WO2014176833A1 - 旋转阻尼器液压缓冲系统 - Google Patents

旋转阻尼器液压缓冲系统 Download PDF

Info

Publication number
WO2014176833A1
WO2014176833A1 PCT/CN2013/080276 CN2013080276W WO2014176833A1 WO 2014176833 A1 WO2014176833 A1 WO 2014176833A1 CN 2013080276 W CN2013080276 W CN 2013080276W WO 2014176833 A1 WO2014176833 A1 WO 2014176833A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
chamber
hydraulic
rotary damper
oil passage
Prior art date
Application number
PCT/CN2013/080276
Other languages
English (en)
French (fr)
Inventor
郝庆军
Original Assignee
伊卡路斯(苏州)车辆系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊卡路斯(苏州)车辆系统有限公司 filed Critical 伊卡路斯(苏州)车辆系统有限公司
Priority to EP13883514.5A priority Critical patent/EP2993373B1/en
Publication of WO2014176833A1 publication Critical patent/WO2014176833A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D5/00Gangways for coupled vehicles, e.g. of concertina type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/145Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only rotary movement of the effective parts

Definitions

  • the present invention relates to the field of damping damping control systems for vehicles, and more particularly to a rotary damper hydraulic buffering system. Background technique
  • the hinged passenger car has been gradually popularized in large and medium-sized cities in China due to its large passenger capacity and high utilization factor.
  • the articulated bus is generally composed of front and rear compartments and a chassis hinge system connecting the front and rear compartments.
  • the chassis hinge system includes a front frame, a rear frame, a slewing bearing and a hydraulic buffer device.
  • the front frame is generally fixedly connected to the front car by the front cross member, and then The frame is fixedly connected to the rear compartment of the articulated vehicle through the rear cross member.
  • the hydraulic buffering device in the chassis hinge system is a key factor that restricts the performance of the articulated car.
  • the hydraulic buffering device of the articulated bus is generally composed of two hydraulic cylinders, a hydraulic controller and an electric control system.
  • the hydraulic cylinder is controlled by the hydraulic controller to change the output resistance.
  • the electric control system sends a signal to the hydraulic pressure according to the turning angle of the vehicle.
  • the controller changes its pressure value.
  • the hydraulic buffer control system can form different damping according to the change of the angle of the vehicle, the structure of the system is complicated, the hydraulic cylinders on the left and the right sides are unbalanced, occupying a large space, and occasionally the hydraulic components and the pipe joints are arranged. There will be oil leakage, which will not only affect the performance of the vehicle, but also cause the vehicle to be inoperable in severe cases. Summary of the invention
  • a rotary damper is hydraulically slowed a punching system comprising a rotary damper, a first oil passage and a second oil passage, the rotary damper comprising a stator, a rotor rotating relative to the stator, and a hydraulic chamber formed between the stator and the rotor; a first oil passage and a second oil passage, the hydraulic chamber including at least one first chamber and at least one second chamber respectively communicating with the first oil passage and the second oil passage; when the rotor rotates counterclockwise, The hydraulic oil in the first chamber is compressed, the hydraulic oil passes from the first chamber through the first oil passage, the first oil passage, and the second oil passage into the second chamber; when the rotor is clockwise When rotating, the hydraulic oil in the second chamber is compressed, and the hydraulic oil enters the first chamber from the second chamber through the second oil passage, the second oil passage, and the first oil passage.
  • the buffer system further includes a first check valve, a second check valve, a third check valve, a fourth check valve, and a proportional relief valve, the second check valve, a proportional relief valve And the fourth one-way valve is sequentially connected in series to form the first oil passage; the third one-way valve, the proportional relief valve and the first one-way valve are sequentially connected in series to form the second oil passage.
  • the buffer system further includes an overflow valve and a pressure sensor, the overflow valve and the proportional relief valve being connected in parallel and connected in series between the second check valve and the fourth check valve, the pressure sensor and the overflow valve and A proportional relief valve is connected in series to detect the pressure at the port of the relief valve and the proportional relief valve.
  • the rotary damper also includes an upper end cover and a lower end cover that enclose the stator and the rotor.
  • At least one baffle groove is disposed on a circumferential surface of the inner wall of the stator, and a baffle is fixedly mounted in the baffle groove, and the outer wall of the stator is respectively provided with a symmetrical first oil port and a second oil port on opposite sides of the baffle plate, The first port and the second port are in communication with the first oil passage and the second oil passage, respectively.
  • a bottom of the baffle groove is provided with a compression oil groove.
  • a sealing groove is provided on an end surface of the stator and the rotor.
  • At least one vane groove is disposed on the circumferential surface of the outer wall of the rotor, and the vane slot is fixedly mounted with vane, and the suction valve mounting port is disposed on both sides of the vane.
  • At least one first chamber and at least one second chamber of the hydraulic chamber are formed by separating the partition and the vanes.
