WO2014044200A1 - 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法 - Google Patents
地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法 Download PDFInfo
- Publication number
- WO2014044200A1 WO2014044200A1 PCT/CN2013/083813 CN2013083813W WO2014044200A1 WO 2014044200 A1 WO2014044200 A1 WO 2014044200A1 CN 2013083813 W CN2013083813 W CN 2013083813W WO 2014044200 A1 WO2014044200 A1 WO 2014044200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gasification
- organic mineral
- gas
- medium
- communication
- Prior art date
Links
- 238000002309 gasification Methods 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 129
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 100
- 239000011707 mineral Substances 0.000 title claims abstract description 100
- 230000006854 communication Effects 0.000 title claims abstract description 83
- 238000004891 communication Methods 0.000 title claims abstract description 69
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 61
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 238000012545 processing Methods 0.000 title claims abstract description 60
- 239000000203 mixture Substances 0.000 claims abstract description 62
- 239000007789 gas Substances 0.000 claims description 156
- 239000003245 coal Substances 0.000 claims description 101
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 68
- 239000001301 oxygen Substances 0.000 claims description 68
- 229910052760 oxygen Inorganic materials 0.000 claims description 68
- 238000005553 drilling Methods 0.000 claims description 56
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 26
- 239000001569 carbon dioxide Substances 0.000 claims description 26
- 239000004058 oil shale Substances 0.000 claims description 18
- 238000002485 combustion reaction Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 10
- 238000011084 recovery Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 210000003746 feather Anatomy 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 230000009919 sequestration Effects 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 7
- 235000010755 mineral Nutrition 0.000 description 75
- 206010017076 Fracture Diseases 0.000 description 57
- 208000010392 Bone Fractures Diseases 0.000 description 51
- 239000002609 medium Substances 0.000 description 51
- 238000006243 chemical reaction Methods 0.000 description 25
- 230000002706 hydrostatic effect Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000002956 ash Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 239000000571 coke Substances 0.000 description 6
- 238000005065 mining Methods 0.000 description 6
- 239000011435 rock Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000007320 rich medium Substances 0.000 description 5
- 206010020850 Hyperthyroidism Diseases 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000013022 venting Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- MIQWEMDDUPSLRW-UHFFFAOYSA-N [O].O=C=O Chemical compound [O].O=C=O MIQWEMDDUPSLRW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/164—Injecting CO2 or carbonated water
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
- E21B43/247—Combustion in situ in association with fracturing processes or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/2605—Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/40—Separation associated with re-injection of separated materials
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/046—Directional drilling horizontal drilling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/70—Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells
Definitions
- the invention relates to a novel underground gasification process. More specifically, the present invention relates to fracture communication, channel processing, and underground gasification processes for carbonaceous organic mineral reservoirs, particularly coal seams and oil shale. Background technique
- Coal underground gasification technology is an in-situ coal gasification technology that directly converts underground coal seam into gas.
- gasification agents such as air, oxygen, water vapor, etc.
- main reaction direct coal gasification and gasification agent gasification reaction
- C+C0 2 ⁇ 2CO, c+3 ⁇ 4o ⁇ co+3 ⁇ 4, etc. generates gas (main components co, 3 ⁇ 4, c3 ⁇ 4, co 2, etc.), and the gas generated by the reaction is collected by drilling to the ground and directly burned as an industrial fuel. , heating, etc., can also be used as chemical raw materials for the synthesis of methanol, methyl hydrazine, fertilizers and so on.
- heating, etc. can also be used as chemical raw materials for the synthesis of methanol, methyl hydrazine, fertilizers and so on.
- the underground gasification technology will build three wells, coal mining and gasification.
- the process integration integrates the complicated ground and underground equipment, and the cumbersome intermediate process can reduce the capital investment by 20 to 40% . At the same time, it can reduce the emission of process pollutants and waste, and reduce the excessive dependence on water resources. Therefore, compared with traditional coal mining and utilization methods, underground gasification technology is an efficient and clean energy technology that integrates green mining and clean conversion of coal.
- the use of underground gasification technology to produce air gas has basically achieved the stabilization of gas calorific value and output, and has achieved commercial application.
- five underground gasification stations were put into operation during the peak period of the former Soviet Union, and the gas production scale reached 2.5 billion Nm. 3 / yr, the gas produced is mainly supplied to the thermal power plant for power generation, the gas calorific value is 850 ⁇ 950kcal / Nm 3 .
- the production air gas control process is relatively simple, but the gasification value of the underground gasification process is relatively low (600 ⁇ 1100kcal/Nm 3 ), and the effective component (3 ⁇ 4+C3 ⁇ 4+CO) content is only about 18 ⁇ 32%, and most of them For H 2 (14 ⁇ 24%), if used as a raw material for chemical synthesis, the CO content is low.
- the gas still contains a higher component of N 2 (40 ⁇ 60%), which increases the power consumption of the compression and transportation in the subsequent section.
- N 2 the higher component of N 2
- the denitrification section must be set.
- the removal of N 2 in gas is difficult. From the perspectives of equipment investment, operation, maintenance and operating costs, it is not economical to remove N 2 from coal gas.
- the gasification agent used in the process also adds water vapor to the pure oxygen.
- some water vapor condenses into water due to heat exchange with the borehole wall.
- the temperature regulation effect of the water vapor is weakened, and the local temperature of the gasification furnace is too high, the ash fusion hinders the gasification reaction, and a large amount of heat is consumed in the steam generation process, and the utilization rate of energy is lowered.
- Underground coal seams generally contain water, so that the outlet gas contains a certain amount of steam, and the addition of water vapor as a gasifying agent will increase the effective outgassing load, increase the amount of surface sewage treatment, and because the gas stays in the underground gasifier. Long, will lead to water gas shift reaction
- C0 2 participates in a series of redox reactions, which are important components in the export gas, and the content is about 15 ⁇ 60%, which is to increase the calorific value and effective component of the gas. An important factor, but the existing process usually does not consider the recycling and utilization of C0 2 .
- the object of the present invention is to provide a novel crack communication, channel processing and underground gasification method for underground carbonaceous organic mineral reservoirs.
- a novel crack communication, channel processing and underground gasification method for underground carbonaceous organic mineral reservoirs which is a mixture of C0 2 and 0 2 (sometimes referred to herein as "co 2 /o 2 or co 2 oxygen-rich medium") as a medium for the underground gasification process of underground carbonaceous organic mineral reservoirs.
- the present invention provides a mixture of C0 2 and 02 as a medium for use in fracture communication or channel processing of a subterranean carbonaceous organic mineral reservoir.
- the present invention provides a method for fracture communication of a subterranean carbonaceous organic mineral reservoir, wherein the carbonaceous organic mineral reservoir is provided with a connection between the carbonaceous organic mineral reservoir and the ground, respectively At least one intake bore and at least one outlet bore, characterized in that: the method comprises: injecting a mixture of C0 2 and 02 as a fracturing medium from the intake bore to A connected fracture is formed in the carbon-containing organic mineral reservoir between the gas bore and the outlet bore.
- the present invention provides a method for gasification passage processing of a subterranean carbonaceous organic mineral reservoir, wherein the carbonaceous organic mineral reservoir is provided with the carbonaceous organic mineral reservoir and At least one intake bore and at least one outlet bore connected to the ground, and a connected fracture has been formed in the carbon-containing organic mineral reservoir between the intake bore and the outlet bore, characterized in that The method includes: processing the communication fracture using a mixture of C0 2 and 02 as a passage processing medium, and expanding the communication fracture into a gasification passage by pressurization and/or combustion.
- the present invention provides a method for underground gasification of a subterranean carbonaceous organic mineral reservoir, wherein the carbonaceous organic mineral reservoir is provided with the carbonaceous organic mineral reservoir and the ground, respectively Connected at least one intake borehole and at least one outlet borehole, characterized in that the underground gasification method comprises: a fissure communication step of forming a fracture communication of the carbon-containing organic mineral reservoir to form a connected fracture; a passage processing step of the communication crack to perform channel processing to form a gasification passage; and a gasification step of gasifying the underground carbonaceous organic mineral reservoir to generate a crude gas, wherein the crack communication step A mixture of C0 2 and 0 2 is used as a medium in at least one of the channel processing step and the gasification step, that is, as a fracturing medium (fracture communication medium), a channel processing medium, and a gasification medium, respectively.
- the intake bore and the outlet bore are directional bore or vertical bore.
- the carbonaceous organic mineral reservoir is ignited to establish a fire zone, and then the channel processing step and gasification step are performed.
- a fire zone has been established in the carbon-containing organic mineral reservoir prior to the fracture communication process, wherein the original fire zone using the carbon-containing organic mineral reservoir is used for crack communication. Steps, channel processing steps and gasification steps.
- the mixture of C0 2 and 0 2 is injected as a fracturing medium from the intake hole, and the intake hole and the outlet hole are drilled.
- the communicating crack is formed in the carbon-containing organic mineral reservoir between.
- a mixture of C0 2 and 02 is used as the channel processing medium, and the communication crack is enlarged by pressurization and/or combustion to form the gasification channel.
- a combustion reaction is simultaneously performed by adding an intake amount of a mixture of co 2 and 02 as a gasification medium in the gasification passage, so that the The carbon-containing organic mineral reservoir is gasified to form a crude gas.
- the carbon-containing organic mineral reservoir is a coal seam or an oil shale layer.
- a gap is first formed in the carbon-containing organic mineral reservoir between the inlet bore and the outlet bore by mechanical drilling, The medium is then injected to form the connected crack.
- the mechanical drilling is at least one of directional horizontal drilling, ultra short radius horizontal drilling or feather horizontal drilling.
- the pressure change in the intake borehole and the illustrated gas borehole is monitored, and when the pressure in the intake borehole drops sharply and the outgassing When the outflow rate of the borehole is 100 Nm 3 /h or more, it indicates that the connected crack has been formed.
- the volume of oxygen in the medium for the fracture communication and/or channel processing is 20-50%.
- the medium for the fracture communication and/or channel processing In a preferred embodiment, the volume of oxygen in the medium used for the gasification step is 50 to 70%.
- the volume of oxygen used in the medium for the gasification step is 50-65%.
- the method further includes: a C0 2 recovery step: separating co 2 from the crude gas produced by the gasification step for recovery, wherein at least a portion of the recovered co 2 is pressurized and injected
- the carbonaceous organic mineral reservoir is used for the fracture communication, channel processing, and/or gasification.
- the method further comprises: co 2 sealing step: injecting the recovered co 2 into the fuel space generated after gasification of the carbon-containing organic mineral reservoir for storage.
- the co 2 in the medium is a gaseous, liquid or supercritical co 2 .
- the co 2 in the medium is a mixture of liquid co 2 , raw gum and chemical additives.
- solid phase particles are added to the medium to support the formed fractures formed.
- the mixture of C0 2 and 02 is obtained by compounding co 2 and pure oxygen on the ground or in an intake bore.
- a fire zone is established at the bottom of the intake bore or the outlet bore, and the mixture of co 2 and 02 is passed through the annulus duct or the intake bore is grounded by the ground Delivered to the fire zone.
- the inlet of the intake bore is mounted for transporting the
- a high-pressure gas line for conveying the mixed gas generated during the crack communication process and a low-pressure gas line for conveying the low-pressure raw gas generated by the gasification are installed at the outlet of the hole.
- the carbon dioxide in the produced raw gas is separated and captured, and the trapped carbon dioxide is used for the fracture communication, channel processing or underground gasification.
- the medium further comprises water vapor.
- the present invention uses a mixture of C0 2 and 0 2 as the carbon-containing organic fractured reservoir minerals communication medium processing channel and / or underground gasification process, respectively the mixture of C0 2 and 0 2 is used as a fracturing medium,
- the gasification channel processes the medium and the gasification medium.
- co 2 can be used as an important cooling medium for the subsequent disposal of the gas-filled zone formed by gasification of the carbon-containing organic mineral reservoir.
- the method of the invention is an integrated technology, and the integration of the above technologies can increase the calorific value of the combustible gas, adjust the co, 3 ⁇ 4 ratio in the crude gas, inhibit the co 2 generation, reduce the crude gas production cost, and simultaneously realize the co 2 capture and resources. Utilization. DRAWINGS
- FIG. 1 is a schematic view of a process of a subterranean gasification process according to an embodiment of the present invention, wherein a) is a fracture communication process; (b) a channel processing process; (c) a gasification process; (d; > C0 2 storage; 2 is a schematic diagram of a fracture communication process of a subterranean gasification method according to another embodiment of the present invention, wherein an ultra-short radius horizontal drilling technique is used to form a gap to form a connected fracture; FIG. 3 is a subsurface according to another embodiment of the present invention.
