进气钻孔 5 与出气钻孔 6压力相差不大 (压差小于 0.3 MPa左右) 时, 表明: 进气钻 孔 5的下端与出气钻孔 6的下端之间的气化通道 12构建成功。
气化通道 12完成构建后, 增大从进气钻孔 5上端向井下供给的 C02 富氧气体的增加氧气浓度(每天增加 2〜5%)到 40〜60%以提高反应区温 度, 并进行正向气化(即, 火焰前沿的扩展方向与供入气体的流向相同), 保证 C02与气化通道内炽热的煤层充分接触反应, 以完成钻孔间煤层的气 化; 同时, 由于气化空间扩大, 地应力作用显现, 在热作用的共同作用下 气化通道周边的煤层产生破碎带, 加速煤层气释放。 在实际操作中, 可根 据煤层夹矸厚度、 含水量, 钻孔间距等情况, 对 C02富氧气体流量和 /或 氧气浓度进行调整, 如果煤层含水量小于气化反应所需水量, 可以注入二 氧化碳富氧和水蒸气气体, 注入水蒸气的量为气化反应所需水量和煤层含 水量的差除以水蒸气分解率。
煤层气化过程结束后形成燃空区, 其空间被灰渣、 焦渣、 夹矸、 顶板 岩石、 未气化的煤层所充填, 可以作为封存 C02的空间。 封存开始后, 关闭出气钻孔 6, 打开 C02管线 7, 注入高压 C02, C02压力一般控制在 6〜8MPa, C02注入量一般控制在 400〜500Nm3/m3 (每单位体积的燃空 区内可以封存 400〜500标立方的 C02),具体根据燃空区体积、煤层水文 地质情况等决定。
本发明中所生产的气化煤气、 热解煤气和煤层气经过出气钻孔排出 后, 用于甲垸合成。 实施例 2
实施例 2采用羽状分支水平钻井技术加快煤层气抽采速度, 同时利用 分支井技术沟通煤层天然裂隙与割理, 增加煤层裸露面积, 有利于后续气 化过程的进行, 本实施例参照图 4和图 5进行描述。 图 4是根据本发明的 一种煤层气与煤共采方法的示意图, 其中采用羽状分支水平钻井技术抽采 煤层气; 图 5是根据该煤层气与煤共采方法的示意图, 具体实施如下: 由地面 2经由上覆岩层 3向煤层 1中施工垂直钻孔作为出气钻孔 6, 在距出气钻孔 6—定距离范围 (参照实施例 1 ) 内施工进气钻孔 5, 使钻 孔 5与钻孔 6在煤层中连通, 进气钻孔 5为羽状水平钻孔, 包括若干组羽 状分支水平井 14, 钻孔底部位于预气化的煤层 1中。羽状分支水平井的主 水平井、 分支井的孔径、 长度和分支井的数量, 根据煤层与煤层气开采面 积确定。为了防止井壁发生塌陷,也可以在主水平井内下入筛管进行支护。
羽状水平钻井完成施工后, 在出气钻孔 6内, 下放抽水杆泵, 安装排 水管线 9和煤层气管线 10; 进气钻孔 5井口安装 02管线 7、 C02管线 8, 关闭出气钻孔 6与煤气管线 10间的连通阀门, 由进气钻孔 5向煤层 1连 续注入高压 N2,注入压力不大于煤层破裂压力,注入总量根据煤层饱和气 含量决定, 待N2总注入量满足要求后停止注入, 关闭进气钻孔 5, 并关闭 出气孔焖井 10〜20 天, 以保证 N2与煤层充分接触、 驱替煤层中吸附的 CH4; 之后重新开启出气钻孔 6, 并由排水管线 9对煤层水进行抽排, 以 对煤层 1脱水, 同时打开煤层气管线 10降低出气钻孔 6压力, 以利于 煤层气解吸或脱附, 并由煤层气管线 10收集至地面管网。 抽采一段时 间后, 当出气钻孔 6孔底压力降至 lOkPa以下后, 进行下一个循环的注入 和抽采。
当出气钻孔 6气体中 CH4含量出现明显降低(体积浓度小于 5%)后, 打开出气钻孔 6, 提出排水管线 9, 安装煤气管线 13。 之后打开出气钻孔 6与煤气管线 13间的连通阀门, 并由进气钻孔 5向煤层 1继续注入高压 co2, 注入压力大于煤层静水压力, 注入量根据煤层含水量决定, 并由煤 气管线 13排出, 以将钻孔间煤层内的水分带出即疏干煤层水分, 使出气 钻孔 6孔底煤层保持干燥。
将 02管线 7送来的纯氧、 C02管线 8送来的 C02,在进气钻孔 5内混 合配成体积浓度为 20〜30%的 C02富氧作为气化剂,沿连通裂隙 4送入出 气钻孔 6孔底煤层。之后监测出气孔的甲垸含量,控制进气中氧气的含量, 保证出气钻孔 02浓度不在甲垸爆炸极限范围内。 02浓度或者甲垸含量满 足要求后, 打开出气钻孔 6与煤气管线 13 间的连通阀门, 向出气钻孔 6 孔底投入炽热的焦炭, 焦炭的投放量根据煤层厚度、 套管尺寸、 煤层着火 点等确定, 使出气钻孔 6孔底煤层点燃, 建立初始火区 11。气化剂与煤层 1发生反应生成的粗煤气经由煤气管线 13排出, 控制 C02富氧流量使火 区温度不低于煤层自燃着火点温度
待火区温度超过 1000°C后,如果进气压力下降幅度超过 10%时, 以每 次 300〜500Nm3/h增加 C02富氧流量, 直至流量达到 3000〜5000Nm3/h 之间。 以使火源迎着 C02富氧气流方向向进气钻孔方向移动, 由于 C02 富氧与煤层发生气化反应、 热解反应:
C + 02→C02 -394kJ/mol
C +-0,→CO -l l lkJ/mol
2 2
C + C02→ 2CO + 173kJ/mol C + H20→H2 + CO + \3 lkJ/mol 煤→H2 +cH4 +a¾ +焦油 +半焦 + · · · 沿连通裂隙 4并将部分煤层气化掉, 扩大了连通裂隙, 逐渐形成气化 通道 12, 以利于煤气排出; 同时释放出来的热量传递到煤层中, 促进 CH4 解吸, 并干燥煤层增加煤层透气性, 解吸后的甲垸与气化煤气、 热解煤气 一并由出气钻孔 6及煤气管线 13排出。
之后维持该流量进行逆向燃烧(亦即, 火焰前沿的扩展方向与供入气 体的流向相反), 并实时监测进气钻孔 5的压力。 当进气钻孔 5上端连接 的压力表所显示的压力出现明显的降低(压力降幅一般为初始压力的 10〜 60%) 时, 表明初始火区 11扩展至进气钻孔 5孔底附近。 当进气钻孔 5 与出气钻孔 6压力相差不大 (或压差小于 0.3 MPa) 时, 表明: 进气钻孔 5的下端与出气钻孔 6的下端之间的气化通道 12构建成功。
气化通道 12完成构建后, 增大从进气钻孔 5上端向井下供给的 C02 富氧气体的氧气浓度 (每天增加 2〜5%) 到 50〜70%以提高反应区温度, 并进行正向气化 (亦即, 火焰前沿的扩展方向与供入气体的流向相同), 保证 co2与气化通道内炽热的煤层充分接触反应, 以完成钻孔间煤层的气 化, 同时由于气化空间扩大, 地应力作用显现, 在热作用的共同作用下气 化通道周边的煤层产生破碎带,加速煤层气释放。具体根据煤层夹矸厚度、 含水量, 钻孔间距等情况, 对 02富氧气体流量和 /或氧气浓度进行调整。