  • the rotary damper hydraulic buffer system further includes a hydraulic manifold, all oil passages and valve settings The preparations are all disposed in the hydraulic manifold block.
  • the pressure control is simple.
  • the electric control unit provides a linear voltage according to the speed and angle of the vehicle.
  • the proportional relief valve provides a linear voltage, which increases the damping force of the damper linearly with the increase of the vehicle speed and angle. Multi-channel sealing and installation of oil absorption The valve ensures that there is essentially no oil leakage; when there is a fault in the electronic control system, the base damping can be used.
  • Figure 1 is a schematic diagram of a hydraulic damper system of a rotary damper of the present invention
  • Figure 2 is a perspective view of the rotary damper of the present invention
  • Figure 3 is a perspective view of the rotary damper of the present invention with the upper end cover removed;
  • FIG. 4 is a perspective view showing the structure of the stator of the present invention.
  • Figure 5 is a plan view showing the planar structure of the stator of the present invention.
  • Figure 6 is a perspective view showing the structure of the rotor of the present invention.
  • Figure 7 is a plan view showing the planar structure of the rotor of the present invention.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of an integrated block in a specific embodiment of the present invention.
  • the rotary damper hydraulic buffer system disclosed by the present invention comprises a rotary damper 1, a first check valve 2, a second check valve 3, a third check valve 4, and a fourth check valve. 5.
  • the relief valve 6, the proportional relief valve 7 and the pressure sensor 8, the rotary damper 1 comprising a stator 11, a rotor 12 rotating relative to the stator, and a hydraulic chamber 13 formed between the stator 11 and the rotor 12, the rotor 12 being located in the stator 11 is inside, and is concentrically disposed, and the first oil passage 112 and the second oil passage 113 are disposed in the circumferential direction of the upper end flange surface 111 of the stator 11.
  • the hydraulic chamber 13 includes at least one first chamber 131 and at least one second chamber 132 in communication with the first oil passage 112 and the second oil passage 113, respectively.
  • the second one-way valve 3, the proportional relief valve 7 and the fourth one-way valve 5 are sequentially connected in series to form a first oil passage
  • the third one-way valve 4, the proportional relief valve 7 and the first one-way valve 2 are connected in series Form the second oil passage.
  • the relief valve 6 is used as a safety valve of the system to set the safety pressure of the system.
  • the pressure value of the relief valve 6 can be manually set.
  • the relief valve 6 is a rotary damper 1 Provide basic damping for the vehicle to drive to the repair shop. When the basic damping force needs to be adjusted during driving, it can be manually adjusted to provide safety protection.
  • the overflow valve 6 and the proportional relief valve 7 are connected in series and connected in series between the second check valve 3 and the fourth check valve 5, and the pressure sensor 8 is connected in series with the relief valve 6 and the proportional relief valve 7 for detecting overflow Flow valve 6 and proportional relief valve 7 - end P port pressure, and send the detected data to the electronic control unit, the computer compares the measured pressure value with the system set pressure value, such as the measured pressure value bias When low, the electronic control unit sends a signal to the proportional relief valve 7, and the proportional relief valve 7 increases the pressure value after receiving the signal, so that the pressure of the P port reaches the set pressure value. Similarly, when the measured pressure value When it is too high, the proportional relief valve 7 correspondingly relieves pressure and reduces the pressure value.
  • the proportional relief valve 7 can simultaneously play the role of pressure regulation and safety protection.
  • the proportional relief valve 7 can be replaced by a fixed hydraulic damping, and the solenoid valve is added to achieve the grading adjustment. Pressure.
  • the rotary damper includes a stator 11, a rotor 12, and an upper end cover 14 and a lower end cover 15 for enclosing the stator 11 and the rotor 12.
  • the rotor 12 is disposed inside the stator 11 and is concentrically disposed, the stator 11
  • a hydraulic chamber 13 is formed between the rotor 12.
  • At least one partition groove 114 (three in the present embodiment) is uniformly disposed in the circumferential direction of the inner wall of the stator 11.
  • the partition groove 115 is fixedly mounted in the partition groove 114, and the partition 115 uniformly seals the hydraulic chamber 13 Divided into a plurality of pockets, the outer wall of the stator 11 is respectively disposed on the two sides of the partition 115 with a symmetrical first port 116 and a second port 117, and the first port 116 and the second port 117 respectively and the first port 112 is in communication with the second oil passage 113.
  • a plurality of sealing grooves 118 are further disposed on the end surface of the flange surface 111 of the stator 11.
  • the sealing grooves 118 are spaced apart from the first oil passage 112 and the second oil passage 113, respectively, for the first oil passage 112 and the second oil passage. Sealed to avoid oil leakage.
  • a pressing oil groove 119 is provided at the bottom of each partition 115.
  • the hydraulic oil in the compressed cavity generates pressure
  • the pressing oil groove 119 applies pressure to the partition 115 to counteract the generated by the partition 115 during the rotation.
  • the centrifugal force is pressed against the rotor 12 to cause the seal ring 9 and the rotor 12 to be pre-compressed to enhance the sealing effect, so as to ensure that the hydraulic oil is compressed when the rotor 12 rotates relative to the stator 11, thereby generating pressure.
