WO2014176830A1 - 一种具有全桥微梁结构的压阻式加速度传感器 - Google Patents

一种具有全桥微梁结构的压阻式加速度传感器 Download PDF

Info

Publication number
WO2014176830A1
WO2014176830A1 PCT/CN2013/079664 CN2013079664W WO2014176830A1 WO 2014176830 A1 WO2014176830 A1 WO 2014176830A1 CN 2013079664 W CN2013079664 W CN 2013079664W WO 2014176830 A1 WO2014176830 A1 WO 2014176830A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever beam
mass
microbeams
acceleration sensor
full bridge
Prior art date
Application number
PCT/CN2013/079664
Other languages
English (en)
French (fr)
Inventor
陈学军
Original Assignee
厦门乃尔电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门乃尔电子有限公司 filed Critical 厦门乃尔电子有限公司
Publication of WO2014176830A1 publication Critical patent/WO2014176830A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0817Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for pivoting movement of the mass, e.g. in-plane pendulum

Definitions

  • the present invention relates to the field of acceleration sensor technology, and more particularly to a piezoresistive acceleration sensor having a full bridge micro beam structure.
  • Silicon has excellent mechanical and electrical properties, and has a ready-made process in microelectronic processing technology, and thus is widely used in various MEMS devices.
  • High-sensitivity, wide-frequency accelerometers have important applications in both military and civilian applications.
  • Conventional MEMS accelerometers generally use silicon cantilever beams and piezoresistive sensing elements on the beam as the core components. In this structure, only a small part of the cantilever beam is transferred to the piezoresistive sensing element due to the potential energy of the bending storage, resulting in lower sensitivity.
  • the parameters of the beam and the mass block can improve the sensitivity to a certain extent, but when the sensitivity is improved, the resonance frequency is usually lowered, and the requirements of high precision, small mechanical measurement, and wide frequency response cannot be satisfied at the same time.
  • the Chinese invention patent "single-chip integrated direct-pressing micro-beam structure piezoresistive acceleration sensor and its manufacturing method" (application number: 02151296.5) by precisely designing the position of two micro-beams, making it a straight-drawing straight pressure Microbeams require high manufacturing precision; only two varistors form the Wheatstone half-bridge, and the other two resistors of the Wheatstone bridge are provided by external circuits. Only two varistors are more sensitive to the temperature of the measurement environment. Its resistance value drifts with temperature, and the Wheatstone bridge formed is easily affected by temperature and is unbalanced, thus affecting the measurement results.
  • the present invention proposes a piezoresistive acceleration sensor having a full bridge micro beam structure, which is composed of four varistors to form a Wheatstone full bridge, which improves sensitivity and reduces temperature drift to Wheatstone. The influence of the bridge circuit.
  • a piezoresistive acceleration sensor having a full bridge micro beam structure, comprising a frame, a cantilever beam, a micro beam and a mass, the cantilever beam being in mass
  • the four microbeams form a varistor thereon by diffusion or ion implantation, and the four varistors are connected by wires to form a Wheatstone full bridge circuit.
  • the varistor on the four microbeams are respectively R1, R2, R3, and R4, wherein R1 and R2 are symmetrically distributed on the side of the mass connecting the cantilever beam, and R3 and R4 are above and below the mass.
  • Cantilever beam at any position on the left and right sides The axis is axisymmetric.
