CN113323715A - 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法 - Google Patents

一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法 Download PDF

Info

Publication number
CN113323715A
CN113323715A CN202110650715.1A CN202110650715A CN113323715A CN 113323715 A CN113323715 A CN 113323715A CN 202110650715 A CN202110650715 A CN 202110650715A CN 113323715 A CN113323715 A CN 113323715A
Authority
CN
China
Prior art keywords
fracturing
drilling
hole
mine pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110650715.1A
Other languages
English (en)
Inventor
郑凯歌
陈冬冬
张俭
李延军
陈志胜
李彬刚
杨欢
戴楠
赵继展
张静非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Research Institute Co Ltd of CCTEG
Original Assignee
Xian Research Institute Co Ltd of CCTEG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Research Institute Co Ltd of CCTEG filed Critical Xian Research Institute Co Ltd of CCTEG
Priority to CN202110650715.1A priority Critical patent/CN113323715A/zh
Publication of CN113323715A publication Critical patent/CN113323715A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices

Abstract

本发明公开了一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,包括以下步骤:根据工作面矿压显现特征和高位钻孔预布局数据,设计顶板内的压裂治理层位;计算确定高位钻孔在布孔区域的纵向高度、水平段钻进层位的位置及空间布局;在工作面回采之前,从煤层钻场开孔钻进至所述压裂治理层位,形成高位钻孔,并调整所述高位钻孔轨迹角度使得所述高位钻孔的水平段钻进层位位于所述压裂治理层位中,让所述高位钻孔沿工作面推进方向布置;采用分段压裂技术对所述高位钻孔的水平段进行分段压裂改造,形成三维立体裂缝体系;完成分段压裂改造后,通过所述高位钻孔完成瓦斯抽采。本发明具有一孔多用、降低治理成本和提高开采效率的优点。