  • At least one of the vane grooves 121 (three in the embodiment) is disposed on the circumferential surface of the outer wall of the rotor 12, and the vane 122 is fixedly mounted in the vane groove 121, and the vane 122 and the partition 115 are disposed therebetween.
  • An end face seal groove 123 is disposed in the circumferential direction of the upper end surface of the rotor 12, and a shaft seal groove 124 is disposed in the circumferential direction of the inner wall of the rotor 12.
  • the flat seal groove 123 is provided with friction-resistant and high-pressure resistant PTFE (polytetrafluoroethylene).
  • the rotor 12 is planarly sealed; the shaft sealing groove 124 is filled with polyurethane, and the rotor 12 is axially rotated and sealed, which can compensate for the defect that the PTFE material is hard, the sealing effect is not good, and a small amount of hydraulic oil leaks, from the plane and the shaft.
  • the rotor is completely sealed in both directions to ensure that the rotary damper 1 does not leak outside the hydraulic oil.
  • Two symmetrical valve installation ports 125 are disposed on each side of each of the blades 122 for sucking hydraulic oil leaking from the upper surface of the stator 11 into the cavity, preventing leakage oil generated by the plane seal from being in the plane and axis of the rotor 12. The more and more the two seals are formed, the phenomenon of "squeaky oil" is generated, which eventually leads to leakage.
  • a seal ring 9 is disposed between the two ends of the vane 122 and the stator 11 and the rotor 12 to ensure the rotor 12 and the stator When the 11 is rotated, the hydraulic oil can be compressed to generate pressure.
  • the rotary damper hydraulic buffer system further includes a hydraulic manifold block 10, and all the oil passages and valve devices are disposed in the hydraulic manifold block 10, all the oil passages are cut through the oil holes and all the valve members are The geometric position arrangement and installation are provided on the hydraulic manifold block 10.
  • control principle of the present invention is as follows:
  • the hydraulic oil in the second chamber 132 is compressed to form a pressure receiving chamber to generate pressure; meanwhile, the volume of the cavity of the first chamber 131 becomes large, and a negative pressure is generated in the chamber, requiring The hydraulic oil is supplemented; at this time, the second oil passage 113 belongs to the oil discharge passage, the compressed hydraulic oil enters the second oil port 117 through the second oil passage 113, the second check valve 3 is opened, and the hydraulic oil reaches the overflow valve 6 And the P port of the proportional relief valve 7; when the hydraulic oil pressure in the second oil passage 113 reaches the pressure value set by the proportional relief valve 7, the proportional relief valve 7 is opened, and the hydraulic oil reaches the fourth check valve 5 At one end, the fourth check valve 5 is opened, and the first oil passage 112 is introduced into the first oil passage 112, and the compressed hydraulic oil is replenished into the cavity of the first chamber 131.
  • the hydraulic oil at this time, the first oil passage 112 belongs to the oil discharge passage, so that the compressed hydraulic oil enters the first oil port 116 through the first oil passage 112, the third one-way valve 4 is opened, and the hydraulic oil reaches the overflow valve 6 And the P port of the proportional relief valve 7; when the hydraulic oil pressure in the first oil passage 112 reaches the pressure value set by the proportional relief valve 7, the proportional relief valve 7 is opened, and the hydraulic oil reaches the first check valve At one end of the second one, the first one-way valve 2 is opened, the second oil port 117 enters the second oil passage 117, and the compressed hydraulic oil is replenished into the cavity of the second chamber 132.
  • the pressure sensor 8 monitors the pressure of the overflow valve 6 and the proportionally overflow valve 7-end P port in real time, and sends the data to the electronic control unit, and the electronic control unit according to the vehicle speed signal sent by the vehicle, And the angle signal sent by the angle sensor, the proportional relief valve 7 correspondingly sets a pressure value, and the computer compares the measured pressure value of the P port of the proportional relief valve 7 with the pressure value set by the system, such as a low pressure value. , the electronic control unit sends a signal to the proportional relief valve 7, and the proportional relief valve 7 increases the pressure value after receiving the signal, so that the pressure of the P port reaches the set pressure value. Conversely, when the pressure value is high, the ratio After the overflow valve 7 is connected to the signal from the electronic control unit, the pressure is released, and the pressure value is lowered to bring the pressure of the P port to the set pressure value.
  • the proportional relief valve 7 When the electronic control system fails to cause the system to be powered off, then the proportional relief valve 7 is in the fully closed state, and the working pressure of the rotary damper 1 is the safety pressure set by the relief valve 6, supporting the vehicle to reach the repair shop, driving When the base damping force needs to be adjusted during the process, the pressure value of the relief valve 6 can be manually adjusted.
  • the rotary damper hydraulic buffering system of the invention has ingenious design, high integration, simple and compact structure, low production cost, convenient maintenance and good buffering effect; and the sealing effect is enhanced by designing the oil suction valve and the two seals of the plane and the shaft surface, Make sure there is no "squeeze" phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