  • FIG. 1 is a schematic view of a first embodiment of a full bridge micro beam structure according to the present invention
  • FIG. 2 is a schematic view showing a second embodiment of a full bridge micro beam structure according to the present invention.
  • FIG. 3 is a schematic view showing a third embodiment of a full bridge micro beam structure according to the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a Wheatstone full bridge circuit of the present invention.
  • Reference numerals 1, frame; 2, cantilever beam; 3, micro beam; 4, mass.
  • FIG. 1 shows a first embodiment of a piezoresistive acceleration sensor having a full bridge micro beam structure according to the present invention, including a frame 1, a cantilever beam 2, a micro beam 3, and a mass 4, and the cantilever beam 2 is in mass.
  • the value increases, while the resistance of the other side of the other side decreases, and the magnitudes of the changes of the four resistors are equal.
  • the four micro-beams 3 in this embodiment are all symmetrically distributed on the side of the mass 4 connecting the cantilever beams 2.
  • the four microbeams 3 form varistor Rl, R2, R3, R4 thereon by diffusion or ion implantation, and the four varistor R1, R2, R3, R4 have the same resistance value and pass the wire (metal lead)
  • the connection forms the Wheatstone full-bridge circuit, as shown in Figure 4.
  • the arrow shown in Fig. 1 is the direction of acceleration applied to the sensor. When the sensor is subjected to acceleration, the mass 4 is subjected to vertical acceleration and converts the acceleration into inertial force, causing the cantilever beam 2 to deform and symmetrically distributed.
  • the four micro-beams 3 are also compressed or stretched to generate strain, so that the resistance values of the varistor R1, R2, R3, and R4 are changed and reflected on the output voltage Uo of the Wheatstone full-bridge circuit, the output The voltage Uo is proportional to the acceleration experienced by the mass 4, and the output voltage Uo of the Wheatstone bridge is measured, and the acceleration value applied to the sensor is obtained by calculation.
  • the structure is provided with four microbeams 3, and the varistor is arranged on the four microbeams 3.
  • the four varistors constitute a Wheatstone full bridge circuit, on the one hand, the strain of the cantilever beam 2 is enlarged, and the height is improved.
  • Sensitivity the sensitivity is twice that of the half-bridge structure; on the other hand, all four varistor are in the chip, and the influence of the resistance drift caused by the measurement of the ambient temperature change on the circuit cancels each other in the full-bridge circuit, improving Temperature stability.
  • 2 and 3 are respectively two and three embodiments of the present invention, and different from the first embodiment, wherein two microbeams 3 are symmetrically distributed on the mass 4 with the axis of the cantilever beam 2 as an axis.
  • the right side (as shown in FIG. 2), or the axis of the cantilever beam 2 is symmetrically distributed on the upper and lower sides of the mass 4 (as shown in FIG. 3), compared with the first embodiment, the structure of the second or third embodiment
  • the four micro-beams 3 are respectively distributed on the upper and lower sides of the mass block 4, which increases the constraint on the vibration of the mass block 4 and improves the first-order resonance frequency.
  • the four microbeams 3 can be symmetrically distributed on the upper and lower sides of the mass 4, respectively, which improves design flexibility and reduces manufacturing difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