Description

一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法
技术领域
本发明涉及煤矿开采技术领域,具体涉及一种坚硬顶板强矿压与采空区瓦斯灾害协同治理技术方法。
背景技术
随着煤炭开采强度及煤层深度的增加,工作面回采期间矿压及瓦斯灾害愈发剧烈。巷道片帮、底鼓、工作面漏顶、支架压死问题逐步突显,工作面顶板发育厚硬岩层时,回采过程中形成大面积悬顶,破断过程巨大能量瞬间释放,造成人员伤亡、设备损坏等重大安全事故,严重影响矿井安全生产。冲击地压是一种严重威胁煤矿安全生产的重大灾害,伴随着开采强度和开采深度逐年剧增,冲击地压灾害愈演愈烈,造成了严重的人员伤亡和财产损失。同时伴随着煤层开采,工作面附近的采动影响体(简称采动体)的瓦斯涌出量急剧增加,传统的井下瓦斯抽采技术(如埋管抽采、高位钻孔抽采等)工程量大、效率低下,严重影响高产潜能的释放,尤其是国家实施简化通风、去尾巷等规定后,该矛盾更加凸显,急需寻求更加经济高效的采动区涌出瓦斯抽采技术。顶板高位钻孔是动力灾害与采空区瓦斯协同治理的有效技术手段之一,目前的煤矿井下定向钻进装备可以实现长钻孔轨迹的精确控制,保证钻孔轨迹在预设层位中的有效延伸,提高钻孔的有效抽采距离,通过压裂改造坚硬顶板,有效提高钻孔瓦斯抽采量及抽采率的同时,超前区域防治动力灾害。
发明内容
针对现有技术中的缺陷,本发明提供一种坚硬顶板强矿压与采空区瓦斯灾害协同治理技术方法,实现高位钻孔的一孔多用,即可实现坚硬顶板压裂改造,防治冲击地压灾害发生,又可以实现回采后采空区和上隅角瓦斯的实时抽采,实现降低治理成本和提高开采效率,达到煤矿井下瓦斯和顶板动力灾害的协同治理。
一种坚硬顶板强矿压与采空区瓦斯灾害协同治理技术方法,包括以下步骤:S1、获得工作面矿压显现特征和高位钻孔预布局数据;S2、根据工作面矿压显现特征和高位钻孔预布局数据,设计顶板内的压裂治理层位;S3、计算确定高位钻孔在布孔区域的纵向高度、水平段钻进层位的位置及空间布局;S4、在工作面回采之前,从煤层钻场开孔钻进至所述压裂治理层位,形成高位钻孔,并采用定向技术逐渐调整所述高位钻孔的钻进轨迹,使得所述高位钻孔的水平段钻进层位位于所述压裂治理层位中,让所述高位钻孔沿工作面推进方向布置;S5、采用分段压裂技术对所述高位钻孔的水平段进行分段压裂改造,形成多个压裂段;S6、完成分段压裂改造后,通过所述高位钻孔完成瓦斯抽采。整个协同治理方法如下:S1和S2、在进行高位钻孔前,获得工作面矿压显现特征和高位钻孔预布局数据,也就是得到整个煤矿开采中压裂改造的实施环境参数,并根据上述环境参数设计出具体的压裂治理层位位于顶层哪一层位或哪几个层位中;S3、通过压裂治理层位的位置,以及高位钻孔预布局数据等环境参数,计算确定高位钻孔在布孔区域的纵向高度、水平段钻进层位的位置及空间布局,其中水平段钻进层位位于压裂治理层位中;S4、在工作面回采之前,从煤层钻场开孔钻进至所述压裂治理层位,形成高位钻孔,并采用定向技术逐渐调整所述高位钻孔的钻进角度,使得所述高位钻孔的水平段钻进层位位于所述压裂治理层位中,让所述高位钻孔沿工作面推进方向布置,需要注意的是,为有效控制上隅角瓦斯,抽采长钻孔应布置在工作面回风巷道附近的顶板岩层内;S5和S6、采用分段压裂技术对所述高位钻孔的水平段进行分段压裂改造,形成多个压裂段,完成分段压裂改造后,通过所述高位钻孔完成瓦斯抽采。
具体地,高位钻孔在布孔区域的纵向高度大于冒落带高度,并且小于裂隙带高度。可以利用经验公式计算得到冒落带及裂隙带经验高度范围。
具体地,压裂治理层位位于裂隙带内,所述水平段钻进层位位于裂隙带中上部中硬岩层内。水平段钻进层位在纵向方向上能够设置为多层,并选取在多个中硬岩层中。
具体地,高位钻孔布局数据包括钻孔数量、钻场及钻孔参数。
具体地,钻孔数量通过单孔抽采瓦斯纯量、工作面涌出瓦斯纯量和其他抽排瓦斯纯量计算得出。工作面涌出瓦斯纯量减去其他抽排瓦斯纯量得到高位钻孔抽排瓦斯纯量,将高位钻孔抽排瓦斯纯量与单孔抽采瓦斯纯量相比较,可以计算得到需要开采的高位钻孔数量。
具体地,压裂段包括多个压裂簇,相邻压裂段、相邻压裂簇之间产生应力干扰,形成多级多类裂缝体系。每个压裂段包括多个压裂簇,相邻压裂段、相邻压裂簇之间产生应力干扰,促使裂缝转向,形成多级多类裂缝体系,达到再造人工渗透层的目的。
具体地,S1包括:S11、通过微震系统得到微震监测数据,采集现场地质数据、开采数据和矿压监测数据;S12、将S11中的所述数据输入预先研究搭建的强矿压显现特征神经网络模型当中,得到输出的对应的强矿压显现特征。
具体地,微震系统包括检波器和信号采集站;其中,所述检波器与所述信号采集站连接,所述检波器用于感应震动信号,所述信号采集站用于在所述检波器感应到所述震动信号时采集所述震动信号。
具体地,分段压裂技术为裸眼高压射流控向分段水力压裂。通过裸眼高压射流控向分段水力压裂,可实现压裂方向规模控制,控制对目标层位多级压裂弱化改造,并可把控压裂裂缝垂向规模不延伸至直接顶板,破坏井下锚杆、锚索等支护。
具体地,定向技术包括:通过定向钻进工艺和轨迹自动调参系统,结合透明地质条件识别远离含水层。通过定向钻进工艺和轨迹自动调参系统,结合透明地质条件识别远离含水层,精准控制高位钻孔于目标层位,垂向误差在±0.5m,水平±2m。
本发明的有益效果体现在:
本发明中,通过定向技术和分段压裂技术可以实现压裂方向规模控制,并且可把控压裂裂缝垂向规模不延伸至直接顶板,破坏井下锚杆、锚索等支护,整个协同治理方法可以实现高位钻孔的一孔多用,即可实现坚硬顶板压裂改造,防治冲击地压灾害发生,又可以实现回采后采空区和上隅角瓦斯的实时抽采,实现降低治理成本和提高开采效率,达到煤矿井下瓦斯和顶板动力灾害的协同治理。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明的步骤流程图;
图2为本发明中煤层的纵向透视图;
图3为本发明中水平段的纵向透视图;