本发明公开了一种旋转阻尼器液压缓冲系统,包括旋转阻尼器、第一油路及第二油路,所述旋转阻尼器包括定子,转子,以及形成于定子和转子间的液压腔;所述定子上形成有第一油道和第二油道,所述液压腔包括分别与所述第一油道及第二油道相连通的第一腔和第二腔;当转子逆时针转动时,所述第一腔内的液压油受到压缩,从所述第一腔经过所述第一油道,第一油路,及第二油道进入所述第二腔内;当转子顺时针转动时,所述第二腔内的液压油受到压缩,从所述第二腔经过所述第二油道,第二油路,及第一油道进入所述第一腔内。本发明旋转阻尼器液压缓冲系统集成度高、缓冲效果好;通过吸油阀和端面、轴面两道密封,确保不会出现泄漏现象。

Description

旋转阻尼器液压缓冲系统
技术领域
本发明涉及车辆用阻尼减震控制系统技术领域, 尤其是涉及一种旋转 阻尼器液压缓冲系统。 背景技术
随着我国汽车制造业的迅速发展, 各种车辆制造业也在突飞猛进, 铰 接式客车以它载客量大、利用系数高等特点在国内大中城市逐渐得到推广。 铰接客车一般由前后车厢以及连接前后车厢的底盘铰接系统等组成, 底盘 铰接系统包括前架、 后架、 转盘轴承和液压缓冲装置等, 前架一般通过前 横梁与铰接车前车厢固定连接,后架通过后横梁与铰接车后车厢固定连接。
其中,底盘铰接系统中的液压缓冲装置是制约铰接车性能的关键因素。 铰接客车的液压缓冲装置一般由左右两个液压缸、 一个液压控制器和电气 控制系统组成, 液压缸由液压控制器控制变换其输出阻力的大小, 电气控 制系统根据车辆转弯角度, 发信号给液压控制器, 使其变换不同的压力值。 这种液压缓冲控制系统虽然可以根据车辆夹角的变化形成不同的阻尼, 但 是这种系统的结构较为复杂, 左右两边液压缸受力不均衡, 占用空间大, 而且液压部件及管路接头处偶尔会有漏油现象, 不仅影响车辆的性能, 严 重时还会导致车辆无法运行。 发明内容
本发明的目的在于克服现有技术的缺陷, 提供一种旋转阻尼器液压缓 冲系统, 以提高旋转阻尼器的缓冲效果。
为实现上述目的, 本发明提出如下技术方案: 一种旋转阻尼器液压缓 冲系统, 包括旋转阻尼器、 第一油路及第二油路, 所述旋转阻尼器包括定 子, 相对于定子转动的转子, 以及形成于定子和转子间的液压腔; 所述定 子上形成有第一油道和第二油道, 所述液压腔包括分别与所述第一油道及 第二油道相连通的至少一个第一腔和至少一个第二腔; 当转子逆时针转动 时, 所述第一腔内的液压油受到压缩, 液压油从所述第一腔经过所述第一 油道, 第一油路, 及第二油道进入所述第二腔内; 当转子顺时针转动时, 所述第二腔内的液压油受到压缩,液压油从所述第二腔经过所述第二油道, 第二油路, 及第一油道进入所述第一腔内。
优选地, 所述缓冲系统还包括第一单向阀、第二单向阀、第三单向阀、 第四单向阀和比例溢流阀, 所述第二单向阀、 比例溢流阀和第四单向阀依 次串联构成所述第一油路; 所述第三单向阀、 比例溢流阀和第一单向阀依 次串联构成所述第二油路。
所述缓冲系统还包括溢流阀和压力传感器, 所述溢流阀和比例溢流阀 并联后串联在第二单向阀和第四单向阀之间, 所述压力传感器与溢流阀和 比例溢流阀串联, 用于检测溢流阀和比例溢流阀一端口的压力。
所述旋转阻尼器还包括封装定子和转子的上端盖和下端盖。
所述定子内壁圆周面上设置至少一个隔板槽, 所述隔板槽内固定安装 有隔板, 定子外壁位于隔板两侧分别设置相对称的第一油口和第二油口, 所述第一油口和第二油口分别和第一油道和第二油道相连通。
所述隔板槽底部设有压紧油槽。
所述定子和转子的端面上设置有密封槽。
所述转子外壁圆周面上设置有至少一个叶片槽, 所述叶片槽内固定安 装有叶片, 叶片两侧设置有吸油阀安装口。
所述液压腔的至少一个第一腔及至少一个第二腔由所述隔板及叶片相 间分隔形成。
所述旋转阻尼器液压缓冲系统还包括液压集成块, 所有油路及阀门设 备均设置在所述液压集成块内。
本发明的的有益效果是:
1、压力控制简单, 由电控单元根据车速和角度不同, 对比例溢流阀提 供线性电压, 使阻尼器的阻尼力随车速和角度的增大呈线性增大; 采用多 道密封和安装吸油阀, 保证基本上不会出现漏油; 当电控系统存在故障时, 可以使用基础阻尼。
2、制造成本低, 维护安装方便, 不需使用加工昂贵的集成装置或者制 造加工精度高的转阀, 大大降低了制造成本, 提高了在市场上的竞争力。
3、可以实现分级调压,根据不同情况设定旋转阻尼器不同的工作压力, 安全系数高。 附图说明