- FIG. 4 is a schematic diagram of a fracture communication process of a subterranean gasification process in accordance with another embodiment of the present invention, in which oil shale is produced using feather horizontal drilling techniques.
- the present invention provides a new underground gasification process for a carbonaceous organic mineral reservoir, which uses a mixture of C0 2 and 0 2 as a subsurface.
- the medium for the gasification process, the mixture of C0 2 and 0 2 is used as the processing medium for the fracturing medium, the gasification channel processing, the gasification medium for producing the crude gas, and the co 2 as the cooling medium for the subsequent disposal of the gas-burning zone.
- the method of the present invention develops and utilizes energy in a subterranean carbonaceous organic mineral reservoir through a mixture of C0 2 and 02 , and greatly improves energy utilization efficiency compared with conventional utilization methods (well mining, etc.), and conventional underground gasification.
- the heating value of the combustible gas is increased, the effective gas composition is increased and adjusted, the co 2 generation is suppressed, the production cost of the raw material gas is reduced, and the co 2 capture and resource utilization are realized.
- the specific method of the present invention includes at least one of the following steps or a combination thereof:
- a carbonaceous organic mineral reservoir such as a coal seam does not establish a fire zone
- an ignition step is required. Specifically, after the exhaust hole is drilled or the gas is drilled, the electric heating device is turned on, and the pressure of the inlet and outlet holes is controlled to be larger than the hydrostatic head of the coal seam, and then the electric heating is turned on. The coal layer is heated, and after the temperature exceeds the ignition point of the coal seam, the temperature is maintained for a period of time (about one day) and then a mixture of oxygen and carbon dioxide is introduced into the ignition hole (volume concentration of oxygen)
- Another method of ignition is to control the pressure of the inlet and outlet holes to be larger than the hydrostatic head of the coal seam after the sludge is processed in the inlet and outlet, and then quickly enter the ignited coke, and then introduce a mixed gas of oxygen and carbon dioxide in the ignition hole (oxygen volume). The concentration is about 20%-50%). Under the condition that the inlet and outlet pressure is greater than the hydrostatic head, slowly open another hole and observe the composition of the outlet gas. When the gas value in the outlet gas is greater than 700 kcal / Nm At about 3 , the coal seam is ignited, and then the gasification passage processing step is started;
- a carbonaceous organic mineral reservoir such as a coal seam
- no ignition cycle is required. If there is a fire zone in the underground carbonaceous organic mineral reservoir (such as coal seam) when implementing the technical invention, the original fire zone of the carbonaceous organic mineral reservoir may be used for crack communication, channel processing, and gasification. .
- C0 2 oxygen-enriched medium (sometimes referred to as C0 2 oxygen-enriched medium) injected from the inlet borehole, along the interconnected fracture formed by the carbon-containing organic mineral reservoir between the boreholes, to the ignition zone (for example, at the bottom of the gas-exhaust bore) Establish), control the flow rate of C0 2 oxygen-rich medium (500Nm 3 /h to 5000Nm 3 /h) and concentration (oxygen volume concentration 20%-50%), so that the fire source faces the C0 2 oxygen-rich medium flow direction to the intake air Moving in a drilling direction, performing a hot working operation on a crack formed in the carbon-containing organic mineral reservoir between the boreholes to expand the crack into a gasification passage;
- the method may further include: step (4) pressurizing the C0 2 and injecting into the combustion zone formed by combustion and gasification of the carbonaceous organic mineral reservoir between the two boreholes for sealing.
- the CO 2 in the crude gas produced in the step (3) is separated and recovered, and after being pressurized, one of the boreholes is injected into the fuel-burning zone, because a part of the space in the fuel-burning zone is ash, coke,
- the crucible, roof rock, unvaporized carbon-bearing organic mineral reservoir is filled, and the injected C0 2 competitive adsorption (ie, the carbon dioxide adsorption capacity is stronger than that of the hyperthyroidism) can replace the ash, coke, and pinch in the fuel-air zone.
- the CO 2 used can be obtained by various ways, mainly depending on the use and quality of the crude gas generated in the underground gasification of the carbon-containing organic mineral reservoir, and if the crude gas is used for power generation, the power generation can be recovered.
- the C0 2 in the generated flue gas, if the crude gas is used for chemical product synthesis, can be recycled as a raw material gas for chemical product cooperation, that is, C0 2 in the crude gas.
- the method of the reinforcement of the step (1) can be combined with other drilling techniques, such as firstly using mechanical drilling methods (such as directional horizontal drilling technology, ultra-short radius horizontal drilling technology) for gap formation ( A connected fracture is formed, and the fracture is treated with a mixture of C0 2 and 0 2 .
- mechanical drilling methods such as directional horizontal drilling technology, ultra-short radius horizontal drilling technology
- the co 2 used for the fissure communication may be a gaseous, liquid, supercritical state co 2 , or a mixture of liquid co 2 , a raw gum solution such as silicone and various chemical additives such as potassium chloride. .
- solid phase particles such as quartz sand are added to the medium to support the crack formed by the fracture communication.
- the change of the injection pressure of the C0 2 and 0 2 mixture is monitored, and when the drilling pressure drops sharply, the pressure drop is generally the initial pressure.
- the carbon dioxide used may be derived from C0 2 separated from the decarburization unit of the surface gas purification section.
- the oxygen volume concentration in the step (2) is required to be 20 to 50%, preferably 20 to 35%, and can be adjusted according to the inlet drilling pressure to ensure that the ash does not melt and the passage is not blocked;
- the volume concentration of oxygen in the step (3) is required to be 50 to 70%, preferably 50 to 65%, can be adjusted according to the composition of flammable gas in the crude gas from the gas outlet to ensure the proper gasification channel temperature, and the components meet the requirements of the subsequent chemical synthesis process;
- the mixing method of C0 2 and pure oxygen may be first mixing the two gases on the ground, or may be first mixed on the ground, respectively, from the double jacket (annular casing), two gases The way to mix at the bottom or in the borehole.
- the C0 2 oxygen-enriched transport can be transported from the ground to the underground carbonaceous organic mineral reservoir through an annulus pipeline, or directly from the ground to a subterranean carbonaceous organic mineral reservoir through a borehole casing.
- the inlet of the intake borehole is provided with a high pressure pipeline for transporting a mixture of C0 2 and 02 or a high pressure carbon dioxide when a carbon dioxide sequestration step is completed after gasification is completed (high pressure means Higher than the coal seam burst pressure, which is determined by the mechanical strength of the coal rock), and a low pressure line for conveying a mixture of C0 2 and 02 (low pressure means a hydrostatic head smaller than the coal seam), and the gas drill
- a high-pressure gas line for conveying the mixed gas generated during the communication of the crack is installed at the outlet of the hole (high pressure means slightly higher than the coal seam hydrostatic head and smaller than the intake drilling pressure) and low pressure for conveying gasification
- Low-pressure gas line of crude gas the low pressure here generally means about 3 ⁇ 5kg below the inlet pressure).
- the carbon dioxide in the produced gas is separated and captured, and the collected carbon dioxide is used as a medium for fracture communication, channel processing or underground gasification.
- the medium also includes water vapor for use in channel processing and/or gasification.
- water vapor for use in channel processing and/or gasification.
- carbon dioxide, oxygen and water vapor can also be used as the medium for gasification passage processing and gasification.
- the amount of water to be added should be divided by the decomposition of water vapor according to the difference between the water content of the coal seam and the amount of water required for gasification. Rate to decide.
- the invention adopts a mixture of C0 2 and 0 2 as a treatment medium for underground gasification process (fracture communication, channel processing, gasification), and there is no input of N 2 in the whole process, so that there is substantially no N 2 component in the exit combustible gas after the reaction.
- the similar effect of adjusting the temperature in the oxide layer overcomes the shortcomings of water vapor in the process of underground gasification, and the energy consumption in the process of water vapor generation.
- the test proves that C0 2 can accelerate the rate of CO formation and inhibit the water gas shift reaction. Adjusting the content of combustible gas components in the crude gas produced in gasification, while carbon dioxide is also a carbon resource Source, carbon dioxide participates in the gasification reaction, reduces carbon consumption, increases the effective utilization rate of carbon resources in carbon-containing organic mineral reservoirs and converts them into combustible gas components such as CO; in addition, co 2 is recovered as part of co 2 after recovery
- the raw material of carbon dioxide oxygen medium is partially sealed into the gas-filled zone formed by gasification of carbon-containing organic mineral reservoirs, which can simultaneously achieve co 2 capture and resource utilization, and reduce the production cost of raw gas produced by subsequent chemical products such as hyperthyroidism. , to achieve co 2 emission reduction, reduce process energy consumption.
- C0 2 is adsorbed by the carbon-containing organic mineral reservoir during the crack communication process, which is beneficial to the co 2 reduction reaction during channel thermal processing and can prevent
- the local temperature of the channel during the thermal processing is over-temperature, avoiding multiple fire sources in the processing channel, or local channel melting due to the local processing point temperature exceeding the melting point of the carbon-containing organic mineral reservoir such as coal ash in the channel processing, Increased utilization of carbon resources in carbon-bearing organic mineral reservoirs.
- C0 2 and 0 2 are used as the medium for fracture communication and channel processing.
- Carbon-containing organic mineral reservoirs such as coal seams adsorb carbon dioxide, which is beneficial to temperature control during subsequent gasification, and the ability to use carbon dioxide to compete for adsorption of formazan is increased.
- Precipitation of pyrolysis gas especially hyperthyroidism).
- FIG. 1 is a schematic view of a process of a subterranean gasification process according to an embodiment of the present invention, wherein (a) is a fracture communication process; a channel processing process; W is a gasification process; (d) is C0 2 storage,
- the coal seam is gasified and exploited by the method of the invention.
- the drilling is set according to the range of the gasification coal seam, the number of holes and the arrangement are determined by the characteristics of the coal seam, the production scale of the raw material gas, etc., but in order to implement the invention, at least one intake hole and An outlet drilling, the specific process is as follows:
- the intake hole 5 is constructed from the ground 2 via the overburden 3 to the coal seam (ie, the carbonaceous organic mineral reservoir in the present invention) 1 , within a distance of, for example, 20 to 500 meters from the intake borehole ( It should be noted here that it is known to those skilled in the art that the distance range can be determined according to the formation manner of the coal seam fissure communication. For example, if the mechanical drilling is for crack communication, the distance may be slightly larger, for example, 150.
- a C0 2 and 0 2 high pressure line 7 is installed at the inlet of the intake hole 5 (i.e., where the pressure as a treatment medium is not lower than the fracture pressure of the carbonaceous organic mineral reservoir), C0 2 and 0 2 low-pressure pipeline 11 (that is, the pressure of the medium is not higher than the hydrostatic pressure of the carbon-containing organic mineral reservoir), and the high-pressure gas (pressure 0.7 MPa or so) is installed at the outlet of the outlet hole 6 . (Gas pressure is about 0.5 MPa) Line 12.
- the high pressure line 02 C0 2 and 7 for conveying (about 1.1 times the burst pressure of the coal seam) C0 2 and 0 2 mixture of high pressure is also used in the gasification is completed C0 2 transport, storage and transport to C0 2
- the low-pressure pipeline 11 of C0 2 and 0 2 is used to transport low-pressure C0 2 oxygen-rich gas (about 0.8 times of coal seam hydrostatic head); high-pressure gas
- the pipeline 8 is used to transport the mixed gas generated during the crack communication process, and the low pressure gas line 12 is used to transport the low pressure crude gas generated by the reaction.
- FIG. 1 (a) first, on the seam (i.e., a carbon-containing reservoir organomineral) communication fracture embodiment 1, the communication process fracture C0 2 and 0 2 to close the low pressure line 11 and low-pressure gas line valve 12 to open the C0 2 and 0 2 high pressure line 7 valve, and open the high pressure gas line 8 valve, forcing the mixture of C0 2 and 0 2 to move from the inlet bore 5 along the pores and fissures in the coal seam, and through the outlet hole 6 , discharged by the high pressure gas line 8
- C0 2 and 0 2 for example, by pressure gauge closely monitoring the pressure change of the inlet hole 5 orifice of the C0 2 and 0 2 injection and the flow variation of the outlet hole 6 flow, when the inlet hole 5 port pressure There is a sharp drop, that is, the pressure drop of the pressure gauge monitoring When the amplitude is 5%/day or more of the initial pressure of the orifice, and the outlet flow rate of the outlet hole 6 is 100 Nm 3 /h or more
- the gasification passage processing is started.
- the intake hole 5 and the outlet hole 6 communicate with each other through the communication crack.
- Increasing the C0 2 and 0 2 flow rate of the intake bore 5 generally increasing 100 Nm 3 /h each time
- the moisture in the coal seam between the two boreholes is injected with the injected C0 2 and 0 2 via the high pressure gas line 8 It is taken out to keep the bottom coal seam of the outlet hole 6 dry, and then the electric igniter is lowered to the ignition zone 9 of the 6-hole bottom coal seam section of the outlet hole.
- 0 2 is assigned to C0 2 , and it is formulated into 0 2 volume concentration of 20% C0 2 oxygen-enriched medium, and is directly bored along the crack by C0 2 and 0 2 high-pressure pipeline 7 through the intake hole 5
- the connecting crack 4 is sent to the bottom of the outlet hole of the gas outlet hole, and the igniter is started to ignite the bottom coal seam of the gas outlet hole 6. After the coal layer is ignited, the crude gas generated by the reaction of the carbon dioxide and oxygen mixture with the coal seam is discharged through the high pressure gas line 8.
- the temperature of the fire zone is controlled by adjusting the oxygen concentration and flow rate of the C0 2 rich oxygen medium according to the water inflow amount of the coal seam, the outlet temperature, etc., and the temperature of the fire zone is generally not lower than The spontaneous combustion temperature of the coal seam (about 250 ⁇ 350 °C, determined according to the spontaneous combustion temperature of the coal).
- the flow rate of the intake hole 5 is adjusted according to the parameters of the drilling distance, the resistance between the holes, the pressure bearing capacity of the hole, the hydrostatic pressure of the coal seam, and the structural strength of the coal floor and the bottom floor (the step is increased, each time increasing 1000 Nm 3 / h), Oxygen concentration (step increase, 5% oxygen volume increase each time) Force the CO 2 rich oxygen medium to be supplied to the ignition zone 9 along the intake bore 5 at the required flow rate. Thereafter, the flow rate (about 3000 Nm 3 /h to 4000 Nm 3 /h) is maintained for reverse combustion (gp, the direction of expansion of the flame front is opposite to the flow direction of the supplied gas), and the pressure of the intake bore 5 is monitored in real time.
- the C0 2 and 0 2 high pressure pipelines 7 stop the intake, and the C0 2 is rich.
- the oxygen is changed from the low pressure line 11 of C0 2 and 0 2 ; at the same time, the high pressure gas line 8 stops the gas out, and the crude gas generated by the reaction is transferred from the low pressure gas line 12.
- the rate at which oxygen is transported to the surface of the burning coal seam will decrease.
- the thickness of the coal seam, the water content, where drilling spacing, C0 2 enriched gas flow rate of the oxygen concentration and / or adjustment adjustment typically does not exceed 20% of the normal state and the flow volume of oxygen concentration
- the effective components of the outlet gas mainly methyl
- the sum of the volume concentrations of helium, carbon monoxide, and hydrogen decreases by more than 10%, and for more than 48 hours, the gasification process of the coal seam between the boreholes ends.
- the amount of water in the coal seam is found to be insufficient to support the gasification reaction of the coal seam (one method is based on the composition of the outlet hydrogen, if the hydrogen content of the gas decreases during the process, the degree of decline is greater than 20 of the original concentration) % or more, and can not be restored to the original level for a long time, it can be judged that the water is small), the amount of water added is the amount of water required for coal seam gasification minus the water content of the coal seam divided by the water vapor decomposition rate.
- the gasification channel 10 expands into the gas-filled zone 13 (as shown in Fig. 1(d)), and a part of the space in the gas-burning zone is ash, coke, pinch, roof rock, unvaporized
- the coal seam is filled and can be used as a space for storing C0 2 .
- the fuel-air zone also has a certain high temperature (average temperature 300 ⁇ 800 °C, the heat accumulated before the coal seam burns).
- C0 2 is sent to the fuel-burning zone from the low-pressure C0 2 and 0 2 pipelines 11.
- C0 2 exchanges heat with the ash, coke, pinch, roof rock and unvaporized coal seam in the fuel-air zone to make the high temperature
- the gas-burning zone gradually cools down and cools.
- C0 2 competes for adsorption on the surface of ash, coke, pinch, roof rock and unvaporized coal, and replaces the combustible gas components such as C3 ⁇ 4 adsorbed on it.
- the resulting mixture containing combustible gas such as C3 ⁇ 4 and C0 2 is removed from the low pressure gas line 12 through the gas venting holes 6 to the surface for heat recovery from the ground and recovery of combustible gases.
- C0 2 pressure is generally controlled around the coal seam hydrostatic head
- C0 2 injection volume is generally controlled at 400 ⁇ 500Nm7m 3 (C0 2 of 400 ⁇ 500 standard cubic meters can be sealed in the fuel-burning area per unit volume), which is determined according to the volume of the fuel-air zone and the hydrogeological conditions of the coal seam, so as to complete the storage of co 2 by the fuel-air zone.
- Embodiment 2 is basically the same as that employed in Embodiment 1, except that Embodiment 2 employs an ultra-short radius horizontal drilling technique in the crack communication step.
- Fig. 2 is a schematic illustration of a fracture communication process of a subterranean gasification process according to Embodiment 2 of the present invention, in which an ultra-short radius horizontal drilling technique is used to form a gap to form a connected fracture. As shown in Fig.
- the intake hole 5 is constructed from the ground 2 via the overburden 3 to the coal seam (ie carbon-containing organic mineral reservoir) 1 at a distance of 5 from the intake hole (about 40 meters to 100 meters, the person skilled in the art can construct the gas outlet hole 6 according to the maximum length of the ultra-short horizontal drill capable of construction, the inlet and outlet holes 5 and 6 are vertical drilling, and the bottom of the hole is pre-gasified.
- the ultra-short-throw horizontal drilling device 15 is used, and the air intake hole 5 is horizontally connected along the air intake hole 5 and the air outlet hole 6, and a channel for ultra-short horizontal drilling is directly opened on the inner wall of the vertical drilling hole. Lateral horizontal drilling is performed to form a horizontally drilled communication fracture 14 in the coal seam such that the intake bore 5 and the outlet bore 6 communicate with each other in the coal seam.
- the drilling tool is removed and the gasification channel is processed. Open the C0 2 and 0 2 high pressure line 7 valves, open the high pressure gas line 8 valve, and control the C0 2 and 0 2 flow (about 500Nm 3 /h to 1000Nm 3 /h) of the intake hole 5,
- the water accumulated in the horizontally drilled connecting fractures 14 in the coal seam is taken up by the high-pressure gas line 8 together with the injected C0 2 and 0 2 , so that the 6-hole bottom coal seam of the outlet hole is kept dry, and then the electric igniter is lowered to The gas is drilled into the 6-hole bottom coal seam section.
- 0 2 is assigned to C0 2 to form a C0 2 oxygen mixture having an oxygen volume concentration of 30%, and is bored by the C0 2 and 0 2 high-pressure line 7 through the intake hole 5, and the horizontally drilled connected fracture 14 Feeding the bottom of the outlet hole of the 6 holes, starting the igniter to ignite the 6-hole bottom coal seam of the outlet hole.
- the crude gas generated by the reaction of the carbon dioxide and oxygen mixture with the coal seam is discharged through the high-pressure gas line 8, and the gas outlet hole 6
- the temperature of the fire zone is controlled by adjusting the oxygen concentration and flow rate of the gasifier according to the water inflow and the outlet temperature of the coal seam.
- the temperature of the fire zone is generally not lower than the spontaneous combustion temperature of the coal seam (about 250 to 350). °C, depending on the auto-ignition temperature of the coal type).
- Embodiment 3 is basically the same as that in Embodiment 2, except that the carbon-containing organic mineral reservoir in Embodiment 3 already has a fire zone before the fracture communication step, and the directional horizontal drill is used in the fracture communication phase.
- the technology is directly connected to the existing fire zone.
- Figure 3 is a schematic illustration of a fracture communication process for a subterranean gasification process in accordance with Example 3 of the present invention, wherein the directional horizontal drilling technique is used to interface directly with the fire zone.
- the existing gas venting hole 6 has a fire zone at the bottom of the hole. It is proposed to gasify the new coal seam by the method of the present invention to produce syngas.
- the intake hole 5 is constructed from the ground 2 through the overburden 3 to the coal seam, ie, the carbonaceous organic mineral reservoir 1, within a certain distance from the outlet hole, and the orientation is formed in the coal seam.
- the connected communication crack 17 is drilled directly into the existing fire zone 16.
- the C0 2 and 0 2 high pressure line 7 valves are opened, the high pressure gas line 8 valve is opened, and the C0 2 oxygen-enriched gas is introduced to start the hot working of the directional drilling joint fracture 17 .
- the C0 2 oxygen-enriched gas is forced into the coal seam along the inlet bore 5 at the required fixed flow rate (about 800 ⁇ 1500 Nm 3 /h), and the oxygen in the C0 2 oxygen-rich gas The volume concentration is 40%.
- the fixed flow rate is maintained and the pressure of the intake bore 5 is monitored in real time.
- the pressure is monitored by a pressure gauge connected at the intake bore 5, and when the pressure of the intake bore 5 is significantly reduced (for example, the pressure drop reaches 5%/day of the initial pressure), the C0 2 is increased.
- the flow rate of oxygen-rich gas and / or increasing the volume concentration of oxygen flow rate increased to 3000Nm 3 / h between 5000Nm 3 / h, the oxygen concentration of 25% -40% by volume), the oxygen concentration or flow rate according to the specific coal seam thickness partings , water content, drilling spacing, etc. are adjusted.
- the pressure displayed by the pressure gauge connected to the upper end of the air intake hole 5 and the outlet hole 6 is not much different (for example, the pressure difference is less than 0.3 MPa), it indicates that the intake hole 5 and the outlet hole 6 complete the gasification passage construction. ,.
- Embodiment 4 intends to carry out gasification mining of oil shale by the method described in the present process, as shown in FIG. 4 is a schematic diagram of a fracture communication process of a subterranean gasification process in which oil shale is produced using feather horizontal drilling techniques in accordance with another embodiment of the present invention.
- the method adopted in Embodiment 4 is basically the same as that in Embodiment 2, except that Embodiment 4 first adopts a feather-like horizontal drilling technique to establish a connection crack in the oil shale layer between the intake hole and the outlet hole, and then ignites Channel processing and gasification are carried out.
- the specific implementation is as follows:
- the gas-exhausting hole 6 From the ground 2 through the overburden 3 to the oil shale layer, ie, the carbon-bearing organic mineral reservoir 1, vertical drilling is used as the gas-exhausting hole 6, and a feather-like directional drill is constructed as a feather in the gas-exhausting hole 6 from 300 meters to 500 meters.
- the air hole 5 connects the intake hole 5 and the outlet hole 6 in the oil shale layer, and the intake hole 5 is a feather-like horizontal hole, including several sets of feather-like branch wells 18, intake and exhaust.
- the bottom of the borehole is located in the pre-gasified oil shale formation.
- the water accumulated in the feathered branch well 18 is taken out by C0 2 , so that the 6-hole bottom oil shale layer of the outlet hole is kept dry, and then the electric igniter is used.
- the igniter Decentralized to the 6-hole bottom oil shale section of the outlet hole, start the igniter to supply C0 2 oxygen-rich igniting the 6-hole bottom oil shale of the outlet hole, and after the oil shale is ignited, according to the water inflow and outlet temperature, etc.
- the gasifier oxygen concentration and/or flow rate is adjusted to control the temperature of the fire zone.