本发明中所生产的气化煤气、 热解煤气和煤层气经过出气钻孔排出 后, 用于甲垸一发电。 实施例 3
实施例 3与实施例 2基本相同, 不同之处在于采用定向水平钻井技术 建立初始排水采气的通道, 形成 U型结构的水平井 15的布置方式, 该水 平井垂直于煤层主裂隙方向, 并利用垂直井即出气钻孔 6进行排水, 进气 钻孔 5进行采气, 完成煤层气初始排采后, 在出气钻孔 6建立火区, 并开 始热加工通道, 同歩驱替煤层气, 并完成钻孔间煤层气化, 本实施例参照 图 6和图 7进行描述。 图 6是根据本发明的一种煤层气与煤共采方法的示 意图, 其中采用定向水平钻井技术抽采煤层气, 而图 7是根据该煤层气与 煤共采方法的示意图, 其中进行点火及通道热加工, 扩大成气化通道, 同 歩驱替煤层气。 本发明所生产的气化煤气、 热解煤气和煤层气经过出气钻 孔排出后, 用于甲垸一甲醇生产。 本发明利用地下气化产生大量热量, 在加热煤层、 提高煤层甲垸解析 能力的同时, 使用于煤层气压裂的通道大大扩大, 能够极大的提高煤层气 产量, 从根本上解决中国煤层气储层的低渗透率问题。 同时, 地下气化对 煤层气抽采完的煤层进行化学利用, 所产煤气中含有大量甲垸和一氧化碳 及氢气, 通过地面工艺的转换, 获取清洁的甲垸。 本发明对煤层气和煤层 本身进行协同开发、 综合利用, 不仅可大大降低生产开发成本, 而且可以 提高最终产品甲垸的产量, 煤气的品质也得到了较大提升, 实现了煤与煤 层气的共采。 另外, 以含二氧化碳的流体作为压裂、 气化等加工介质, 既 提高煤层中甲垸解析能力, 提高了煤层气的开采率, 又提高地下气化煤气 中甲垸等可燃气体有效气组分的含量, 过程中产生的二氧化碳还能循环利 用, 本发明是一种低碳、 高效、 清洁的新方法。 以上已对本发明进行了详细描述, 但本发明并不局限于本文所描述具 体实施方式。 本领域技术人员理解, 在不背离本发明范围的情况下, 可以 作出其他更改和变形。 本发明的范围由所附权利要求限定。

Claims

权 利 要 求 书
1. 一种煤层气与煤共采方法, 所述方法包括:
1 ) 钻井歩骤: 由地面向煤层进行钻井以提供使所述煤层与地面连通 的至少一个进气钻孔和至少一个出气钻孔;
2) 压裂贯通歩骤: 由所述进气钻孔向所述煤层注入含有二氧化碳的 压裂介质,强制所述压裂介质在所述煤层中流动,并由所述出气钻孔排出, 从而使所述进气钻孔和所述出气钻孔在所述煤层中连通;
3 ) 抽采煤层气歩骤: 由所述进气钻孔向所述煤层注入驱替介质, 对 所述煤层中的煤层气进行驱替, 并由所述出气钻孔收集;
4) 点火歩骤: 在所述出气钻孔底部的煤层中建立火区, 以引燃所述 煤层; 以及
5 ) 地下气化歩骤: 由所述进气钻孔向所述煤层注入含二氧化碳的气 化剂, 所述气化剂与所述煤层进行气化反应和热解反应, 产生热能和气化 煤气, 所述热能向所述煤层内部传递以产生热解煤气, 同歩驱替所述煤层 气以产生游离甲垸, 所述游离甲垸与所述气化煤气、 所述热解煤气一起从 所述出气钻孔排出并收集。
2. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 压裂介质是二氧化碳和氧气的混合物, 并且其中氧气的体积浓度为 20% 以下。
3. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 方法还包括:
6) 回收 C02歩骤: 将所述地下气化歩骤中产生的 C02进行回收, 并 且将所回收的 co2的一部分用作所述气化剂。
4. 根据权利要求 3所述的煤层气与煤共采方法, 其特征在于, 所述 方法还包括:
7) C02封存歩骤: 在所述进气钻孔和所述出气钻孔之间的煤层完成 所述地下气化后, 将回收的部分 C02填充到燃空区, 进行埋藏和封存。
5. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 还包 括在所述点火歩骤 4) 之前进行安全检测歩骤以确保点火安全。
6. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 在所 述抽采煤层气歩骤 3 ) 中, 对所述煤层中的煤层气进行驱替是注入 C02 或氮气进行驱替。
7. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 进气钻孔或所述出气钻孔由定向钻孔和垂直钻孔构成。
8. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 进气钻孔和所述出气钻孔由垂直钻孔构成。
9. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 建立火区通过电点火或固体燃料点火。
10. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 地下气化包括正向燃烧、 逆向燃烧或后退注气点燃烧。
11. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 钻井按照煤层主裂隙垂直方向钻水平井。
12. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 压裂贯通歩骤中使用的 co2为气态、 液态或超临界态 co2, 或者是由液 态 co2、 水冻胶和化学添加剂组成的混合液。
13. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 在所 述压裂贯通歩骤中,当所述进气钻孔中的压力迅速下降并且所述出气钻孔 的出气流量为 100Nm3/h以上时, 所述进气钻孔和所述出气钻孔在所述煤 层中已经形成连通。
14. 根据权利要求 1所述的煤层气与煤共采方法, 其特征在于, 所述 地下气化歩骤中, 所述含二氧化碳的气化剂中的氧气体积浓度为 20〜 70%, 以保证灰分不发生熔融。
15. 根据权利要求 14所述的一种煤层气与煤共采方法,其特征在于, 所述地下气化歩骤中, 所述含二氧化碳的气化剂中的氧气体积浓度为 20〜50%, 用于构建气化通道。
16. 根据权利要求 15所述的一种煤层气与煤共采方法,其特征在于, 所述地下气化歩骤中, 所述含二氧化碳的气化剂中的氧气体积浓度为 40〜70%, 用于所述气化通道构建完成后的煤层气化。
17. 根据权利要求 1所述的一种煤层气与煤共采方法, 其特征在于, 如果在煤层气抽采完,煤层的含水量小于煤层气化所需的水量时,所述含 有二氧化碳的气化剂为氧气、 二氧化碳和水蒸气的混合物。
18. 根据权利要求 1所述的一种煤层气与煤共采方法, 其特征在于, 所述地下气化歩骤中的所述气化剂的输送通过环空型输送管道或者钻孔 由地面输送至所述火区。
19. 根据权利要求 3所述的一种煤层气与煤共采方法, 其特征在于, 所述回收 co2歩骤中回收的 co2来自于煤气发电产生的烟气或煤气净化中 脱碳工段。
20. 根据权利要求 1所述的一种煤层气与煤共采方法, 其特征在于, 所产生的气化煤气、 热解煤气和煤层气经过所述出气钻孔排出后, 用于甲 垸合成、 甲垸 -发电或甲垸 -甲醇生产。
21. 根据权利要求 3所述的一种煤层气与煤共采方法, 其特征在于, 所述回收 co2歩骤中回收的 co2用作所述压裂贯通歩骤的压裂介质或用 作所述抽采煤层气歩骤的驱替介质。
PCT/CN2013/083781 2012-09-21 2013-09-18 一种煤层气与煤共采方法 WO2014044192A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/430,086 US20150247385A1 (en) 2012-09-21 2013-09-18 Method for joint-mining of coalbed gas and coal
AU2013317409A AU2013317409B2 (en) 2012-09-21 2013-09-18 Method for joint-mining of coalbed gas and coal
EP13838778.2A EP2899363A4 (en) 2012-09-21 2013-09-18 METHOD FOR THE SIMULTANEOUS EXTRACTION OF COAL CARBON AND COAL
ZA2015/02650A ZA201502650B (en) 2012-09-21 2015-04-20 Method for joint-mining of coalbed gas and coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210356627.1A CN103670338B (zh) 2012-09-21 2012-09-21 一种煤层气与煤共采方法
CN201210356627.1 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014044192A1 true WO2014044192A1 (zh) 2014-03-27

Family

ID=50309028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083781 WO2014044192A1 (zh) 2012-09-21 2013-09-18 一种煤层气与煤共采方法

Country Status (6)

Country Link
US (1) US20150247385A1 (zh)
EP (1) EP2899363A4 (zh)
CN (1) CN103670338B (zh)
AU (1) AU2013317409B2 (zh)
WO (1) WO2014044192A1 (zh)
ZA (1) ZA201502650B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832130A (zh) * 2015-04-28 2015-08-12 中国矿业大学 露天矿端帮残煤气化回收方法
CN109653787A (zh) * 2019-01-25 2019-04-19 安徽理工大学 一种高承压水高瓦斯煤层群协调抽采卸压方法
CN110909976A (zh) * 2019-10-11 2020-03-24 重庆大学 一种突出矿井抽掘采部署合理性评判改进方法及装置
CN111155981A (zh) * 2019-12-20 2020-05-15 中煤科工集团西安研究院有限公司 一种煤层气井双煤层合层排采分层产气量监测方法
CN111396028A (zh) * 2020-03-30 2020-07-10 西安科技大学 基于液态co2致裂增透和相变驱置瓦斯抽采达标等效量化评估方法
CN111810259A (zh) * 2020-05-26 2020-10-23 新奥科技发展有限公司 二氧化碳利用的方法及系统
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112127866A (zh) * 2019-06-25 2020-12-25 中国石油天然气股份有限公司 一种利用煤炭地下气化技术开发深层煤层的工艺
CN112127864A (zh) * 2020-09-23 2020-12-25 中煤科工集团重庆研究院有限公司 一种立井揭煤区域多煤层分段水力压裂方法
CN112284965A (zh) * 2020-10-16 2021-01-29 中煤科工集团重庆研究院有限公司 一种煤巷掘进工作面钻孔流量模拟实验装置及方法
CN112523733A (zh) * 2020-11-26 2021-03-19 河南省煤层气开发利用有限公司 一种煤层气与煤气化联采区域消突方法
CN112983536A (zh) * 2021-03-29 2021-06-18 贵州盘江煤电集团技术研究院有限公司 一种确定煤矿瓦斯抽采钻孔注浆密封最佳注浆压力的方法
CN113738350A (zh) * 2020-05-29 2021-12-03 中国石油天然气股份有限公司 煤层气藏内剩余煤层气资源分布区域的确定方法
CN114810082A (zh) * 2022-03-26 2022-07-29 中国矿业大学 一种厚煤层露天矿端帮压煤气化回收方法