图 1是本发明旋转阻尼器液压缓冲系统原理图;
图 2是本发明的旋转阻尼器的立体示意图;
图 3是本发明的旋转阻尼器除去上端盖的立体示意图;
图 4是本发明定子的立体结构示意图;
图 5是本发明定子的平面结构示意图;
图 6是本发明转子的立体结构示意图;
图 7是本发明转子的平面结构示意图;
图 8是本发明具体实施例中集成块立体结构示意图。
附图标记: 1、 旋转阻尼器, 11、 定子, 111、 法兰面, 112、 第一油道, 113、 第二油道, 114、 隔板槽, 115、 隔板, 116、 第一油口, 117、 第二油 口, 118、 密封槽, 119、 压紧油槽, 12、 转子, 121、 叶片槽, 122、 叶片, 123、 端面密封槽, 124、 轴面密封槽, 125、 吸油阀安装口, 13、 液压腔, 131、 第一腔, 132、 第二腔, 14、 上端盖, 15、 下端盖, 2、 第一单向阀, 3、 第二单向阀, 4、 第三单向阀, 5、 第四单向阀, 6、 溢流阀, 7、 比例溢 流阀, 8、 压力传感器, 9、 密封圈, 10、 液压集成块。 具体实施方式
下面将结合本发明的附图, 对本发明实施例的技术方案进行清楚、 完 整的描述。
如图 1所示, 本发明所揭示的旋转阻尼器液压缓冲系统, 包括旋转阻 尼器 1、 第一单向阀 2、 第二单向阀 3、 第三单向阀 4、 第四单向阀 5、 溢 流阀 6、 比例溢流阀 7和压力传感器 8,旋转阻尼器 1包括定子 11、相对于 定子转动的转子 12以及形成于定子 11和转子 12间的液压腔 13, 转子 12 位于定子 11内侧, 且同心设置, 定子 11上端法兰面 111圆周方向上设置 第一油道 112和第二油道 113。 液压腔 13包括分别与第一油道 112及第二 油道 113相连通的至少一个第一腔 131和至少一个第二腔 132。
其中, 第二单向阀 3、 比例溢流阀 7和第四单向阀 5依次串联构成第 一油路, 第三单向阀 4、 比例溢流阀 7和第一单向阀 2依次串联构成第二 油路。
溢流阀 6作为系统的安全阀, 用于设定系统的安全压力, 溢流阀 6的 压力值可以手动设置, 当电控系统故障造成系统断电时, 溢流阀 6为旋转 阻尼器 1提供基础阻尼, 供车辆行驶到维修厂, 行驶过程中需要调整基础 阻尼力时, 可以进行手动调整, 起安全保护作用。
溢流阀 6和比例溢流阀 7并联后串联在第二单向阀 3和第四单向阀 5 之间, 压力传感器 8与溢流阀 6和比例溢流阀 7串联, 用于检测溢流阀 6 和比例溢流阀 7—端 P口压力, 并把检测到的数据发送到电控单元, 计算 机把测到的压力值和系统设置的压力值进行对比, 如测到的压力值偏低, 则电控单元发信号给比例溢流阀 7, 比例溢流阀 7接到信号后增大压力值, 使其 P口压力达到设定的压力值, 同理, 当测到的压力值偏高时, 比例溢 流阀 7相应地进行泄压, 降低压力值, 这里的比例溢流阀 7能够同时起到 调压和安全保护的作用。
比例溢流阀 7可以用固定的液压阻尼代替, 再增加电磁阀实现分级调 压。
结合图 1-7所示,旋转阻尼器包括定子 11、转子 12以及用于封装定子 11和转子 12的上端盖 14和下端盖 15, 转子 12设置在定子 11的内侧, 且 同心设置, 定子 11和转子 12之间形成液压腔 13。
定子 11内壁圆周方向上均匀设置至少一个隔板槽 114 (本实施例中的 隔板槽 114为三个), 隔板槽 114内固定安装有隔板 115, 隔板 115将液压 腔 13均匀等分为复数个容腔, 定子 11外壁位于隔板 115两侧分别设置相 对称的第一油口 116和第二油口 117,第一油口 116和第二油口 117分别和 第一油道 112和第二油道 113相连通。
定子 11法兰面 111的端面上还设置有复数道密封槽 118, 密封槽 118 分别与第一油道 112和第二油道 113间隔分布, 用于对第一油道 112和第 二油道 113进行密封, 避免出现漏油现象。
每个隔板 115底部设有压紧油槽 119, 当转子 12转动时, 受压缩的容 腔内的液压油产生压力, 压紧油槽 119对隔板 115施加压力, 抵消转动时 隔板 115产生的离心力, 同时把隔板 115向转子 12压紧, 使密封圈 9和转 子 12产生预压紧, 加强密封效果, 以确保转子 12相对定子 11转动时, 可 以对液压油进行压缩, 进而产生压力。
转子 12外壁圆周面上均匀设置至少一个叶片槽 121 (本实施例中的叶 片槽 114为三个),叶片槽 121内固定安装有叶片 122,叶片 122和隔板 115 相间设置。
转子 12上端面圆周方向上设置有端面密封槽 123, 在转子 12内壁圆 周方向上加设有轴面密封槽 124, 平面密封槽 123 内装有耐摩擦、 耐高压 的 PTFE (聚四氟乙烯), 对转子 12进行平面密封; 轴面密封槽 124内装有 聚氨酯, 对转子 12进行轴面旋转密封, 能够弥补 PTFE材质较硬、 密封效 果不好、 会有少量液压油泄漏的缺陷, 从平面和轴面两个方向上对转子进 行全密封, 保证旋转阻尼器 1无液压油外泄漏的现象。 每个叶片 122两侧设置两个相对称的吸油阀安装口 125, 用于将定子 11上平面泄漏出的液压油吸回容腔内, 防止平面密封产生的泄漏油在转子 12的平面和轴面两种密封之间越积越多, 产生 "闷油"现象, 最终导致外 漏。
叶片 122和隔板 115的外表面上, 隔板 115两端与定子 11、 转子 12 之间, 叶片 122两端与定子 11、转子 12之间都装有密封圈 9, 以确保转子 12相对定子 11转动时, 可以对液压油进行压缩, 进而产生压力。
如图 8所示, 旋转阻尼器液压缓冲系统还包括液压集成块 10, 所有油 路及阀门设备均设置在所述液压集成块 10内,所有油路均通过油孔通断以 及所有阀件的几何位置布置及安装设置在液压集成块 10上。
本发明控制原理如下:
当转子 12相对定子 11顺时针转动时, 第二腔 132内的液压油受到压 缩, 形成受压腔, 产生压力; 同时, 第一腔 131的腔体容积变大, 腔体内 产生负压, 需要补充液压油; 此时第二油道 113属于排油油道, 受压缩的 液压油经第二油道 113进入第二油口 117,第二单向阀 3打开,液压油到达 溢流阀 6和比例溢流阀 7的 P口; 当第二油道 113内的液压油压力达到比 例溢流阀 7设定的压力值时, 比例溢流阀 7打开, 液压油到达第四单向阀 5的一端, 打开第四单向阀 5, 经第一油口进入到第一油道 112, 将受压缩 的液压油补充到第一腔 131的腔体内。
同理, 当转子 12相对定子 11逆时针转动时, 第一腔 131内的液压油 受到压缩, 产生压力; 同时, 第二腔 132内的腔体容积变大, 腔体内产生 负压, 需要补充液压油; 此时第一油道 112属于排油油道, 这样受压缩的 液压油经第一油道 112进入第一油口 116,第三单向阀 4打开,液压油到达 溢流阀 6和比例溢流阀 7的 P口; 当第一油道 112内的液压油压力达到比 例溢流阀 7设定的压力值时, 比例溢流阀 7打开, 液压油到达第一单向阀 2的一端, 打开第一单向阀 2, 经第二油口 117进入到第二油道 117, 并将 受压缩的液压油补充到第二腔 132的腔体内。
在旋转阻尼器工作过程中, 压力传感器 8实时监测溢流阀 6和比例溢 流阀 7—端 P口的压力, 并把数据发送到电控单元, 电控单元根据车辆发 送来的车速信号, 和角度传感器发送来的角度信号, 对比例溢流阀 7对应 设定一个压力值, 计算机把测到的比例溢流阀 7的 P口压力值和系统设置 的压力值对比, 如压力值偏低, 则电控单元发信号给比例溢流阀 7, 比例 溢流阀 7接到信号后增大压力值,使其 P口压力达到设定的压力值,相反, 当压力值偏高时, 比例溢流阀 7接到电控单元发出的信号后进行泄压, 降 低压力值, 使其 P口压力达到设定的压力值。
当电控系统产生故障造成系统断电时, 这时比例溢流阀 7处于完全关 闭状态, 旋转阻尼器 1的工作压力为溢流阀 6设定的安全压力, 支持车辆 行驶到达修理厂, 行驶过程中需要调整基础阻尼力时, 可以进行手动调整 溢流阀 6的压力值。
综上, 本发明旋转阻尼器液压缓冲系统设计巧妙、 集成度高、 结构简 洁紧凑、 生产成本低、 维护方便, 缓冲效果好; 通过设计吸油阀和平面、 轴面两道密封, 加强密封效果, 确保不会出现 "闷油"现象。
本发明的技术内容及技术特征已揭示如上, 然而熟悉本领域的技术人 员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修 饰, 因此, 本发明保护范围应不限于实施例所揭示的内容, 而应包括各种 不背离本发明的替换及修饰, 并为本专利申请权利要求所涵盖。