图4为本发明中压裂治理层位和水平段钻进层位的纵向透视图。
附图标记:
1-工作面,2-高位钻孔,21-水平段,211-压裂段,3-裂隙带,4-钻场,5-煤层,6-压裂治理层位,7-水平段钻进层位,8-冒落带。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和出示的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明实施方式的描述中,需要说明的是,术语“内”、“外”、“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1至图4所示,一种坚硬顶板压裂改造与采空区瓦斯协同治理方法,包括以下步骤:
S1、获得工作面1矿压显现特征和高位钻孔2预布局数据;
S2、根据工作面1矿压显现特征和高位钻孔2预布局数据,设计顶板内的压裂治理层位6;
S3、计算确定高位钻孔2在布孔区域的纵向高度、水平段21钻进层位的位置及空间布局;
S4、在工作面1回采之前,从煤层5钻场4开孔钻进至压裂治理层位6,形成高位钻孔2,并采用定向技术逐渐调整高位钻孔2的钻进角度,使得高位钻孔2的水平段21钻进层位位于压裂治理层位6中,让高位钻孔2沿工作面1推进方向布置;
S5、采用分段压裂技术对高位钻孔2的水平段21进行分段压裂改造,形成多个压裂段211;S6、完成分段压裂改造后,通过高位钻孔2完成瓦斯抽采。
在本实施方式中,需要说明的是,整个协同治理方法如下:
S1和S2、在进行高位钻孔2前,获得工作面1矿压显现特征和高位钻孔2预布局数据,也就是得到整个煤矿开采中压裂改造的实施环境参数,并根据上述环境参数设计出具体的压裂治理层位6位于顶层哪一层位或哪几个层位中;
S3、通过压裂治理层位6的位置,以及高位钻孔2预布局数据等环境参数,计算确定高位钻孔2在布孔区域的纵向高度、水平段21钻进层位的位置及空间布局,其中水平段21钻进层位位于压裂治理层位6中;
S4、在工作面1回采之前,从煤层5钻场4开孔钻进至压裂治理层位6,形成高位钻孔2,并采用定向技术逐渐调整高位钻孔2的钻进角度,使得高位钻孔2的水平段21钻进层位位于压裂治理层位6中,让高位钻孔2沿工作面1推进方向布置,需要注意的是,为有效控制上隅角瓦斯,抽采长钻孔应布置在工作面1回风巷道附近的顶板岩层内;
S5和S6、采用分段压裂技术对高位钻孔2的水平段21进行分段压裂改造,形成多个压裂段211,完成分段压裂改造后,通过高位钻孔2完成瓦斯抽采;
综上,通过定向技术和分段压裂技术可以实现压裂方向规模控制,并且可把控压裂裂缝垂向规模不延伸至直接顶板,破坏井下锚杆、锚索等支护,整个协同治理方法可以实现高位钻孔2的一孔多用,即可实现坚硬顶板压裂改造,防治冲击地压灾害发生,又可以实现回采后采空区和上隅角瓦斯的实时抽采,达到煤矿井下瓦斯和顶板动力灾害的协同治理。
具体地,高位钻孔2在布孔区域的纵向高度大于冒落带8高度,并且小于裂隙带3高度。
在本实施方式中,需要说明的是,可以利用经验公式计算得到冒落带8及裂隙带3经验高度范围。
具体地,压裂治理层位6位于裂隙带3内,水平段21钻进层位位于裂隙带3中上部中硬岩层内。
在本实施方式中,需要说明的是,如图3所示,水平段21钻进层位在纵向方向上能够设置为多层,并选取在多个中硬岩层中。
具体地,高位钻孔2布局数据包括钻孔数量、钻场4及钻孔参数。
具体地,钻孔数量通过单孔抽采瓦斯纯量、工作面1涌出瓦斯纯量和其他抽排瓦斯纯量计算得出。例如,可以通过下式计算得出钻孔数量:
Figure BDA0003112108230000071
式中,单孔抽采瓦斯纯量为Q;工作面涌出瓦斯纯量为Q;其他抽排瓦斯纯量为Q;钻孔数量为X
在本实施方式中,需要说明的是,工作面1涌出瓦斯纯量减去其他抽排瓦斯纯量得到高位钻孔2抽排瓦斯纯量,将高位钻孔2抽排瓦斯纯量与单孔抽采瓦斯纯量相比较,可以计算得到需要开采的高位钻孔2数量。
具体地,压裂段211包括多个压裂簇,相邻压裂段211、相邻压裂簇之间产生应力干扰,形成多级多类裂缝体系。
在本实施方式中,需要说明的是,如图4所示,每个压裂段211包括多个压裂簇(压裂产生的裂缝),相邻压裂段211、相邻压裂簇之间产生应力干扰,促使裂缝转向,形成多级多类裂缝体系,达到再造人工渗透层的目的。裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等等;其中,在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向。
具体地,S1包括:S11、通过微震系统得到微震监测数据,采集现场地质数据、开采数据和矿压监测数据;S12、将S11中的数据输入预先训练的强矿压显现特征神经网络模型当中,得到输出的对应的强矿压显现特征。
具体地,微震系统包括检波器和信号采集站;其中,检波器与信号采集站连接,检波器用于感应震动信号,信号采集站用于在检波器感应到震动信号时采集震动信号。
具体地,分段压裂技术为裸眼高压射流控向分段水力压裂。
在本实施方式中,需要说明的是,通过裸眼高压射流控向分段水力压裂,可实现压裂方向规模控制,控制对目标层位多级压裂弱化改造,并可把控压裂裂缝垂向规模不延伸至直接顶板,破坏井下锚杆、锚索等支护。
具体地,定向技术包括:通过定向钻进工艺和轨迹自动调参系统,结合透明地质条件识别远离含水层。
在本实施方式中,需要说明的是,通过定向钻进工艺和轨迹自动调参系统,结合透明地质条件识别远离含水层,精准控制高位钻孔2于目标层位,垂向误差在±-0.5m,水平±-2m。
本实施例通过高压喷射形成射孔人工裂缝,该裂缝起到诱导裂缝发育左右,控制压裂裂缝的起裂方向,通过无级分段压裂段长度,压裂注水流量和时间控制压裂裂缝延展规模。通过高位钻孔同时解决坚硬顶板压裂改造以及采空区瓦斯抽采治理,整个协同治理方法可以实现高位钻孔的一孔多用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