CN114876438A (zh) * 2022-05-08 2022-08-09 太原理工大学 一种充填式煤原位制氢的煤炭开采方法
CN115163019A (zh) * 2022-08-03 2022-10-11 西安科技大学 一种高温蒸气压裂原位热解富油煤分采系统及方法
CN115163000A (zh) * 2022-07-15 2022-10-11 中国矿业大学 一种基于压风动力的打钻防喷孔装置及方法

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018813A (zh) * 2014-05-31 2014-09-03 贵州盘江煤层气开发利用有限责任公司 一种煤层气开采方法
CN104018812A (zh) * 2014-05-31 2014-09-03 贵州盘江煤层气开发利用有限责任公司 井下钻孔与地面直井对接联合抽采煤层气的方法
GB2528581A (en) * 2014-07-21 2016-01-27 Aj Lucas Pty Ltd Improvements to recovery of hydrocarbons
CN104389572B (zh) * 2014-10-28 2016-11-23 中国石油天然气股份有限公司 一种火烧油层开采层状油藏的方法
CN104632177B (zh) * 2014-12-18 2017-11-14 华北科技学院 一种无井式煤炭地下气化系统及工艺
CN104563992B (zh) * 2014-12-22 2018-05-15 新奥科技发展有限公司 煤炭地下气化系统及控制方法
CN104696006B (zh) * 2015-02-03 2016-07-27 太原理工大学 地面钻井穿透残留煤柱抽采多层老空区残余煤层气的方法
CN104696005B (zh) * 2015-02-03 2016-08-31 太原理工大学 煤矿老空区协同封存二氧化碳抽采残留煤层气的方法
CN104564011B (zh) * 2015-02-11 2018-08-14 新奥科技发展有限公司 一种地下气化方法
CN104612653B (zh) * 2015-02-11 2017-11-03 新奥科技发展有限公司 一种地下气化方法
CN104675376B (zh) * 2015-02-23 2019-02-12 新奥科技发展有限公司 地下煤气化方法及地下煤气化系统
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
CN104806218B (zh) * 2015-04-10 2017-06-30 重庆大学 一种提高页岩气井采收率的方法及系统
CN105201548A (zh) * 2015-10-10 2015-12-30 山西晋煤集团技术研究院有限责任公司 水平井卸压抽采方法
CN105317418B (zh) * 2015-11-09 2018-01-16 淮南矿业(集团)有限责任公司 防治煤与瓦斯突出的方法
EP3414425B1 (en) * 2016-02-08 2022-08-03 Proton Technologies Inc. In-situ process to produce hydrogen from underground hydrocarbon reservoirs
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
CN106194147B (zh) * 2016-08-01 2018-11-02 中嵘能源科技集团有限公司 一种煤炭地下气化开采中直井水平井联合点火的方法
CN106223916B (zh) * 2016-10-14 2018-09-07 中国地质大学(北京) 电阻丝式煤层加热装置
CN106869897A (zh) * 2017-01-20 2017-06-20 徐斌 煤层地下松动方法及装置
CN107420043B (zh) * 2017-08-10 2023-09-12 贵州大学 一种与煤层加热电缆配套使用的钻孔自紧装置及施工方法
CN109577919B (zh) * 2017-09-28 2020-06-09 中国石油天然气股份有限公司 低渗透煤层中煤层气的开采方法
CN108798630B (zh) * 2018-04-28 2021-09-28 中国矿业大学 一种构造煤原位煤层气水平井洞穴卸压开采模拟试验系统
CN109138952B (zh) * 2018-10-29 2024-04-19 邓晓亮 一种超临界煤炭地下气化产出发电的系统和方法
CN111396011B (zh) * 2019-01-02 2022-06-03 中国石油天然气股份有限公司 提高双支u型井产气量的方法及装置
CN109578059B (zh) * 2019-01-18 2020-10-09 中国矿业大学 一种井下煤层气抽采方法及其使用的液氮流动冻裂装置
CN110145293B (zh) * 2019-06-20 2020-07-31 中国矿业大学 一种多联产无井式煤炭地下气化方法
CN110206524B (zh) * 2019-07-09 2023-09-26 河南理工大学 煤炭地下气化炉助燃材料注入系统及方法
CN110578508A (zh) * 2019-08-05 2019-12-17 邓惠荣 水平井一井多采联合开采煤层气及煤气化方法
CN110469306A (zh) * 2019-08-05 2019-11-19 邓惠荣 煤层油层地下爆燃定向定位裂缝注气产气方法
CN110552678A (zh) * 2019-08-05 2019-12-10 邓惠荣 深层及超厚层煤反式布井一注多采超临界燃烧气化制氢方法
CN110566172A (zh) * 2019-08-15 2019-12-13 太原理工大学 一种高压火电厂烟气压裂煤层的方法
CN110700794B (zh) * 2019-09-06 2021-10-22 太原理工大学 一种多分支水平井煤层瓦斯抽采物理模拟实验系统
CN110821463A (zh) * 2019-11-15 2020-02-21 中煤地质集团有限公司北京地质调查分公司 一种煤层气热采增产方法
CN112855111B (zh) * 2019-11-28 2023-04-25 中国石油天然气股份有限公司 电加热煤层地下气化系统及方法
CN110965964B (zh) * 2019-12-16 2021-10-12 临沂矿业集团菏泽煤电有限公司 一种特厚煤层瓦斯抽采方法
CN111425180B (zh) * 2020-04-01 2021-06-22 中国矿业大学 一种ucg-ccs覆岩裂隙发育高度预测方法
CN111396010B (zh) * 2020-05-08 2023-07-14 新疆维吾尔自治区煤田地质局煤层气研究开发中心 煤层气田清洁取能系统及方法
CN111579749B (zh) * 2020-05-11 2022-12-06 煤炭科学技术研究院有限公司 一种煤与瓦斯突出的动力诱发实验方法
CN111931264B (zh) * 2020-06-11 2023-10-20 中国矿业大学 一种深部矿山水热型地热能与煤层协同开采工作面设计方法
CN111894546B (zh) * 2020-07-16 2022-05-13 中国煤炭地质总局勘查研究总院 煤炭地下气化与瓦斯抽采的联合资源开采方法及装置
CN112360543B (zh) * 2020-08-24 2024-03-19 中国石油大学(华东) 一种煤层注水消突方法
CN112412430B (zh) * 2020-09-18 2022-02-01 西安交通大学 一种煤炭地下原位热解的系统及方法
CN112081558A (zh) * 2020-10-10 2020-12-15 西安科技大学 煤炭地下气化与煤层气的协同开采方法、结构及构造方法
CN112099000B (zh) * 2020-10-26 2023-10-03 中煤科工集团西安研究院有限公司 一种利用钻孔雷达多次波探测煤层厚度信息的方法
CN112377168B (zh) * 2020-11-11 2023-03-10 中联煤层气有限责任公司 一种适用于构造煤的煤层气多分支水平井及钻进方法
CN112377164B (zh) * 2020-11-16 2022-06-28 东北石油大学 一种发泡机构、高能气体泡沫压裂装置及工艺
CN112800576B (zh) * 2020-12-14 2023-05-09 重庆大学 一种煤层群开采双重卸压消突评判方法
CN112832715B (zh) * 2021-01-07 2022-09-30 安徽理工大学 一种智能多相致裂耦合二氧化碳驱煤层气抽采系统
CN112761612A (zh) * 2021-01-07 2021-05-07 中国煤炭地质总局勘查研究总院 利用废弃煤层气井进行煤炭地下气化的方法
CN112879077B (zh) * 2021-01-13 2023-04-18 中煤科工开采研究院有限公司 基于地面定向水平孔的煤与煤层气接续开发方法
CN112761586B (zh) * 2021-01-22 2022-04-12 中国矿业大学 一种钻孔甲烷自循环燃爆压裂强化抽采方法
CN112855073B (zh) * 2021-02-04 2022-09-20 河南理工大学 一种石门揭煤过程中利用微生物固化煤层的装置及方法
CN113217079B (zh) * 2021-03-01 2023-07-14 柴兆喜 均压循环矿井瓦斯抽采煤孔
CN112983376B (zh) * 2021-03-05 2022-03-04 中国矿业大学 一种带有分子筛的原位甲烷燃爆聚能射孔装置
CN113073967B (zh) * 2021-03-15 2023-04-28 山东科技大学 一种煤层原位转化制氢的通道布置方式和制氢方法
CN112780334A (zh) * 2021-03-18 2021-05-11 柴兆喜 抽采纯瓦斯的井筒
CN113027410B (zh) * 2021-04-10 2022-08-16 天津市地质研究和海洋地质中心 一种煤炭地下气化用多通道气化炉及气化方法
CN115075866A (zh) * 2021-04-15 2022-09-20 重庆工程职业技术学院 用于矿井的抽瓦斯通风工艺
CN113236219B (zh) * 2021-05-31 2022-11-04 重庆地质矿产研究院 一种适用于多套高陡碎粒煤层的煤层气压裂方法
CN113236344B (zh) * 2021-06-11 2023-10-13 煤炭科学技术研究院有限公司 注氮气掺混阻燃剂驱替促抽防治煤层自燃装置和方法
CN113266314A (zh) * 2021-06-15 2021-08-17 柴兆喜 煤层气煤气矿井
CN113530539B (zh) * 2021-08-02 2024-02-20 北京中矿创新联盟能源环境科学研究院 智能化n00矿井煤气同采方法
CN113431535B (zh) * 2021-08-11 2022-04-15 太原理工大学 一种利用原位热解后的有机矿层进行碳封存的方法
CN113605961B (zh) * 2021-08-12 2023-07-14 煤炭科学技术研究院有限公司 煤矿井下注气驱替注抽两用可回收封孔装置及方法
CN113775376B (zh) * 2021-08-17 2023-06-02 西安科技大学 一种富油煤原位热解及co2地质封存一体化的方法
CN113685132B (zh) * 2021-09-07 2022-06-24 中国矿业大学 覆岩移动监测和离层水疏放的地面双孔联合防突水方法
CN115773098A (zh) * 2021-09-08 2023-03-10 中国石油天然气股份有限公司 煤层和油层叠合区地下煤制气与提高油层采收率的联合开采方法
CN113719284A (zh) * 2021-09-08 2021-11-30 中国矿业大学 一种基于断层破碎带或陷落柱的井筒揭煤水害防治方法
CN113756857B (zh) * 2021-09-22 2023-07-14 太原理工大学 地面高效抽采多层位老空区煤层气的防灭火抽采方法
CN113803104B (zh) * 2021-09-29 2023-07-28 太原理工大学 上采区埋管与下向钻孔一体化布置及全周期瓦斯抽采方法
CN113863915B (zh) * 2021-10-15 2024-01-19 中国华能集团有限公司 一种利用酸化技术改造低渗构造煤储层物性的系统及方法
CN113653470B (zh) * 2021-10-21 2022-04-29 西南石油大学 煤层原位制氢和煤层气开发一体化方法及结构
CN113914847A (zh) * 2021-10-22 2022-01-11 西南石油大学 一种应用压裂技术改善煤炭地下气化气腔发育的方法
CN114033350B (zh) * 2021-11-17 2023-03-24 中国矿业大学 一种甲烷原位燃爆压裂循环式天然气强化抽采系统及方法
CN114109337B (zh) * 2021-11-26 2023-09-19 中煤科工集团重庆研究院有限公司 一种煤矿井下瓦斯抽采钻孔封孔段自适应切槽方法及系统
CN114151060A (zh) * 2021-11-29 2022-03-08 安徽顺安矿建工程有限公司 一种煤田气化用预加热点火装置及煤田气化方法
CN114293962A (zh) * 2021-12-30 2022-04-08 中国矿业大学 瓦斯抽采利用并回注煤层增透的闭环系统及工作方法
CN114320447A (zh) * 2022-01-07 2022-04-12 北京科技大学 一种深部难采煤层碳资源高效利用与二次封存方法
CN114412434B (zh) * 2022-01-20 2022-09-13 中国矿业大学 一种深部煤炭资源地下原位流态化开采方法
CN114412419B (zh) * 2022-01-21 2022-09-09 中国矿业大学 一种叠置煤层气藏高效闭环抽采的方法
CN114412418B (zh) * 2022-01-21 2022-09-27 中国矿业大学 一种用于叠置煤层气藏多向闭环抽采煤层气的方法
CN114542164B (zh) * 2022-01-26 2024-05-28 重庆地质矿产研究院 一种深部煤层流态化煤与煤层气共采及co2储集一体化方法
CN114575792A (zh) * 2022-03-11 2022-06-03 中煤科工集团重庆研究院有限公司 一种煤层群瓦斯联合抽采溯源计量方法
CN114382529B (zh) * 2022-03-24 2022-07-01 中国煤炭地质总局勘查研究总院 一种煤矿井瓦斯地上地下联合抽采方法
CN114856518B (zh) * 2022-05-09 2023-02-03 大连理工大学 一种利用中低焓干岩地热增产煤层气的方法
CN115012894A (zh) * 2022-05-31 2022-09-06 贵州大学 一种超声波改造老井强化煤层气开采方法
CN114991740B (zh) * 2022-06-21 2023-08-25 西安石油大学 一种煤炭地下气化产出气降温节能方法与系统
CN115163023B (zh) * 2022-08-03 2023-11-07 中煤科工集团重庆研究院有限公司 一种近距离煤层群瓦斯联合高效抽采方法
CN115263264B (zh) * 2022-08-03 2023-11-07 中煤科工集团重庆研究院有限公司 一种近距离煤层群开采层和邻近层瓦斯协调高效抽采方法
CN115099720B (zh) * 2022-08-24 2022-12-09 山西凯嘉能源集团有限公司 一种煤系地层围岩瓦斯突出的溯源方法
CN115169760B (zh) * 2022-09-07 2022-11-29 煤炭科学技术研究院有限公司 煤层气与煤炭协调开发方式优化方法、装置及电子设备
CN115405276B (zh) * 2022-09-15 2023-06-20 西安交通大学 一种富油煤温和氧化自生热与水蒸气加热耦合的原位热解系统
CN116804361B (zh) * 2023-06-26 2023-12-12 中国矿业大学(北京) 覆岩分层温度监测方法、系统、电子设备及存储介质
CN116575900B (zh) * 2023-07-07 2023-09-15 太原理工大学 一种原位煤体分区可控气化制氢及co2封存一体化方法
CN117307121B (zh) * 2023-09-26 2024-05-24 中国矿业大学 超临界co2闭环开采完整储层干热岩及碳封存的方法
CN117211747B (zh) * 2023-09-28 2024-01-23 中国矿业大学 利用煤层吸附提浓烟气内co2的煤与瓦斯零碳共采方法
CN117819119B (zh) * 2024-03-06 2024-05-10 太原理工大学 一种烟道气地下岩层捕集封存分离连续一体化装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039824A1 (en) * 1980-05-14 1981-11-18 Zimpro-Aec, Ltd A process for enhanced oil recovery by gas injection and apparatus for use therein
US6571874B1 (en) * 1998-09-02 2003-06-03 Rag Aktiengesellschaft Method for the in-situ extraction of gas from coal seams
CN102080519A (zh) * 2011-01-21 2011-06-01 中矿瑞杰(北京)科技有限公司 气—煤共采的地面负压抽采煤层气的方法
CN102477857A (zh) * 2010-11-30 2012-05-30 新奥气化采煤有限公司 一种煤炭地下气化贯通方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092052A (en) * 1977-04-18 1978-05-30 In Situ Technology, Inc. Converting underground coal fires into commercial products
US4250230A (en) * 1979-12-10 1981-02-10 In Situ Technology, Inc. Generating electricity from coal in situ
AU692248B2 (en) * 1994-04-01 1998-06-04 Amoco Corporation Method for disposing carbon dioxide in a coalbed and simultaneously recovering methane from the coalbed
CN1055332C (zh) * 1995-03-15 2000-08-09 柴兆喜 拉管注气点后退式煤层气化方法
US7264049B2 (en) * 2004-05-14 2007-09-04 Maguire James Q In-situ method of coal gasification
CA2610808A1 (en) * 2005-06-03 2006-12-07 Plasco Energy Group Inc. A system for the conversion of coal to a gas of a specified composition
US7537641B2 (en) * 2005-12-02 2009-05-26 Membrane Technology And Research, Inc. Natural gas treatment process for stimulated well
CN101173604B (zh) * 2007-11-16 2011-11-30 中国科学院武汉岩土力学研究所 水平井混合气体驱替煤层气方法
CN101493007B (zh) * 2008-12-30 2013-07-17 中国科学院武汉岩土力学研究所 基于混合流体自分离的天然气分离及废弃气体地质封存方法
CN102486085B (zh) * 2010-12-01 2015-06-17 新奥气化采煤有限公司 一种用于含碳有机质地下气化的气化剂输配系统及工艺
WO2012092404A1 (en) * 2010-12-28 2012-07-05 Enis Ben M Method and apparatus for using pressure cycling and cold liquid co2 for releasing natural gas from coal and shale formations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039824A1 (en) * 1980-05-14 1981-11-18 Zimpro-Aec, Ltd A process for enhanced oil recovery by gas injection and apparatus for use therein
US6571874B1 (en) * 1998-09-02 2003-06-03 Rag Aktiengesellschaft Method for the in-situ extraction of gas from coal seams
CN102477857A (zh) * 2010-11-30 2012-05-30 新奥气化采煤有限公司 一种煤炭地下气化贯通方法
CN102080519A (zh) * 2011-01-21 2011-06-01 中矿瑞杰(北京)科技有限公司 气—煤共采的地面负压抽采煤层气的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899363A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832130B (zh) * 2015-04-28 2017-06-06 中国矿业大学 露天矿端帮残煤气化回收方法
CN104832130A (zh) * 2015-04-28 2015-08-12 中国矿业大学 露天矿端帮残煤气化回收方法
CN109653787A (zh) * 2019-01-25 2019-04-19 安徽理工大学 一种高承压水高瓦斯煤层群协调抽采卸压方法
CN109653787B (zh) * 2019-01-25 2024-05-03 安徽理工大学 一种高承压水高瓦斯煤层群协调抽采卸压方法
CN112127866A (zh) * 2019-06-25 2020-12-25 中国石油天然气股份有限公司 一种利用煤炭地下气化技术开发深层煤层的工艺
CN112127866B (zh) * 2019-06-25 2022-08-30 中国石油天然气股份有限公司 一种利用煤炭地下气化技术开发深层煤层的工艺
CN110909976A (zh) * 2019-10-11 2020-03-24 重庆大学 一种突出矿井抽掘采部署合理性评判改进方法及装置
CN110909976B (zh) * 2019-10-11 2023-05-12 重庆大学 一种突出矿井抽掘采部署合理性评判改进方法及装置
CN111155981B (zh) * 2019-12-20 2023-05-09 中煤科工集团西安研究院有限公司 一种煤层气井双煤层合层排采分层产气量监测方法
CN111155981A (zh) * 2019-12-20 2020-05-15 中煤科工集团西安研究院有限公司 一种煤层气井双煤层合层排采分层产气量监测方法
CN111396028A (zh) * 2020-03-30 2020-07-10 西安科技大学 基于液态co2致裂增透和相变驱置瓦斯抽采达标等效量化评估方法
CN111396028B (zh) * 2020-03-30 2023-02-28 西安科技大学 基于液态co2致裂增透和相变驱置瓦斯抽采达标等效量化评估方法
CN111810259A (zh) * 2020-05-26 2020-10-23 新奥科技发展有限公司 二氧化碳利用的方法及系统
CN113738350A (zh) * 2020-05-29 2021-12-03 中国石油天然气股份有限公司 煤层气藏内剩余煤层气资源分布区域的确定方法
CN111830231A (zh) * 2020-07-21 2020-10-27 安徽理工大学 一种煤水气混合物的高效分离、回收处理与循环利用试验方法
CN112127864B (zh) * 2020-09-23 2022-03-29 中煤科工集团重庆研究院有限公司 一种立井揭煤区域多煤层分段水力压裂方法
CN112127864A (zh) * 2020-09-23 2020-12-25 中煤科工集团重庆研究院有限公司 一种立井揭煤区域多煤层分段水力压裂方法
CN112284965B (zh) * 2020-10-16 2022-09-23 中煤科工集团重庆研究院有限公司 一种煤巷掘进工作面钻孔流量模拟实验装置及方法
CN112284965A (zh) * 2020-10-16 2021-01-29 中煤科工集团重庆研究院有限公司 一种煤巷掘进工作面钻孔流量模拟实验装置及方法
CN112523733B (zh) * 2020-11-26 2022-11-04 河南省煤层气开发利用有限公司 一种煤层气与煤气化联采区域消突方法
CN112523733A (zh) * 2020-11-26 2021-03-19 河南省煤层气开发利用有限公司 一种煤层气与煤气化联采区域消突方法
CN112983536A (zh) * 2021-03-29 2021-06-18 贵州盘江煤电集团技术研究院有限公司 一种确定煤矿瓦斯抽采钻孔注浆密封最佳注浆压力的方法
CN112983536B (zh) * 2021-03-29 2023-04-28 贵州盘江煤电集团技术研究院有限公司 一种确定煤矿瓦斯抽采钻孔注浆密封最佳注浆压力的方法
CN114810082A (zh) * 2022-03-26 2022-07-29 中国矿业大学 一种厚煤层露天矿端帮压煤气化回收方法
CN114876438A (zh) * 2022-05-08 2022-08-09 太原理工大学 一种充填式煤原位制氢的煤炭开采方法
CN114876438B (zh) * 2022-05-08 2023-07-21 太原理工大学 一种充填式煤原位制氢的煤炭开采方法
CN115163000A (zh) * 2022-07-15 2022-10-11 中国矿业大学 一种基于压风动力的打钻防喷孔装置及方法
CN115163000B (zh) * 2022-07-15 2023-10-27 中国矿业大学 一种基于压风动力的打钻防喷孔装置及方法
CN115163019A (zh) * 2022-08-03 2022-10-11 西安科技大学 一种高温蒸气压裂原位热解富油煤分采系统及方法

Also Published As

Publication number Publication date
EP2899363A4 (en) 2016-06-22
CN103670338A (zh) 2014-03-26
ZA201502650B (en) 2016-11-30
AU2013317409B2 (en) 2016-06-23
CN103670338B (zh) 2016-06-15
US20150247385A1 (en) 2015-09-03
EP2899363A1 (en) 2015-07-29
AU2013317409A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
WO2014044192A1 (zh) 一种煤层气与煤共采方法
US10655441B2 (en) Stimulation of light tight shale oil formations
CN103696747B (zh) 一种油页岩原位提取页岩油气的方法
WO2014044200A1 (zh) 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法
CN103790563B (zh) 一种油页岩原位局部化学法提取页岩油气的方法
CN113294134A (zh) 一种水力压裂与甲烷原位燃爆协同致裂增透方法
CN103122759B (zh) 一种煤层气井多元热流体强化开采方法
CN101503957B (zh) 井上下联合注热抽采煤层气的方法
CN107939370B (zh) 一种条带式煤炭地下气化系统及生产方法
CN110924919A (zh) 一种煤炭地下气化过程中余热增产煤层气的方法
WO2014176933A1 (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN102418476A (zh) 深层煤炭和煤层气联合开采技术
CN102242626A (zh) 稠油油藏的蒸汽驱开采方法
WO2024103622A1 (zh) 一种基于水平井甲烷原位燃爆压裂的煤系气开发方法
CN106522914A (zh) 用于煤炭地下气化工艺的地下气化炉停车及燃空区复原处理方法
WO2022262261A1 (zh) 煤层气煤气矿井
CN112127866A (zh) 一种利用煤炭地下气化技术开发深层煤层的工艺
CN109779600A (zh) 地下热-气联产气化设备、煤田火区前沿治理系统和方法
RU2396305C1 (ru) Способ получения водорода из угольного пласта
CN110578508A (zh) 水平井一井多采联合开采煤层气及煤气化方法
CN113914846A (zh) 一种应用双羽状水平井改善煤炭地下气化气腔发育的方法
CN217357614U (zh) 动力煤原位l型供气燃烧、h型高效采热及碳封存系统
CN115773098A (zh) 煤层和油层叠合区地下煤制气与提高油层采收率的联合开采方法
US7051809B2 (en) Burn assisted fracturing of underground coal bed
CN111963137A (zh) 一种巨厚煤层地下气化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430086

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013838778

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013838778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013317409

Country of ref document: AU

Date of ref document: 20130918

Kind code of ref document: A