Claims

权 利 要 求 书
1、 旋转阻尼器液压缓冲系统, 其特征在于: 包括旋转阻尼器、 第一油 路及第二油路, 所述旋转阻尼器包括定子, 相对于定子转动的转子, 以及 形成于定子和转子间的液压腔; 所述定子上形成有第一油道和第二油道, 所述液压腔包括分别与所述第一油道及第二油道相连通的至少一个第一腔 和至少一个第二腔; 当转子逆时针转动时, 所述第一腔内的液压油受到压 缩, 液压油从所述第一腔经过所述第一油道, 第一油路, 及第二油道进入 所述第二腔内; 当转子顺时针转动时, 所述第二腔内的液压油受到压缩, 液压油从所述第二腔经过所述第二油道, 第二油路, 及第一油道进入所述 第一腔内。
2、 根据权利要求 1所述的旋转阻尼器液压缓冲系统, 其特征在于, 所 述缓冲系统还包括第一单向阀、 第二单向阀、 第三单向阀、 第四单向阀和 比例溢流阀, 所述第二单向阀、 比例溢流阀和第四单向阀依次串联构成所 述第一油路; 所述第三单向阀、 比例溢流阀和第一单向阀依次串联构成所 述第二油路。
3、 根据权利要求 2所述的旋转阻尼器液压缓冲系统, 其特征在于, 所 述缓冲系统还包括溢流阀和压力传感器, 所述溢流阀和比例溢流阀并联后 串联在第二单向阀和第四单向阀之间, 所述压力传感器与溢流阀和比例溢 流阀串联, 用于检测溢流阀和比例溢流阀一端口的压力。
4、 根据权利要求 1所述的旋转阻尼器液压缓冲系统, 其特征在于, 所述 旋转阻尼器还包括封装定子和转子的上端盖和下端盖。
5、 根据权利要求 1所述的旋转阻尼器液压缓冲系统, 其特征在于, 所述 定子内壁圆周面上设置至少一个隔板槽, 所述隔板槽内固定安装有隔板, 定子外壁位于隔板两侧分别设置相对称的第一油口和第二油口, 所述第一 油口和第二油口分别和第一油道和第二油道相连通。
6、 根据权利要求 5所述的旋转阻尼器液压缓冲系统, 其特征在于, 所述 隔板槽底部设有压紧油槽。
7、 根据权利要求 1所述的旋转阻尼器液压缓冲系统, 其特征在于, 所述 定子和转子的端面上设置有密封槽。
8、 根据权利要求 5所述的旋转阻尼器液压缓冲系统, 其特征在于, 所述 转子外壁圆周面上设置有至少一个叶片槽, 所述叶片槽内固定安装有叶片, 叶片两侧设置有吸油阀安装口。
9、 根据权利要求 1所述的旋转阻尼器液压缓冲系统, 其特征在于, 所述 液压腔的至少一个第一腔及至少一个第二腔由所述隔板及叶片相间分隔形 成。
10、 根据权利要求 1所述的旋转阻尼器液压缓冲系统, 其特征在于, 所 述旋转阻尼器液压缓冲系统还包括液压集成块, 所有油路及阀门设备均设 置在所述液压集成块内。
PCT/CN2013/080276 2013-04-28 2013-07-29 旋转阻尼器液压缓冲系统 WO2014176833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13883514.5A EP2993373B1 (en) 2013-04-28 2013-07-29 Rotary damper type hydraulic buffer system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310156827.7 2013-04-28
CN201310156827.7A CN103195855B (zh) 2013-04-28 2013-04-28 旋转阻尼器液压缓冲系统

Publications (1)

Publication Number Publication Date
WO2014176833A1 true WO2014176833A1 (zh) 2014-11-06

Family

ID=48718587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080276 WO2014176833A1 (zh) 2013-04-28 2013-07-29 旋转阻尼器液压缓冲系统

Country Status (3)

Country Link
EP (1) EP2993373B1 (zh)
CN (1) CN103195855B (zh)
WO (1) WO2014176833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762648A (zh) * 2020-07-03 2020-10-13 王秋俐 机械式高楼逃生兼日用系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103195855B (zh) * 2013-04-28 2015-05-20 伊卡路斯(苏州)车辆系统有限公司 旋转阻尼器液压缓冲系统
CN103438139B (zh) * 2013-08-29 2015-03-18 洛阳理工学院 一种回转液压阻尼平衡装置
EP3379222B1 (en) 2017-03-22 2020-12-30 Methode Electronics Malta Ltd. Magnetoelastic based sensor assembly
EP3758959A4 (en) 2018-02-27 2022-03-09 Methode Electronics, Inc. TOWING SYSTEMS AND METHODS USING MAGNETIC SENSING
US11135882B2 (en) 2018-02-27 2021-10-05 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11491832B2 (en) 2018-02-27 2022-11-08 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11221262B2 (en) 2018-02-27 2022-01-11 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
US11084342B2 (en) 2018-02-27 2021-08-10 Methode Electronics, Inc. Towing systems and methods using magnetic field sensing
JP2020085019A (ja) * 2018-11-16 2020-06-04 株式会社ソミック石川 ロータリダンパ
CN114877002A (zh) * 2022-05-27 2022-08-09 沈阳工学院 一种外置可调式旋转粘滞变阻尼器及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929022A1 (de) * 1979-07-18 1981-01-29 Maschf Augsburg Nuernberg Ag Ausbrech-schutzvorrichtung fuer gelenkkraftfahrzeuge
WO1984001135A1 (en) * 1982-09-22 1984-03-29 Falkenried Fahrzeug Gmbh Turning articulation device for road vehicles with at least two vehicle portions connected by means of a pivoting articulation
US6422584B1 (en) * 1998-12-18 2002-07-23 Hubner Gummi-Und Kunstoff Gmbh Hydraulic system for damping the motion of rotation of a swivel joint between two vehicle parts of an articulated vehicle, of an articulated bus for example
CN201086607Y (zh) * 2007-08-30 2008-07-16 无锡华创伊卡露斯车辆设备有限公司 大型铰接客车铰接系统中的液压控制体
CN103195855A (zh) * 2013-04-28 2013-07-10 伊卡路斯(苏州)车辆系统有限公司 旋转阻尼器液压缓冲系统
CN203202106U (zh) * 2013-04-28 2013-09-18 伊卡路斯(苏州)车辆系统有限公司 旋转阻尼器液压缓冲系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE377073A (zh) * 1931-02-09
GB948590A (en) * 1962-07-19 1964-02-05 Lionel Pacific Inc Flutter damper
GB2145798B (en) * 1983-09-01 1987-06-17 Fichtel & Sachs Ag Volume compensation in hydraulic rotary-vane dampers
JPH11159561A (ja) * 1997-11-28 1999-06-15 Unisia Jecs Corp ロータリダンパ
US6779625B2 (en) * 2001-05-28 2004-08-24 Unisia Jkc Steering Systems Co., Ltd. Steering damper
US6824153B2 (en) * 2002-06-21 2004-11-30 Kayaba Industry Co., Ltd. Steering device
SE532539C2 (sv) * 2007-06-14 2010-02-16 Oehlins Racing Ab Vingdämpare med justerbar dämpkraft
CN201627869U (zh) * 2010-03-29 2010-11-10 伊卡露斯(苏州)车辆系统有限公司 液压缓冲系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929022A1 (de) * 1979-07-18 1981-01-29 Maschf Augsburg Nuernberg Ag Ausbrech-schutzvorrichtung fuer gelenkkraftfahrzeuge
WO1984001135A1 (en) * 1982-09-22 1984-03-29 Falkenried Fahrzeug Gmbh Turning articulation device for road vehicles with at least two vehicle portions connected by means of a pivoting articulation
US6422584B1 (en) * 1998-12-18 2002-07-23 Hubner Gummi-Und Kunstoff Gmbh Hydraulic system for damping the motion of rotation of a swivel joint between two vehicle parts of an articulated vehicle, of an articulated bus for example
CN201086607Y (zh) * 2007-08-30 2008-07-16 无锡华创伊卡露斯车辆设备有限公司 大型铰接客车铰接系统中的液压控制体
CN103195855A (zh) * 2013-04-28 2013-07-10 伊卡路斯(苏州)车辆系统有限公司 旋转阻尼器液压缓冲系统
CN203202106U (zh) * 2013-04-28 2013-09-18 伊卡路斯(苏州)车辆系统有限公司 旋转阻尼器液压缓冲系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762648A (zh) * 2020-07-03 2020-10-13 王秋俐 机械式高楼逃生兼日用系统

Also Published As

Publication number Publication date
EP2993373A4 (en) 2016-08-10
EP2993373B1 (en) 2018-07-11
EP2993373A1 (en) 2016-03-09
CN103195855B (zh) 2015-05-20
CN103195855A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2014176833A1 (zh) 旋转阻尼器液压缓冲系统
CN102095004B (zh) 大型液压变速浮箱拍门
CN207131546U (zh) 一种大功率空压机装置
CN102062094A (zh) 具有防液击功能的滚动转子制冷压缩机
CN104863909A (zh) 带有容积、压力和泄漏检测功能的弹簧增压闭式液压油箱
CN106499690A (zh) 一种框型密封的液压摆动马达
CN203202106U (zh) 旋转阻尼器液压缓冲系统
CN203500100U (zh) 负压增压双级反装密封多形式叶轮组合石化流程泵
CN110905807B (zh) 一种氢气循环压缩泵
CN203548173U (zh) 一种液压变量柱塞泵补油和冲洗装置
CN201705543U (zh) 一种双速摆线液压驱动马达
CN206221691U (zh) 一种用于真空集便器系统的滑阀
CN206158973U (zh) 膜片式汽车用电动真空泵
CN204188350U (zh) 一种阀体组成的气密性检测结构
CN207945042U (zh) 一种变量摆线液压马达
CN110454450B (zh) 电液伺服控制系统液压保护装置
CN207486136U (zh) 法兰式斜瓣止回阀
CN201096013Y (zh) 大功率天然气发动机用涡轮增压器的油封装置
CN203906412U (zh) 一种液压系统及辊磨机
CN207231724U (zh) 一种密封试验装置
CN204591672U (zh) 外支承旋转式流体机械
CN203202022U (zh) 带高压顶升装置的高速动平衡可倾瓦轴承
CN103925217A (zh) 一种水润滑单螺杆无油空气压缩机
CN207161790U (zh) 一种具有二级止回作用的止回阀
CN213116588U (zh) 一种汽车空压机双缸整体式曲轴箱结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013883514

Country of ref document: EP