一种具有全桥微梁结构的压阻式加速度传感器,包括框架(1)、悬臂梁(2)、微梁(3)和质量块(4)。所述悬臂梁(2)处于质量块(4)对称轴线上,所述微梁(3)共有四个,以悬臂梁(2)所在轴线为轴对称地分布于质量块(4)边缘,并将压阻敏感电阻设于四个微梁上,四个压阻敏感电阻构成惠斯顿全桥电路。使得悬臂梁的应变得到放大,提高了灵敏度;四个压阻敏感电阻均处于芯片内,因测量环境温度变化引起的阻值漂移对电路的影响在全桥电路中相互抵消,提高了温度稳定性;而且四个微梁增加了对质量块振动的约束,提高了一阶谐振频率。

Description

一种具有全桥微梁结构的压阻式加速度传感器 技术领域
[0001] 本发明涉及加速度传感器技术领域, 尤其涉及一种具有全桥微梁结构的压阻式加速 度传感器。
背景技术
[0002] 硅具有优良的机械性能和电学性能, 而且在微电子加工技术方面有现成工艺, 因而 广泛应用于各种 MEMS 器件中。 高灵敏度, 宽频响的加速度测量传感器在军, 民两方面都 有重要的应用。 传统 MEMS 加速度传感器一般采用硅悬臂梁和梁上面的压阻敏感元件做为 核心部件, 此结构中悬臂梁因为弯曲存储的势能只有一小部分传递到压阻敏感元件, 导致灵 敏度较低, 通过改变梁和质量块的参数, 可在一定程度上提高灵敏度, 但实现灵敏度提高的 同时, 通常会导致谐振频率降低, 无法同时满足高精度, 小力学测量, 宽频响的要求。
[0003] 如中国发明专利 《单片集成的直拉直压微梁结构压阻加速度传感器及制作方法》 (申 请号: 02151296.5 ) 通过精确设计两个微梁的位置, 使其成为直拉直压微梁, 对制造精度要 求高; 且只有两个压敏电阻构成惠斯顿半桥, 惠斯顿电桥另两个电阻由外部电路提供, 只有 两个压敏电阻对测量环境的温度更敏感, 其阻值随温度漂移明显, 所构成的惠斯顿电桥就易 受温度影响而失衡, 从而影响测量结果。 美国发明专利 《Single-mask Fabrication Process For Linear and Angular Piezoresistive Accelerometers)) (《线性和角度的压阻加速度计的单掩膜制 造工艺》 专利号: US 7939355 B2)同样存在上述缺陷, 压敏电阻仅构成惠斯顿半桥, 且缺少 温度补偿机制, 灵敏度较差。
发明内容
[0004] 为克服上述问题, 本发明提出一种具有全桥微梁结构的压阻式加速度传感器, 由四 个压敏电阻构成惠斯顿全桥, 提高了灵敏度, 降低了温度漂移对惠斯顿电桥电路的影响。
[0005] 为达到上述目的, 本发明所提出的技术方案为: 一种具有全桥微梁结构的压阻式加 速度传感器, 包括框架、 悬臂梁、 微梁和质量块, 所述悬臂梁处于质量块对称轴线上; 所述 微梁共有四个, 以悬臂梁所在轴线为轴对称地分布于质量块边缘, 连接质量块与框架。
[0006] 进一步的, 所述四个微梁均通过扩散或者离子注入在其上形成压敏电阻, 四个压敏 电阻通过导线连接形成惠斯顿全桥电路。
[0007] 进一步的, 所述四个微梁上的压敏电阻分别为 Rl、 R2、 R3、 R4, 其中 Rl和 R2在 质量块连接悬臂梁的一侧对称分布, R3和 R4在质量块上下左右四侧的任意位置以悬臂梁所 在轴线为轴对称分布。
[0008] 本发明的有益效果: 设置四个微梁, 并将压敏电阻设于四个微梁上, 四个压敏电阻 构成惠斯顿全桥电路, 一方面使得悬臂梁的应变得到放大, 提高了灵敏度; 另一方面, 四个 压敏电阻均处于芯片内, 因测量环境温度变化引起的阻值漂移对电路的影响在全桥电路中相 互抵消, 提高了温度稳定性; 而且四个微梁增加了对质量块振动的约束, 提高了一阶谐振频 率。
附图说明
[0009] 图 1为本发明的全桥微梁结构实施例一示意图;
图 2为本发明的全桥微梁结构实施例二示意图;
图 3为本发明的全桥微梁结构实施例三示意图;
图 4为本发明的惠斯顿全桥电路实施例示意图。
[0010] 附图标记: 1、 框架; 2、 悬臂梁; 3、 微梁; 4、 质量块。
具体实施方式