1.一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,其特征在于,包括以下步骤:
根据工作面矿压显现特征和高位钻孔预布局数据,设计顶板内的压裂治理层位;计算确定高位钻孔在布孔区域的纵向高度、水平段钻进层位的位置及空间布局;
在工作面回采之前,从煤层钻场开孔钻进至所述压裂治理层位,形成高位钻孔,并调整所述高位钻孔轨迹角度使得所述高位钻孔的水平段钻进层位位于所述压裂治理层位中,让所述高位钻孔沿工作面推进方向布置;
采用分段压裂技术对所述高位钻孔的水平段进行分段压裂改造,形成三维立体裂缝体系;
完成分段压裂改造后,通过所述高位钻孔完成瓦斯抽采。
2.根据权利要求1所述的坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,其特征在于,
所述高位钻孔在布孔区域的纵向高度大于冒落带高度,并且小于裂隙带高度。
3.根据权利要求1所述的坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,其特征在于,所述压裂治理层位位于裂隙带内,所述水平段钻进层位位于裂隙带中上部中硬岩层内。
4.根据权利要求1所述的坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,其特征在于,所述高位钻孔预布局数据包括钻孔数量、钻场及钻孔参数。
5.根据权利要求4所述的坚硬顶板压裂改造与采空区瓦斯协同治理方法,其特征在于,所述钻孔数量通过单孔抽采瓦斯纯量、工作面涌出瓦斯纯量和其他抽排瓦斯纯量计算得出。
6.根据权利要求1所述的坚硬顶板压裂改造与采空区瓦斯协同治理方法,其特征在于,所述压裂段包括多个压裂簇,相邻压裂段、相邻压裂簇之间产生应力干扰,形成多级多类裂缝体系。
7.根据权利要求1所述的坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,其特征在于,所述工作面矿压显现特征和高位钻孔预布局数据的获取包括:
通过微震系统得到微震监测数据,采集现场地质数据、开采数据和矿压监测数据;
将所述微震监测数据,采集现场地质数据、开采数据和矿压监测数据输入至预先设置的强矿压显现特征神经网络模型当中,得到输出的对应的强矿压显现特征。
8.根据权利要求7所述的坚硬顶板压裂改造与采空区瓦斯协同治理方法,其特征在于,所述微震系统包括检波器和信号采集站;其中,
所述检波器与所述信号采集站连接,所述检波器用于感应震动信号,所述信号采集站用于在所述检波器感应到所述震动信号时采集所述震动信号。
9.根据权利要求1所述的坚硬顶板强矿压与采空区瓦斯灾害协同治理方法,其特征在于,所述分段压裂技术为裸眼高压射流控向分段水力压裂。
10.根据权利要求1所述的坚硬顶板压裂改造与采空区瓦斯协同治理方法,其特征在于,所述定向技术包括:通过定向钻进工艺和轨迹自动调参系统,结合透明地质条件识别远离含水层。
CN202110650715.1A 2021-06-11 2021-06-11 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法 Pending CN113323715A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110650715.1A CN113323715A (zh) 2021-06-11 2021-06-11 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110650715.1A CN113323715A (zh) 2021-06-11 2021-06-11 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法