- This new underground gasification method based on a mixture of carbon dioxide and oxygen can fully adjust the reaction temperature of the carbonaceous organic mineral reservoir in underground gasification, and improve and adjust the effective gas composition and hydrogen to carbon ratio in the gas component. Improve energy utilization efficiency, and at the same time, it can also be used for chemical utilization (such as resource utilization) and physical storage of carbon dioxide. It is a new method of low-carbon, high-efficiency and clean underground gasification.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geophysics (AREA)
- Mechanical Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
提供一种涉及用于地下含碳有机物储层的裂隙沟通、通道加工及地下气化方法,其中使用CO2和O2的混合物作为该地下气化过程的裂隙沟通步骤、通道加工步骤和/或气化步骤的介质。该方法通过CO2和O2的混合物开发和利用地下含碳有机矿物储层中的能量,和传统的利用方式相比能量利用效率大提高,和传统的地下气化技术相比,提高可燃气体的热值、提升和调节有效气体组成、抑制CO2生成、降低原料气生产成本,同时实现CO2捕集和资源化利用。
Description
地下含碳有机矿物储层的裂隙沟通、 通道加工及地下气化方法 技术领域
本发明涉及一种新型地下气化工艺。 更具体地, 本发明涉及含碳有机 矿物储层尤其是煤层及油页岩等的裂隙沟通、 通道加工及地下气化工艺。 背景技术
煤炭地下气化技术是将地下煤层直接转化为煤气的一种原位煤气化 技术, 在地下气化过程中气化剂 (如空气、 氧气、 水蒸汽等)通过地面钻 孔注入到地下煤层中, 使煤层与气化剂直接进行气化反应 (主要反应
C+C02→2CO、 c+¾o→co+¾等)生成煤气(主要成分 co、 ¾、 c¾、 co2等), 而反应生成的煤气经钻孔收集至地面, 作为工业燃料直接燃烧 发电、 供暖等, 也可以作为化工原料用于合成甲醇、 甲垸、 化肥等。 与地 面煤气化技术, 需要进行建井、 采煤、 洗选、 备煤、 气化、 除渣等前置和 后续工艺过程相比, 地下气化技术将建井、 采煤、 气化三大工艺集成为一 体, 省去了庞杂的地面、 地下设备, 繁琐的中间过程, 可减少资金投入 20 〜40%; 同时能够降低过程污染物和废弃物的排放, 减少了对水资源的过 度依赖等, 因而与传统煤炭开采和利用方式相比, 地下气化技术是一项集 煤炭绿色开采与清洁转化为一体的高效洁净能源技术。
利用地下气化技术生产空气煤气, 基本实现了煤气热值和产量的稳定, 并实现了商业化应用,如前苏联高峰时期曾经有 5座地下气化站投入运营, 产气规模达到 25亿 Nm3/yr,所产煤气主要供给热电厂发电,煤气热值 850 〜950kcal/Nm3。生产空气煤气控制工艺相对简单,但是该地下气化工艺的 煤气热值较低 (600〜1100kcal/Nm3), 有效组分(¾+C¾+CO)含量只有 18〜32%左右, 而且大部分为 H2 ( 14〜24%), 如用作化工合成的原料气 则 CO含量偏低。 为了提高空气煤气热值、 调控有效组分的含量, 改善煤 气使用品质, 通常做法是采用连续供给固定组份的气化剂 (如富氧气化) 或分阶段供给不同组份的气化剂(如两阶段工艺)来进行煤炭地下气化技
术的研究和开发利用, 但是这些气化剂大部分是空气或富氧空气及添加水 蒸汽, 存在的主要问题包括:
( 1 )煤气中仍含有较高组分的 N2 (40〜60%), 增加了后续工段压缩 输送的功耗,而对于 N2含量要求较高的合成工段,则必须设置脱氮工段, 但是煤气中 N2的脱除较难, 从设备投资、 操作、 维护和运行成本等角度 考虑, 从煤气中脱 N2也不够经济。
(2) 为了控制煤气中 N2含量, 也有工艺采用的气化剂为纯氧添加水 蒸汽, 但是水蒸汽在输送过程中, 由于与钻孔井壁换热会导致部分水蒸汽 凝结成水, 减弱了水蒸汽的调温作用, 导致气化炉局部温度过高, 灰分熔 融阻碍气化反应进行, 并且水蒸汽产生过程中需要消耗大量的热量, 能量 的利用率会降低。
(3 ) 地下煤层一般含水, 使得出口煤气含有一定的蒸汽, 而添加水 蒸汽作为气化剂会造成有效出气负荷增加, 地面污水处理量增大, 并且由 于煤气在地下气化炉内停留时间较长, 会导致水煤气变换反应
(CO+H20→C02+H2) 加剧, 使得出口煤气中 CO含量降低。
(4) 作为气化过程的中间体及产物, C02参与了一系列的氧化还原 反应, 是出口煤气中的重要组分, 含量约占 15〜60%, 是提升煤气热值和 有效组分的重要因素, 但是现有工艺通常没有考虑 C02的回收与利用。
近年来, 非常规油气资源 (如油页岩、 稠油资源等) 的开发被提上日 程, 国际上一些大的石油公司一直致力于地下原位转化技术的研发, 并取 得了一定的技术成果; 国内一些科研院所和企业结合资源现状, 积极探索 和创新原位转化技术, 其中采用地下气化技术来开采油页岩、 稠油资源已 有试验验证, 但要具备商业利用价值还需深入的探索和研究。 煤炭、 油页 岩、 稠油等均为含碳有机矿物储层, 煤炭地下气化过程中存在的上述问题 和解决的技术路径, 对于其他含碳有机矿物储层的气化, 具有同样实践参 考价值和意义。 从资源开发和利用的角度考虑, 如果能利用地下气化技术 原位转化为可燃气体或制取天然气, 对于非常规油气资源的开发和利用, 对于调整能源结构, 促进节能减排无疑具有同样重要的经济和环境效益。
发明内容
鉴于已有技术存在的问题和 co2在地下气化过程中的特殊作用,本发 明的目的是提供一种新型的用于地下含碳有机矿物储层的裂隙沟通、通道 加工及地下气化方法, 其中以 C02和 02的混合物 (本文中有时也表示为 "co2/o2或 co2富氧介质") 作为地下含碳有机矿物储层的地下气化过程 的介质。
为此, 在一方面, 本发明提供了 C02和 02的混合物作为介质应用在 地下含碳有机矿物储层的裂隙沟通或通道加工中。
在另一方面, 本发明提供了一种用于地下含碳有机矿物储层的裂隙沟 通的方法, 其中所述含碳有机矿物储层设置有分别使所述含碳有机矿物储 层与地面连通的至少一个进气钻孔和至少一个出气钻孔, 其特征在于, 所 述方法包括: 通过从所述进气钻孔注入作为压裂介质的 C02和 02的混合 物, 以在所述进气钻孔和所述出气钻孔之间的所述含碳有机矿物储层中形 成连通裂隙。
在另一方面, 本发明提供了一种用于地下含碳有机矿物储层的气化通 道加工的方法, 其中所述含碳有机矿物储层设置有分别使所述含碳有机矿 物储层与地面连通的至少一个进气钻孔和至少一个出气钻孔, 并且在所述 进气钻孔和所述出气钻孔之间的所述含碳有机矿物储层中已经形成连通 裂隙, 其特征在于, 所述方法包括: 采用 C02和 02的混合物作为通道加 工介质对所述连通裂隙进行加工,通过增压和 /或燃烧来使所述连通裂隙扩 大成气化通道。
在另一方面, 本发明提供了一种用于地下含碳有机矿物储层的地下气 化的方法, 其中所述含碳有机矿物储层设置有分别使所述含碳有机矿物储 层与地面连通的至少一个进气钻孔和至少一个出气钻孔, 其特征在于, 所 述地下气化方法包括: 对所述含碳有机矿物储层进行裂隙沟通以形成连通 裂隙的裂隙沟通歩骤; 对所述连通裂隙进行通道加工以形成气化通道的通 道加工歩骤; 和使所述地下含碳有机矿物储层发生气化以生成粗煤气的气 化歩骤, 其中在所述裂隙沟通歩骤、 通道加工歩骤和气化歩骤中的至少一 个中使用 C02和 02的混合物作为介质, 即分别作为压裂介质 (裂隙沟通 介质)、 通道加工介质和气化介质。
在一个优选实施方式中, 所述进气钻孔和所述出气钻孔是定向钻孔或 垂直钻孔。
在一个优选实施方式中, 在所述裂隙沟通歩骤之后, 在所述含碳有机 矿物储层中点火以建立火区, 然后再进行所述通道加工歩骤和气化歩骤。
在一个优选实施方式中, 在所述裂隙沟通歩骤之前, 在所述含碳有机 矿物储层中已建立火区, 其中利用所述含碳有机矿物储层的原有火区进行 裂隙沟通歩骤、 通道加工歩骤和气化歩骤。
在一个优选实施方式中, 在所述裂隙沟通歩骤中, 通过从所述进气钻 孔注入 C02和 02的混合物作为压裂介质, 在所述进气钻孔和所述出气钻 孔之间的所述含碳有机矿物储层中形成所述连通裂隙。
在一个优选实施方式中, 在所述通道加工歩骤中, 采用 C02和 02的 混合物作为通道加工介质,通过增压和 /或燃烧来扩大所述连通裂隙以形成 所述气化通道。
在一个优选实施方式中, 在所述气化歩骤中, 通过在所述气化通道中 增加作为气化介质的 co2和 02的混合物的进气量同时进行燃烧反应, 以 使所述含碳有机矿物储层发生气化而生成粗煤气。
在一个优选实施方式中, 其特征在于, 所述含碳有机矿物储层是煤层 或油页岩层。
在一个优选实施方式中, 在所述裂隙沟通歩骤中, 首先通过机械钻进 在所述进气钻孔和所述出气钻孔之间的所述含碳有机矿物储层中进行造 隙, 然后再注入所述介质而形成所述连通裂隙。
在一个优选实施方式中, 所述机械钻进是定向水平钻进、 超短半径水 平钻进或羽状水平钻进技术中的至少一种。
在一个优选实施方式中, 在所述裂隙沟通中, 监测所述进气钻孔和所 示出气钻孔中的压力变化情况, 并且当所述进气钻孔中的压力急剧下降并 且所述出气钻孔的出气流量为 100Nm3/h以上时, 表明已形成所述连通裂 隙。
在一个优选实施方式中,用于所述裂隙沟通和 /或通道加工的所述介质 中的氧气体积浓度为 20~50%。
在一个优选实施方式中,用于所述裂隙沟通和 /或通道加工的所述介质
在一个优选实施方式中, 用于所述气化歩骤的所述介质中的氧气体积 浓度为 50~70%。
在一个优选实施方式中, 用于所述气化歩骤的所述介质中的氧气体积 浓度为 50~65%。
在一个优选实施方式中, 还包括: C02回收歩骤: 从所述气化歩骤产 生的粗煤气中分离出 co2进行回收, 其中, 至少一部分所回收的 co2加压 后,注入到所述含碳有机矿物储层用于所述裂隙沟通、通道加工和 /或气化。
在一个优选实施方式中, 还包括: co2封存歩骤: 将所回收的 co2注 入在所述含碳有机矿物储层气化后产生的燃空区内进行封存。
在一个优选实施方式中, 所述介质中的 co2为气态、液态或超临界态 的 co2。
在一个优选实施方式中, 所述介质中的 co2为由液态 co2、 原胶液和 化学添加剂组成的混合液。
在一个优选实施方式中, 所述介质中添加有固相颗粒以支撑形成的所 述连通裂隙。
在一个优选实施方式中, 所述 C02和 02的混合物是通过在地面上或 在进气钻孔中混配 co2和纯氧得到的。
在一个优选实施方式中, 在所述进气钻孔或所述出气钻孔底部建立火 区, 并且所述 co2和 02的混合物通过环空型输送管道或者所述进气钻孔 由地面输送至所述火区。
在一个优选实施方式中,所述进气钻孔的入口处安装有用于输送所述
C02和 02的混合物或用于在气化完成后进行二氧化碳封存歩骤时输入高 压 C02的高压管线, 以及用于输送低压 C02和 02的混合物的低压管线, 并且所述出气钻孔的出口处安装有用于输送所述裂隙沟通过程中产生的 混合气体的高压煤气管线和用于输送所述气化生成的低压粗煤气的低压 煤气管线。
在一个优选实施方式中,对所产生的粗煤气中的二氧化碳进行分离和 捕集, 并将所捕集的二氧化碳用于所述裂隙沟通、 通道加工或地下气化。
在一个优选实施方式中, 所述介质还包括水蒸气。
本发明通过采用以 C02和 02的混合物作为含碳有机矿物储层的裂隙 沟通、通道加工和 /或地下气化过程的介质, 分别将 C02和 02的混合物用 作压裂介质、 气化通道加工介质、 气化介质, 另外, co2可以作为含碳有 机矿物储层气化后形成的燃空区后续处置时的重要冷却介质。本发明方法 为一体化技术, 通过上述技术的集成, 可提高可燃气体的热值、调节粗煤 气中 co、 ¾比例、 抑制 co2生成、 降低粗煤气生产成本, 同时实现 co2 捕集和资源化利用。 附图说明
图 1是根据本发明一个实施方式的地下气化方法的过程示意图,其中 a)为裂隙沟通过程; (b)通道加工过程; (c)为气化过程; (d;> C02封存; 图 2 是根据本发明另一个实施方式的地下气化方法的裂隙沟通过程 的示意图, 其中采用超短半径水平钻进技术进行造隙以形成连通裂隙; 图 3 是根据本发明另一个实施方式的地下气化方法的裂隙沟通过程 的示意图, 其中采用定向水平钻进技术直接与火区对接; 和
图 4 是根据本发明另一个实施方式的地下气化方法的裂隙沟通过程 的示意图, 其中采用羽状水平钻井技术开采油页岩。
附图标记说明
1一含碳有机矿物储层
2—地面
3—上覆岩层
4—直接裂隙沟通产生的连通裂隙
5—进气钻孔
6—出气钻孔
7— C02和 02的高压管线
8—高压煤气管线
9一点火区
10—气化通道
13—燃空区
14一水平钻进的连通裂隙
15—超短半径水平钻进设备
16—火区
17—定向钻进的连通裂隙
18—羽状分支井 具体实施方式
鉴于已有技术存在的问题和 co2在地下气化过程中的特殊作用, 本 发明提供一种含碳有机矿物储层的地下气化新工艺, 该工艺以 C02和 02 的混合物作为地下气化过程的介质, 分别将 C02和 02的混合物用作压裂 介质、 气化通道加工的加工介质、 生产粗煤气的气化介质, 以及 co2作 为燃空区后续处置时的冷却介质。 本发明方法通过 C02和 02的混合物开 发和利用地下含碳有机矿物储层中的能量,和传统的利用方式(井工开采 等)相比能量利用效率大大提高, 和传统的地下气化技术相比, 提高可燃 气体的热值、 提升和调节有效气体组成、 抑制 co2生成、 降低原料气生 产成本, 同时实现 co2捕集和资源化利用。
为此, 本发明的具体方法至少包括如下歩骤之一或它们的组合:
( 1 ) 在有钻孔与地面连通的拟气化含碳有机矿物储层例如煤层或油 页岩中,选择两个邻近的钻孔分别作为进气钻孔和出气钻孔, 该进出气孔 可以是垂直钻孔和 /或者定向钻孔, 对两钻孔间的含碳有机矿物储层进行 裂隙沟通、增隙改造。从进气钻孔注入二氧化碳和纯氧的高压混合物(氧 气体积浓度 20%-35%) 对含碳有机矿物储层进行裂隙沟通, 其中的 "高 压"是指作为压裂介质的混合物的压力不低于含碳有机矿物储层的破裂压 力。 C02和 02的混合物沿着含碳有机矿物储层中的孔隙和裂隙移动并从 出气钻孔排出,从而在进气钻孔和出气钻孔之间的含碳有机矿物储层中建 立连通裂隙;
如果实施本技术发明时, 含碳有机矿物储层例如煤层没有建立火区, 则需要进行点火歩骤。具体是在进气钻孔或者出气钻孔处理完淤泥后,下 入电加热装置,控制进出气孔压力均大于煤层静水压头,然后打开电加热
器对煤层进行加热, 待温度超过煤层着火点后, 保持该温度一段时间(一 天左右) 然后在点火孔通入氧气和二氧化碳混合物 (氧气体积浓度
20%-50%之间), 在保证进出口压力大于静水压头的条件下, 缓慢打开另 外一个钻孔,观察出口气的组分,当出口气中煤气热值大于 700大卡/ Nm3 左右时, 煤层被点燃, 完成点火歩骤, 然后进行通道加工歩骤;
另外一种点火方法是在进出气孔处理完淤泥后,控制进出气孔压力均 大于煤层静水压头,然后快速下入被点燃的焦炭,然后在点火孔通入氧气 和二氧化碳的混合气体(氧气体积浓度 20%-50%左右), 在保证进出口压 力大于静水压头的条件下, 缓慢打开另外一个钻孔, 观察出口气的组分, 当出口气中煤气热值大于 700大卡/ Nm3左右时, 煤层被点燃, 然后开始 气化通道加工歩骤;
如果含碳有机矿物储层例如煤层在实施本技术发明前已经存在火区, 则不需要进行点火歩骤。如果实施本技术发明时在地下含碳有机矿物储层 (例如煤层)已有火区,则可利用含碳有机矿物储层原有火区进行裂隙沟 通歩骤、 通道加工歩骤和气化歩骤。
(2) 对两钻孔间的含碳有机矿物储层中形成的裂隙进行热加工, 扩 大成气化通道。 将 C02和纯氧混配成氧气体积浓度为 20-50%的富氧气体
(有时称为 C02富氧介质) 从进气钻孔注入, 沿着所述钻孔间的含碳有 机矿物储层形成的连通裂隙输送至点火区(该点火区在例如出气钻孔的底 部建立),控制 C02富氧介质的流量(500Nm3/h至 5000Nm3/h)和浓度(氧 气体积浓度 20%-50%),使火源迎着 C02富氧介质气流方向向进气钻孔方 向移动, 对所述钻孔间的含碳有机矿物储层中形成的裂隙进行热加工作 业, 以将所述裂隙扩大成气化通道;
(3 ) 增加气化通道进气量, 进行气化。 当所述 C02富氧介质进气钻 孔压力出现明显降低(通常是指压力降幅达到初始压力的 5%/天左右或更 大) 后, 增大 C02富氧介质的流量 (增加至 6000Nm3/h到 10000Nm3/h) 或增加 C02富氧介质的氧浓度(氧气体积浓度增加在 50%-70%), 以提高 反应区温度, 并使火源逆着 C02富氧介质的气流方向向另一钻孔 (这里 一般是指出气钻孔) 方向移动, 以保证 C02富氧介质与含碳有机矿物储 层接触反应, 同时完成钻孔间的含碳有机矿物储层的气化以生成粗煤气
(其是氢气、 甲垸、 一氧化碳、 二氧化碳等混合物);
上述方法中, 还可以包括: 歩骤 (4) 将 C02加压后注入到两钻孔间 的含碳有机矿物储层燃烧、气化后形成的燃空区内进行封存。将所述歩骤 (3 ) 中产生的粗煤气中的 C02进行分离、 回收, 加压后由其中一个钻孔 注入到燃空区内, 由于燃空区一部分空间被灰渣、焦渣、夹矸、顶板岩石、 未气化的含碳有机矿物储层所充填, 注入的 C02竞争吸附 (即, 二氧化 碳吸附能力强于甲垸) 可以置换出燃空区灰渣、 焦渣、 夹矸、 顶板岩石、 未气化的含碳有机矿物储层吸附的可燃气体, 并将 C02吸附到这些物质 内, 从而实现 C02封存。
上述方法中, 使用的 C02可以通过多种途径获取, 主要取决于含碳 有机矿物储层在地下气化中生成的粗煤气的用途和品质等,如果粗煤气用 于发电,可以回收发电中产生的烟气中的 C02,如果粗煤气用于化工产品 合成, 可以回收作为化工产品合作的原料气即粗煤气中的 C02。
进一歩, 歩骤 (1 ) 所述增隙改造的方法, 可以联合其他钻进技术, 例如首先采用机械钻进方式(如定向水平钻进技术、超短半径水平钻进技 术) 进行造隙 (形成连通裂隙), 再用 C02和 02混合物对裂隙进行处理。
进一歩, 所述裂隙沟通使用的 co2, 可以为气态、 液态、 超临界态 co2, 也可以由液态 co2、 原胶液例如胍胶和各种化学添加剂例如氯化钾 组成的混合液。替代地,在介质里添加固相颗粒例如石英砂对裂隙沟通形 成的裂缝进行支撑。
进一歩, 在所述裂隙沟通作业中, 监测 C02和 02混合物注入钻孔压 力变化情况, 当钻孔压力出现急剧下降, 即压力降幅一般为初始压力的
5%/天左右或更大, 且所述出气钻孔的出气流量为 100Nm3/h以上时, 表 明在两钻孔间的含碳有机矿物储层中已经形成连通裂缝。
进一歩,所使用的二氧化碳可来自于地面煤气净化工段的脱碳单元分 离出的 C02。
进一歩, 所述歩骤(2) 中氧气体积浓度要求为 20〜50%, 优选 20〜 35%, 可以根据进气钻孔压力进行调节, 以保证灰分不发生熔融, 通道不 堵塞;
进一歩, 所述歩骤(3 ) 中氧气体积浓度要求为 50〜70%, 优选 50〜
65%, 可以根据出气钻孔粗煤气中可燃气体组分进行调节, 以保证适宜的 气化通道温度, 组分满足后续化工合成工艺要求;
进一歩, C02和纯氧的混配方式, 可以是先在地面对两种气体混合, 也可以是先不在地面混合, 分别从双层套套(环空型套管)注入, 两种气 体在钻孔底部或之中混合的方式。
进一歩, 所述 C02富氧的输送, 可以通过环空型输送管道由地面输 送至地下含碳有机矿物储层,也可以直接通过钻孔套管由地面输送至地下 含碳有机矿物储层。
在一个优选实施方式中, 所述进气钻孔的入口处安装有用于输送 C02 和 02的混合物或在气化完成后进行二氧化碳封存歩骤时需要输入高压二 氧化碳的高压管线(高压是指高于煤层破裂压力, 该破裂压力由煤岩的力 学强度决定), 以及用于输送 C02和 02的混合物的低压管线(低压是指小 于煤层的静水压头), 并且所述出气钻孔的出口处安装有用于输送裂隙沟 通过程中产生的混合气体的高压煤气管线 (高压是指略高于煤层静水压 头, 并小于进气钻孔压力)和用于输送气化生成的低压粗煤气的低压煤气 管线 (这里的低压一般是指低于进气孔压力 3〜5kg左右)。
在一个优选实施方式中,对所产生的煤气中的二氧化碳进行分离和捕 集, 并将所收集的二氧化碳作为裂隙沟通、 通道加工或地下气化的介质。
在一个优选实施方式中, 所述介质用于通道加工和 /或气化歩骤时还 包括水蒸气。对于含水量少的煤层, 也可以采用二氧化碳、氧气和水蒸气 作为气化通道加工和气化的介质,加入的水量应根据煤层的含水量和气化 所需的水量的差再除以水蒸气的分解率来决定。
本发明以 C02和 02混合物作为地下气化过程(裂隙沟通、通道加工、 气化) 的处理介质, 全过程中没有 N2的输入, 因而反应后出口可燃气体 中基本没有 N2组分, 有利于甲垸等后续化工产品合成利用; 由于 C02与 含碳有机矿物储层中碳的反应为吸热反应,避免了氧浓度高,灰分在氧化 层过热而熔融,起到了与水蒸汽在氧化层调节温度相似的作用,克服了水 蒸汽在地下气化过程中不易输送,水蒸汽发生过程能耗大等缺点;试验证 明 C02能够加快 CO的生成速率, 抑制水煤气变换反应, 有效地调节气 化中生成的粗煤气中的可燃气体组分含量, 同时,二氧化碳也是一种碳资
源, 二氧化碳参与气化反应, 降低了碳的消耗, 增加了含碳有机矿物储层 中碳资源转变为 CO等可燃气体组分的有效利用率; 另外, co2经回收后 部分 co2用作二氧化碳氧气介质的原料, 部分封存到含碳有机矿物储层 气化后形成的燃空区内, 可同时实现 co2捕集和资源化利用, 降低甲垸 等后续化工产品合成的原料气生产成本, 实现 co2减排, 降低过程能耗。
除了具有上述优点外, co2的引入可以对主要的三个歩骤(裂隙沟通、 通道加工和气化) 产生明显的协同效果, 主要表现为:
( 1 ) 采用 C02和 02混合物作为压裂介质, 由于 C02的比热容较 N2 高,能够在含碳有机矿物储层例如煤层表面产生冷却作用, 同时二氧化碳 有灭火作用, 因而可以避免裂隙沟通过程中煤层发生自燃。
(2)采用 C02和 02混合物作为压裂介质, 在裂隙沟通过程中, C02 被含碳有机矿物储层吸附, 在通道热加工过程中, 有利于 co2还原反应 的进行,可以防止通道在热加工过程中局部温度超温,避免加工通道中出 现多个火源,或是通道加工中因局部加工点温度超过含碳有机矿物储层例 如煤层灰熔点而产生局部通道熔融情况,同时提高了含碳有机矿物储层碳 资源的利用率。
(3 ) 采用 C02和 02混合物作为裂隙沟通和通道加工介质, 含碳有 机矿物储层例如煤层中吸附二氧化碳, 有利于后续气化过程中温度控制, 同时利用二氧化碳竞争吸附甲垸的能力增加热解气 (特别是甲垸)的析出。
(4) 采用 C02和 02混合物为介质的通道加工和气化过程, 强化对 含碳有机矿物储层例如煤层的热作用,可以克服煤层在传统的压裂后出现 的裂隙的减少或是裂隙封闭问题,更有利于含碳有机矿物储层的气化, 因 而,有利于增大含碳有机矿物储层的碳资源的开采率, 例如提高煤层的回 采率。
下面通过具体实施例并结合附图对本发明做进一歩的详细描述,但应 当理解, 本发明并不局限于这些实施例。 实施例 1
图 1是根据本发明一个实施方式的地下气化方法的过程示意图,其中 (a)为裂隙沟通过程; 为通道加工过程; W为气化过程;(d)为 C02封存,
其中采用本发明所述方法对煤层进行气化开采。在本实施例中,根据拟气 化煤层范围设置钻孔, 钻孔数量、布置方式由煤层特性、原料气生产规模 等决定,但为了实现本发明,至少应该包括或设置一个进气钻孔和一个出 气钻孔, 具体过程如下:
参见图 l(a)。 由地面 2经由上覆岩层 3向煤层(即本发明中的含碳有 机矿物储层) 1中施工进气钻孔 5, 在距进气钻孔 5—定距离范围例如 20 米到 500米内(这里需要说明的是,对于本领域技术人员已知的是, 该距 离范围具体可以根据煤层裂隙沟通的形成方式确定,例如如果是机械钻进 进行裂隙沟通, 该距离可以稍大, 例如可以是 150米至 500米; 如果仅使 用本发明的压裂介质进行压裂沟通, 则该距离可以较小, 例如可以是 20 米至 50米) 施工出气钻孔 6, 这里进气钻孔 5和出气钻孔 6均为垂直钻 孔, 钻孔底部位于拟气化的煤层中。
参见图 1(a)和 (b), 进气钻孔 5的进口处安装 C02和 02高压管线 7 (即其中作为处理介质的压力不低于含碳有机矿物储层的破裂压力)、 C02和 02低压管线 11 (即其中作为介质的压力不高于含碳有机矿物储 层的静水压力),出气钻孔 6的出口处安装高压煤气(压力 0.7MPa左右) 管线 8、 低压煤气 (煤气压力 0.5MPa左右) 管线 12。 其中, C02和 02 的高压管线 7用于输送 C02和 02高压混合物(煤层破裂压力的 1.1倍左 右), 也用于在气化完成后输送 C02, 并将 C02输送以封存到含碳有机矿 物储层 1气化后所形成的燃空区内; C02和 02的低压管线 11用于输送 低压 C02富氧(煤层静水压头的 0.8倍左右); 高压煤气管线 8用于输送 裂隙沟通过程中产生的混合气体,低压煤气管线 12用于输送反应生成的 低压粗煤气。
在图 1(a)中, 首先对煤层 (即含碳有机矿物储层) 1实施裂隙沟通, 裂隙沟通过程中关闭 C02和 02低压管线 11和低压煤气管线 12阀门, 打开 C02和 02高压管线 7阀门,并打开高压煤气管线 8阀门,强制 C02 和 02混合物从进气钻孔 5沿着煤层中的孔隙和裂隙移动, 并经过出气钻 孔 6, 由高压煤气管线 8排出, 注入 C02和 02后, 例如通过压力表密切 监测 C02和 02注入的进气钻孔 5孔口压力变化情况和出气钻孔 6流量变 化情况, 当进气钻孔 5孔口压力出现急剧下降, 即压力表监测的压力的降
幅为孔口的初始压力的 5%/天或者更大, 且出气钻孔 6 的出气流量为 100Nm3/h以上时, 表明在上述钻孔间的煤层中已经形成直接裂隙沟通产 生的连通裂隙 4,使得进气钻孔 5与出气钻孔 6在煤层中实现了相互连通。
如图 b)所示, 裂隙沟通完成后, 开始气化通道加工, 此时, 进气钻 孔 5与出气钻孔 6通过连通裂隙相互连通。 增加进气钻孔 5的 C02和 02 流量(一般是每次增加 100Nm3/h), 将两钻孔间的煤层内的水分与注入的 C02和 02—起经由高压煤气管线 8带出,使出气钻孔 6的孔底煤层保持 干燥, 之后将电点火器下放至出气钻孔 6孔底煤层段的点火区 9。在地面 将 02配入 C02中, 配成 02体积浓度为 20%的 C02富氧介质, 并由 C02 和 02高压管线 7经进气钻孔 5,直接沿裂隙沟通产生的连通裂缝 4送入 出气钻孔 6孔底,启动点火器对出气钻孔 6的孔底煤层进行点火,煤层点 燃后,二氧化碳和氧气混合物与煤层发生反应生成的粗煤气经由高压煤气 管线 8排出,出气钻孔 6的孔底煤层形成点火区 9以后,依据煤层涌水量、 出气温度等, 通过调节 C02富氧介质的氧浓度和流量, 来控制火区温度, 该火区温度一般不低于煤层自燃温度 (大约 250〜350°C, 具体根据煤种 自燃温度确定)。
火区调试稳定以后, 根据钻孔间距、 孔间阻力、 钻孔承压能力、煤层 静水压力、煤层顶底板结构强度等参数调节进气钻孔 5的流量 (梯级增加, 每次增加 1000Nm3/h)、 氧浓度 (梯级增加, 每次增加 5%氧气体积浓度) 强制使 C02富氧介质以所需流量沿进气钻孔 5供入点火区 9。之后维持该 流量(约 3000Nm3/h至 4000Nm3/h)进行逆向燃烧(gp, 火焰前沿的扩展 方向与供入气体的流向相反), 并实时监测进气钻孔 5的压力。 逆向燃烧 过程中 C02富氧介质中的 02与煤层中连通裂隙处的可燃物反应,消耗了 部分煤,从而使连通裂隙断面逐渐扩大, 以有利于生成的煤气的排出和形 成有利于气化反应和传热、 传质的渗滤条件。
当进气钻孔 5与出气钻孔 6上端连接的压力表所显示的压力相差不大 (或压差小于 0.3 MPa左右) 时, 表明: 进气钻孔 5孔底与出气钻孔 6 孔底之间的连通裂隙已经扩大成气化通道 10 (参见图 l c ), 气化通道加 工歩骤完成。
气化通道 10完成构建后, C02和 02高压管线 7停止进气, C02富
氧改由 C02和 02低压管线 11进气; 同时高压煤气管线 8停止出气, 改 由低压煤气管线 12输送反应生成的粗煤气。之后增大 C02富氧气体的流 量(增大至约 6000Nm3/h到 10000Nm3/h)和 /或增加氧气体积浓度(氧气 浓度调节为约 55%), 以提高反应区温度, 并进行正向气化 (即, 火焰前 沿的扩展方向与供入气体的流向相同), 正向气化反应温度提高, 可保证 C02与气化通道 10中炽热的煤层表面充分接触反应, 加快 C02富氧与煤 层发生气化反应、热解反应的速度,提高了煤气中可燃气体等有效组分含 量。 正向气化过程中, 随着气化通道 10不断增宽, 氧气输送到燃烧煤层 表面的速率会下降,此时可以根据出气钻孔 6中的煤气组分、煤层夹矸厚 度、 含水量、 钻孔间距等情况, 对 C02富氧气体流量和 /或氧气浓度进行 调整 (调整幅度一般不超过正常状态下流量和氧气体积浓度的 20%); 当 出口煤气的有效组分(主要是甲垸、 一氧化碳、 氢气)体积浓度的总和出 现 10%以上的下降,并维持 48小时以上时,钻孔间煤层的气化过程结束。
如果在气化过程中发现煤层中的水量不足以支撑煤层的气化反应进 行 (一种方法是根据出口氢气的组分,如果在过程中煤气的氢气含量下降, 下降程度大于原始的浓度的 20%或以上, 并且长期不能恢复到原有水平, 则可以判断水少), 加入的量为煤层气化所需的水量减去煤层含水量再除 以水蒸气分解率。
煤层气化过程结束后,气化通道 10扩展为燃空区 13(如图 1(d)所示), 燃空区一部分空间被灰渣、焦渣、夹矸、顶板岩石、未气化的煤层所充填, 可以作为封存 C02的空间。 气化过程结束后, 燃空区还具有一定的高温 (平均温度 300〜800°C, 之前煤层燃烧后蓄积的热量)。 首先, 将 C02 由低压 C02和 02管线 11送入燃空区, C02与燃空区内灰渣、 焦渣、 夹 矸、顶板岩石、 未气化的煤层进行热量交换, 使高温燃空区逐渐降温、冷 却; 同时 C02在灰渣、 焦渣、 夹矸、 顶板岩石、 未气化的煤层表面进行 竞争吸附, 置换出其上吸附的 C¾等可燃气体组分。 产生的含有 C¾等 可燃气体和 C02的混合物经过出气钻孔 6 由低压煤气管线 12排除至地 面, 供地面热量回收和可燃气体回收。 待燃空区温度降至 100〜200°C后, 关闭出气钻孔 6, 打开 C02和 02高压管线 7的阀门, 注入 C02, C02压 力一般控制在煤层静水压头左右, C02注入量一般控制在 400〜
500Nm7m3 (每单位体积的燃空区内可以封存 400〜500标立方的 C02), 具体根据燃空区体积、煤层水文地质情况等决定,从而完成燃空区对 co2 的封存。 实施例 2
实施例 2与实施例 1的所采用的方法基本相同,不同之处在于实施例 2在裂隙沟通歩骤采用了超短半径水平钻进技术。图 2是根据本发明实施 例 2的地下气化方法的裂隙沟通过程的示意图,其中采用超短半径水平钻 进技术进行造隙以形成连通裂隙。如图 2所示, 由地面 2经由上覆岩层 3 向煤层 (即含碳有机矿物储层) 1中施工进气钻孔 5, 在距进气钻孔 5— 定距离范围 (约 40米至 100米, 本领域技术人员可以具体根据超短水平 钻能够施工的最大长度) 内施工出气钻孔 6, 该进、 出气钻孔 5和 6均为 垂直钻孔, 钻孔底部位于预气化的煤层中。 采用超短半径水平钻井设备 15, 由进气钻孔 5沿着进气钻孔 5和出气钻孔 6水平连线方向,直接在垂 直钻孔的内壁打开一个供超短水平钻出入的通道,进行侧向水平钻进,在 煤层中形成水平钻进的连通裂隙 14使进气钻孔 5与出气钻孔 6在煤层中 相互连通。
超短半径水平钻进完成施工后, 移出钻具, 开始气化通道加工。打开 C02和 02高压管线 7阀门,打开高压煤气管线 8阀门,通过控制进气钻 孔 5的 C02和 02流量(约 500Nm3/h至 1000Nm3/h), 将两钻孔间煤层中 的水平钻进的连通裂隙 14内积存的水分与注入的 C02和 02—起经由高 压煤气管线 8带出, 使出气钻孔 6孔底煤层保持干燥, 之后将电点火器 下放至出气钻孔 6孔底煤层段。 在地面将 02配入 C02中, 配成氧气体积 浓度为 30%的 C02氧气混合物,并由 C02和 02高压管线 7经进气钻孔 5, 沿水平钻进的连通裂隙 14送入出气钻孔 6孔底,启动点火器对出气钻孔 6孔底煤层进行点火, 煤层点燃后, 二氧化碳和氧气混合物与煤层发生反 应生成的粗煤气经由高压煤气管线 8排出,出气钻孔 6孔底煤层形成初歩 点火区以后, 依据煤层涌水量、 出气温度等, 通过调节气化剂氧浓度和流 量, 来控制火区温度, 该火区温度一般不低于煤层自燃温度(大约 250〜 350°C, 具体根据煤种的自燃温度确定)。
火区调试稳定以后,进行气化通道加工歩骤和气化歩骤,具体过程类 似于实施例 1。 实施例 3
实施例 3与实施例 2的所采用的方法基本相同,不同之处在于实施例 3中含碳有机矿物储层在进行裂隙沟通歩骤前已经存在火区,并且在裂隙 沟通阶段采用定向水平钻进技术与已有火区直接对接。 图 3 是根据本发 明实施例 3的地下气化方法的裂隙沟通过程的示意图,其中采用定向水平 钻进技术直接与火区对接。 如图 3所示, 现有出气钻孔 6, 钻孔孔底已经 存在火区 16, 拟采用本发明所述方法对新的煤层进行气化, 生产合成气。
采用定向钻进方法, 在距离出气钻孔 6 —定距离范围内, 由地面 2 经由上覆岩层 3向煤层即含碳有机矿物储层 1中施工进气钻孔 5,并在煤 层中形成定向钻进的连通裂隙 17, 与已有的火区 16直接钻通。定向钻进 完成施工后, 打开 C02和 02高压管线 7阀门, 打开高压煤气管线 8阀 门, 通入 C02富氧气体, 开始对定向钻进的连通裂隙 17进行热加工。
通过调整 C02和 02管线 7的压力, 强制 C02富氧气体以所需的固 定流量 (约 800〜1500Nm3/h) 沿进气钻孔 5进入煤层, C02富氧气体中 的氧气体积浓度为 40%。 维持该固定流量, 并实时监测进气钻孔 5 的压 力。
通过在进气钻孔 5处连接的压力仪表对压力进行监测,当监测到进气 钻孔 5的压力明显降低后(例如, 压力降幅达到初始压力的 5%/天左右), 增大 C02富氧气体的流量和 /或增加氧气体积浓度(流量增加至 3000Nm3/h 到 5000Nm3/h之间, 氧气体积浓度 25%-40%), 所述流量或者氧气浓度具 体根据煤层夹矸厚度、 含水量, 钻孔间距等情况进行调整。 当进气钻孔 5 与出气钻孔 6上端连接的压力表所显示的压力相差不大(例如,压差小于 0.3 MPa) 时, 表明进气钻孔 5与出气钻孔 6完成气化通道构建,。
气化通道完成构建后, 气化的歩骤类似于实施例 1。 实施例 4
实施例 4拟采用本工艺所述方法对油页岩进行气化开采,由图 4所示,
图 4 是根据本发明另一个实施方式的地下气化方法的裂隙沟通过程的示 意图,其中采用羽状水平钻井技术开采油页岩。实施例 4采用的方法与实 施例 2基本相同,不同之处在于实施例 4先采用羽状水平钻井技术,在进 气钻孔和出气钻孔间的油页岩层内建立连通裂隙,之后点火并进行通道加 工和气化, 具体实施方式如下所述:
由地面 2经由上覆岩层 3向油页岩层即含碳有机矿物储层 1中施工垂 直钻孔作为出气钻孔 6,在出气钻孔 6距离 300米到 500米施工一条羽状 定向钻作为进气钻孔 5, 使进气钻孔 5与出气钻孔 6在油页岩层中连通, 进气钻孔 5为羽状水平钻孔, 包括若干组羽状分支井 18, 进气钻孔和出 气钻孔的底部位于预气化油页岩层中。
羽状水平钻井完成施工后, 按照实施例 2所述方法, 采用 C02将羽 状分支井 18内积存的水分带出, 使出气钻孔 6孔底油页岩层保持干燥, 之后将电点火器下放至出气钻孔 6孔底油页岩段, 启动点火器供送 C02 富氧对出气钻孔 6孔底油页岩进行点火, 油页岩点燃后, 依据涌水量、 出 气温度等, 通过调节气化剂氧浓度和 /或流量, 来控制火区温度。
火区调试稳定以后, 通过调节进气钻孔 5的流量(约 500Nm3/h-1000 Nm3/h左右)、 氧浓度 (体积浓度 20%) 和压力 (约 0.7-l.OMpa左右) 等 参数, 强制 C02富氧气体以所需流量沿进气钻孔 5供入点火区 9。之后维 持该流量进行逆向燃烧, 并实时监测进气钻孔 5 的压力。 当进气钻孔 5 上端连接的压力表所显示的压力出现明显降低 (压力降幅达到初始压力的 5%每天左右)时, 表明初始形成的点火区 9扩展至进气钻孔 5孔底附近。 当进气钻孔 5与出气钻孔 6上端连接的压力表所显示的压力相差不大 (压 差小于 0.3 MPa) 时, 表明: 进气钻孔 5的孔底与钻孔 6的孔底之间的连 通裂隙已经热加工成气化通道。气化通道构建完成后,气化歩骤与实施例 2相类似。
基于二氧化碳和氧气的混合物为介质的这种地下气化新方法,可以充 分调节含碳有机矿物储层在地下气化时的反应温度,提升和调整煤气组分 中有效气成分和氢碳比,提高能量利用效率, 同时该方法还可以对二氧化 碳进行化学利用 (例如资源化利用)和物理封存, 是一个低碳、 高效、 清 洁的地下气化新方法。
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具 体实施方式。本领域技术人员理解, 在不背离本发明范围的情况下, 可以 作出其他更改和变形。 本发明的范围由所附权利要求限定。
Claims
1. co2和 02的混合物作为介质应用在地下含碳有机矿物储层的裂隙 沟通或通道加工中。
2. 一种用于地下含碳有机矿物储层的裂隙沟通的方法,其中所述含碳 有机矿物储层设置有分别使所述含碳有机矿物储层与地面连通的至少一 个进气钻孔和至少一个出气钻孔, 其特征在于, 所述方法包括: 通过从所 述进气钻孔注入作为压裂介质的 C02和 02的混合物, 以在所述进气钻孔 和所述出气钻孔之间的所述含碳有机矿物储层中形成连通裂隙。
3. 一种用于地下含碳有机矿物储层的气化通道加工的方法,其中所述 含碳有机矿物储层设置有分别使所述含碳有机矿物储层与地面连通的至 少一个进气钻孔和至少一个出气钻孔, 并且在所述进气钻孔和所述出气钻 孔之间的所述含碳有机矿物储层中已经形成连通裂隙, 其特征在于, 所述 方法包括: 采用 C02和 02的混合物作为通道加工介质对所述连通裂隙进 行加工, 通过增压和 /或燃烧来使所述连通裂隙扩大成气化通道。
4. 一种用于地下含碳有机矿物储层的地下气化的方法,其中所述含碳 有机矿物储层设置有分别使所述含碳有机矿物储层与地面连通的至少一 个进气钻孔和至少一个出气钻孔, 其特征在于, 所述地下气化方法包括: 对所述含碳有机矿物储层进行裂隙沟通以形成连通裂隙的裂隙沟通歩骤; 对所述连通裂隙进行通道加工以形成气化通道的通道加工歩骤; 和使所述 地下含碳有机矿物储层发生气化以生成粗煤气的气化歩骤, 其中在所述裂 隙沟通歩骤、 通道加工歩骤和气化歩骤中的至少一个中使用 C02和 02的 混合物作为介质。
5. 根据权利要求 2〜4中任一项所述的方法, 其特征在于, 所述进气 钻孔和所述出气钻孔是定向钻孔或垂直钻孔。
6. 根据权利要求 4 所述的方法, 其特征在于, 在所述裂隙沟通歩骤 之后, 在所述含碳有机矿物储层中点火以建立火区, 然后再进行所述通道 加工歩骤和气化歩骤。
7. 根据权利要求 4所述的方法, 其特征在于, 在所述裂隙沟通歩骤 之前, 在所述含碳有机矿物储层中已建立火区, 利用所述含碳有机矿物储
层的原有火区进行裂隙沟通歩骤、 通道加工歩骤和气化歩骤。
8. 根据权利要求 4所述的方法,其特征在于,在所述裂隙沟通歩骤中, 通过从所述进气钻孔注入 C02和 02的混合物作为压裂介质, 在所述进气 钻孔和所述出气钻孔之间的所述含碳有机矿物储层中形成所述连通裂隙。
9. 根据权利要求 4所述的方法,其特征在于,在所述通道加工歩骤中, 采用 C02和 02的混合物作为通道加工介质, 通过增压和 /或燃烧来扩大所 述连通裂隙以形成所述气化通道。
10. 根据权利要求 4所述的方法, 其特征在于, 在所述气化歩骤中, 通过在所述气化通道中增加作为气化介质的 C02和 02的混合物的进气量 同时进行燃烧反应, 以使所述含碳有机矿物储层发生气化而生成粗煤气。
11. 根据权利要求 1〜4中任一项所述的应用或方法, 其特征在于,所 述含碳有机矿物储层是煤层或油页岩层。
12. 根据权利要求 2或 4所述的方法, 其特征在于, 在所述裂隙沟通 歩骤中, 首先通过机械钻进在所述进气钻孔和所述出气钻孔之间的所述含 碳有机矿物储层中进行造隙, 然后再注入所述介质而形成所述连通裂隙。
13. 根据权利要求 12所述方法, 其特征在于,所述机械钻进是定向水 平钻进、 超短半径水平钻进或羽状水平钻进技术中的至少一种。
14. 根据权利要求 2或 4所述的方法, 其特征在于, 在所述裂隙沟通 中, 监测所述进气钻孔和所示出气钻孔中的压力变化情况, 并且当所述进 气钻孔中的压力急剧下降并且所述出气钻孔的出气流量为 100Nm3/h以上 时, 表明已形成所述连通裂隙。
15. 根据权利要求 1〜4中任一项所述的应用或方法, 其特征在于,用 于所述裂隙沟通和 /或通道加工的所述介质中的氧气体积浓度为 20~50%。
16. 根据权利要求 15所述的应用或方法,其特征在于,用于所述裂隙 沟通和 /或通道加工的所述介质中的氧气体积浓度为 20~35%。
17. 根据权利要求 4所述的方法, 其特征在于, 用于所述气化歩骤的 所述介质中的氧气体积浓度为 50~70%。
18. 根据权利要求 4所述的地下气化方法, 其特征在于, 用于所述气 化歩骤的所述介质中的氧气体积浓度为 50~65%。
19. 根据权利要求 4所述的地下气化方法, 其特征在于, 还包括:
C02回收歩骤:从所述气化歩骤产生的粗煤气中分离出 C02进行回收, 其中, 至少一部分所回收的 co2加压后, 注入到所述含碳有机矿物储层用 于所述裂隙沟通、 通道加工和 /或气化。
20. 根据权利要求 19所述的地下气化方法, 其特征在于, 还包括: co2封存歩骤: 将所回收的 co2注入在所述含碳有机矿物储层气化后 产生的燃空区内进行封存。
21. 根据权利要求 1、 2或 4所述的应用或方法, 其特征在于, 所述介 质中的 co2为气态、 液态或超临界态的 co2。
22. 根据权利要求 1、 2或 4所述的应用或方法, 其特征在于, 所述介 质中的 C02为由液态 C02、 原胶液和化学添加剂组成的混合液。
23. 根据权利要求 1、 2或 4所述的应用或方法, 其特征在于, 所述介 质中添加有固相颗粒以支撑形成的所述连通裂隙。
24. 根据权利要求 1〜4中任一项所述的应用或方法, 其特征在于,所 述 C02和 02的混合物是通过在地面上或在进气钻孔中混配 co2和纯氧得 到的。
25. 根据权利要求 2〜4中任一项所述的方法, 其特征在于,在所述进 气钻孔或所述出气钻孔底部建立火区, 并且所述 C02和 02的混合物通过 环空型输送管道或者所述进气钻孔由地面输送至所述火区。
26. 根据权利要求 4所述的方法, 其特征在于, 所述进气钻孔的入口 处安装有用于输送所述 co2和 02的混合物或用于在气化完成后进行二氧 化碳封存歩骤时输入高压 C02的高压管线, 以及用于输送低压 C02和 02 的混合物的低压管线,并且所述出气钻孔的出口处安装有用于输送所述裂 隙沟通过程中产生的混合气体的高压煤气管线和用于输送所述气化生成 的低压粗煤气的低压煤气管线。
27. 根据权利要求 4所述的方法, 其特征在于, 对所产生的粗煤气中 的二氧化碳进行分离和捕集, 并将所捕集的二氧化碳用于所述裂隙沟通、 通道加工或地下气化。
28. 根据权利要求 3或 4所述的方法, 其特征在于, 所述介质还包括 水蒸气。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/430,446 US20150247394A1 (en) | 2012-09-21 | 2013-09-18 | Method for fracture communication, passage processing, and underground gasification of underground carbon-containing organic mineral reservoir |
EP13839910.0A EP2899365A4 (en) | 2012-09-21 | 2013-09-18 | Method for fracture communication, passage processing, and underground gasification of underground carbon-containing organic mineral reservoir |
ZA2015/02651A ZA201502651B (en) | 2012-09-21 | 2015-04-20 | Method for fracture communication, passage processing, and underground gasification of underground carbon-containing organic mineral reservoir |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210354916.8A CN103670357B (zh) | 2012-09-21 | 2012-09-21 | 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法 |
CN201210354916.8 | 2012-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014044200A1 true WO2014044200A1 (zh) | 2014-03-27 |
Family
ID=50309047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/083813 WO2014044200A1 (zh) | 2012-09-21 | 2013-09-18 | 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150247394A1 (zh) |
EP (1) | EP2899365A4 (zh) |
CN (1) | CN103670357B (zh) |
WO (1) | WO2014044200A1 (zh) |
ZA (1) | ZA201502651B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109138952A (zh) * | 2018-10-29 | 2019-01-04 | 邓晓亮 | 一种超临界煤炭地下气化产出发电的系统和方法 |
CN112412430A (zh) * | 2020-09-18 | 2021-02-26 | 西安交通大学 | 一种煤炭地下原位热解的系统及方法 |
CN116411887A (zh) * | 2023-06-05 | 2023-07-11 | 太原理工大学 | 一种利用地热开采煤层气的装置及方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104314568B (zh) * | 2014-09-25 | 2017-04-05 | 新奥科技发展有限公司 | 煤层上方岩层的加固方法 |
CN104563992B (zh) * | 2014-12-22 | 2018-05-15 | 新奥科技发展有限公司 | 煤炭地下气化系统及控制方法 |
CN105064975B (zh) * | 2015-08-17 | 2017-09-05 | 牛辉英 | 非常规油气层渗透性水泥石压裂开采方法 |
CN105545273A (zh) * | 2016-01-23 | 2016-05-04 | 吉林大学 | 一种陆域天然气水合物co2压裂置换开采的装置及方法 |
CN107339092A (zh) * | 2017-08-07 | 2017-11-10 | 新疆国利衡清洁能源科技有限公司 | 煤炭地下气化监测系统 |
CN110965964B (zh) * | 2019-12-16 | 2021-10-12 | 临沂矿业集团菏泽煤电有限公司 | 一种特厚煤层瓦斯抽采方法 |
CN112881656B (zh) * | 2021-03-02 | 2023-03-24 | 中国建筑西南勘察设计研究院有限公司 | 隐伏可溶岩溶蚀速率及裂缝连通性的测试方法 |
CN113323715A (zh) * | 2021-06-11 | 2021-08-31 | 中煤科工集团西安研究院有限公司 | 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法 |
CN113685161B (zh) * | 2021-09-14 | 2022-10-25 | 西安交通大学 | 一种富油煤原位热解的氮气电加热方法及系统 |
CN113931605B (zh) * | 2021-11-05 | 2022-08-02 | 西安科技大学 | 一种煤炭深部地下气化后co2捕捉与封存方法 |
CN115354991B (zh) * | 2022-08-31 | 2023-08-15 | 成都理工大学 | 一种煤系气储层有利压裂层段优选方法 |
CN117211751B (zh) * | 2023-09-04 | 2024-10-01 | 西南石油大学 | 一种地下煤气化耦合油页岩、中低成熟度页岩油开发方法 |
CN117052366B (zh) * | 2023-10-11 | 2023-12-22 | 太原理工大学 | 一种深部有机岩矿层原位开采及能量高效利用的方法 |
CN117988925B (zh) * | 2024-02-06 | 2024-07-12 | 中国矿业大学 | 一种利用关闭矿井封存和转化二氧化碳的方法 |
CN117823112B (zh) * | 2024-03-06 | 2024-04-30 | 太原理工大学 | 一种原位煤体超临界水气化制氢异层开采方法及装置 |
CN118065850B (zh) * | 2024-04-18 | 2024-07-02 | 太原理工大学 | 一种油页岩地下原位热解油气提质的系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0039824A1 (en) * | 1980-05-14 | 1981-11-18 | Zimpro-Aec, Ltd | A process for enhanced oil recovery by gas injection and apparatus for use therein |
CN102080519A (zh) * | 2011-01-21 | 2011-06-01 | 中矿瑞杰(北京)科技有限公司 | 气—煤共采的地面负压抽采煤层气的方法 |
CN102477857A (zh) * | 2010-11-30 | 2012-05-30 | 新奥气化采煤有限公司 | 一种煤炭地下气化贯通方法 |
CN102486085A (zh) * | 2010-12-01 | 2012-06-06 | 新奥气化采煤有限公司 | 一种用于含碳有机质地下气化的气化剂输配系统及工艺 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2630307A (en) * | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US3023807A (en) * | 1958-06-19 | 1962-03-06 | Phillips Petroleum Co | In situ combustion process |
US3638727A (en) * | 1968-09-27 | 1972-02-01 | Texaco Inc | Method of treating a subterranean hydrocarbon-bearing formation |
US3981362A (en) * | 1975-03-17 | 1976-09-21 | Texaco Inc. | In-situ combustion method for the recovery of hydrocarbons |
US4042029A (en) * | 1975-04-25 | 1977-08-16 | Shell Oil Company | Carbon-dioxide-assisted production from extensively fractured reservoirs |
US4092052A (en) * | 1977-04-18 | 1978-05-30 | In Situ Technology, Inc. | Converting underground coal fires into commercial products |
NL181941C (nl) * | 1977-09-16 | 1987-12-01 | Ir Arnold Willem Josephus Grup | Werkwijze voor het ondergronds vergassen van steenkool of bruinkool. |
US4217956A (en) * | 1978-09-14 | 1980-08-19 | Texaco Canada Inc. | Method of in-situ recovery of viscous oils or bitumen utilizing a thermal recovery fluid and carbon dioxide |
US4324291A (en) * | 1980-04-28 | 1982-04-13 | Texaco Inc. | Viscous oil recovery method |
US4366864A (en) * | 1980-11-24 | 1983-01-04 | Exxon Research And Engineering Co. | Method for recovery of hydrocarbons from oil-bearing limestone or dolomite |
CN1091832C (zh) * | 1994-04-01 | 2002-10-02 | Bp阿莫科公司 | 用于将二氧化碳排泄到煤层中并同时从煤层中回收甲烷的方法 |
US5944104A (en) * | 1996-01-31 | 1999-08-31 | Vastar Resources, Inc. | Chemically induced stimulation of subterranean carbonaceous formations with gaseous oxidants |
CN101382065B (zh) * | 2008-09-04 | 2012-05-02 | 乌兰察布新奥气化采煤技术有限公司 | 无井式地下气化工艺 |
CN101424181B (zh) * | 2008-12-05 | 2012-10-03 | 新奥科技发展有限公司 | 一种煤炭地下气化通道确定、贯通方法和系统 |
CN101749005B (zh) * | 2010-03-17 | 2013-01-30 | 新奥气化采煤有限公司 | 地下钻孔保护工艺 |
US9441473B2 (en) * | 2013-06-12 | 2016-09-13 | Exxonmobil Upstream Research Company | On-site generation of a fracturing fluid stream and systems and methods utilizing the same |
CA2854523C (en) * | 2014-06-18 | 2021-03-09 | Yanguang Yuan | Bottom-up gravity-assisted pressure drive |
-
2012
- 2012-09-21 CN CN201210354916.8A patent/CN103670357B/zh active Active
-
2013
- 2013-09-18 WO PCT/CN2013/083813 patent/WO2014044200A1/zh active Application Filing
- 2013-09-18 US US14/430,446 patent/US20150247394A1/en not_active Abandoned
- 2013-09-18 EP EP13839910.0A patent/EP2899365A4/en not_active Withdrawn
-
2015
- 2015-04-20 ZA ZA2015/02651A patent/ZA201502651B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0039824A1 (en) * | 1980-05-14 | 1981-11-18 | Zimpro-Aec, Ltd | A process for enhanced oil recovery by gas injection and apparatus for use therein |
CN102477857A (zh) * | 2010-11-30 | 2012-05-30 | 新奥气化采煤有限公司 | 一种煤炭地下气化贯通方法 |
CN102486085A (zh) * | 2010-12-01 | 2012-06-06 | 新奥气化采煤有限公司 | 一种用于含碳有机质地下气化的气化剂输配系统及工艺 |
CN102080519A (zh) * | 2011-01-21 | 2011-06-01 | 中矿瑞杰(北京)科技有限公司 | 气—煤共采的地面负压抽采煤层气的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2899365A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109138952A (zh) * | 2018-10-29 | 2019-01-04 | 邓晓亮 | 一种超临界煤炭地下气化产出发电的系统和方法 |
CN109138952B (zh) * | 2018-10-29 | 2024-04-19 | 邓晓亮 | 一种超临界煤炭地下气化产出发电的系统和方法 |
CN112412430A (zh) * | 2020-09-18 | 2021-02-26 | 西安交通大学 | 一种煤炭地下原位热解的系统及方法 |
CN112412430B (zh) * | 2020-09-18 | 2022-02-01 | 西安交通大学 | 一种煤炭地下原位热解的系统及方法 |
CN116411887A (zh) * | 2023-06-05 | 2023-07-11 | 太原理工大学 | 一种利用地热开采煤层气的装置及方法 |
CN116411887B (zh) * | 2023-06-05 | 2023-08-18 | 太原理工大学 | 一种利用地热开采煤层气的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150247394A1 (en) | 2015-09-03 |
EP2899365A1 (en) | 2015-07-29 |
EP2899365A4 (en) | 2017-01-11 |
CN103670357B (zh) | 2017-06-06 |
ZA201502651B (en) | 2016-11-30 |
CN103670357A (zh) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014044200A1 (zh) | 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法 | |
AU2013317409B2 (en) | Method for joint-mining of coalbed gas and coal | |
US7467660B2 (en) | Pumped carbon mining methane production process | |
TWI554676B (zh) | 在形成沉積回收中使用二氧化碳之方法與系統及在井下產生含二氧化碳流的裝置 | |
CN101113670B (zh) | 一种煤炭地下气化工艺 | |
CN102418476A (zh) | 深层煤炭和煤层气联合开采技术 | |
RU2323327C1 (ru) | Способ извлечения метана из угольного пласта | |
US3994343A (en) | Process for in situ oil shale retorting with off gas recycling | |
CN104153750B (zh) | 一种用空气压裂和微负压地下生产煤气的方法 | |
RU2443857C1 (ru) | Способ производства водорода при подземной газификации угля | |
CN106640007A (zh) | 多源多元热流体发生系统及方法 | |
CN106522914A (zh) | 用于煤炭地下气化工艺的地下气化炉停车及燃空区复原处理方法 | |
CN101988383B (zh) | 利用烟道气原位干馏地下煤层的方法 | |
US20160290628A1 (en) | Apparatus, system, and method for controlling combustion gas output in direct steam generation for oil recovery | |
CN109779599A (zh) | 一种煤田纯氧压裂气化方法 | |
CN113279807A (zh) | 一种煤炭地下气化二氧化碳回注防回火系统及方法 | |
CN217357614U (zh) | 动力煤原位l型供气燃烧、h型高效采热及碳封存系统 | |
CN102587883B (zh) | 煤炭地下气化炉熄炉方法 | |
CN101988384B (zh) | 利用烟道气原位干馏地下煤层的方法 | |
CN102119259A (zh) | 沥青生产方法 | |
CN112196505A (zh) | 一种油藏原位转化制氢系统及其制氢工艺 | |
US4069867A (en) | Cyclic flow underground coal gasification process | |
CN103711471A (zh) | 地下气化炉与地面配套系统的开车方法 | |
CN115773098A (zh) | 煤层和油层叠合区地下煤制气与提高油层采收率的联合开采方法 | |
US4122897A (en) | In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13839910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14430446 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013839910 Country of ref document: EP |