[0011] 下面结合附图和具体实施方式, 对本发明做进一步说明。
[0012] 如图 1 所示为本发明具有全桥微梁结构的压阻式加速度传感器的具体实施例一, 包 括框架 1、 悬臂梁 2、 微梁 3和质量块 4, 悬臂梁 2处于质量块 4对称轴线上, 微梁 3共有 四个, 以悬臂梁 2所在轴线为轴对称地分布于质量块 4边缘, 连接质量块与框架, 以保证工 作过程中悬臂梁 2—侧的两电阻阻值增大, 而另一侧的两电阻阻值减小, 且四个电阻的变化 值大小相等。 该实施例中的四个微梁 3 全部对称分布在质量块 4连接悬臂梁 2 的一侧。 其 中, 四个微梁 3均通过扩散或者离子注入在其上形成压敏电阻 Rl、 R2、 R3、 R4, 四个压敏 电阻 Rl、 R2、 R3、 R4 阻值相等, 并通过导线 (金属引线) 连接形成惠斯顿全桥电路, 如 图 4所示。 如图 1中所示箭头为加在传感器上的加速度方向, 当传感器受到加速度作用时, 质量块 4承受竖直方向的加速度并把加速度转化成惯性力, 使悬臂梁 2发生形变, 同时对称 分布的四个微梁 3 也被压缩或拉伸产生应变, 从而使压敏电阻 Rl、 R2、 R3、 R4 的阻值发 生变化, 并反映到惠斯顿全桥电路的输出电压 Uo上, 该输出电压 Uo与质量块 4承受的加 速度成正比, 测量惠斯顿电桥的输出电压 Uo, 并通过计算即可得到加在传感器上的加速度 值。 该结构设置了四个微梁 3, 并将压敏电阻设于四个微梁 3上, 四个压敏电阻构成惠斯顿 全桥电路, 一方面使得悬臂梁 2的应变得到放大, 提高了灵敏度, 其灵敏度为半桥结构的两 倍; 另一方面, 四个压敏电阻均处于芯片内, 因测量环境温度变化引起的阻值漂移对电路的 影响在全桥电路中相互抵消, 提高了温度稳定性。 [0013] 如图 2 和 3 所示分别为本发明的实施例二和三, 与实施例一不同的是, 其中两个微 梁 3 以悬臂梁 2所在轴线为轴对称分布于质量块 4的右侧 (如图 2所示), 或者以悬臂梁 2 所在轴线为轴对称分布于质量块 4 的上下侧 (如图 3所示), 相对于实施例一, 实施例二或 三的结构因其四个微梁 3分别分布于质量块 4上下左右, 增加了对质量块 4振动的约束, 提 高了一阶谐振频率。
[0014] 上述各实施例中, 四个微梁 3 可分别对称分布于质量块 4 的上下左右, 提高了设计 的灵活性, 降低了制造难度。
[0015] 尽管结合优选实施方案具体展示和介绍了本发明, 但所属领域的技术人员应该明 白, 在不脱离所附权利要求书所限定的本发明的精神和范围内, 在形式上和细节上对本发明 做出的各种变化, 均为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种具有全桥微梁结构的压阻式加速度传感器, 包括框架、 悬臂梁、 微梁和 质量块, 其特征在于: 所述悬臂梁处于质量块对称轴线上; 所述微梁共有四 个, 以悬臂梁所在轴线为轴对称地分布于质量块边缘, 连接质量块与框架。
2. 如权利要求 1所述具有全桥微梁结构的压阻式加速度传感器, 其特征在于: 所述四个微梁均通过扩散或者离子注入在其上形成压敏电阻, 四个压敏电阻通 过导线连接形成惠斯顿全桥电路。
3. 如权利要求 1或 2所述具有全桥微梁结构的压阻式加速度传感器, 其特征在 于: 所述四个微梁上的压敏电阻分别为 Rl、 R2、 R3、 R4, 其中 Rl和 R2在质 量块连接悬臂梁的一侧对称分布, R3和 R4在质量块上下左右四侧的任意位置 以悬臂梁所在轴线为轴对称分布。
PCT/CN2013/079664 2013-04-28 2013-07-19 一种具有全桥微梁结构的压阻式加速度传感器 WO2014176830A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310154469.6 2013-04-28
CN201310154469.6A CN103235155B (zh) 2013-04-28 2013-04-28 一种具有全桥微梁结构的压阻式加速度传感器

Publications (1)

Publication Number Publication Date
WO2014176830A1 true WO2014176830A1 (zh) 2014-11-06

Family

ID=48883206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079664 WO2014176830A1 (zh) 2013-04-28 2013-07-19 一种具有全桥微梁结构的压阻式加速度传感器

Country Status (2)

Country Link
CN (1) CN103235155B (zh)
WO (1) WO2014176830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023658A (zh) * 2021-03-04 2021-06-25 上海迈振电子科技有限公司 一种谐振式微悬臂梁芯片及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777037B (zh) * 2014-01-10 2017-02-22 西安交通大学 一种多梁式双质量块加速度传感器芯片及其制备方法
CN104391133B (zh) * 2014-11-19 2017-06-06 沈阳工业大学 压阻式高固有频率mems加速度敏感芯片及其制造方法
CN105232080B (zh) * 2015-09-17 2017-10-31 中北大学 基于mems声传感器的可视化电子式听诊器
CN105588772B (zh) * 2016-03-16 2018-01-30 黑龙江大学 一种压敏材料应变因子测试装置及其测试方法
US10241126B2 (en) * 2017-03-24 2019-03-26 Hamilton Sundstrand Corporation Powerless environmental data recorder
CN108120858B (zh) * 2017-12-20 2020-05-26 中国科学院半导体研究所 自激励自检测探针及其制作方法
CN109635356B (zh) * 2018-11-19 2023-05-19 北京联合大学 一种谐振式加速度计控制方程建立方法
CN113567707A (zh) * 2021-08-26 2021-10-29 维沃移动通信有限公司 加速度检测装置、检测系统、电子设备和加速度检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115427B2 (ja) * 1991-11-28 2000-12-04 富士電機株式会社 半導体加速度センサ
CN1603743A (zh) * 2004-11-12 2005-04-06 中国科学院上海微系统与信息技术研究所 微梁直拉直压结构压阻微机械陀螺及制作方法
CN101118250A (zh) * 2007-09-13 2008-02-06 中国电子科技集团公司第十三研究所 一种硅mems压阻式加速度传感器
CN101692099A (zh) * 2009-10-16 2010-04-07 中国人民解放军国防科学技术大学 具有片上零偏补偿的压阻式双轴微加速度计及制作方法
CN102331513A (zh) * 2011-06-16 2012-01-25 沈阳工业大学 一种超薄敏感梁压阻加速度传感器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279362C (zh) * 2002-12-13 2006-10-11 中国科学院上海微系统与信息技术研究所 一种硅微加速度传感器及制作方法
CN102689869B (zh) * 2011-03-24 2015-03-04 中国科学院上海微系统与信息技术研究所 平面内谐振式直拉直压微悬臂梁结构及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115427B2 (ja) * 1991-11-28 2000-12-04 富士電機株式会社 半導体加速度センサ
CN1603743A (zh) * 2004-11-12 2005-04-06 中国科学院上海微系统与信息技术研究所 微梁直拉直压结构压阻微机械陀螺及制作方法
CN101118250A (zh) * 2007-09-13 2008-02-06 中国电子科技集团公司第十三研究所 一种硅mems压阻式加速度传感器
CN101692099A (zh) * 2009-10-16 2010-04-07 中国人民解放军国防科学技术大学 具有片上零偏补偿的压阻式双轴微加速度计及制作方法
CN102331513A (zh) * 2011-06-16 2012-01-25 沈阳工业大学 一种超薄敏感梁压阻加速度传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023658A (zh) * 2021-03-04 2021-06-25 上海迈振电子科技有限公司 一种谐振式微悬臂梁芯片及其制备方法
CN113023658B (zh) * 2021-03-04 2024-05-28 上海迈振电子科技有限公司 一种谐振式微悬臂梁芯片及其制备方法

Also Published As

Publication number Publication date
CN103235155B (zh) 2016-05-11
CN103235155A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2014176830A1 (zh) 一种具有全桥微梁结构的压阻式加速度传感器
CN101858929B (zh) 对称组合弹性梁结构电容式微加速度传感器及制作方法
CN103941041B (zh) 一种三框架结构的单质量块三轴mems加速度计
US9327962B2 (en) MEMS device and corresponding micromechanical structure with integrated compensation of thermo-mechanical stress
WO2014169540A1 (zh) 非等截面悬臂梁压电式加速度传感器
CN110371921B (zh) 一种面内双轴压阻加速度传感器芯片及其制备方法
JP2009053180A (ja) 加速度センサー
CN106915721A (zh) 具有中央固定座的微机电装置
US20030150269A1 (en) Acceleration sensor
Zhao et al. A bossed diaphragm piezoresistive pressure sensor with a peninsula–island structure for the ultra-low-pressure range with high sensitivity
TW201805230A (zh) 用於壓力感測器裝置的微機械構件
TWI712798B (zh) 用於微機械z-感應器的擺振設備及生產彼之方法
CN107643424B (zh) 一种压阻式mems加速度芯片及其制作方法
KR100508198B1 (ko) 가속도 센서
Suminto A wide frequency range, rugged silicon micro accelerometer with overrange stops
EP1298442A1 (en) Acceleration sensor
CN108828265B (zh) 一种电容式微机械加速度传感器
JP2004177357A (ja) 半導体加速度センサ
WO2012098901A1 (ja) 加速度センサ
JP2010169575A (ja) 慣性センサ
CN110531114B (zh) 一种纯轴向变形的mems三轴压阻式加速度计芯片及其制备方法
JP2010185781A (ja) 加速度センサー
JP2005049320A (ja) 加速度センサ
JP3642054B2 (ja) ピエゾ抵抗型3軸加速度センサ
Xiao et al. A temperature self-calibrating torsional accelerometer with fully differential configuration and integrated reference capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1204A DATED 25/02/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13883518

Country of ref document: EP

Kind code of ref document: A1