Publications (1)

Publication Number Publication Date
CN113323715A true CN113323715A (zh) 2021-08-31

Family

ID=77420803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110650715.1A Pending CN113323715A (zh) 2021-06-11 2021-06-11 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法

Country Status (1)

Country Link
CN (1) CN113323715A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847083A (zh) * 2021-10-28 2021-12-28 重庆大学 一种高位巨厚坚硬顶板区冲击地压控制方法
CN114893161A (zh) * 2022-05-05 2022-08-12 陕西彬长孟村矿业有限公司 多层位定向钻孔联合布置方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080526A (zh) * 2011-01-17 2011-06-01 河南理工大学 地面煤层顶板顺层水平压裂井抽采瓦斯方法
WO2015054984A1 (zh) * 2013-10-16 2015-04-23 中国矿业大学 煤矿井下气液两相交替相驱压裂煤体强化瓦斯抽采方法
US20150247394A1 (en) * 2012-09-21 2015-09-03 ENN Coal Gasification Mining Co., Ltd. Method for fracture communication, passage processing, and underground gasification of underground carbon-containing organic mineral reservoir
CN109736876A (zh) * 2018-12-19 2019-05-10 中煤科工集团重庆研究院有限公司 采动体涌出瓦斯顶板大直径定向长钻孔抽采方法
US20190145260A1 (en) * 2017-03-20 2019-05-16 China University Of Mining And Technology Method for constructing networked preferential gas migration pathways and diverting and extracting gas
CN110067592A (zh) * 2019-03-25 2019-07-30 大同煤矿集团有限责任公司 基于坚硬顶板地面压裂的顶板瓦斯协同控制方法
CN111322048A (zh) * 2020-02-21 2020-06-23 中煤科工集团西安研究院有限公司 一种坚硬顶板冲击地压分段控向压裂治理技术

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080526A (zh) * 2011-01-17 2011-06-01 河南理工大学 地面煤层顶板顺层水平压裂井抽采瓦斯方法
US20150247394A1 (en) * 2012-09-21 2015-09-03 ENN Coal Gasification Mining Co., Ltd. Method for fracture communication, passage processing, and underground gasification of underground carbon-containing organic mineral reservoir
WO2015054984A1 (zh) * 2013-10-16 2015-04-23 中国矿业大学 煤矿井下气液两相交替相驱压裂煤体强化瓦斯抽采方法
US20190145260A1 (en) * 2017-03-20 2019-05-16 China University Of Mining And Technology Method for constructing networked preferential gas migration pathways and diverting and extracting gas
CN109736876A (zh) * 2018-12-19 2019-05-10 中煤科工集团重庆研究院有限公司 采动体涌出瓦斯顶板大直径定向长钻孔抽采方法
CN110067592A (zh) * 2019-03-25 2019-07-30 大同煤矿集团有限责任公司 基于坚硬顶板地面压裂的顶板瓦斯协同控制方法
CN111322048A (zh) * 2020-02-21 2020-06-23 中煤科工集团西安研究院有限公司 一种坚硬顶板冲击地压分段控向压裂治理技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
康玉柱等: "中国非常规油气地质学", vol. 1, 地质出版社, pages: 222 - 223 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847083A (zh) * 2021-10-28 2021-12-28 重庆大学 一种高位巨厚坚硬顶板区冲击地压控制方法
CN113847083B (zh) * 2021-10-28 2024-03-01 重庆大学 一种高位巨厚坚硬顶板区冲击地压控制方法
CN114893161A (zh) * 2022-05-05 2022-08-12 陕西彬长孟村矿业有限公司 多层位定向钻孔联合布置方法

Similar Documents

Publication Publication Date Title
CN109611143B (zh) 顶板水压致裂多参量综合监测系统及致裂效果判别方法
CN108894787B (zh) 上覆采空区遗留矿柱应力集中的压裂解除方法
CN209761499U (zh) 顶板水压致裂多参量综合监测系统
US4978172A (en) Gob methane drainage system
CN105626071B (zh) 一种缓倾斜薄矿体采矿方法
CN109736805A (zh) 一种厚层坚硬顶板改性卸压源头治理冲击地压的方法
CN105545307A (zh) 特大采场空间远近场井上下协同顶板控制方法
CN104712358A (zh) 基于首采全岩卸压工作面沿空留巷的高瓦斯煤层群卸压共采方法
CN1982649A (zh) 一种采矿方法
CN102943690B (zh) 采煤工作面顶板离层水的防治方法
CN112593936B (zh) 一种深部矿井多灾害区域超前综合防治方法
CN110067592B (zh) 基于坚硬顶板地面压裂的顶板瓦斯协同控制方法
CN112780340B (zh) 一种煤矿井上下区域超前防治冲击地压的方法
CN109611146B (zh) 一种离层水疏放注浆方法
CN113323715A (zh) 一种坚硬顶板强矿压与采空区瓦斯灾害协同治理方法
CN105804753A (zh) 一种基于二氧化碳爆破的弱化坚硬煤层放顶煤的方法
CN104963721A (zh) 一种采用顺层孔与穿层孔结合的井下立体快速疏放水方法
CN113404535A (zh) 一种煤矿井上下水力压裂防治冲击地压的方法
CN104329113A (zh) 一种地面钻孔松动爆破煤层底板卸压抽采瓦斯的方法
CN113404534A (zh) 一种l型地面水平井分段压裂防治冲击地压的方法
CN111677506B (zh) 治理房柱式采空区实现上行开采并回收煤柱的方法及装置
CN112922598A (zh) 一种通过切顶卸压减小沿空掘巷顶板压力的方法
CN114856684B (zh) 长壁开采端头悬顶及采空区瓦斯抽采的压裂协同控制方法
CN103628914A (zh) 一种缓倾角煤层分层开采探放低渗厚层基岩含水层的方法
CN115030719B (zh) 水力压裂厚硬岩层与煤层卸压相结合的冲击矿压防治方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination